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Abstract— Objective: To provide objective visualization and 

pattern analysis of neck muscle boundaries to inform and 

monitor treatment of cervical dystonia. Methods: We recorded 

transverse cervical ultrasound (US) images and whole-body 

motion analysis of sixty-one standing participants (35 cervical 

dystonia, 26 age matched controls). We manually annotated 3,272 

US images sampling posture and the functional range of pitch, 

yaw, and roll head movements.  Using previously validated 

methods, we used 60-fold cross validation to train, validate and 

test a deep neural network (U-net) to classify pixels to 13 

categories (five paired neck muscles, skin, ligamentum nuchae, 

vertebra). For all participants for their normal standing posture, 

we segmented US images and classified condition 

(Dystonia/Control), sex and age (higher/lower) from segment 

boundaries.  We performed an explanatory, visualization analysis 

of dystonia muscle-boundaries. Results: For all segments, 

agreement with manual labels was Dice Coefficient (64±21%) 

and Hausdorff Distance (5.7±4 mm). For deep muscle layers, 

boundaries predicted central injection sites with average 

precision 94±3%. Using leave-one-out cross-validation, a 

support-vector-machine classified condition, sex, and age from 

predicted muscle boundaries at accuracy 70.5%, 67.2%, 

52.4% respectively, exceeding classification by manual labels.  

From muscle boundaries, Dystonia clustered optimally into 

three sub-groups.  These sub-groups are visualized and 

explained by three eigen-patterns which correlate significantly 

with truncal and head posture. Conclusion: Using US, neck 

muscle shape alone discriminates dystonia from healthy 

controls. Significance: Using deep learning, US imaging allows 

online, automated visualization, and diagnostic analysis of 

cervical dystonia and segmentation of individual muscles for 

targeted injection.  The dataset is available (DOI: 

10.23634/MMUDR.00624643). 
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I. INTRODUCTION 

ervical Dystonia (CD), also called spasmodic torticollis, 

is a painful condition in which the neck muscles contract 

involuntarily, causing the head to twist, turn, and pull into an 

abnormal posture. This neurological movement disorder 

affects an estimated 18,000 adults in the UK [1]. The reported 

mean duration from symptom onset to diagnosis is 44 months, 

with consultations sought from a mean of 3.5 different 

healthcare providers before reaching a diagnosis and receiving 

effective therapy [2]. For CD, the diagnosis is based on expert 

clinical assessment since laboratory testing and imaging of the 

brain or spine is typically unrevealing [2].  

Treatment of CD is symptomatic and the established 
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Figure 1. Posture (linked US-MRI) dataset  

A. Representative axial ultrasound image targeted at vertebral level C4. The 

probe plane was marked with four cod liver oil capsules. B, C, D: Axial, coronal 
and sagittal MR images of the same participant showing the ultrasound image 

plane marked by four cod liver oil capsules (blue circles). Here, the ultrasound 

image plane lies between cervical vertebrae C3 and C4. Note the challenge of 
extracting muscle boundaries from the ultrasound image. For the whole dataset, 

images were acquired at level 3.8±0.6 (mean±SD).   
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protocol is injecting the neck muscles with botulinum 

neurotoxin (BoNT) [3]. Clinical experience shows the main 

causes for treatment failure are suboptimal neck muscle 

selection or BoNT dosing, indicating the importance of 

appropriate targeting of overactive muscles [4], [5]. 

Furthermore, monitoring the effectiveness of treatment is 

confounded by use of differing rating scales and assessment 

methods [6]. There is a clinical need to diagnose CD more 

promptly, to improve analysis and identification of dystonic 

muscles, to improve delivery of injection and dose to specific 

muscles, to provide objective recording of injection sites for 

retention within medical records and to track longitudinally 

the effect of injections on individual muscles [7]. 

A. Current clinical methods  

The most common method of identifying and injecting the 

muscles involved in CD is clinical examination and manual 

needle placement, based on the clinician’s knowledge of 

functional anatomy of the neck muscles, directed by head 

position, shoulder elevation and assessment of muscle tone 

and hypertrophy on palpation [8]. Within the clinic, this 

method may be efficacious for superficial neck muscles but is 

compromised for deeper muscles - typically the deeper neck 

muscles (e.g. spinalis cervicis, multifidus) are difficult to 

assess clinically and inject. There is increasing awareness of 

the clinical relevance of deep cervical muscles in the 

pathogenesis and potential therapy of CD [9], [10], but the 

tools to assess and treat these muscles are currently not fully 

developed. Compared with intramuscular electromyographic 

(iEMG) mapping of cervical muscle activity, the sensitivity of 

clinical examination has been reported as 59% and the 

specificity 75% [8]. The positive predictive value of shoulder 

elevation and muscle hypertrophy is reportedly only 70% and 

head position does not provide added value, because 

individuals with solitary dystonic head postures do not have 

muscle dystonia following simple patterns [8]. Without iEMG 

mapping, 41% of dystonic muscles would not be recognized 

and 25% of inactive muscles would be judged dystonic [8]. 

However, iEMG is time consuming, requires substantial 

expertise, is invasive and cannot be performed in individuals 

on anticoagulants. Other methods including measurement of 

electrical impedance have been proposed to be sensitive to 

muscle changes in CD, but are not as yet validated[11]. 

Ultrasound (US) offers non-invasive visualisation of muscle 

structures with easy contralateral comparison, is readily 

available, and improves the precision of injections [12], [13]. 

However, use of US requires training, is dependent upon 

operator expertise, and remains subjective [12].  

The objective of this study is to provide an automated, 

objective visualization of neck muscle boundaries and to 

analyze whether these boundaries have diagnostic value 

discriminating patterns of cervical dystonia from healthy 

controls. If successful, these methods demonstrate proof of 

concept for a clinical tool for objective online diagnosis, 

injection guidance and monitoring, with minimal requirement 

for operator expertise and minimal burden on clinical time.  

B. Contribution of this study 

The use of deep learning to extract information from limited 

quality images (c.f. Fig. 1A) is progressing rapidly. 

Application to US is under-developed and application to 

skeletal muscle is rare. This study builds upon previous work 

by our group realizing the scientific and clinical value of in-

vivo skeletal muscle analysis [14]–[19], applying deep 

learning to skeletal muscle US [20]–[22] and specifically 

developing methods for analysis of the neck muscles [23], 

[24]. Recently we contributed a dataset, a methodology for 

labelling training images suitable for participants with 

involuntary head movement, and a benchmark deep learning 

 
Figure 2 Hypothesis pipeline: Using Deep Learning Semantic Segmentation, 
Boundary Extraction, support vector machine (SVM) Classification, 

Clustering, Pattern Analysis, Visualisation and whole body motion analysis, 

we sequentially test five hypotheses concerning transverse ultrasound images 
of the human neck.  

H1, Segmentation is accurate enough to guide injection of deep neck muscles 

(Figs. 4, 5). H2, Cervical Dystonia can be classified from age matched 
controls using muscle shape alone (Table 3).  H3, Muscle shape clusters into 

subtypes of Cervical Dystonia (Fig 5). H4, Cervical Dystonia can be reduced 
to significant eigen-patterns of muscle shape (Figs 6-8). H5, Eigen-patterns of 

neck muscle shape are associated with features of whole body posture (Fig 8). 
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method for segmenting the neck muscles [24], [25]. Here we 

apply that methodology to cervical dystonia. 

Our primary interest is to establish whether from a single 

axial image, neck muscle shape allows differentiation of 

cervical dystonia from healthy controls. Our secondary 

interest is whether or not segmentation is accurate enough to 

guide injections to deep neck muscles.  

Cervical dystonia is characterized by the sustained 

contraction of specific muscles.  Our general hypothesis is that 

those contracting muscles cause an identifiable pattern of neck 

muscle shape and an associated pattern of whole body posture. 

Dystonic muscles are specific to an individual, but common 

combinations are observed.  Each dystonic combination 

should produce a pattern of neck muscle shape or posture 

away from the normal distribution, along a dimension which is 

distinct from other combinations.  

We test in sequence five specific hypotheses (Figure 2): (i) 

Segmentation will identify injection points within deep neck 

muscles accurately. (ii) Cervical dystonia can be classified 

from age matched controls using neck muscle shape alone. 

(iii) Dystonia clusters into natural sub-groups using neck 

muscle shape (iv) Dystonic muscle shapes can be expressed as  

significant eigen-patterns, (v) Dystonic muscle eigen-patterns 

are associated with patterns of whole body posture. 

II. METHODS 

A. Data collection 

Using a probe (7.5 MHz, SonixTouch, Ultrasonix, USA) 

held transversely to the posterior neck, B mode US images 

(depth 5cm), were recorded from 61 adults: 35 cervical 

dystonia (mean age 61±10, 15 male) and 26 age matched 

controls, (mean age 59±14 years, 18 male) while standing and 

while performing head rotation tasks defining their range of 

pitch, yaw and head rotation. Power and contrast were 

adjusted per participant using visual feedback.  We disabled 

image enhancement processes to reduce internal frame 

averaging. Images were interpolated (bilinear) to a size, and 

resolution common to our previous datasets (491 x 525 pixel, 

10 pixels per mm)[24].  These experiments, performed in the 

Faculty of Science and Engineering, Manchester Metropolitan 

University (MMU), received ethical approval from the NHS 

Health Research Authority (REC: 15/NW/0016, 

IRAS:169803) and from MMU Science and Engineering 

Faculty Ethics Committee. The study was conducted in 

accordance with the Declaration of Helsinki guidelines. All 

values are reported as mean±SD unless stated otherwise.  

Posture (Linked US-MRI) dataset.  These posture images are 

the subject of this paper. Participants stood upright, observing 

a monitor at 1m distance, just below eye level. Three or more 

axial US images of the posterior neck targeted at level C4 

were recorded, each with renewed probe placement (Fig. 1A). 

Four cod liver oil capsules were taped (using Transpore   

medical tape) to the neck, two either side of the neck 

 
Figure 3. U-Net Model Architecture. This figure details the best performing 

model, according to Table 1 Supplementary Material. The model consists of 

2D convolutional and pooling layers in the encoder part of the network (blocks 
to the left), and 2D up-sampling, concatenation and convolutional layers in the 

decoder part of the network (blocks to the right), where concatenation layers 

concatenate up-sampled layers along the feature channels with compatible 
layers in the encoder network enabling flow of information and gradients in 

forward and backward passes, respectively. This neural network has over 

51,000,000 trainable parameters, and over 21,000,000 functional outputs, and 
operates in real-time (approx. 10 frames per second) on a modest PC or laptop.  

Hyperparameters and augmentation were fixed, chosen based on the experience 

and well-established literature. Hyperparameters: Dropout=0.25,L^2=0.0005, 
Adam(α=0.00005, β_1=0.9, β_2=0.999), BatchSize=1,Epochs=40. Data 

Augmentation: Local Contrast Normalisation =31×31, Rotation=±8°, 

Transx=±128,  Transy=±64 

 

 
 

 
Figure 4. Boundary Extraction and Injection Point Analysis  

This illustrates the output and visualisation provided by the neural network 

approach. This participant had cervical dystonia (note the asymmetry).  

Top row: Left: ultrasound image. Middle: Manually defined labels. Right: 

neural network predicted classification of pixels. 
2nd row: Left: boundaries (green) estimated around each segment. Middle: 

Injection point (red star) defined as pixel most distant from predicted segment 

boundary. Colour spectrum blue to yellow shows decreasing distance from 
predicted boundary and hence increasing target margin around injection point. 

Boundary of right multifidus label (green). Right: confidence of the neural 

network (yellow = high confidence) in classifying pixels.   
3rd row: Left and middle: as 2nd row middle, but predicted pixels shown 

restricted to confidence greater than 60 and greater than 80% respectively. 

Right: Average precision of pixels within target region for right multifidus. 
Lines red, yellow, magenta, green show pixels restricted to confidence greater 

than 20, 40, 60, 80% respectively. The clear visualisation of predicted 

segment (top right) will be appreciated by clinicians.  The visualisation of 
confidence of classifying pixels (2nd row right) gives the user feedback 

regarding optimal probe location and orientation.  
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approximately in the image plane of the probe. The probe was 

removed, leaving the capsules in place, and an MRI scan (0.3T 

open MRI scanner, G-Scan, Esaote, Italy) was obtained with  

participants lying supine on the scanning bed and their neck 

positioned central within a cervical imaging coil. Axial scans 

(Spin T1-weighted HF, matrix 512×512) were performed in a 

range from the upper jaw line to the clavicle, orthogonal to the 

spine, in 19 equidistant sections (Fig. 1B-D). Manual labelling 

of muscle boundaries in US images is challenging. The 

purpose of collecting linked MRI-US data is to train experts in 

labelling US images using methods reported previously [24]. 

Head Motion (Linked US-Vicon) dataset. In a separate 

session, forty seven retroreflective markers were attached to 

the body to allow motion analysis of eighteen body segments 

(head, neck, thorax, pelvis, thighs, shanks, feet, clavicles, 

upper arms, forearms, hands).  

Participants stood in the middle of the calibrated volume and 

were instructed to perform pitch (flexion/extension), yaw 

(right/left) and roll (right side/left side) head rotations, turning 

their heads as far as possible in both directions. Each trial was 

repeated starting in the opposite direction. Body motion was 

recorded by a 9 camera Vicon MX motion capture system. For 

each trial, the US probe was held to the posterior neck targeted 

at level C4, to allow free movement of the head and image of 

5 bilateral layers of muscles. Images were saved digitally at 10 

Hz with start time synchronized to the Vicon recording. 

The purpose of collecting linked Vicon-US data is to 

investigate the relationship between neck muscle boundaries 

and posture/movement.  Whole body kinematic data provides 

an additional modality of explanation and validation of the 

information content of neck muscle boundaries in US images 

B. Image Labelling 

Using published methods two annotators were trained to a 

common standard using MRI images linked to US images 

[24]; their agreement is shown Supplementary Material (SM) 

(SM-Table 4).  US images (192 total, ~3 per participant) from 

the Posture (linked US-MRI) dataset were labelled manually 

by annotating the boundaries around ten muscles, vertebra, 

ligamentum nuchae and skin. As described previously [23], 

[24], MRI images showing the same cod liver oil capsule 

marked plane were annotated and registered to the US images 

to guide annotation of the US images. 

Two thousand US images (~30 per participant) from the 

Head Motion (linked US-Vicon) dataset, sampling uniformly 

the range of pitch, yaw and roll head rotations [24] were 

labelled manually for the same 13 segments.  

Image-labels from this Cervical Dystonia Project (CDP) 

were supplemented by our previous posture dataset (25 linked 

US-MRI neck image-labels) [23] and our previous Head 

Motion dataset (1100 linked US-Vicon neck image-labels) 

[24]. These supplementary image labels were acquired using a 

different US probe and machine (7.5 MHz T shaped probe, 

taped to the neck, Aloka) at the same neck location and for the 

same posture and head motion tasks.   

C. Machine learning 

We divided data into independent training, validation and 

test datasets. We report a ‘Testing Mode’, and an ‘Analysis 

Mode’ of division. ‘Testing Mode’ is used for testing 

Segmentation, Boundary extraction and SVM classification of 

dystonia, sex and age (Fig. 2). 

Testing Mode: 60-fold leave-one-out (LOO) cross validation.  

The 61 CDP participants (2192 image-labels) were assigned 

into 60 folds (one per fold, except one fold contained two 

participants).  These 60 folds provided 30 groups each 

containing a ‘test’ (one participant), ‘validation’ (one 

participant) and ‘train’ (58 participants) dataset.   Each ‘train’ 

dataset was supplemented by the 1100 Head Motion image-

labels [24].   

Analysis Mode: All 3100 (2000 + 1100) Head Motion 

image-labels were assigned to the ‘train’ dataset.   All 217 

(192+25) Posture image-labels were assigned to the 

‘validation’ and ‘test’ datasets and participants were assigned 

alternately to the ‘validation’ and ‘test’ datasets.  

The ‘Testing Mode’ maintains strict independence between 

training, validation and test dataset since participants do not 

overlap folds.  To maximize the training set in each fold, we 

performed LOO cross-validation. Since, some participants 

produce poorer quality images (e.g. deep fat layer, indistinct 

muscles), validation (selection of the training iteration to use 

for testing) will be sub-optimal. Typically, validation scores 

over fit prematurely before the neural network fully encodes 

the generalizable content of the data. ‘Testing Mode’ 

represents the harshest possible testing regime.  

‘Analysis Mode’ maximizes the training set (all Head 

Motion data), and also maximizes the number of participants 

(all Posture data) in each validation and test set.  We propose 

motion of the head, (and to a lesser extent repositioning the 

probe to a new location, pressure and orientation), produces 

more independence between images than changing participant.  

 

 
Figure 5 Precision of Injection points. Testing Mode results:  

A: Average Precision for all pixels of confidence more than 80% in the target 

region for a variety of sizes of target region. B: Average Precision for varying 
levels of confidence. Precision is number accurate as a percentage of pixels 

predicted to be within muscles. Average precision is precision averaged with 

respect to recall, sorted in descending confidence. 
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Moving the head changes the depth, muscle shape, scale, 

texture and dropout of each image.  We propose, ‘Analysis 

Mode’ maintains independence between training (Head 

Motion) and validation/test (Posture) sets, and allows learning 

to extract more fully the content of the data.  

Manual annotators were blind to the condition and sex of the 

image and these labels played no part in training, validation or 

testing.  To select the mode with best descriptive power for 

Pattern Analysis and Visualisation (Fig. 2), we selected the 

mode (‘Testing’ v ‘Analysis’) with the highest SVM 

classification of dystonia and sex.  

Augmentation: Each US image and corresponding label was 

flipped about the vertical line of symmetry, to double each 

training, validation and test set and to remove asymmetry bias 

from each process of training, validation and testing.  

Implementation: Following previous work [24], and using 

software written within this group, we conducted extensive 

evaluation of 99 trained neural networks (c.f. SM for detail).  

The best encode-decoder neural-network (U-Net) was trained 

(Fig. 3). Training error between labels and network prediction 

was computed using a class-weighted cross-entropy cost 

function  where  is the number of 

pixels in a single image,  is the index of a pixel in a single 

image,  is the class associated with the pixel ,  is the 

label category (0 or 1),  is the SoftMax response, and , 

which up-weights (  a given class using, 

, where  is the total count of pixels of class , 

and  is the total count of pixels of the class with the 

maximum total pixel count. 

Network training consisted of online learning, interrupted 

every quarter pass (550 learning iterations) through the 

training set, to record cross entropy test results from the 

validation and test (test) sets. If the cross-entropy loss for 

either test set was lower than any previous recorded loss for 

that test set, the network was saved to long term storage. Each 

selected network was tested by the other set, and vice versa for 

both networks. This process yielded held-out test results for all 

images in both test sets.  Training terminated after 35 epochs. 

The Posture dataset and predicted output was used for post 

neural network analysis.  Please refer to Figure 2 which 

defines the flow of hypothesis, methods and results.   

D. Boundary extraction  

The Posture dataset was used for boundary extraction and 

injection point analysis (Figs. 4, 5). To the classified pixels 

(Fig. 4) we applied an 8 x 8 pixel median filter, filled holes, 

smoothed the boundaries and extracted boundaries using 

MATLAB functions (medfilt2, imfill, imclose and 

bwtraceboundary respectively. All boundaries were extracted 

clockwise, starting from a key point, defined as the most 

medial pixel for muscles, and interpolated to 100 evenly 

spaced points (Fig. 3). For one image, the pattern of 13 

segments is described by a row vector or 2,600 numbers (100 

horizontal, then 100 vertical coordinates for each segment). 

Accuracy of extracted boundaries was assessed using Jaccard 

Index (JI), Dice Coefficient (DC), Hausdorff Distance (HD) 

and modified Hausdorff Distance (MHD) (Table 1) [26].  

For each segment, the central predicted injection point was 

defined as the pixel of maximum distance (dmax) from any 

boundary point (Fig. 3, middle row). We iteratively increased 

the margin around this injection point by distance t = 0,1,2… 

dmax mm. The pixels enclosed by this boundary at distance 

dmax – t from the predicted segment boundary provided a 

series of target injection regions (Fig. 4). By comparison with 

corresponding pixels in the manually labeled image, we 

compute average precision, for varying target region. This 

analysis was iterated using pixels only of predicted confidence 

(SoftMax scores) greater than 0, 0.2, 0.4, 0.6 and 0.8 

respectively (Figs. 4, 5).  

E. SVM Classification using Boundaries  

Boundaries from reflected images were discarded. For all 

61 participants we computed the mean segment boundaries. 

This generated a matrix of 61 rows by 2600 columns. With 

Matlab functions fitcsvm, crossval and kfoldLoss, we used a 

support vector machine, with 61-fold LOO cross validation to 

test ability of the boundaries to classify clinical condition 

(Dystonia v Control), Sex (male v female), and age (higher, 

lower) where age as divided into two groups around the 

median value (Table 3).   

F. Clustering of boundaries 

Using k-means, we tested the extent to which the 61 x 2600 

matrix of segment boundaries clustered into groups. We used 

 
Figure 6 Classifying Dystonia, sex and age from segment boundaries. 

For 36 deep neural networks of varying architecture and hyper parameters 

dating from the very start of this investigation tested on the Posture dataset 

(61 participants), panels show Jaccard Index, and SVM classification accuracy 
for Dystonia, sex and age v mean predicted confidence.  Points of confidence 

<75%, are early 10 fold cross validation networks using only the Posture 

dataset (~200 image-labels).  Points of confidence >75% include addition of 
Head Motion dataset (~3000 image-labels) to neural network trained in 

Analysis Mode, except one point which is the Testing Mode U-net. Red 

horizontal lines show SVM classification using the manually annotated 
boundaries used to train the neural networks.  

Key Points: Neural networks become better at extracting information than the 

human annotated ground truth used to train them. Ultrasound neck images 
contain the information required to classify Dystonia. Sex information is 

contained less well and age is not revealed within these US images. Jaccard 

Index increases with confidence. Classification of condition, sex or age 
requires US information content in addition to accurate segmentation.  
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Matlab function kmeans with correlation as the distance 

metric. We used the CalinskiHarabasz value to evaluate 

separation into 2 to 10 groups. (Figure 7).  

G. Pattern Analysis and Visualisation  

In a series of steps, we reduced the boundaries to the 

statistically significant eigen-patterns which discriminate 

dystonia sub-groups and healthy controls (Figs 8, 9).    

Using all images from the Posture dataset, we reduced 2600 

columns to 100 principal components. Each component 

represents a pattern of variation from the mean shape.  Using 

un-reflected cases only, we computed the mean principal 

component scores for the dystonia and control participants 

(n=61).  We selected the principal components which 

reconstruct the group membership (Dystonia 1-3, Control). To 

select, we computed a univariate ANOVA for each principal 

component. Then, using MATLAB functions sequentialfs (10-

fold cross validation, 50 monte-Carlo repetitions, forward 

entry starting with significant univariate components), and 

classify (‘diaglinear’, naive Bayes), we selected the 

combination of principal components which predicts group 

membership.  

To reduce the model to statistically significant discriminant 

eigen-functions, maximizing separation of the groups, we 

performed one-way Multivariate Analysis of Variance (n=61), 

using MATLAB function manova1 (Figs. 8, 9);  

H. Correlation of eigen-functions with whole body posture 

For each participant, we computed their median multi-

segment posture (51 angular components from 17 joints) from 

all their trials in the Head Motion (linked US-Vicon) dataset. 

To identify joint angles associated with neck boundary eigen-

functions, we calculated the structure matrix showing 

correlation (n=61) of all joint angles with each eigen function 

and limited the lists to those significant at p<0.05 (Table 4).  

 

III. RESULTS 

Supplementary Material, presents comparative analysis of 

96 trained neural networks from ten different models 

extending our previous work [24] and justifying the best 

model selected for this paper.  The video in SM demonstrates 

live neural network output of the selected model.   

Figure 2 defines the flow of hypotheses and results 

presented below. We report five main findings: (i) accuracy of 

extracted boundaries and of injection points within neck 

muscles, (ii) classification of condition, sex and age from 

muscle boundaries, (iii) the optimal clustering of dystonia into 

sub-groups, (iv) reduction to eigen-patterns of muscle shape 

associated with cervical dystonia and (v) the association of 

neck muscle eigen-patterns with whole body posture. 

A. Accuracy of extracted boundaries and injection points 

For the Posture dataset, accuracy of all segment boundaries 

using metrics JI, DC, HD and MHD was equal using ‘Testing 

Mode‘, or using ‘Analysis Mode’ and both marginally higher 

than inter-annotator agreement (Table 1).  These values were 

typical for muscles deep to the surface (Multifidus, Spinalis 

Cervicis, Spinalis Capitis, Splenius Capitis), (Table 1).   

A meaningful assessment of accuracy is provided by the 

question “would an injection into the predicted segment target 

the proposed muscle accurately?” Predicted classification of 

pixels is more confident towards the center of the muscles 

rather than at the boundary (Fig 4). By using SoftMax 

confidence at 80% or more to select injection points (Fig. 4), 

accuracy indicated by average precision is improved (Fig. 5). 

Setting minimum prediction confidence to 80%, accuracy of 

injection points for the deep muscles (multifidus, spinalis 

cervicis, spinalis capitis, splenius capitis) is indicated by 

average precision 93.5±3% (Table 2). These results support 

our hypothesis (i) that segmentation of deep muscles will 

identify injection points within the designated muscle. 

B. SVM Classification using segment boundaries  

Using Testing Mode results, and predicted neck segment 

boundaries alone as input, a support vector machine with LOO 

cross validation, classified Dystonia from age matched 

controls with accuracy 70.4%, which was higher than sex 

(67.2%) or classification age (52.4%) (Table 3). This 

classification was higher than classification from manual 

annotated boundaries at 54%, 57% and 49% for condition, sex 

and age respectively. Classification of Dystonia and sex from 

boundaries was higher using Analysis Mode (77.0%, 68.9% 

respectively), than using Testing Mode (Table 3). Results 

since the start of our investigation have been consistent: 

 

 

TESTING  

MODE 

ANALYSIS 

MODE 

Inter 

Expert 

Metric Vertebra Multifidus 

Spinalis. 

Cervicis 

Spinalis 

Capitis 

Splenius 

Capitis Trapezius 

Lig. 

Nuchae Skin 

All  

Segments 

All 

Segments 

All 

Segments 

JI (%) 78±12 54±12 51±18 54±14 50±16 37±17 35±15 47±17 

 

50±21 

 

51±21 

 

46±20 

DC (%) 87±8 68±12 65±19 68±13 64±17 51±19 50±18 62±16 

 

64±21 

 

64±21 

 

59±23 

HD (mm) 5.8±2.5 6.6±2.4 5.1±2.0 6.0±2.4 6.3±3.5 5.4±2.8 7.2±4.7 2.3±1.5 
 
5.7±3.7 

 
5.6±3.6 

 
6.0±4.3 

MHD (mm) 1.4±0.8 2.5±1.0 2.0±1.0 1.6±0.7 1.7±1.0 1.6±1.0 2.5±3.2 0.8±0.3 

 

1.8±1.5 

 

1.8±1.4 

 

2.0±2.3 
 

 

Table 1. Boundary accuracy between boundaries extracted from neural network output and manual annotation. Jaccard Index (JI) and Dice Coefficient (DC) 

show percentage intersection over union. Hausdorff Distance (HD, in mm) shows the greatest distance, and Modified Hausdorff Distance (MHD, in mm) 
shows the mean difference between predicted and manually annotated boundaries. This table reports mean ± S.D. for all images from the Posture dataset 

(n=384 = 192 + 192 reflections) using ’Testing Mode’. The penultimate column alone reports all segments using ‘Analysis Mode’.  The final column reports 

agreement between the two annotators who contributed the labels for this dataset.  
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‘Dystonia’ manifests more clearly in neck US images than 

sex; age cannot be classified from these images; and neural 

networks out-perform the human annotators (Fig. 6).  

C. Does Dystonia cluster naturally into sub-groups? 

Using neck segment boundaries alone, the 35 Dystonia 

participants clustered optimally into three groups (Fig. 7A), 

using both Analysis Mode and Testing Mode. Given higher 

SVM classification, Analysis Mode was selected for 

descriptive clustering and pattern analysis. The mean 

boundaries of these groups show ‘right’ asymmetry (Dystonia 

2), ‘left’ asymmetry (Dystonia1) and ‘deep’ segments with a 

large gap between skin and muscle (Dystonia 3), (Fig. 7).  A 

large gap could represent a thicker fat layer or could represent 

altered pitch of the head.  The right/left asymmetry could 

result from a tilted head (roll), a turned head (yaw), an 

elevated shoulder, a laterally shifted neck or a combination.  

D. Can dystonia be reduced to statistically significant eigen-

patterns of neck muscle boundaries? 

Four groups can be discriminated by a maximum of 3 

eigen-functions. Having reduced the segment boundaries to 

100 principal components, the feature selection procedure 

selected 15 components to predict group membership 

(Dystonia 1-3, Control) robustly and reconstructed group 

membership correctly at 85.2% using LOO classification.   

Discriminant function analysis of the 61 case x 15 

component matrix revealed three significant eigen-functions 

(DF1, DF2, DF2, p=1.1x10-11, p=7.3x10-7, p=0.0004, Fig. 8). 

Fig 8A shows that with a separation of 16 units of 

mahalanobis distance (i.e. 4 S.D of within group variance), 

Dystonia3 (‘deep’) differs substantially from Dystonia 1-2 and 

Control.  At 13.5 units, Dystonia 1 ‘left’ differs substantially 

from Dystonia2 and Control whereas Dystonia2 ‘right’ differs 

from Control by only 8 units (Fig. 8A).  Thus we expect 

‘deep’ to represent the largest pattern of difference from 

controls.  

The three discriminant functions (DF1-3) represent the 

significant dimensions separating the groups (Fig. 8B) and  

those functions also represent patterns of altered neck 

muscle shape distinguishing the groups (Fig 9).   

The first dimension (DF1) provides an axis separating 

Dystonia3-‘deep’ from Dystonia 2-‘right’, with Dystonia1 and 

Controls in the middle (Fig 8B). DF1 as a patterns shows 

superficial movement of all structures, and rightwards 

displacement of the midline and a relative depth-wise 

compression of the right muscles (Fig. 9B). Correlation of 

muscle areas (calculated as percentage area of all segments) 

with DF1 at (p<0.05) shows reduced area of right Splenius 

(r=-0.47, p=0.00014), right spinalis capitis (r=-0.47, 0.00015), 

right trapezius (r=-0.43, p=0.00046) and increased area of left 

splenius (r=0.41, p=0.001), left spinalis capitis (r=0.3, 

 

 
Figure 7 Clustering Dystonia into sub-groups  Dystonia participants were 
clusterred into sub-groups using segment boundaries and k-means algorithm. 
A. Clustering success metric v numer of clusters. B. Division of Dystonia into 

optimal number of sub-groups (Dystonia 1-3, n=9, 17, 9 respectively) using 

Analysis Mode. For each group we show: Top Row. Group averaged 

ultrasound images, Bottom Row. Mean segment bounadaries. Left side of all 

images represents the left anatomical side of the participants.  Dystonia 

groups 1-3 appear left side compressed, right side compressed and both sides 

compressed respectively.  

 

Segment 

Target 

Radius 

(mm) 

Distance 

From 

Edge 

(mm) 

N 

Pos 

(x10
6
)
 

N 

Neg 

(x10
6
) 

Acc 

(%) 

TP 

Rate 

(%) 

FN 

Rate 

(%) 

FP 

Rate 

(%) 

TN 

Rate 

(%) 

AP 

(%) 

Multifidus 

 

0.3 5.9 4.7 61.5 93.1 1.5 98.5 0.0 100.0 97.2 

Spinalis Cervicis 0.3 3.7 2.6 63.5 96.1 3.2 96.8 0.0 100.0 94.8 

Spinalis Capitis 0.7 2.8 3.4 62.8 95.4 12.5 87.5 0.2 99.8 89.9 

Splenius Capitis 0.3 2.4 2.2 63.9 96.7 3.2 96.8 0.0 100.0 92.2 
Trapezius 1.1 0.1 0.7 65.5 99.2 55.4 44.6 0.3 99.7 82.8 

Deep 

Muscles  

0.4 

±0.2 

3.7 

±1.6 

3.2 

±1 

62.9 

±1 

95.3 

±1.6 

5.1 

±5 

94.9 

±5 

0.01 

±0.01 

99.9 

±0.01 

93.5 

±3 

           
 

 

Table 2. Muscle injection accuracy. Shows classification accuracy for pixels of confidence greater than 80% within target region. Values are mean for all 

participants in test set (N=61).  Deep Muscles shows mean ± S.D. for multifidus to splenius.  Injection point is the pixel furthest from all boundary points. Target 

Radius: decrease in distance from edge to target region increase target area. Distance from Edge: distance of target boundary from segment boundary. N Pos, N 
Neg: Number of pixels in image. Acc: Percentage of pixels classified correctly. TP Rate, FP Rate, FN Rate, TN Rate: True positive, false positive, false negative, 

and true negative rate respectively. AP: Average precision (precision averaged with respect to recall sorted in decreasing confidence).  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2964098, IEEE Journal of
Biomedical and Health Informatics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

p=0.002) and left spinalis cervicis (r=0.28, 

p=0.027). 

The second dimension (DF2) provides an axis 

proceeding from all Dystonia groups (negative) to 

controls (positive) (Fig 8B).  As a pattern, DF2 

shows asymmetric enlargement of the left muscles 

and compression of the right muscles, but no 

general superficial movement or sideways 

displacement of the midline (Fig 9). DF2 is 

associated with reduced area of right splenius 

capitis (r=-0.34, p=0.008).  DF3 shows superficial 

shift of all structures, leftward displacement of the 

midline (Fig 9) and is associated with significant 

reduction of left muscles and enlargement of right 

muscles.  

E. Correspondence between neck muscle 

patterns and whole-body posture 

The Dystonia sub-groups, clustered from neck 

muscle boundaries alone are associated with patterns of whole 

body standing posture. The median standing postures of these 

groups (Dystonia 1-3, Control) show differences in whole 

body truncal alignment and head turn which are described in 

the legend.  Univariate ANOVA of joint angles confirms the 

most significant difference between groups lies in whole body 

frontal lean to the right (Right AnkleAngle_y, p=0.0005), left 

head tilt (AtlantoOcciptialAngle_y, p=0.003) and head pitch 

(AtlantoOcciptialAngle_x, p=0.01).  

The discriminant neck muscle eigen-patterns associate with 

postural joint rotations.  The associations with posture give 

validation and explanation to the neck muscle eigen-patterns. 

As shown in Table 4, DF1 is associated with whole body lean 

rightwards, head looking downwards (pitch/extension), left 

shoulder elevation, head turning leftwards (yaw) and right 

wrist curled (extension).  DF2 is associated with whole body 

lean leftward and has little association with head-neck 

rotations.  DF3 is associated with right upper arm elevation 

(abduction), head tilt rightwards (roll), left knee inward and 

right foot roll (supination). 

This whole-body motion analysis, provides validation that 

dystonic patterns of neck muscles identified from US images, 

have functional correlates in the standing posture.  

 

F. Comparison of diagnosis by US with diagnosis by posture  

Classification of clinical condition (dystonia v control) by 

neck muscle boundaries was superior to classification by 

standing posture (Table 3).  Using the SVM, with LOO cross 

validation (n=61), we provide a comparative classification of 

condition, sex and age using whole body motion data.  From 

the 51 components of joint rotation (17 joints x 3 degrees of 

rotation), the SVM classified condition with lower accuracy 

than the US based classification, sex with higher accuracy and 

could not predict age (Table 3).  These results confirm the US 

images of the neck provide a better basis for diagnosing 

cervical dystonia than body posture.  

IV. DISCUSSION 

A. Contribution of this study: the main results 

This study reports the first application of deep learning to 

the segmentation, analysis and visualization of axial neck US 

images to participants with cervical dystonia. From a sample 

of 35 participants with cervical dystonia, and 26 age matched 

controls, we classified image pixels, extracted neck muscle 

boundaries, and tested ability to classify Dystonia, sex or age 

from muscle boundaries. We further clustered dystonia 

participants into sub-groups (Dystonia 1-3) identified the 

significant eigen-patterns, reconstructing dystonia and related 

those eigen-patterns to posture. 

The most salient findings are: - 

(i) Cervical dystonia can be discriminated from age 

matched healthy controls, using an axial US image of the neck 

muscles. Leave-one-out classification of Dystonia v Control 

using SVM was correct at 70% (Table 3) 

(ii) Cervical dystonia is associated with visible, explainable 

patterns of neck muscle shape (Fig. 7, Fig. 9).  This sample 

showed optimally three dystonia sub-groups, resulting in three 

significant eigen-patterns of neck muscle shape (Figs. 7, 9).   

(iii) Each pattern showed characteristic changes in muscle 

depth, midline asymmetry-curvature and left-right muscle 

imbalance (Fig 7, 9).  The first (DF1) is associated with a 

postural pattern of head pitch, head turn, shoulder elevation 

and truncal tilt (Fig 10, Table 4).  The second (DF2), 

associated most strongly with truncal tilt.  The third (DF3) 

 
 

Figure 8. Reconstruction of Dystonia sub-groups using eigen-patterns of neck muscle 

shape. We have reduced description of dystonia sub-groups and controls to three 

discriminant eigen-functions (DF1, DF2, DF3, Wilk’s lambda, p-values shown panel A). 
Each eigen-function represents a weighted combination of principal components of US 

muscle boundaries from all participants (35 dystonia, 26 age matched controls).  N.B. 

“Muscle” shape refers to all 13 segments (muscle, vertebra, ligament, skin). 
A. Distance (mean linkage) between group centres using Mahalanobis distance (i.e. units of 

within group variance, so 16 = 4 S.D. of within group variation).   

B. Axes shown first two canonical discriminant function scores (c1, c2 for DF1, DF2 
respectively, n=61).  Dystonia sub-groups differ from healthy  controls in directions which 

are distinct from each other.  Each eigen-function represents a pattern (Fig.  9).    

Source Condition Sex 

 
Age 

 

Testing Mode 

Predicted boundaries 

70.4% 67.2% 52.4% 

Analysis Mode 

Predicted boundaries 

77.0% 68.9% 50.8% 

Manually annotated 
boundaries 

54.0% 57.% 49.2% 
 

Joint Angles 

 

63.9% 70.4% 49.2% 

 

 

Table 3 Classification of Dystonia, sex and age from muscle boundaries. 

A support vector machine, with LOO 60 fold cross validation predicted 
Condition (Dystonia v Control), Sex (male v female) and Age (above median 

v below median) from Posture dataset of 61 Participants 
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associated most strongly with head tilt.   

(iv) Segmentation is accurate enough to guide injections to 

specific muscles (Table 2). 

(v) Supervised deep learning of US muscle images, can 

encode information with a veracity exceeding the manual 

annotation of its human supervisors (Table 3).  

B. Rationale for methods of analysis  

This focus of this paper is primarily scientific.  In other 

words, do transverse ultrasound images of the neck, obtained 

from an ordinary ultrasound machine, contain the information 

necessary to inform understanding and diagnosis of dystonia 

and to aid delivery and monitoring of treatment by botulinum 

toxin injections?  The development of methods for annotating 

images, training neural networks and evaluating deep learning 

architectures to segment muscle boundaries in US images of 

the posterior neck is fully discussed in our preceding work 

[24]. The technical challenge of segmenting muscles is already 

solved [24] although as shown in supplementary material 

(SM) this paper demonstrates considerable improvement since 

our previously published work [24]. Here, we apply the deep 

learning methods developed in our lab and we test a series of 

hypothesis concerning the value of neck muscle boundaries 

for understanding dystonia (Fig. 2).  By comparison with 

classification of sex and age, our results demonstrate that US 

images of the neck muscles contain the information necessary 

to visualize, understand and potentially diagnose cervical 

dystonia (Table 3, Figs 7-11).  

 Having tested segmentation and classification of Dystonia 

using 60-fold cross validation (‘Testing Mode’) we sought to 

maximize the accuracy of analysis and visualization of 

dystonia. Our switch to use of ‘Analysis Mode’, for 

description and explanation of the predicted boundaries is 

justified by the purpose of the analysis.  The purpose of cross-

validation is to answer the question “how well do you expect 

your system to perform out in the real world on unseen data?” 

We have answered that with 60-Fold cross-validation. The 

purpose of our hypotheses is to see in optimal circumstances 

how dystonia manifests in ultrasound and how dystonia 

manifests in cross-sectional shapes of muscles. For that we 

used clinical labels to select (using SVM) the best training 

Mode.  The clinical labels were not used in the process of 

annotation, training, validating and testing the neural 

networks.  In practice, analysis and visualization of Testing 

Mode gave similar results to those presented, but the quality 

of the reconstruction of groups was lower (~72% rather than 

85%, meaning the description was less accurate or complete.  

C. Scientific and clinical value of results  

Cervical dystonia is a neurological disorder of sensorimotor 

integration characterized by abnormal postures of the head 

and neck. Abnormal involuntary dystonic activation of neck 

muscles is a primary symptom, but is a direct cause of pain, 

abnormal whole-body posture, and constraints on movement.  

Neck muscles traverse the primary link between the head 

(which is the source of visual-vestibular head referenced 

sensory frames, location of sensory integration and motor 

planning) and the mass distribution of the body (trunk, upper 

and lower limbs).  Abnormal action of neck muscles causes 

local changes in head and shoulder position and to maintain 

vertically aligned balance, these local changes require 

compensatory changes in whole body posture of the trunk and 

limbs. Neck muscles provide sophisticated proprioceptive 

sensation and have a primary role in integration of head-

referenced with ground referenced coordinate frames which is 

also subject to interference by abnormal neck muscle activity.  

Altered body posture and sensory feedback is a consequence 

of abnormal neck muscle action. Thus, analysis of the neck 

muscles provides direct insight into cervical dystonia.  

US imaging analysis can quantify dystonic muscle 

attributes (Figs. 8, 9, 10). US does not require participants 

with movement disorders to remain still and avoids limitations 

of MRI. US is relatively low cost and available in clinics.  

 
Figure 9 Reconstruction of Dystonia using patterns of neck muscle shape 

Sub-types of dystonia can be reconstructed from three significant eigen-

patterns of neck muscle shape shown in order of significance. Green is sample 

mean principal component.  Yellow and Blue show respectively +0.5 and +1 
standard deviation of the eigen function. Image left shows anatomical left.  

DF1 shows the right muscles of the neck compressed and all muscles 
compressed to the skin.  DF2 shows enlargement, fattening of left splenius.  

DF3 shows a squashing of all muscles to the skin, more compression on left 

side, but more symmetrical than DF1.  
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The confidence measure provided by this neural network 

analysis (Fig. 4) gives inexperienced operators feedback to 

improve the quality of their US probe location and image. This 

analysis within clinic could facilitate communication between 

patient and clinician and would inform patients about their 

neck muscles and their specific dystonia. The objective 

recording of images and analysis provides a potential tool for 

guiding and recording the location of injections, for 

monitoring change and improvement with treatment, and thus 

is expected to improve the patient experience. In addition, our 

findings reinforce the potential critical role in CD of deep 

neck muscles, which have previously not been amenable to 

assessment or treatment.  

D. Relationship to previous work  

The application of machine learning and specifically deep 

learning to analysis of ultrasound images of muscle is rare 

[20], [22], [27]. While under-developed, the domain of muscle 

diagnosis is valuable since unlike visual observation, manual 

palpation or surface electromyography, ultrasound can see 

muscles deep within the body. 

Segmentation is the foundation of muscle-specific analysis 

and recent methods providing segmentation of the neck 

muscles include computer vision [23] and deep learning 

approaches [24]. As shown in Supplementary Material, this 

study applies the most recent deep learning methods for this 

application. Following [24], this study uses direct manual 

annotation of US images to provide training labels. This 

approach allows us to develop training datasets for 

participants with a movement disorder who cannot remain still 

in an MRI machine [24].  Using metrics of JI and HD (Table 

1), the accuracy of segmentation achieved is consistent with 

existing benchmarks [23], [24]. The metric MHD (Table 1) 

shows boundaries are typically accurate 1.9±1.8 mm, and for 

deep muscles this accuracy allows for injection at average 

precision more than 90% for target sizes of several millimeter 

(SM Fig. A) and a margin from the muscle boundary of 3.7±1 

mm (Table 2).  These findings have important clinical 

implications, as freehand injections of botulinum toxin have 

been shown to have potentially suboptimal accuracy [28].  

Prior to this study, it was an open question whether 

information contained within images of the neck muscles was 

of any value for diagnosis and understanding of cervical 

dystonia. This study affirms the US information content with 

respect to objective clinical labels (control, dystonia) and with 

respect to motion analysis.   

Manual annotations provide only an approximation to the 

true muscle boundaries.  With training, neural networks 

should learn image features that correlate consistently with the 

labels. In principle, machine learning should discard random 

error in human labels, and converge to the on-average correct 

answer within and between labelers. 

The exciting result reported here (Table 3, Fig 6) is that 

these neural networks out performed their supervisors: we 

urge the reader to study SM Fig. 6 which shows very nice 

examples. These results confirm that neural networks encode 

information in the data consistent with supervisory labels, but 

which reduces the random error and non-generalizable 

component of the labels. These results (Table 3) validate 

altogether, the method of labelling, the method of 

segmentation and the information content of ultrasound 

muscle images regarding dystonia.  

This study demonstrates proof of concept of the feasibility 

of US imaging analysis of the neck muscles for understanding 

and diagnosing cervical dystonia. Figure 11 shows examples 

of dystonia sub-group categorization on the basis of eigen 

function scores and illustrate the immediate diagnosis that 

could be possible in the clinic.  This proof of concept 

motivates further development of US technology.  If deployed 

 Joint angle Function r p-value 

DF1 RAnkleAngley                                            

 

AOAnglex                                              

 

LClavicleAngley                                         

AOAnglez                                               
 

RWristAnglex                                          

Whole body deviation 

rightwards 

Head looking downwards 

(pitch/extension) 

Left shoulder elevation 

Head turning leftwards 
(yaw) 

Right wrist curled 

(extension) 

0.5 

 

-0.04 

 

0.3 

0.26 
 

-0.25 

0.00004 

 

0.0038 

 

0.02 

0.042 
 

0.048 

DF2 LAnkleAngley Whole body deviation 

leftwards 

0.34 0.0076 

DF3 RShoulderClavic
leAngley 

AOAngley 

 
LKneeAngley 

RAnkleAnglez   

Right upper arm 
elevation (abduction) 

Head tilting rightwards 

(roll) 
Left knee inward 

Right foot rolled 

(supination) 

0.37 
 

0.36 

 
-0.29 

0.27 

0.0035 
 

0.0045 

 
0.024 

0.039 

 

Table 4 Posture associated with neck eigen-patterns (Structure Matrix).  

Shows joint angles associated with three discriminant eigen-functions.  

DF1 associates with the whole body leaning rightwards, the head tilting down 

and to the left, the left shoulder raised the right wrist cocked. 

DF2 associates with the whole body learning rightwards 

DF3 associates with right arm out, the head tilted to the right, the left knee 

buckled, and the right foot rolled out.  

 

 
Figure 10. Median posture Dystonia sub-groups facing the reader. Shows 

joint angles, median from all linked US-Vicon trials for each participant, 
averaged across all participants in group.  This head referenced presentation 

shows the kinematic chain reconstructed from the head segment which is 

presented vertical and forward looking for each group.  The red lines show the 
axis of extension and typically points to the right of the participant.  The green 

lines show the axis of frontal rotation and typically points forwards.  The blue 

lines show the axis of axial rotation and point along the segments long axis 
which is typically vertical. For the head, red, green blue axes indicate pitch, 

roll and yaw.  For the trunk, red green and blue axes indicate forward lean, 

rightwards lean and right turn. Dystonia2 show neck deviated to their right 
relative to head, trunk deviated to their left relative to neck and back to the 

midline.  Dystonia1 shows neck deviated to their left relative to head, trunk 

also deviated to their left. Dystonia 3 shows neck deviated to their right 
relative to head and trunk deviated further to their right. 
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widely in clinics, there is potential to collect large quantities 

of data from the estimated 18,000 adults with this condition in 

the UK [1]. Combined with further exploration of neural 

network methods, there is potential for this tool to become 

very robust, and for a new domain (automated ultrasound 

muscle analysis) to be established. Evaluation of the effect of 

therapeutic interventions e.g. BoNT on the patterns of change 

on US would also be critical to determine the utility of this 

tool to monitor changes in dystonia severity, and to evaluate 

its utility as a potential biomarker. 

E. Limitations 

The current work contains several limitations.  First, we 

have a relatively small number of cases, which may not 

encompass the full and expanding spectrum of neck 

movements seen in cervical dystonia [10] However we 

contribute our data to address the shortage of publically 

available examples (DOI: 10.23634/MMUDR.00624643). 

Further validation in a larger and independent clinical cohort 

would be desirable. Using more data, a clinical classifier 

would most logically be embedded within the neural network 

architecture. Second, this analysis is limited to an axial image 

at level C4. A larger number of probe locations/orientations 

and muscle images would be desirable.  Third, this work 

predicts and interprets muscle shape, excluding prediction of 

texture and muscle activity. Further work will exploit the 

ultrasound information content revealing muscle function 

[20], [21] as well as geometry for a larger range of probe 

locations and orientations. We would expect segmentation 

accuracy, boundary analysis and classification of clinical 

condition, all to depend to some extent on the quality of the 

image. We recommend to those readers replicating and 

extending our work, to choose an ultrasound machine, probe 

and machine settings providing the best possible image quality 

at full depth down to the vertebra. 

  

V. CONCLUSION 

This study provides the first application of deep learning to 

US imaging of the neck muscles in cervical dystonia and 

provides an automated objective visualization (c.f. Video) and 

subsequent pattern analysis of neck muscle boundaries. These 

results demonstrate that muscle boundaries extracted from a 

single axial image of the neck muscles have the information 

content to discriminate cervical dystonia from healthy controls 

and to visualize and understand the dystonic pattern of neck 

muscles. This proof of concept demonstrates potential for a 

clinical tool to provide objective online diagnosis of cervical 

dystonia, guidance and objective logging of injection sites, 

and objective monitoring of the effect of treatment with 

minimal requirement for operator expertise and minimal 

burden on clinical time. This work supports a case for further 

evaluation of an automated US-based tool in a larger 

longitudinal dataset. 
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