
Durham E-Theses

Smart navigation system for electric vehicles charging

PENA-PEREZ, FRANCISCO,ANTONIO

How to cite:

PENA-PEREZ, FRANCISCO,ANTONIO (2019) Smart navigation system for electric vehicles charging,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/13416/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/13416/
 http://etheses.dur.ac.uk/13416/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Smart navigation system for
electric vehicles charging

Francisco Antonio Peña Pérez

A Thesis presented for the degree of

Master by Research in Engineering

Department of Engineering

University of Durham

England

September 2019

Dedicated to
My parents for always supporting me to achieve my goals

Abstract

In the present time, there is still a lack of popularity in the use of electric vehicles,

because of the actual disadvantages that they have. For this work presents the

process of research and development of a web based application with the main

purpose of helping Electric Vehicle owners decide the Charging Station that, by

selecting it to go and charge their vehicles, represents the lowest cost in time or

money (depending on their priorities) when they need to go to charge their electric

vehicles and to give them less time or energy consuming route to follow in order

to arrive to the charging station selected. This, to reduce the concern of the users

about if the can or not arrive to a charging station.

To do this, the application has been developed with several features to help the

users. First, the application has the feature of being accessed from multiple type

of devices. Second, the application has the feature of detecting the users locations

using Global Positioning System. Third, the application has the ability to find

the charging stations and their coordinates that are near to the users. Fourth, the

application has the ability to formulate the route with the lowest time or energy cost

between the users locations and the charging stations. Fifth, after creating all the

routes, the application shows the users the parameters of every route and charging

station. Sixth, the application has the ability to let the users decide the priority to

select the charging station. Seventh, the application let the users decide the battery

percentage that they want their vehicles to have after charging them.

This application was created using mostly Javascript language, Expressjs as the

framework and for the user interface jQuery. Moreover, MongoDB and PosgreSQL

were used as databases. Furthermore, some web services like Amazon Web Services

were used for server hosting, OpenStreetMap for obtaining GeoSpatial data, Open

Charging Map for obtaining charging stations coordinates and data and Fuel Econ-

omy for obtaining vehicles data were used to complement the application. For the

route formulation, Dijkstra’s algorithm and pgRouting was used.

Results indicated that the application can successfully recommend routes and

charging stations to the users with a reduction of 90% of time needed against the

less time consuming cheapest option when time is the priority and a reduction of 27

iv

times the money needed for the fastest option when price is the priority. Meaning

that the navigation system can successfully reduce the time or costs to adjust to the

users necessities.

Declaration

The work in this thesis is based on research carried out at the Department of Engi-

neering of Durham University, England. No part of this thesis has been submitted

elsewhere for any other degree or qualification and it is all my own work unless

referenced to the contrary in the text.

Copyright c© 2019 by Francisco Antonio Peña Pérez.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

v

Acknowledgements

Thanks to the Mexican Consejo Nacional de Ciencia y Tecnoloǵıa (CONACyT) for

its financial support through out my studies for a Master Degree. I would also like

to show my gratitude to my supervisor Dr. Hongjian Sun for accepting me in this

project and his feedback when I needed it. Finally, but not least thanks to my family

and friends for their support through my studies through for this degree.

vi

Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 2

2 Literature Review 4

2.1 Introduction . 4

2.2 Shortest Path Algorithms . 4

2.2.1 Graph Theory . 4

2.2.2 Shortest Path Algorithms . 6

2.2.3 Commonly used Shortest Path Algorithms 8

2.3 Navigation Systems . 13

2.3.1 Description and Workflow . 13

2.3.2 Time calculation of the path 15

2.3.3 Energy consideration in navigation systems 17

2.3.4 Software and Hardware technology used in navigation systems 19

2.4 Research Gaps . 20

2.5 Conclusions . 21

3 Navigation System Architecture 22

3.1 Introduction . 22

3.2 Navigation System Workflow . 22

3.3 Data displayed to the users . 24

vii

Contents viii

3.4 System Infrastructure Technologies 28

3.5 Application Technology and Data . 31

3.5.1 Map Technology and Data . 31

3.5.2 Charging Stations Data . 32

3.5.3 Electric Vehicle Data . 33

3.5.4 Route Formulation Technology 34

3.6 Limitations and disadvantages . 36

3.7 Chapter Summary . 36

4 Results 38

5 Conclusions 53

5.1 Future Work . 53

Bibliography 55

List of Figures

2.1 Graph representation . 5

2.2 Weighted Graph representation . 7

2.3 Dijkstra process, (a) Initial state, (b) Final state 9

2.4 A* process, (a) Initial state, (b) Final state 11

2.5 Basic Navigation System Workflow 14

3.1 General Navigation System Workflow. Arrows indicate the direction

of the communication . 23

3.2 Navigation System Workflow. Arrows indicate the direction of the

communication . 24

4.1 Map displayed in application, (a) User location, (b) Zoom in and out,

(c) No Sleep Button, (d) Vehicle Selection, (e) Battery Percentage

Selection . 39

4.2 Brands selection in the application 40

4.3 Models selection in the application 41

4.4 List of EV manufacturers in database 42

4.5 List of EV models in database . 43

4.6 List of Electric Vehicles in database 44

4.7 List of Charging Stations ordered by Price 46

4.8 List of Charging Stations ordered ordered by time 47

4.9 Query showing roads table in PostgreSQL 49

4.10 Result of query showing list of steps for a route 50

4.11 Route image format . 51

ix

List of Tables

2.1 Comparison of the three algorithms for route formulations presented . 13

4.1 Comparison of fig 4.7 and 4.8 . 48

4.2 Comparison between order by time and price 52

x

Nomenclature

API Application programming interface

AWS Amazon Web Services

CSS Cascade Style Sheets

DOE United States Department of Energy

DOM Document Object Model

EPA United States Environmental Protection Agency

HTML HyperText Markup Language

JSON JavaScript Object Notation

kWh Kilowatt hour

1

Chapter 1

Introduction

The use of electric vehicles has been becoming more common as time passes. In

2015 the worldwide use of electric vehicles reached a million [1]. It is a good change

using electric vehicles more because of the substitution of combustion-based vehicles

with electric vehicles can be beneficial to the planet due to the need of reducing of

carbon emissions [2, 3]. As it is important to reduce the greenhouse gases emissions

many countries have started to focus and making plans for the reduction of these

gases, such as European Union that has set the target of reducing a 40% of them

by 2030 [4] and the Chinese government project called “ten cities thousand vehicles

program” to promote the Electric vehicle technology [5].

However, electric vehicles still have important disadvantages compared to com-

bustion engine vehicles that decrease the progress in their popularity. First, they

take much more time to charge their batteries, depending on the charging type they

can take around 8 hours if they use a normal charger or half an hour to get to 80% if

they use a quick charger. Second, charging stations are not that common to find in

every city [6]. Because of these disadvantages, it can be unattractive to customers

to opt for the use of electric vehicles as making long trips can be complicated [7].

Therefore, to help the electric vehicles owners, some research has been conducted

for creating methods to formulate the most efficient routes for electric vehicles. Still,

most of them have been theoretical and have not been implemented [8, 9, 7, 6, 1].

On the other hand, there has been not much research about creating applications

for electric vehicle routing [10, 11]. However, there is still more data that can be

2

Chapter 1. Introduction 3

delivered to the users and options that can be considered to make the their trip

more efficient and personalized to their needs.

For these reasons, it is necessary for the electric vehicle’s owners to consider the

locations of the charging stations, how much time they would take to get to the

stations, the energy required for the trip (as the battery’s charge can deplete before

arriving at the station), how much money they would spend considering the energy

needed for the trip and the price of the energy of the charging station. Therefore,

this thesis proposes the original development of a web-based navigation system to

help electric vehicles users decide to which station to go to charge their vehicles and

what route follow to arrive there.

The contribution of this thesis is to provide a navigation system capable of

providing three main features that actual navigation systems are lacking. The first

is to be flexible with the users’ and let them decide their priorities when charging

their vehicles. The second is to let the users use the navigation system from different

devices and not be tied to just one or two. The third is to use real data from existing

charging station and therefore create a system that can be used in real life.

This thesis will be structured in the following way. The second chapter will

provide a literature review about previous work and definitions; the third chapter

will describe the system’s architecture; the fourth chapter will present the results;

the last chapter will be conclusions.

Chapter 2

Literature Review

2.1 Introduction

In this chapter, definitions, information about the history and current state of the

shortest path algorithms and navigation systems will be presented. In order to do

this, in the first section, first some bases of the graph theory will be introduced, then

description about what shortest algorithms are and how do they work will be pre-

sented and third some frequently used algorithms will be introduced. Furthermore,

in the second section, information related to navigation systems, their features and

factors that they have to take in consideration, will be presented. For this, first the

concept and workflow of the navigation systems will be explained. Second, it will be

explained how the navigation system considers many factors to calculate the time

and energy of the routes. Finally, in the third section, conclusions of this chapter

will be presented including the gaps found in research.

2.2 Shortest Path Algorithms

2.2.1 Graph Theory

In this section, before actually introducing what the shortest path algorithms are,

some definitions of graph theory will be described because it is necessary to have a

comprehension of this field to understand how it can explain the structure of shortest

4

2.2. Shortest Path Algorithms 5

path algorithms.

Using graphs is a common method to represent the road network data. In a

graph, every node can represent an intersection, structure or interest point and

every edge can represent a road. A graph is represented as G = (V, E), where V

refers to all the vertices in the graph and E refers to all the edges (also called arcs)

in the graph [12]. Every node v in the graph is represented as a point and every

edge e is represented as a line connecting two nodes. Each edge has a cost value,

this value represents the cost of traversing the edge. Furthermore, a tuple (u, v)

is the link between the node u and the node v. Moreover, Degree in this context

means the number of edges connected to a node v. Hence, a graph can be used to

represent network data using nodes, edges and tuples.

Fig. 2.1 displays the representation of a Graph. The circles with letters represent

the nodes of a graph and the lines connecting them represent the edges of the graph.

In this example, the tuple AB means the section including node A, node B and the

edge connecting them. Finally, the Degree of node A is two, as two edges are

connected to it.

Figure 2.1: Graph representation

2.2. Shortest Path Algorithms 6

Additionally, there are two types of graphs used for shortest path algorithms.

First, directed which is the type where the edges can only be traversed from node u

to node v. And the second is undirected which is the type where the edges can be

traversed from both directions whether it is from node u to node v or from node v

to node u.

Moreover, with the previous definitions of graph structure, some terms commonly

used in navigation systems using graphs are the following. It is considered a path

P a sequence of nodes and edges that start from the source node s and end in the

target node t. The weight of the path w(P) means the sum of all the edges costs,

giving, as a result, the total cost for traversing the path P.

Finally, with the bases obtained from the previous paragraphs, it can be pro-

ceeded to describe the shortest path algorithms.

2.2.2 Shortest Path Algorithms

Shortest Path Algorithms are the types of algorithms developed to find the shortest

path from the source node n to the target node t in a graph with an input of (G, s,

l), where G = (V, E) is the graph, s is the source node and l is the length function

[13].

Nevertheless, some basic concepts are needed to describe prior to comprehend the

functioning of the shortest path algorithms. First, it is considered the shortest path,

the path that has the minimum weight of all the possible paths between the source

node s and the target node t [12], thus representing the weight of the shortest path

as d(s, t) as the minimum cost between source node s and target node t. Second, it

is called edge relaxation, the process of exploring the edges and it is said that the

node v has been reached through the process of edge relaxation of an edge (u, v).

Third, when a node v is selected as part of the shortest path is called settled and

the process of finding the shortest path is finished when the target node t is settled.

Therefore, these concepts can help understand the functioning of the shortest path

algorithms.

In Fig 2.2, it appears a weighted graph to help visualize what the Shortest Path

is. In this figure, the nodes are labeled with letters and the weight of the edges are

2.2. Shortest Path Algorithms 7

labeled with numbers, these numbers represent the cost from one node to another.

In this example, we want to know the shortest path between node B and node F.

Node B is the source node and node F is the target node. For this, there are two

options. The first path it to go from node B to node E and then to node F. The

second path is to go from node B to node D, then to node D, then to node E and

finally to node F. The sum of the costs of the edges of the first option is 4 and the

sum of the costs of the edges for the second option is 5. Therefore, the Shortest

Path is the first option, as it has the minimum cost.

Figure 2.2: Weighted Graph representation

For the use of these types of algorithms, the process is usually divided into

two phases [12]. First is the precomputing phase, used to speed up the process of

finding the path by processing the original data to obtain useful information before

the query phase. This phase is only carried out sparsely as the structure of the

graph does not change frequently. However, the precomputing phase can be done

frequently when the graph is enriched with dynamic data like traffic status or roads

closed by maintenance. Moreover, some other causes of executing frequently the

precomputing process can be caused by changing the metrics used for calculating

2.2. Shortest Path Algorithms 8

the cost of the path, for instance using travel time, energy or changing transport.

The second is the query phase, in this phase, the algorithm is executed and, using the

data obtained from the precomputing phase, the algorithm will follow the process to

find the shortest route from the source node s to the target node t. Therefore, the

process to use the shortest path algorithms is divided into the precomputing phase

and the query phase.

2.2.3 Commonly used Shortest Path Algorithms

Dijkstra’s algorithm

Dijkstra’s algorithm is very old and frequently used for the formulation of routes

[14]. The algorithm consists of finding the path that requires the lowest cost from

one node to another in a graph, comparing every edge and selecting the ones that

require the lowest cost from the source node s until it reaches the target node t. This

algorithm can be used to formulate the routes for this thesis as it has low complexity

and has been tested many times since its formulation.

According to Hector et al. [12], the process of Dijkstra’s algorithm can be de-

scribed as it follows:

First, Dijkstra’s algorithm starts with all nodes been unreached and their dis-

tance is considered as unknown. An array D of tentative costs of the edges between

the source node s and the target node t is created and the initial cost D[s] set as 0.

A pointer defines the source node D[s] as the current node c.

Second, the cost of every edge that has not been settled adjacent to the current

node c is inspected and a new distance is defined using the cost of the path from the

source node s to the current node c plus the weight of the edge w(c, v) connected to

the current node c. If the result is lower than the previous value of D[v], the value

of D[v] is changed to D[v] plus the weight from c to v.

Third, the pointer for current node c is changed to the next unsettled with the

lowest weight. After that, the current node c is considered as settled.

Forth, the algorithm is finished if the current node c is the target node t. If this

is not the case, the process continues to the second step.

2.2. Shortest Path Algorithms 9

The result is the sequence of the process is a path made by recovering the stored

nodes from the target node t to the source node s.

In fig 2.3, it can be observed the process of this algorithm represented applying

it from node A to node D. In section (a), we have the initial state where unreached

nodes are set with a cost of infinity. The process starts in node A, the costs from

this node to B, C and D are set from infinity to 1, 3 and 10 respectively. Because

the cost to node B is lower than to C and to D, B is set as the current node and the

cost of D is set as 6. However, as 6 is bigger than the cost to C. Consequently, node

C is set as the current node. Then, the cost to node D is replaced from 6 to 4 in

node D. As the cost of D is the lowest unreached node, D is set as the current node

and the process ends because D is the target node. The final state is represented in

section (b) where the shortest path is indicated with red colour.

Figure 2.3: Dijkstra process, (a) Initial state, (b) Final state

A* Search algorithm

It is an algorithm that uses the Heuristic method, meaning that it is not 100% precise

to find the shortest path. However, it proves to be faster to find the shortest path,

with a certain range of imprecision, than other algorithms as it tries to examine the

minimum amount of nodes possible to find the path with the minimum cost [15]. To

do this, when deciding to settle a node, it uses an evaluation function to calculate

2.2. Shortest Path Algorithms 10

if the node leads to an shortest path. The steps of the algorithm are:

First, the source node s is marked as open and the evaluation function f(s) is

applied to calculate the cost for the shortest path from the actual node n to the

target node t.

Second, the open node n which lowest value of f is selected. If there are two

with the same value the decision to choose between them is random.

Third, the algorithm is finished if the current node is the target node t and the

current node n is marked as closed.

Fourth, the current node n is marked as closed and the successor operator is

applied to n. The evaluation function is applied to every successor of n and every

successor not already marked as closed is marked as open. If any successor of n is

closed but the result of f is smaller now than it was when it was marked closed, it

is marked as open. Go back to the second step.

The evaluation function consists in f(n) = g(n) + h(n). Where g(n) is the cost

of the path from s to n, this should be calculated as the relaxation process proceeds.

In the case of h(n), it is the cost of the shortest path from n to t. To calculate h(n),

physical information is used to approximate the shortest possible distance between

n and t, in the case of roads it is used the direct distance between n and t without

considering the nodes in between.

In fig 2.4, the process of the A* search is represented, applying it to the search

of the path from node A to node D. In section (a) we have the initial state. The

estimated distance from every node to the target node D is represented as a number

over each one. The distance from each of A neighbours is calculated by summing

the edges costs plus the tentative designated cost of each node, giving 4, 5, 10 and

9 to nodes B, C, E and F respectively. Then B is selected as the current node as

it has the lowest cost of all the neighbours. Then, the distance from A to following

the path with node C to node D is calculated using the approximated cost of C

that is 2. The result gives 5 for the route A-B-D. Node C is selected as the current

node as the cost from A to C plus the estimated distance is 4, smaller than the

previous path. Distance from C to D is evaluated and the cost of the path gives 4.

Node D is considered the current node and the algorithm finishes. The final state

2.2. Shortest Path Algorithms 11

is represented in section (b) and the shortest path is indicated with red color.

Figure 2.4: A* process, (a) Initial state, (b) Final state

Bidirectional search

This kind of search alternates between two shortest path algorithms working at the

same time. The first algorithm starts from source node s and ends in target node t.

The second, called backward search, starts from t and ends in s. If the graph is not

directed only the cost from v to u should be considered for the backward search.

The process finishes when both algorithms collide at the same node.

Some research has been conducted using this kind of process. Nicholson uses his

own algorithm to find the shortest route while executing a bidirectional search [16].

Moreover, Andrew et al. made some experiments using a bidirectional search with

the A* algorithm, the results indicated that the efficiency usually is better than the

mean [17]. Therefore, evidence exists demonstrating the efficiency of this type of

search.

Parallelization in shortest path algorithms

An alternative way to speed up the process of finding the shortest path is, with the

use of multi-core processors, to execute multiple sections of the process at the same

time using multiple threads.

2.2. Shortest Path Algorithms 12

Some research has been conducted regarding the parallelization of Shortest Path

Algorithms and it has proved to have great results regarding efficiency. Jasika et

al. research was conducted using 4 environments, some with multiple processors to

use different cores to follow the path for different vertices with Dijkstra’s algorithm,

the results indicated that using parallelization the performance of the process of

finding the shortest route incremented a 10% compared to the usual sequential

way of implementing it [18]. Singla et al. conducted research using NVIDIA CUDA

technology for Graphics Processing Units for graphics cards to parallelize the process

Shortest Path Algorithms [19]. The experiment was conducted using a graph with

over 2 million edges and the results indicated a speed-up of up to 5 times faster using

parallel Dijkstra’s algorithm than the sequential process. Moreover, experimenting

with a graphs of over 23 million edges the speed up of the process was of 4 times.

Therefore, the research indicated that the use of multiple cores to parallelize and

speed-up the process was a great success.

Algorithms comparison

In table 2.1, it can bee seen a comparison between the three algorithms presented.

In terms of speed Dijkstra’s has the lowest, A* is faster than Dijkstra’s as it

removed options by using estimated distance and Parallelization is the fastest of the

three as it can implement simultaneous searches at the same time.

In terms of precision Dijkstra’s has the best precision as it always finds the

shortest route, A* has the lowest precision as it doesn’t always finds the shortest

route and Parallelization, depending of the algorithm implementations, can be as

accurate as any of the other two algorithms.

In terms of resources required, Dijkstra’s requires the lowest resources, A* re-

quires more resources than Dijkstra’s as it needs extra data sources and Paralleliza-

tion requires the most resources as it uses much more processing power than the

other two algorithms.

2.3. Navigation Systems 13

Algorithm Speed Precision Resources Required

Dijkstra’s Low High Low

A* High Low High

Parallelization High High High

Table 2.1: Comparison of the three algorithms for route formulations presented

2.3 Navigation Systems

2.3.1 Description and Workflow

A navigation system is a combination of software and hardware that aids the user to

find a route to follow to arrive at a destiny. Usually, the navigation systems display

a map where the users can identify their location and decide their destiny. The

navigation system displays instructions to the users about how to arrive at their

destiny. These instructions can be visual, written or verbal.

In fig. 2.5 the typical workflow of a navigation system is displayed. Steps are

indicated with numbers in parenthesis. In step 1, it starts with the roads database.

This database is filled with nodes and every node represents a road or interest point.

These nodes are records that contain useful information like distance, type of road,

velocity limit and the like. Optionally, in step 2, there are other sources of informa-

tion like other databases or web services where information about traffic, weather,

inclination, etc. can be obtained. The data in these databases are extracted, in step

3, by the main application and then, in step 4, the application sends to the user

device the map so the user can visualize it. After that, in step 5, the application

obtains the coordinates of a start point and a target point. After that, in step 6,

the application uses the data obtained from the databases to create a graph with

the roads, relate the coordinates with nodes of the graph and then, in step 7, use

an algorithm to formulate a path with the minimum cost. The minimum cost is

indicated with red colour in the graph. After formulating the path, it is sent to the

user device in step 8. Therefore, the navigation system workflow is usually followed

in that order.

Considering the information above, the algorithm should be considered the core

2.3. Navigation Systems 14

Figure 2.5: Basic Navigation System Workflow

of a navigation system, as it is the algorithm the part of the system that formulates

the route to follow. The algorithm should consider the possible paths to follow

from the start point (where the users is) to the target point (where the user should

be at the end of the trip) and formulate the shortest path. However, the shortest

path will be selected considering what the navigation system selects as the cost

for the algorithm. Thus, when in past years, for combustion vehicles, the distance

was normally used as the cost for these algorithms, for electric vehicles, there are

many factors that the algorithm should consider to formulate a shortest path route

e.g. electricity, time, money, CO2 emissions, etc. Therefore, the accuracy of the

algorithm is very important to the navigation system.

Furthermore, it is important to know which algorithms are useful for navigation

systems as they will be used for this thesis. A frequently used algorithm in research is

Dijkstra’s [4, 20, 21, 9, 6, 1] or some variation of it because this algorithm has proved

for many years to find the lowest cost path. However, because of the high processing

demand of Dijkstra’s algorithm, other research [20, 10, 11] have opted for using A*

search which is less processing costly and therefore faster. Nevertheless, A* search

will not always find the route with the minimum cost by using a faster method. There

are some other shortest path algorithms used in navigation systems like Bellman-

2.3. Navigation Systems 15

Ford [22] that is slower than Dijkstra’s algorithm as it considers negative edges and

LC search, a variant of Dijkstra’s algorithm, used by Baum et al. to accept negative

values as it is required for the consideration of battery recovery. Hence, it is more

effective and common in navigation systems to use the Dijkstra’s algorithm and A*

Search to formulate routes.

As mentioned before, many factors are taken into account for the use of shortest

path algorithms in navigation systems. Therefore, these will be described in the

following sections of the chapter.

2.3.2 Time calculation of the path

One of the most focused metrics for navigation systems is the time. It is common

in navigation systems to consider the shortest path as the one that consumes the

lowest amount of time. However, there are many parameters that affect the amount

of time required to go through a route for vehicles. Therefore, to calculate time,

these parameters need to be taken into consideration.

An important parameter to measure the time that the vehicle would take to go

through a section of the path is the speed limit of the section. This parameter is

the core one to estimate the time of the route because it decides how much time the

vehicle can take to go through the section in optimal vehicle and road conditions.

However, as this estimation can only work in these optimal conditions there is a

need for more parameters have to consider to complement adverse conditions.

A factor to consider when calculating the time travel of the trip is traffic, as this

factor can reduce the capacity of the vehicle to travel through the road at the usual

velocity and thus increase the time that would take to follow the path. There are

two well-known ways to detect the traffic. One is to use traffic data from records

obtained from some period of time and keep it in a database to use it afterward.

A second one is to ask to web services that are continuously monitoring the traffic

to obtain real-traffic information. Zhou et al. have mentioned using Google’s and

Yahoo’s Application programming interfaces (APIs) to obtain traffic information of

the roads and implement it on their navigation systems [1]. Zhihong et al. use a car

to car communication system to measure the traffic by select the route that performs

2.3. Navigation Systems 16

the fewest number of switching between stop and start-up of the vehicles [6]. Guo

considers using a technology named Intelligent Transport System to detect traffic

congestion by sending real-time traffic information through FM radio broadcasts

[23]. However, this technology is still in development and not usable for a software

application. Hongming et al. made some tests comparing the time reduction in their

system using traffic historical and real-time data [24]. The results indicated that

even when the use of historical data was effective making a route that consumes

less amount of time, the real-time data proved to be more effective at this task

creating an even less time-consuming route. Cela et al. obtained real-time traffic

data from the SYTADIN web service which provides data from Paris and the Ile-de-

France region which is updated every 3 to 5 minutes [20, 21, 25]. This information

represents how the focus is going more towards using real traffic data. However,

some of this research states about the use of technology yet in development and the

others use web services that require a frequent monetary cost. Nevertheless, it is

evident that the use of traffic information helps to make a better route formulation

by reducing costs.

The queue time is considered the amount of time that the users will spend

waiting at the charging station to be able to start charging their vehicle. Guo et al.

included the waiting time in the algorithm for their navigation system [23]. However,

it was not stated how specifically they obtained this data and if it is possible at the

present time to do this. Hongming et al. included it by using a mathematical model

to estimate the waiting time, expecting infrared sensors installed at the charging

stations entry to detect the number of vehicles and knowing the number of charging

vehicles by sensors in the charge plugs [24] which is a good way to do it. Still,

at the moment this type of monitoring is not used for the majority of the stations

and thus not usable for an actual navigation system. Therefore, by analyzing the

research at the moment, it can be concluded that the feature of obtaining the queue

time is purely theoretical at the moment and not feasible for developing an actual

navigation system.

Another factor that can be considered in the time calculation of a navigation

system is the charging time, which refers to how much time is needed to charge the

2.3. Navigation Systems 17

vehicle to the desired level of battery charge which can vary between minutes and

hours. Kobayashi et al. considered the charging time of the vehicle in the calculation

of the total time of the route by calculating the type of charging depending on the

type of the connector to differentiate the normal charging and the fast charging,

this information is stored in a database as Charging Efficiency [9]. However, this

information was hypothetical, not from real charging stations and therefore not

useful for a real navigation system. Yang et al. equally considered the charging time

in their research [5]. Nevertheless, the data for the charging time were simulated as

well and not real data was used. Guo et al. considered the charging time as well,

to include it in the total travel time. Moreover, they considered the possibility of

using the service of swapping the battery instead which would require much less

time. However, this service is used mainly for transport buses and not for regular

electric vehicles. Thus, is not advisable to be considered for this project. Hence, it

can be understandable the importance of the consideration of the charging time for

the selection of the charging station as there is a great difference in time depending

on the selected station.

Now with this information, it can be concluded that there are many factors that

influence the amount of time that the users will spend depending on the station and

route selected. Thus, it is important to take these parameters into consideration

when calculating the time for the route. Moreover, it is also important to notice

that at the present time, some of these parameters are not usually available and

because of this they may need to be taken out of consideration.

2.3.3 Energy consideration in navigation systems

For feasibility purposes, is important to consider the remaining battery of the vehicle

to decide if it is possible for it to arrive at the destination. Martin et al. considered

the energy capacity of the vehicle’s battery to detect if it is feasible to arrive at the

station [10, 11]. Nonetheless, it is only considered the total capacity of the battery

and not the remaining battery which can lead to a lack of precision on the futility to

arrive to at the destination. Differently, Kobayashi et al. did consider the remaining

battery charge of the vehicles to select stations in the way to the destination [9] which

2.3. Navigation Systems 18

resulted in a successful decision because the feasibility was always correct. Equally,

Baum et al. research considered the vehicle remaining battery and energy necessary

for the trip to consider the feasibility to arrive to the destination [8]. Hongming et

al. considered it as well, selecting only the routes where the remaining battery was

positive at the moment of arriving to the destination [24, 5]. Therefore, this evidence

represents the importance of considering the remaining battery of the vehicle before

recommending a route, as this may not be possible with the actual battery charge.

The battery recuperation factor is considered in some research [8, 10] to calculate

the energy cost for a trip. It considers that as long as the electric vehicle is on the

road, in some cases like going downhills, it can produce electricity and recover energy

for its battery. For the purpose of this, some research considered altitude factor,

for example using the NASA Shuttle Radar Topographic Mission data [10], to know

when the vehicle is going downhill and as a result recovering energy. Baum et al.

mentioned to handle the battery recuperation factor as a negative cost (discarding

some algorithms like Dijkstra’s). However, because of the time and resource limits of

this thesis, this factor is not considered in the application of this thesis. Nevertheless,

in a future version of this work, this factor should be considered as it would a more

precise estimation of the battery charge at the end of the trip.

Some researchers have considered the road types to calculate the energy required

for the trip. Liaw et al. decided to make a classification for driving styles depending

on the type of road and assigned electric consumption profiles which were created

using the data retrieved from a fleet of 15 electric vehicles and analysing it with

fuzzy logic [26]. This classification gives the possibility of a better approximation of

the energy required to follow a route. Adnane et al. calculated the energy of each

segment of the route by considering the friction caused by the type of road giving

different profiles of energy consumption depending on the type of road. Therefore,

considering the road conditions can help to have a better approximation of the

energy required for the route.

A seldom-used parameter in navigation systems for electric vehicles is the consid-

eration of the weather. Zhou et al. mentioned the use of Google Maps and Yahoo!

APIs to obtain weather data of the roads and estimate a mean energy consumption

2.3. Navigation Systems 19

[1]. In a different approach, Korosh et al. used weather data in their navigation

system to consider how to regulate the vehicle AC system to reduce the energy con-

sumption of the vehicle [22]. This, this evidence demonstrates ways to use weather

information to reduce the energy consumption of the vehicle.

An important advantage to take into consideration the reduction of energy con-

sumption is that the more energy spent on the trip would mean a rise in the price

of charging as it would require to pay for more energy (which was consumed during

the trip). Zhou et al. calculated the total cost of charging the vehicle by converting

the distance of the route into energy and transforming it into money taking into

account the charging station fee [1]. Similarly, Baum et al. convert the energy spent

on the trip to money, also considering the recovering factor to reduce the amount of

energy and thus money [8]. Yang et al. calculated the cost of charging using the en-

ergy spent during the trip, the remaining battery and they also considered different

prices for fast and regular charging for a more precise calculation [24]. Therefore,

the consideration of the energy consumption on the price should be considered as

many users will benefit from cheaper routes and stations.

2.3.4 Software and Hardware technology used in navigation

systems

Navigation systems need a way to identify the elements on the way from origin to

destination. This means to take into account the roads’ positions, connections and

directions. Moreover, some other elements like structures, rivers, parks, etc. to

help the user identify the surroundings. OpenStreetMap is constantly used for this

matter in papers [27, 20, 21, 10, 22] as it is an open-source free to use. Furthermore,

some navigation systems even consider elevation factor [27, 20, 21, 10, 11] which can

be used to calculate increase and decrease in energy consumption. Thus, with this

geospatial data, it is possible to identify the roads and intersections and therefore

formulate routes for the vehicles.

For a navigation system, it is important to locate the destination of the users,

in the case of this thesis the goal is to find charging stations. However, there is

a lack of description in research papers about the sources of locations of charging

2.4. Research Gaps 20

stations [8, 23, 9, 10, 11, 5, 1], mostly because their research is usually theoretical

and not real data is used for charging stations. Though, knowing the location of

real charging stations is an important feature for a real navigation system when real

data must be used.

The interface of the navigation systems is very important, so the user can interact

with it. Some researchers have opted for having their system installed in the vehicle

[23, 22] which avoids the necessity of a third party device but includes the difficulties

of compatibility and having to pay for an external product installed in the vehicle.

On the other hand, some other researchers have opted for using tablets or smart-

phones to deploy their systems through applications [20, 21, 25, 10, 11, 24]. Using

navigation systems through portable devices adds the possibility to use them without

installing them on the users’ vehicles, making them cheaper to use. Therefore, it is

necessary to consider the necessities and background of the end-user before selecting

an interface for the navigation system.

2.4 Research Gaps

Many features of the previously reviewed navigation systems are not realistic at the

present time and have to be discarded. Calculating the queue time for navigation

systems is not realistic at the moment as it requires that all charging stations cal-

culate it and share that information. Moreover, most of the research conducted did

not use real data to locate charging which is necessary for a real navigation system.

Additionally, there is a lack of customization to the users needs as these navigation

systems select only one option to optimize and do not let the users choose their

priorities. Finally, there is also a lack of variety in regard of the device used, as the

research reviewed is limited to only one device or operative system e.g. Android

devices, iPads and iPhones or internal vehicle systems.

Thus, this work will have three main objectives to solve the gaps found by this

literature review which are considered to be realistic at the time. The first objective

of this work is to solve the lack of flexibility in navigation systems to let decide the

user their priorities, this objective will be addressed in the third section of the next

2.5. Conclusions 21

chapter. The second objective is the solution to the lack of variety in the devices

compatible with the navigation system, in the first section of the next chapter this

problem will be addressed. The third objective is the use of real data from the

charging station in the navigation system, this objective will be addressed in the

second section of the next chapter.

2.5 Conclusions

In this chapter, information about the basics of shortest path algorithms has been

presented, including graph theory, shortest path algorithm description and some

commonly used algorithms. Furthermore, it has been reviewed many factors that

navigation systems have taken into consideration for selecting the route with the

lowest cost and how some of these are realistic to take into consideration at the

present time and how some few are not.

The information presented suggests that each algorithm have advantages and

disadvantages. Therefore, the decision of the selection of the algorithm was made

considering the advantages and disadvantages to choose the one that is more suited

for this thesis application. Considering that Dijkstra’s algorithm can always provide

the shortest path and consumes the lowest resources, it was chosen as the most suited

for this thesis.

Furthermore, the research suggested that time and energy consumption consid-

erations are important to consider when developing navigation systems. Moreover,

there are many variables that influence the result value of these two factors. Thus,

this data will be considered when calculating time and energy consumption in the

navigation system.

Chapter 3

Navigation System Architecture

3.1 Introduction

This chapter will be dedicated to explaining how this navigation system is structured

and how it works. To do this, the first section will describe the workflow of the

navigation system of this thesis. The second section will include the technology

used involved in the construction of the infrastructure of the system, mentioning

the features needed for the infrastructure and the reasons for selecting them. The

third section will describe the data obtained, including the map and vehicle data,

and the technologies used for the main application, including the technology for the

map and for formulating the routes. The fourth section will present the information

that will be displayed to the users in order for them to be able to know the costs to

charge their vehicles in each charging station and decide their priorities for the trip.

Finally, a summary of the highlights of the chapter will be presented at the end.

3.2 Navigation System Workflow

Fig 3.1 represents a general workflow of the system process. As it can be seen,

the flow starts with the user sending a request to the application server for a route

to a charging station. Next, the application server asks for additional data to the

databases and web services. After that, the application server uses all the data to

generate a graph and, using Dijkstra’s algorithm, formulates a route. Finally, the

22

3.2. Navigation System Workflow 23

route is sent to the user.

Figure 3.1: General Navigation System Workflow. Arrows indicate the direction of

the communication

In fig 3.2, it can be seen, in a more specific manner, how the communication

flows in the system. The process of the system starts when the users connect to

the application server from their devices’ web browser. After that, the application

server sends the user-side application to the users’ devices so the devices can be able

of displaying the map and the users capable of interacting with the Application and

Geospatial servers. Then, the users select and send their vehicles’ manufacturers,

models and coordinates (obtained by the devices GPS) to the Application Server.

Next, the application server sends a request to a Web Service to obtain data, such

as name, location and prices, of charging station near to the users’ locations. The

web service responds with the charging stations data. Afterwards, the Application

Server, with the manufacturer and model selected by the users, searches for the ve-

hicles’ data in the Vehicles Database. After the petition is answered by the Vehicles

Database, the Application Server uses the Roads Database data, in conjunction with

the users’ vehicles data, to calculate data from the userss location to each charging

station (including energy and time required). When the process is finished, the Ap-

plication Server sends the data to the users’ Web Browser to display the data in the

3.3. Data displayed to the users 24

users’ devices.

Then, having the charging stations’s data displayed in their devices, when the

users select a charging station from the options appearing, the web browser sends

the users’ and the charging station coordinates to the Geospatial Server to show the

route in the userss devices. After that, the Geospatial Server sends the coordinates to

the Application Server asking route. The Application Server, using the coordinates,

starts formulating the route using Dijkstra’s algorithm and the Roads Database data.

To do this pgRouting implements the algorithm with the Roads Database data.

After finishing the process, the Application Server sends the route data (streets,

avenues, distance) to the Geospatial Server. Next, the Geospatial Server creates

an image of the route and sends it to the users’ web browser. Finally, the route is

displayed in the users’ devices.

Figure 3.2: Navigation System Workflow. Arrows indicate the direction of the

communication

3.3 Data displayed to the users

The first objective of this thesis is to solve the lack of flexibility in navigation systems

to let decide the user their priorities. For this, the purpose of the application for

this thesis is to give the users the data needed to be able to choose the charging

3.3. Data displayed to the users 25

station that best suit them when selecting where to charge their vehicles. In order

to do that, the application should be able to display in the users’ devices screen

a list of charging stations with the mentioned data ordered by the priority of the

users. Therefore, this information should be obtained or calculated when the users

make requests to be able to display it on the devices’ screens.

The application should be able to display the charging station’s name in the list

to let the users identify the establishment when they arrive at it. This data can be

obtained through the Open Charge Map’s API [28]. After obtaining the data from

the API, it should be sent to the users from the main application server and then

displayed in the list. Thus, the users will have access to the name of the charging

station when using the application.

The application should be able to show to the users how much distance they have

to travel from their position to the charging station. For this purpose, a sum of all

the sections of the route is made using the OpenStreetMap’s geographic data and

pgRouting to quantify the distance of the trip, this is done for every station near to

the users’ positions. Initially, the distance comes using miles as a unit. However, it

is transformed to meters and if the amount is equals or greater than 1000 meters,

it is transformed into Kilometres for reading facilitation for the users. As a result,

the users will be able to access the distance from their position to every charging

station that is presented in the application’s list.

The application should display the time that would be required to arrive from

their positions to the charging stations to the users. To do this, for every charging

station near to the user, it was required to identify the time required to go through

every section of the route to the charging station, this was possible using the geo-

graphic data from OpenStreetMap. Then, sum each of the sections to know how

much time is required to go through all the route. This data is sent to the user-side

of the application and displayed to the users in the list of charging stations. Thus,

the users are able to know how much time would be required to arrive at each of

charging stations from their positions.

The application should display how much time it would take to charge the vehicle

from the battery level when arriving at the charging station to the battery percentage

3.3. Data displayed to the users 26

required. To do this, it was required to know the battery capacity of the vehicle,

the battery percentage at the start of the trip, calculate the energy required for

the trip and with that information estimate the battery left at the end of the trip.

Knowing the battery left, it can be calculated how much energy is required to get to

the target battery percentage. After knowing how much energy is required from the

charging station, it has to be calculated how much time it would require to transfer

that energy to the vehicle. To calculate that time, it was required to know the

capacity of the connector of the charging station. Fortunately, Open Charge Map

[28] provides the connector data from its API. Finally, knowing the energy required

and the connector transfer capacity it is possible to calculate the time required to

charge the vehicle and send it to the users’ devices. Therefore, the users will be able

to know how much is required to charge their vehicles considering the energy lost

during the trip.

The application should be able to provide the users with the information of how

much would be the monetary cost of charging the vehicle at the charging station. In

this matter, there are three possibilities considered. First, it can be a free service and

no more calculations would be needed. Second, it can be a fixed price and thus, no

more factors would be needed to be considered. Third, it can be a price per Kilowatt

and for this, it is necessary to know how much energy would be required to charge

the vehicle from its starting battery percentage to the target battery percentage.

This data was calculated by obtaining the battery capacity of the vehicle from

FuelEconomy [29], the battery percentage at the start of the trip introduced by the

users, calculating the energy required for the trip considering the distance and the

vehicle efficiency, and with that information calculate the battery left after arriving

at the charging station. Knowing the battery left, it can be calculated how much

energy is required to get to the target battery percentage. Finally, after obtaining

the number of Kilowatts required, it should be multiplied by the fee which is obtained

by the Open Charge Map API [28]. After that, the total cost would be sent from

the application server to the user-side application in the users’ devices. Therefore,

3 factors were considered to obtain the cost of charge the users’ vehicle and the user

would be able to obtain this information through the application.

3.3. Data displayed to the users 27

The application should be able to inform to the users how much energy is required

to make the trip from their position to the charging stations to know if it is viable for

them to go to their selected charging station. To calculate this data, it is necessary

to know the efficiency of the vehicles’ motors. Fortunately, the motor efficiency is

included in the FuelEconomy database [29]. Knowing the vehicles motors efficiency,

the next step is to obtain the distance between the users’ locations and the charging

stations. To obtain the distance between the users’ locations and the charging

stations, pgRouting [30] was used to go over every edge between these locations

and obtain the distance of every edge in the route. After obtaining the distances,

a summation is made to obtain the total distance of the trip. The total distance is

multiplied by the vehicles’ efficiency factor and the result is the total energy required

for the trip. This data is calculated in the application server and is sent to the user-

side application in the users’ devices. Therefore, the users will be able to know the

amount of energy required for the trip before making it using this thesis application.

However, not all the users comprehend the energy required in terms of Kilowatt

hour(kWh) and would prefer a more common metric for the energy required, for

that reason an alternative should be displayed. The decision was made to display

the energy required for the trip as a percentage of the battery. Therefore, if the

users are not familiar with the units to measure energy, they would be able to know

how much percentage of the battery is required to make the trip to the charging

station and thus know if their vehicles have the energy required for it. To be able

to display the battery percentage required, first the energy required is calculated as

explained in the previous paragraph. Next, it is necessary to know the vehicle motor

capacity which was calculated previously. Finally, with those two parameters, it is

calculated the percentage of the vehicle battery capacity required for the trip and

the result is sent to the user side of the application. Hence, the users will be able

to comprehend how much energy is required to arrive to the charging stations even

if they do not understand metrics to measure energy.

The application should be able to display a list of the charging stations near

to the users displaying first the ones that are better for the users considering their

preference. In order to sort them, first, the users need to decide their priority,

3.4. System Infrastructure Technologies 28

whether it is the cost of charging their vehicles or the time spent to charge them.

After deciding the users’ priority there are two options. The first option, if the

users decide to give priority to the price for charging the vehicle, after obtaining

the price for charging the vehicle as mentioned in previous paragraphs, the list is

ordered by the minimum price first and the most expensive at last. If the price is the

same, the charging stations with the same price are ordered by time to decide which

one goes first. The second option, if the users decide to give priority to the time,

after obtaining the travel time and charging time as mentioned before, these two

parameters are summed for every station and the ones with the lower total time are

displayed first. By default, the list is ordered by the price for charging the vehicle.

Therefore, the users will be able to select their priority and the charging stations

that more suit their preferences will appear first.

3.4 System Infrastructure Technologies

The second objective of this thesis is to build a navigation system capable of being

used in different types of devices e.g. tablets, smart-phones and desktop computers.

In order to do this, the solution opted in this thesis is to create a web application

and thus use the web browser in every device to execute it and have access to the

system.

For this, first, the application requires a mean to display to the users an interface

to communicate and receive information, for this purpose a technology capable of

this was investigated. HyperText Markup Language (HTML) 5 is a cross-platform

language, meaning that a specific Operative System nor a specific device (which

implies that it can be used from desktop computers, laptops, tablets, etc) is required

to work with it [31]. It only needs a modern web browser to use HTML5 to process

and display information. HTML5 provides new features from its predecessors useful

for developing modern web applications. One of this features is the Canvas element,

which is used for dynamically render visual content, a feature useful for the map

in a navigation system that requires changing its contents e.g. charging station,

routes and other elements. Therefore, HTML5 was selected as the base technology

3.4. System Infrastructure Technologies 29

responsible for displaying to the users the interface to interact with the application.

As mentioned in the previous paragraph, Canvas would represent an important

feature for displaying the map to the user and there should be a manner to control

what appears inside this element. In order to obtain this control over the contents of

the canvas element, another technology would be necessary. The Canvas element can

be controlled by the JavaScript technology to be able to draw and display contents

inside of it [31]. Moreover, the purpose of JavaScript is to manipulate the DOM

(Document Object Model) elements of a website [32] which would be useful for this

thesis application as the Canvas element can be controlled with it and it is not the

only element needed to be controlled as other DOM elements should be used for

the users to introduce information about their vehicles. Thus, JavaScript should be

used in this thesis application to interact with the Canvas and other DOM elements.

Furthermore, for this application to be able to display the elements correctly

to the user, the use of CSS (Cascade Style Sheets) will be necessary. CSS allows

developers to attach style to the elements of their HTML or XML documents by

changing size, colour, fonts, transitions and other attributes [33]. Moreover, to be

able to add some features that will be essential in this project, like responsive design

or Canvas, the use of CSS would be necessary. Hence, it was decided the use of CSS

on this application to fulfil the requirements for other features and make it easier to

navigate through it.

Another factor to take in consideration is that, because the application is web-

based, it is needed to be stored in a web server so it can be accessed from multiple

devices through the internet. At the present time, AWS (Amazon Web Services) is

constantly used in the field of web development as they are secure and scalable. AWS

is a platform that provides cloud services including website storage [34]. Moreover,

AWS website provides good quality documentation and tutorials for the purpose of

learning how to use their products. Additionally, AWS provides a free period for

students to test their products and get used to them. Thus, after some tests were

conducted using an AWS Ubuntu instance, it was proven that their products were

compatible with the technologies required for developing the application. Therefore,

AWS was selected to be used for this thesis for the purposes of storing the application

3.4. System Infrastructure Technologies 30

on a web server and making it accessible to the users.

Another consideration to have, because of the application for this project is web-

based and is expected to be used in different types of devices, is that it is important

to include the feature of being responsive. This means that the application content

can adapt its position and size depending on the resolution and aspect ratio of the

device that is using it, otherwise the content of the application can appear too small

to be visible or too big to fit in the screen and it would not be comfortable or

efficient to use. Additionally, making a responsive application avoids the need for

creating multiple instances of the application for every different device. Therefore,

as a consequence of the previous statements the decision was made to include the

feature of being responsive for the application of this thesis.

Additionally, an efficient approach to include the feature of responsive design

to the application is with the inclusion of a framework. Materialize is a front-end

framework which function is to include responsive styles [35] following material de-

sign principles [36] to speed up the development of software by using its components

with custom styles, animation and transitions. Moreover, Materialize website in-

cludes documentation and examples to learn how to include the framework and its

components. Furthermore, Materialize is open-source, which means that it can be

included in this software without any problem. Thus, the framework Materialize

was included in the development of this application thesis to facilitate the inclusion

of responsive design without consuming much time.

Moreover, a good practice to develop software is to maintain version control and

as a consequence in case of making errors and saving the code, it would be possible

to go back to previous versions that do not contain the error without losing major

problems. According to its website, Git is an open-source version control system that

permits to maintain version control of software development having the features of

multiple branches of development to test new ideas and the capability of going back

from any change made [37]. Furthermore, the Git website offers wide documentation

about the user of this software and good practices. Additionally, Github offers the

feature of uploading for free your software online [38] for the purposes of easily

install your software in another computer and also to have an up to date backup

3.5. Application Technology and Data 31

in case of disaster. Besides, the Github website also has an extensive section for

documentation in case it is needed during the development of the application. As

a result, Git, in combination with Github, was chosen to be used in this project

to be used as the version control technology as they have much documentation and

having a version control has many advantages while developing software.

3.5 Application Technology and Data

The third objective of this thesis is to build a navigation system that uses real

data from roads, charging stations, vehicles and roads to provide accurate values

to the user. To do this, in this section, first is explained what data was used

for the identifying and displaying elements in the map, like roads, building and

other structures. Second, the charging stations data source is presented. Third,

the selection and justification for vehicles data are described. The final part of

this section explains how the route is formulated using the data obtained from the

previous sources.

3.5.1 Map Technology and Data

An important feature considered in making the application that needs to display

routes for navigation purposes was to be able to illustrate a map to the users so

they can know where to go and what is their position in relation to the charging

station. For this reason, before choosing a technology to use, research about what

capabilities it would require was conducted.

First, since this is a web-based application, the technology used to develop this

application should be compatible with web browsers. Documentation about how to

implement it with front-end technologies such as HTML, JavaScript and CSS should

exist to be able to learn how to use it and develop the application.

Second, the map technology should be able to display an environment easy for the

user to understand the environment. It should be able to display roads, buildings,

parks, lakes and other places that would be useful to the users to orientate in the

region that they would travel.

3.5. Application Technology and Data 32

Third, this technology should be flexible enough to let the developer add features

to the map dynamically. The flexibility refers to the ability to draw the routes,

mark the user’s position and point the destination where the charging station is.

Therefore, with the capabilities for the technology being selected, a selection for

this technology can be continued.

In other to obtain the data to display in the map, OpenStreetMap was selected

for this project thesis. Previous research has been made using this technology for

routing purposes for Electric Vehicles to find the most optimum cost-effective route

[11]. OpenStreetMap is a database with data obtained by a big community composed

of local people that decided to support the project [39]. The project is open-source,

therefore it is possible to access its data without having to pay large amounts of

money that normally would have been the case. Furthermore, this technology fulfils

the second capability previously described, as it contains a vast amount of data

related to roads, buildings and other structures. However, it is necessary to com-

plement this data with a technology able of displaying it and fulfil the other two

capabilities.

The library OpenLayers was selected as a very useful technology to complement

the OpenStreetMap data for this project’s purposes. OpenLayers is an open-source

library developed with JavaScript language, compatible with OpenStreetMap and

easy to customize with technologies such as HTML, JavaScript and CSS [40]. Fur-

thermore, it permits to display vector and markers on the map that would let the

developer render the routes and charging stations. Therefore, OpenLayers was se-

lected to complement OpenStreetMap’s data as it would fulfil the first and third

capabilities that were pending.

3.5.2 Charging Stations Data

Another concern for this project was to get the charging stations data, as the purpose

of this project is to guide the user to charging stations. For this purpose research

was conducted to identify a suitable database containing the data necessary for this

project necessities. Information such as the location of the stations, price of the

energy and service hours were necessary.

3.5. Application Technology and Data 33

Research conducted to the finding of Open Charge Map which appeared as a

suitable option for getting the charging stations data. Open Charge Map pro-

vides a service for applications that allow requests that return information in JSON

(JavaScript Object Notation) format about the charging stations in a region spec-

ified. Such information contains data such as coordinates, price and address [28].

Moreover, its website provides documentation about the parameters that can be

sent in the requests. Furthermore, this is free to use service, therefore it would save

the necessity to pay for obtaining this data. Thus, because of its features, Open

Charge Map service was selected as the source of data for charging stations in this

project.

3.5.3 Electric Vehicle Data

Obtaining data about the users’ vehicles is important for this project, as data like

the vehicles’ efficiency factor is needed to calculate the energy cost of the trip to

the charging station. Therefore, in order to get the vehicles’ data, two options were

considered.

The first option was to install a device in the electric vehicle to get its information

from the vehicle’s integrated computer. However, for this method, it would require

the users of the application to buy a product that would be installed in their vehicles.

Furthermore, it would require to find a suitable device, compatible with the majority

of the electric vehicles and make research in other to find ways to develop software

for this device. Therefore, this option was discarded as it would require too many

resources and time to develop.

The second option was to search for a database of electric vehicles that could

provide the data required for this application to calculate the energy consumption

and formulate the lowest cost route for the vehicle. Thus, no specialised device

would be needed for the users to install in their vehicles and instead the users could

select their vehicles from a list that appears in the application. The data would be

retrieved from the database after the users select their vehicles from the list and

the calculations would be made afterwards. Hence, this option was more suitable to

appeal to a major quantity of users than the first option.

3.5. Application Technology and Data 34

Consequently, for this project, the second option was selected as it would be

more convenient for the users to just open and select their vehicles from a list than

having to buy and install a device into their vehicle. Thus, research was conducted

to find a suitable database from which to obtain the electric vehicles’ data.

The research resulted in the finding of a good source for electric vehicles’ data,

it was found at FuelEconomy.gov. This website is maintained by the DOE (United

States Department of Energy) Office of Energy Efficiency and Renewable Energy and

the data is provided by the EPA (United States Environmental Protection Agency)

[29]. From this website, an up to date database with specification about vehicles

like the model, manufacturer, energy efficiency and others can be downloaded [29].

As a result, the database obtained from FuelEconomy.gov was selected for the use

of retrieving data about electric vehicles for this project.

Nevertheless, after reviewing the data, it was found that there were some compli-

cations with the vehicle data obtained and adjustments were made to obtain some

lacking information. First, the vehicle’s motor capacity was not explicitly displayed

in the data. However, in the same variable as the motor’s name, it was included the

energy capacity for the motor of each vehicle. Because of this, a script was created

and implemented to separate the motors’ capacity from the name of the motor au-

tomatically to each vehicle, to void doing it manually and thus be able to use this

data.

3.5.4 Route Formulation Technology

For this project, two main factors were considered to decide the cost of the route.

The first one is the time that would take for the user to travel across the route.

The second one would be the monetary cost that would take to travel through the

route instead than the distance that is common for combustion engine vehicles [6].

For the second factor, some researchers have considered that it would be necessary

to consider the energy spent by the vehicle to formulate routes for electric vehicles

as electric vehicles can lose energy very fast when changing between start-up and

stop, especially in cities [6]. It was chosen for this application to let the users decide

which factor that they want to take as a priority and consider the cost of the route

3.5. Application Technology and Data 35

based on that selection. After deciding the factors to measure the cost of the route,

research about algorithms for the routes formulation had to be conducted.

As mentioned before in the literature review chapter, for shortest path algo-

rithms, most are based on Dijkstra’s algorithm. Dijkstra’s algorithm is based on

finding the path with the minimum length between two nodes in a graph consid-

ering the cost from each node to another node [14]. Many researchers have used

Dijkstra’s algorithm before to manage the formulation of efficient routes for electric

vehicles. Moreover, it provides the shortest path considering the factor selected as

the cost. As this is an efficient and well-tested algorithm, it was selected as the base

to the planning of routes for this thesis application.

As Dijkstra’s algorithm was selected to be used for making the routes for this ap-

plication, it was necessary to find a technology that permitted to implement this al-

gorithm with the geospatial data obtained from OpenStreetMap. After the research

was conducted, a library named pgRouting was found to be compatible with the data

previously mentioned. The pgRouting library provides geospatial routing function-

ality using PostgresSQL databases (making it compatible with OpenStreetMap as it

can be transferred to PostgresSQL databases), has a variety of algorithms available

for routing including Dijkstra’s and the cost parameter for the algorithms can be

calculated dynamically (which leaves space to adapt the process for electric vehicles)

[30]. After conducting extensive reading from the official documentation provided

by pgRouting website [30] and making some tests with the laboratory equipment,

it was decided that pgRouting would be able to use OpenStreetMap data for the

purposes of formulating routes. Therefore, pgRouting was selected as the technology

that would be used for this thesis to proceed with the development of the Electric

Vehicle’s Routing Application.

Despite the efficiency of the pgRouting library, it was detected afterwards that a

way to communicate between the mentioned library and OpenLayers was necessary

as geospatial data should not be transmitted in a conventional way as for example

using NodeJS server which is used for this thesis application. Hence, research was

conducted to find a technology capable of connecting these two libraries. Hinted

by a workshop provided at the pgRouting website [30], a geospatial data server was

3.6. Limitations and disadvantages 36

found named Geoserver. According to its website, this server allows to view, edit and

share geospatial data [41], which is useful for the purpose of this work as it needs

to share the OpenStreetMap’s geospatial data, obtained through GEOFABRIK’s

servers [42], to OpenLayers and also the routes constructed using pgRouting. With

the help of the documentation found at GeoServer’s website [41] and pgRouting’s

workshop [30], some tests were conducted to check the compatibility between them

and results were satisfactory. Therefore, GeoServer was selected as the software

in charge to transfer data between pgRounting routes and OpenLayers to display

routes through the users’ browser.

3.6 Limitations and disadvantages

One of the main disadvantages of this architecture is that the users need their

devises to be connected to the internet. The reason for this is that there is no map

or application installed in the users’ devices. Therefore, all the route formulation

and calculations are made in the server. Thus, this application cannot be accessed

without internet connection.

Moreover, all the data is calculated using the vehicles’ technical information,

roads data and charging stations data. Therefore, the information presented to the

users may not be always be completely accurate. Factors such as the vehicles and

roads lack of maintenance can influence the accuracy of the application. Therefore,

the lack of real time updated data can decrease the accuracy of the data provided

to the users.

3.7 Chapter Summary

This chapter has presented the navigation system structure and how it solves the

objectives presented in the previous chapter. This was done by, first, being able

to be used by many types of devices. Second, using real data for obtaining values

of existent location, roads, charging stations and vehicles. Third, by giving infor-

mation about the trip to the users and letting them decide their priority to reduce

3.7. Chapter Summary 37

when charging their vehicles (time or money). Forth, describing the limitations and

disadvantages of this architecture. Therefore, with the knowledge of the architecture

of the system, the next chapter will proceed to present the results obtained from

this work.

Chapter 4

Results

Fig. 4.1 displays the map as it appears in the application. The map contains roads,

parks, rivers and structures that will help the users to identify their position. More-

over, the roads, rivers, parks and other structures are drawn with different colours

to make it easier for the users to distinguish them. Furthermore, the map has the

option to zoom in or out (b) to make it easier for the users to identify the struc-

tures and names on the map. Therefore, the map in the application contains useful

features for the users to orientate themselves and facilitate the elements inside of it.

The location of the users (a) is displayed on the map as a blue filled circle. When

the users start the web application dialogue box appears and ask their approval to

send their location as it is used to search the charging stations that are near to them.

Additionally, the location updates frequently on the map, thus as the users move

through the route they can always know their actual location to take as reference.

Hence, the users’ location is a helpful addition for the application to help the users

arriving at their destination. The screen contains drop-lists (d) to select the brand

and model of the vehicle and selectors (e) for the remaining battery percentage and

target energy percentage.

38

Chapter 4. Results 39

Figure 4.1: Map displayed in application, (a) User location, (b) Zoom in and out,

(c) No Sleep Button, (d) Vehicle Selection, (e) Battery Percentage Selection

Chapter 4. Results 40

In fig. 4.2, we can see how the vehicle brand selection appears so the user can

select it from a drop-down menu. The list is alphabetically ordered. Moreover, it is

recovered from a MongoDB database which is presented in fig. 4.4. The selection of

a manufacturer is required and it was developed like this for the purpose of speeding

up the search of vehicles. Hence, the inclusion of the manufacturers’ list is useful

for the application to help the users find their vehicle faster. It works the same way

for models in fig. 4.3, which is alphabetically ordered and the data is retrieved from

the MongoDB database presented in fig. 4.5.

Figure 4.2: Brands selection in the application

Chapter 4. Results 41

Figure 4.3: Models selection in the application

In Fig. 4.4 appears a portion of the list of the manufacturers contained in one

of the databases of the application. This list is obtained after making a query to

get all the manufacturers in the database using the application Robomongo which

is connected to the local MongoDB database. This data was originally obtained

from the DOE website [29] with only a collection of the electric vehicles and their

attributes. However, a separated collection was created only with the manufacturers

for purposes of displaying a list of them in the application as it would be more

efficient. Thus, as it can be seen in figure 3, the application has a source from where

to obtain a list of manufacturers of electric vehicles to display in the user side of the

application.

Chapter 4. Results 42

Figure 4.4: List of EV manufacturers in database

In Fig 4.5 the list of the Electric Vehicle’s models contained in the database

is displayed. This collection of models was created in the same way as the manu-

facturers collection, however, a relationship with the Manufacturer’s collection was

registered in models collection to make it possible relation between manufacturers

and vehicles. Therefore, this collection is useful for the purpose of obtaining the

Chapter 4. Results 43

vehicles models and making a relation between manufacturers and vehicles.

Figure 4.5: List of EV models in database

In Fig 4.6 the list of the Electric Vehicles records contained in the database is

displayed including attributes of each vehicle. These attributes are displayed as

Chapter 4. Results 44

they were obtained from the DOE website [29]. Moreover, these attributes contain

useful information of the vehicles including energy efficiency which can be used for

the purpose of calculating the energy spent on the route. Thus, the vehicle’s data

in the database is useful for the application as it includes the required data for the

user side and also data to calculate the energy consumption of the vehicle.

Figure 4.6: List of Electric Vehicles in database

In fig. 4.7, the charging stations are displayed on the map as green filled circles

after making a request to the server and obtaining the data of location for the

Chapter 4. Results 45

charging stations that are close to the users’ location. In this way, the users can

visualize the location of the charging stations to consider their options as a station

can be closer to other destination to consider after charging the vehicle. This data

was obtained from the Open Charge Map website [28]. Thus, the inclusion of the

charging station on the map is useful for the application to help the users make a

decision about their destination.

Moreover in fig. 4.7, a list of charging stations appears showing useful data to

the users. The data provided to the users contains the name of the charging station,

distance in metric units to the station, energy necessary to get to the station and

time to arrive at the station from the users’ location. This list allows the users to

select the station desired by clicking on it, the route to the station appears and the

route is zoomed in to make it easier for them to focus on the route. Hence, this

confirms that the users have the option of selecting other stations to use for the

purpose of going to a station that suits their necessities.

Chapter 4. Results 46

Figure 4.7: List of Charging Stations ordered by Price

In fig. 4.8, it can be observed that the list of charging stations can be ordered

Chapter 4. Results 47

by time too. If the price is selected, the first charging station that would appear

are the ones that would present a cheaper monetary cost for charging the electric

vehicle. However, if time is selected, the first charging station that will appear are

the ones with the lowest time required to charge considering the time of travel and

the time required for charging to the percentage selected.

Figure 4.8: List of Charging Stations ordered ordered by time

To explain the difference between the two order options, in table 4.1, the data

Chapter 4. Results 48

is presented. Here, it can be noticed that when the option to order by time was se-

lected, the options provided are significantly less time consuming that when ordered

by price e.g. First option when ordered by time required approximately 1.3 hours

to arrive to the station and charge the vehicle and first option when ordered by

price required approximately 8.9 hours. However, when the option to order by price

was selected, the options provided were the ones that required the least amount of

money to charge the vehicle e.g. First and second options when ordered by price

provided charging station when charging was free and first option when ordered by

time required £21.66 to charge the vehicle to the battery percentage desired. This

data corroborates that the application will provide the users the options that are

most suited for them.

Ordered by Time Ordered by Price

Option Time Price Time Price

First 4min+1.3hours £21.66 7min+8.9hours Free

Second 5min+1.3hours £21.73 8min+8.9hours Free

Table 4.1: Comparison of fig 4.7 and 4.8

In fig. 4.9, a query was sent to the roads database to obtain the structure of the

table where the roads are stored. It can be seen that each record includes useful

data like the name of the road, initial and ending coordinates, maximum speed

permitted, its relation with its point on the map and others.

Chapter 4. Results 49

Figure 4.9: Query showing roads table in PostgreSQL

In fig. 4.10, a query was sent to the geospatial database using pgRouting, Post-

greSQL and Dijkstra’s algorithm is displayed. The server answered with records that

describe the route to go from Heaviside Place to Glue Garth at Durham, United

Kingdom step by step in order from the start point to the endpoint. The route

was corroborated successfully to determine if it was an accurate path to follow.

Therefore, this evidence confirms that pgRouting was successfully included in the

application to formulate useful routes for the user.

Chapter 4. Results 50

Figure 4.10: Result of query showing list of steps for a route

In figure 4.11, it can be seen the route being drawn in the application. Using the

development tools of the browser, it can be seen that the route is sent as an image.

This image of the route is sent by Geoserver, which uses pgRouting to formulate

the route and it is created using the data from OpenStreetMap, considering the

coordinates of the user and the charging station. Thus, the previous statements

indicate that routes are correctly sent to the application to indicate the user how to

arrive at a charging station.

Chapter 4. Results 51

Figure 4.11: Route image format

Table 4.2 compares options given in the application when searching for a charging

station. The first column shows the options when the priority is the time and the

second column shows the options ordered when the priority is the price. In the first

option, when ordered by time, the amount of time required to travel and charge

the vehicle is approximately ten hours less than when ordered by price, which is a

decrease in 90% from the cheapest option, but when the priority is price, the first

options are free or £1 per session, which much cheaper than the options when ordered

by time with prices of £28 approximately, which is 28 times more expensive than

the fifth option when ordered by price. Moreover, it can be observed that when

ordered by the time, first, is ordered by the time and then the stations with the

same time are ordered by price. Inversely, when ordered by price first, the options

with the same price are afterwards ordered by time. This order is done in order to

assure that the options that the users would prefer are shown first. Therefore, these

Chapter 4. Results 52

results indicate the application successfully selects and show first the options more

appropriated for the user interests.

Ordered by Time Ordered by Price

Option Time Price Time Price

First 1.6hours+3min £28.26 11.6hours+6min Free

Second 1.6hours+4min £28.32 11.6hours+7min Free

Third 1.6hours+5min £28.36 26.8hours+1min Free

Fourth 1.6hours+6min £28.41 11.5hours+2min £1

Fifth 11.5hours+2min £1 11.5hours+2min £1

Table 4.2: Comparison between order by time and price

Chapter 5

Conclusions

This thesis has presented the development of a web-based application for electric

vehicles routing capable of sharing with the users the information necessary for them

to make decisions and select the lowest cost route considering the users’ priority,

whether it can be monetary cost or time required for the trip. Evidence has been

presented indicating that the application is capable of displaying a map, formulate

routes for the users’ trip to the charging stations and select the one with the lowest

cost for the users. Moreover, the application can switch between users priorities

(reducing time or money).

Finally, results indicated that the application can successfully recommend routes

and stations to the users, that can reduce greatly the costs in time or money for

them, considering the price, time of travel, time of charging, energy spent, the

vehicles’ battery capacity, remaining energy and desired charge percentage.

5.1 Future Work

As this work was made for a master degree, time and resources were limited to be

able to deliver in time. Therefore, in future versions of this system more features

can be included to make it more accurate.

One feature that can be included is the consideration of traffic to make the

trip time more precise. The consideration of road inclination can be helpful to

better calculate the energy consumption and recuperation. The consideration of the

53

5.1. Future Work 54

weather can help to calculate the energy consumption. The battery recuperation

factor when the vehicle brakes can be considered to calculate the energy necessary

for the trip.

Moreover, another kind of features can be included to expand the purpose of this

system as for example, the destination can be not only a charging station but it can

be a specific target on the map too. Furthermore, it can be included the feature of

selecting a different starting point than the users’ locations.

Bibliography

[1] Zhou, Z., et al. Charging station selection optimization based on electric and

traffic information. in 2017 IEEE Power & Energy Society General Meeting.

2017.

[2] Marano, V., et al., Intelligent Energy Management for Plug-in Hybrid Electric

Vehicles: The Role of ITS Infrastructure in Vehicle Electrification. Dossier,

2012. 67: p. 575-587.

[3] Tianheng, F., et al., A Supervisory Control Strategy for Plug-In Hybrid Elec-

tric Vehicles Based on Energy Demand Prediction and Route Preview. IEEE

Transactions on Vehicular Technology, 2015. 64(5): p. 1691-1700.

[4] Newbery, D.M., Towards a green energy economy? The EU Energy Union ’s

transition to a low-carbon zero subsidy electricity system – Lessons from the

UK’s Electricity Market Reform. Applied Energy, 2016. 179: p. 1321-1330.

[5] Yang, H., et al., Electric vehicle route optimization considering time-of-use

electricity price by learnable partheno-genetic algorithm. 2015. 6(2): p. 657-

666.

[6] Zhihong, W., et al. A New Route Searching Method for EVs Considering

Electric Motor Efficiency and Charging Stations. in 2013 5th International

Conference on Intelligent Human-Machine Systems and Cybernetics. 2013.

[7] Sweda, T.M. and D. Klabjan. Finding minimum-cost paths for electric vehi-

cles. in 2012 IEEE International Electric Vehicle Conference. 2012.

55

Bibliography 56

[8] Baum, M., et al. Energy-optimal routes for electric vehicles. in Proceedings

of the 21st ACM SIGSPATIAL international conference on advances in geo-

graphic information systems. 2013. ACM.

[9] Kobayashi, Y., et al. A route search method for electric vehicles in consid-

eration of range and locations of charging stations. in 2011 IEEE Intelligent

Vehicles Symposium (IV). 2011.

[10] Sachenbacher, M. The Shortest Path Problem Revisited: Optimal routing for

Electric Vehicles. in 2nd International Conference on Computational Sustain-

ability (CompSust). 2010.

[11] Sachenbacher, M., et al. Efficient Energy-Optimal Routing for Electric Vehi-

cles. in AAAI. 2011.

[12] Ortega-Arranz, H., D.R. Llanos, and A. Gonzalez-Escribano, The shortest-

path problem: Analysis and comparison of methods. Synthesis Lectures on

Theoretical Computer Science. Vol. 1. 2014. 1-87.

[13] Cherkassky, B.V., A.V. Goldberg, and T. Radzik, Shortest paths algorithms:

Theory and experimental evaluation. Mathematical programming, 1996. 73(2):

p. 129-174.

[14] Dijkstra, E.W., A note on two problems in connexion with graphs. Numerische

mathematik, 1959. 1(1): p. 269-271.

[15] Hart, P.E., N.J. Nilsson, and B. Raphael, A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science

and Cybernetics, 1968. 4(2): p. 100-107.

[16] Nicholson, T.A.J., Finding the shortest route between two points in a network.

The computer journal, 1966. 9(3): p. 275-280.

[17] Goldberg, A.V. and C. Harrelson. Computing the shortest path: A search

meets graph theory. in Proceedings of the sixteenth annual ACM-SIAM sym-

posium on Discrete algorithms. 2005. Society for Industrial and Applied Math-

ematics.

Bibliography 57

[18] Jasika, N., et al. Dijkstra’s shortest path algorithm serial and parallel ex-

ecution performance analysis. in 2012 proceedings of the 35th international

convention MIPRO. 2012. IEEE.

[19] Singla, G., A. Tiwari, and D.P. Singh, New approach for graph algorithms

on GPU using CUDA. International Journal of Computer Applications, 2013.

72(18).

[20] Cela, A., et al., Energy optimal real-time navigation system. IEEE Intelligent

Transportation Systems Magazine, 2014. 6(3): p. 66-79.

[21] Hrazdira, A., et al. Optimal real-time navigation system: Application to a

hybrid electrical vehicle. in 2012 15th International IEEE Conference on In-

telligent Transportation Systems. 2012. IEEE.

[22] Vatanparvar, K. and M.A. Al Faruque. Eco-friendly automotive climate con-

trol and navigation system for electric vehicles. in 2016 ACM/IEEE 7th In-

ternational Conference on Cyber-Physical Systems (ICCPS). 2016. IEEE.

[23] Guo, Q., et al., Rapid-charging navigation of electric vehicles based on real-

time power systems and traffic data. IEEE Transactions on smart grid, 2014.

5(4): p. 1969-1979.

[24] Yang, H., et al., Electric vehicle route selection and charging navigation strat-

egy based on crowd sensing. IEEE Transactions on Industrial Informatics,

2017. 13(5): p. 2214-2226.

[25] Jurik, T., et al. Energy optimal real-time navigation system: application to a

hybrid electrical vehicle. in 16th International IEEE Conference on Intelligent

Transportation Systems (ITSC 2013). 2013. IEEE.

[26] Liaw, B.Y. and M. Dubarry, From driving cycle analysis to understanding

battery performance in real-life electric hybrid vehicle operation. Journal of

power sources, 2007. 174(1): p. 76-88.

Bibliography 58

[27] Cabani, A., et al. Intelligent navigation system-based optimization of the en-

ergy consumption. in 2015 IEEE Intelligent Vehicles Symposium (IV). 2015.

IEEE.

[28] Open Charge Map. Open Charge Map. 2018 [cited 2018 26 Sept 2018]; Avail-

able from: https://openchargemap.org/site/.

[29] FuelEconomy. Fuel Economy. 2018 [cited 2018 26/09/2018]; Available from:

https://www.fueleconomy.gov/.

[30] pgRouting. pgRouting. 2018 [cited 2018 06/11/2018]; Available from:

https://pgrouting.org/.

[31] Pilgrim, M., HTML5: up and running: dive into the future of web develop-

ment. 2010: ” O’Reilly Media, Inc.”.

[32] Doernhoefer, M., JavaScript. SIGSOFT Softw. Eng. Notes, 2006. 31(4): p.

16-24.

[33] Bos, B., et al., Cascading style sheets, level 2 CSS2 specification. 1998: p.

1472-1473.

[34] Amazon Web Services. Amazon Web Services. 2018 [cited 2018 21/11/2018];

Available from: https://aws.amazon.com/.

[35] Materialize. Materialize. 2019 [cited 2019 16/01/2019]; Available from:

https://materializecss.com/.

[36] Google. Introduction - Material Design. 2019 [cited 2019 16/01/2019]; Avail-

able from: https://material.io/design/introduction/#principles.

[37] Git. Git. 2018 [cited 2018 21/11/2018]; Available from: https://git-scm.com/.

[38] Github. Github. 2019 [cited 2019 16/01/2019]; Available from:

https://github.com/.

[39] OpenStreetMap. OpenStreetMap. 2018 [cited 2018 25 Sept 2018]; Available

from: https://www.openstreetmap.org/about.

Bibliography 59

[40] OpenLayers. OpenLayers. 2018 [cited 2018 25 Sept 2018]; Available from:

https://openlayers.org/.

[41] GeoServer. GeoServer. 2018 [cited 2018 06/11/2018]; Available from:

http://geoserver.org/.

[42] Geofabrik GmbH Karlsruhe. GEOFABRIK. 2018 [cited 2018 15/10/2018];

Available from: http://www.geofabrik.de/.

