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Matematykiem jest kto umie znajdować analogie
między twierdzeniami; lepszym, kto widzi

analogie dowodów; jeszcze wyższym, kto dostrzega
analogie teoryj; a można sobie wyobrazić i

takiego, co między analogiami widzi analogie.

Stefan Banach
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Part II of this thesis is a joint work with Mikołaj Frączyk.

The copyright of this thesis rests with the author. No quotation from it should be pub-
lished without the author’s prior written consent and information derived from it should
be acknowledged.
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Abstract

This thesis is divided into two parts. The first one comes from the representation theory of
reductive p-adic groups. The main motivation behind this part of the thesis is to find new
explicit information and invariants of the types in general linear groups. Let F be a non-
Archimedean local field and let OF be its ring of integers. We give an explicit description
of cuspidal types on GLp(OF ), with p prime, in terms of orbits. We determine which of
them are regular representations and we provide an example which shows that an orbit of
a representation does not always determine whether it is a cuspidal type or not. At the
same time we prove that a cuspidal type for a representation π of GLp(F ) is regular if and
only if the normalised level of π is equal to m or m− 1

p for m ∈ Z.
The second part of the thesis comes from the theory of integer-valued polynomials

and simultaneous p-orderings. This is a joint work with Mikołaj Frączyk. The notion of
simultaneous p-ordering was introduced by Bhargava in his early work on integer-valued
polynomials. Let k be a number field and let Ok be its ring of integers. Roughly speaking a
simultaneous p-ordering is a sequence of elements from Ok which is equidistributed modulo
every power of every prime ideal in Ok as well as possible. Bhargava asked which subsets
of Dedekind domains admit simultaneous p-ordering. Together with Mikołaj Frączyk we
proved that the only number field k with Ok admitting a simultaneous p-ordering is Q.

Key words

Representation theory of p-adic reductive group, cuspidal types, number theory, integer-
valued polynomials, simultaneous p-orderings
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Résumé

Cette thèse contient deux parties. La première porte sur la théorie des représentations
des groupes p-adiques. Le but est de trouver de nouvelles informations et de nouveaux
invariants des types cuspidaux de groupes linéaires généraux. Soit F un corps local non
archimédien et soit OF son anneau des entiers. Nous décrivons les types cuspidaux sur
GLp(OF ) (où p est un nombre premier) en termes d’orbites. Nous déterminons quels types
cuspidaux sont réguliers et donnons un exemple qui montre que l’orbite de la représentation
ne suffit pas à déterminer si la représentation est un type cuspidal ou non. Nous montrons
qu’un type cuspidal pour une représentation π de GLp(F ) est régulier si et seulement si le
niveau normalisé de π est égal à m ou m− 1

p pour un certain m ∈ Z.
La deuxième partie porte sur les polynômes à valeurs entières, les p-rangements si-

multanés (au sens de Bhargava) et l’équidistribution dans les corps des nombres. C’est
un projet joint avec Mikołaj Frączyk. La notion de p-rangement provient des travaux de
Bhargava sur les polynômes à valeurs entières. Soit k un corps de nombres et soit Ok son
anneau des entiers. Une suite d’élements de Ok est un p-rangement simultané si elle est
équidistribuée modulo tous les idéaux premieres de Ok du mieux possible. Nous prouvons
que le seul corps de nombres k tel que Ok admette des p-rangements simultanés est Q.

Mots-clés

Théorie des représentations des groupes p-adiques, types cuspidaux, théorie des nombres,
polynômes à valeurs entières, p-rangements
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Introduction

In this thesis we distinguish two main projects. The first one comes from the representation
theory of reductive p-adic groups. The main motivation behind this project is to find new
invariants and information about the types in general linear groups. Let F be a non-
Archimedean local field and let OF be its ring of integers. Let π be an irreducible cuspidal
representation of GLn(F ). By I(π) we will denote the inertial support of π (see (2.1.1)). A
cuspidal type (on K = GLn(OF )) for I(π) is an irreducible representation λ of GLn(OF )

which satisfies the following condition: an irreducible representation π1 of GLn(F ) contains
λ if and only if the inertial support of π1 coincides with that of π. The existence of cuspidal
types on GLn(OF ) easily follows from Bushnell and Kutzko’s work [9]. This is explained by
Paskunas in [30]. Paskunas also showed the unicity of cuspidal types on GLn(OF ). More
precisely he proved that for any π irreducible cuspidal representation of GLn(F ) there exists
λ an irreducible representation of K depending only on I(π) which is a cuspidal type on K.
Moreover λ is unique up to isomorphism. The regular representations of GLn(OF ) were
introduced by Shintani ([31]). Those are in certain sense the best behaved representations
of GLn(OF ). In Chapter 2 we determine which cuspidal types on GLp(OF ) (where p is
a prime number) are regular.

The second part of the thesis comes from the theory of integer-valued polynomials,
simultaneous p-orderings and equidistribution in number fields. This is a joint work with
Mikołaj Frączyk. It comes from our preprint [18]. Let k be a number field with ring of
integers Ok. In Chapter 3 we study how well finite subsets of Ok can be equidistributed
modulo powers of all primes ideals in Ok. We deduce that the only number field k whose
ring of integers Ok has a simultaneous p-ordering is Q.

In the following subsections we give an overview of the contents of Chapters 1, 2 and 3.
This overview will be short since both Chapter 2 and Chapter 3 has its own introduction
with the motivation, the structure of paper and the notation.

Chapter 1 - Representation theory of p-adic groups and the theory of
types

In this chapter we recall basic notions from the representation theory which we use in
Chapter 2. We recall the notions of a smooth representation, induction and compact

13



14 INTRODUCTION

induction. Later we focus on irreducible smooth representations of GLn(F ). We also
mention results of Paskunas on types.

Chapter 2 - Cuspidal types

Let pF be the maximal ideal in OF . Any irreducible smooth representation ρ of GLn(OF )

factors through a finite group GLn(OF /prF ) where r is a natural number bigger than or
equal to 1. The minimal natural number r with this property is called the conductor of the
representation ρ. Let ρ be an irreducible smooth representation of GLn(OF ) with conductor
r > 1. Sometimes it will be convenient to see ρ as a representation of GLn(OF /prF ). In this
case we will denote it by ρ̄. Let l = b r+1

2 c and let K l be the kernel of the projection from
GLn(OF /prF ) onto GLn(OF /plF ). Note that K l/Kr is an abelian group. Fix an additive
character ψ : F → C×. Denote by Mn(OF ) the set of all n × n - matrices with entries in
OF . By Clifford’s theorem

ρ̄ |Kl= m
⊕
ᾱ∼ᾱ1

ψ̄ᾱ, (0.0.1)

where ᾱ, ᾱ1 ∈ Mn(OF /pr−lF ), the equivalence classes of ∼ are GLn(OF /pr−l)-conjugacy
classes, m ∈ N and the characters ψ̄ᾱ : K l → C× are defined as follows: ψ̄ᾱ(1 + x) =

ψ(tr(α̂x̂)) for some lifts of x, ᾱ to elements in Mn(OF ). The definition of ψ̄ᾱ does not
depend on the choice of lifts. If a matrix α ∈ Mn(OF ) is such that its image in Mn(OF /pr−lF )

appears in the decomposition (2.1.2) we say that α is in the orbit of ρ. We say that
a representation is regular if its orbit contains a matrix whose image in Mn(OF /pF ) has
abelian centralizer. Krakovski, Onn and Singla [25] constructed all such representations
under the condition that the characteristic of the residue field of F is different than 2.
Stasinski and Stevens in [34] described all regular representations of GLn(OF ) in terms
of orbits. In [33] Stasinski asked which cuspidal types are regular. In Chapter 2 we will
obtain the following description of orbits of cuspidal types on GL2(OF ).

Theorem 0.0.1. A cuspidal type on GL2(OF ) is exactly a one-dimensional twist of one
of the following:

1. a representation inflated from some irreducible cuspidal representation of GL2(k);

2. a representation whose orbit contains a matrix whose characteristic polynomial is
irreducible modulo pF ;

3. a representation whose orbit is equivalent to an orbit containing a matrix β whose
characteristic polynomial is Eisenstein and which satisfies one of the following con-
ditions:

(a) it has conductor at least 4;
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(b) it has conductor r = 2 or 3 and is isomorphic to IndK
StabK(ψ̄β̄)

θ where θ |
U
b r+1

2 c
M

=

mψβ for certainm ∈ Z and θ does not contain the trivial character of

(
1 pr−2

F

0 1

)
.

Let p be a prime number. We also obtained a description of orbits of cuspidal types on
GLp(OF ) with conductor bigger than 3. Let I be the chain order consisting of matrices
that are upper triangular modulo pF , let UI be the group of invertible elements of I and let
PI be the Jacobson radical in I. Let ΠI be a generator of PI. Denote by kF the residue
field of F . We prove the following result:

Theorem 0.0.2. If λ is a cuspidal type on K = GLp(OF ), then it is a one-dimensional
twist of one of the following:

1. a representation inflated from an irreducible cuspidal representation of GLp(kF );

2. a representation whose orbit contains a matrix whose characteristic polynomial is
irreducible modulo pF ;

3. a representation whose orbit contains a matrix of the form Πj
IB where 0 < j < p and

B ∈ UI.

Moreover if a representation is a one-dimensional twist of a representation of the form
(3) and has conductor bigger than 3, or is of the form (1) or (2), then it is a cuspidal type.

In particular this implies that a cuspidal type on GLp(OF ) of conductor r > 4 is regular
if and only if its orbit contains a matrix whose characteristic polynomial is irreducible
modulo pF or a matrix whose characteristic polynomial is Eisenstein. In particular for
p > 2 even for big conductors there are cuspidal types which are not regular.

Chapter 3 - Optimal rate of equidistribution in number fields

Let k be a number field. Denote by Ok its ring of integers and let S be a subset of Ok.
Let p be a prime ideal in Ok. We say that (ai)i∈N is a p-ordering in S if for every n ∈ N

vS(p, n) := vp

(∏n−1
i=0 (ai − an)

)
= mins∈Svp

(∏n−1
i=0 (ai − s)

)
,

where vp is p-adic additive valuation in Ok. The value vS(p, n) does not depend on
the choice of p-ordering. Bhargava defined the generalized factorial as the ideal n!S =∏

p p
vS(p,n) where p runs over all prime ideals in Ok. A sequence is called a simultaneous

p-ordering if it is a p-ordering for all prime ideals p in Ok. Simultaneous p-ordering are also
called Newton sequences [13]. Bhargava in [5] asked which subsets of Dedekind domains
contain a simultaneous p-ordering. Wood in [36] has proved that there are no simultaneous
p-orderings in Ok for k imaginary quadratic number field. This was generalized by Adam
and Cahen in [1] to all quadratic number fields Q(

√
d) besides d = 2, 3, 5 and d ≡ 1mod 8.
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In a joint work with Mikołaj Frączyk we have proved that this true for any number field
[18]. The precise statement we prove is stronger. To state it properly we need to define
n-optimal sets. A finite set S ⊆ Ok is almost uniformly distributed modulo p if for
every a, b ∈ Ok we have

| {s ∈ S | s− a ∈ p} | − | {s ∈ S | s− b ∈ p} |∈ {−1, 0, 1}.

We say that a finite subset S ⊆ Ok with n+1 elements is n-optimal if it is almost uniformly
equidistributed modulo every power of p for every prime ideal p. If (ai)i∈N is a simultaneous
p-ordering, then {ai | 0 6 i 6 n} forms an n-optimal set. In particular the non-existence
of n-optimal sets for n big enough implies non-existence of simultaneous p-orderings. The
idea for study n-optimal sets comes from the theory of integer valued polynomials. We say
that a polynomial f ∈ k[x] is integer valued if f(Ok) ⊆ Ok (see [12]). The n-optimal
sets are in some sense the smallest testing sets for finding such polynomials. Let n ∈ N.
An equivalent definition of n-optimal sets is the following: a set S is n-optimal if and only
if for every polynomial f ∈ k[x] of degree at most n the following condition is satisfied:
f(S) ⊆ Ok implies that f is integer valued. In [11] together with Mikołaj Frączyk and
Jakub Byszewski we have proved that for every k imaginary quadratic number field there
exists N ∈ Z such that for n > N there are no n-optimal sets in the ring of integers of k.
In Chapter 3 we have proved that for every number field k different that Q there exsists
N ∈ Z such that for n > N there are no n-optimal sets in Ok. Let us explain very briefly
what is the idea of the proof. We assume the contrary, i.e. that there exists Sni a sequence
of ni-optimal sets with ni tending to infinity. Let V = k ⊗Q R. First we show that for
every n there exists a cylinder in V of the volume O(n) which contains Sn. Something
similar was proved in the case of imaginary quadratic number field in [11] but the general
case was much more complicated because the norm in this case is not always convex. In
the proof of that we used some number theoretical input, for example Ikehara’s Tauberian
theorem and Baker–Wüstholz’s theorem. Then we deduce that there exists a compact set
Ω and sequences (sn)n∈N, (tn)n∈N in V with some restriction on the norm of sn such that
sets s−1

n (Sn− tn) are contained in Ω. Define µn = 1
n

∑
x∈Sn δs−1

n (x−tn). Since Ω is compact
we consider weak -* limits of µn. We call them limit measures. They provide information
about geometry of large n-optimal sets. We study properties of n-optimal sets to show
that limit measures cannot exist.
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Chapter 1

Representation theory of p-adic
groups and theory of types.

1.1 Representation theory of p-adic groups

In this chapter we give an introduction to representation theory of p-adic groups and we
also provide an introduction to the theory of types.

1.1.1 Basics

Let G be a locally profinite group and let (π, V ) be a representation of G over C. Let F
be a local non-Archimedean field.

Definition 1.1.1. We say that π is smooth if

V =
⋃
H

V H

where the union runs over open compact subgroups H of G and

V H := {v ∈ V : π(h)v = v for all h ∈ H}.

One of the ways to construct a representation is by induction. Let H be a closed
subgroup of G. Let (σ,W ) be a smooth representation of H.

Definition 1.1.2. Define X to be set of functions f : G→W such that

1. f(hg) = σ(h)f(g), for all h ∈ H, g ∈ G;

2. there exists a compact open subgroup Kf of G depending on f such that f(gk) = f(g)

for k ∈ Kf .

19



20 REPRESENTATION THEORY OF P-ADIC GROUPS AND THEORY OF TYPES.

We define the action of G on X by translation:

Σ : G→ AutC(X)

Σ(g)f : g1 7→ f(g1g) g, g1 ∈ G.

The representation (Σ, X) is called induction and we denote it by IndGHσ.

Induction defined as above is a smooth representation.

Definition 1.1.3. Take X and Σ as before. Define

Xc := {f ∈ X : suppf ⊆ HC for a compact subset C ofG}.

The representation (Σ |Xc , Xc) is called compact induction and is denoted by c-IndGH σ.

Let F be a local non-Archimedean field. Write OF for its ring of integers and pF for
the maximal ideal in OF .

1.1.2 Characters of F×

This section is a recap of [10, 1.6,1.8].
A continuous homomorphism G→ C× is called a character of G.

Lemma 1.1.4. [10, 1.6 Proposition] Let χ : G → C× be a group homomorphism. Then
the following conditions are equivalent

1. the kernel of χ is open;

2. χ is continuous.

By F× we denote the group of invertible elements in F . Write UmF := 1+pmF for m > 1

and U0
F := O×F . The group F× is locally profinite. Let χ be a character of F×. By the

above lemma χ is trivial on UmF for some m. Fix an additive character ψ of F such that
pF is the biggest fractional ideal in F which is contained in the kernel of ψ. For a ∈ F we
define a function ψa : F× → C× as follows

ψa(x) = ψ(a(x− 1)).

Lemma 1.1.5. [10, 1.8 Proposition] Let m,n ∈ Z be such that 0 6 m < n 6 2m + 1.
Denote by ̂Um+1

F /Un+1
F the group of characters of Um+1

F /Un+1
F . The map

p−nF /p−mF → ̂Um+1
F /Un+1

F

a 7→ ψa |Um+1
F

is an isomorphism.
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1.1.3 Smooth representations of GLn(F )

Irreducible smooth representations of GLn(F ) are well studied. We can divide them into
two classes. Representations from one of the classes are called cuspidal.

Let (π, V ) be an irreducible smooth representation of G. Let P a parabolic subgroup
in G. Denote by L a Levi subgroup in P and by N the unipotent radical in P . Define

VN := V/〈π(n)v − v : n ∈ N, v ∈ V 〉

We call VN a Jacquet module.

Definition 1.1.6. Let (π, V ) be an irreducible smooth representation of G. We say that π
is cuspidal if VN = 0 for every proper parabolic subgroup P in G.

A smooth irreducible representation of G is not cuspidal then it is a parabolic in-
duction IndGPσ for certain parabolic subgroup P in G and a cuspidal representation of
L. Therefore cuspidal representations are building blocks of irreducible smooth represen-
tations of G.

1.2 Types on GLn(OF ).

The following section is based on [30]. The existence of cuspidal types on K relatively
easily follows from the work of Bushnell and Kutzko [9]. We recall the explanation of that
fact given by Paskunas [30]. Paskunas also showed the unicity of cuspidal types on K but
the proof of that is much more involved.

Let N > 1 be any natural number. For this section we fix an irreducible cuspidal
representation π of GLN (F ). Write G = GLN (F ) and K := GLN (OF ). Let (J, λ) be a
simple type [9, 5.5.10] occuring in π and coming from a simple stratum [A, n, 0, β]. Define

ρ ∼= IndKJ λ.

Proposition 1.2.1. [30, Proposition 3.1] The representation ρ defined as above is a type
on K for I(π).

proof First we show that ρ is irreducible. Denote E = F [β]. By [9, 5.5.11] g ∈ G

intertwines λ if and only if g ∈ E×J (for a definition of intertwining see Section 2.2). Since
J is the unique maximal compact open subgroup of E×J we have E×J ∩K = J and ρ is
irreducible.

By Mackey’s formula π contains ρ. If π1 ∈ I(π), then π1 |K∼= π |K . Therefore if
π1 ∈ I(π) then π1 contains ρ.

For the reverse implication assume that an irreducible smooth representation π1 of G
contains ρ. Then π1 |J contains λ. By [9, 6.2.3], π1 ∈ I(π).
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Chapter 2

Cuspidal types on GLp(OF )

2.1 Introduction

2.1.1 Cuspidal types

The main motivation behind this chapter is to find new explicit information and invariants
of types in general linear groups over a local non-Archimedean field. Let us recall the
definition of a cuspidal type. Let F be a non-Archimedean local field and let OF be its
ring of integers. Denote by kF the residue field of F . All representations we consider are
smooth and over C. Let n ∈ N, n > 1 and let π be an irreducible cuspidal representation
of GLn(F ). Let

I(π) = {π2 | π2
∼= π ⊗ χ ◦ det for some unramified character χ of F×} (2.1.1)

be the inertial support of π.

Definition 2.1.1. Let H be a compact open subgroup of GLn(F ), π an irreducible cuspidal
representation of GLn(F ). We say that an irreducible smooth representation λ of H is a
cuspidal type on H for I(π) if the following condition is satisfied: for any irreducible
smooth representation π1 of GLn(F )

π1 |H contains λ if and only if I(π1) = I(π).

In this chapter we mostly consider types on GLn(OF ) so we will supress K from the
notation. We say that a representation is a cuspidal type when it is a cuspidal type on
GLn(OF ) for I(π) for some irreducible cuspidal representation π of GLn(F ). Henniart gave
an explicit description of cuspidal types on GL2(OF ) in [7]. Bushnell–Kutzko’s construc-
tion of irreducible cuspidal representations of GLn(F ) easily implies existence of cuspidal
types on GLn(OF ). It is explained by Paskunas in [30]. Moreover Paskunas [30] proved
that for any irreducible cuspidal representation π of GLn(F ) there exists λ a unique up

23
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to isomorphism irreducible smooth representation of GLn(OF ) depending only on I(π)

which is a cuspidal type on GLn(OF ) for I(π). Using that and the local Langlands corre-
spondence he deduced an inertial Langlands correspondence. In rough terms the inertial
Langlands correspondence is a correspondence between cuspidal types on GLn(OF ) and
certain irreducible representations of the inertia group of F . For a precise statement see
2.1.3.

The regular representations of GLn(OF ) were introduced by Shintani [31]. They were
rediscovered by Hill [20]. Those are in certain sense the best behaved representations of
GLn(OF ). In this chapter we determine which cuspidal types on GLp(OF ) (where p is a
prime number) are regular. Moreover we provide a precise description of all orbits which
can give cuspidal types on GLp(OF ) with conductor at least 4. We precisely determine
orbits of cuspidal types in small conductor case for p = 2. We use tools from Clifford
theory, the classification of cuspidal representations of GLn(F ) due to Bushnell and Kutzko
specialized to n = p and the properties of the actions of subgroups of GL2(F ) on their
Bruhat–Tits buildings.

2.1.2 Cuspidal types in terms of orbits

Any irreducible smooth representation ρ of GLn(OF ) factors through a finite group GLn(OF /prF )

where r is a natural number bigger than or equal to 1 and pF is the maximal ideal in OF .
The minimal natural number r with this property is called the conductor of the represen-
tation ρ. Let ρ be an irreducible smooth representation of GLn(OF ) with conductor r > 1.
Sometimes it will be convenient to view ρ as a representation of GLn(OF /prF ). In this
case we will denote it by ρ̄. Let l = b r+1

2 c and let K l be the kernel of the projection from
GLn(OF /prF ) onto GLn(OF /plF ). Note that K l is an abelian group. We fix once and for
all an additive character ψ : F → C× with conductor pF i.e., pF is the biggest fractional
ideal of F on which ψ is trivial. Denote by Mn(OF ) the set of all n × n - matrices with
entries in OF . By Clifford’s theorem (see [23, 6.2])

ρ̄ |Kl= m
⊕
ᾱ∼ᾱ1

ψ̄ᾱ, (2.1.2)

where ᾱ1 ∈ Mn(OF /pr−lF ), ᾱ runs over the conjugacy class of ᾱ1 under GLn(OF /pr−l),
m ∈ N and the characters ψ̄ᾱ : K l → C× are defined as follows: ψ̄ᾱ(1 +x) = ψ(tr(α̂x̂)) for
some lifts x̂, α̂ of x, ᾱ to elements in Mn(OF ). The definition of ψ̄ᾱ does not depend on
the choice of lifts. If a matrix α ∈ Mn(OF ) is such that its image in Mn(OF /pr−lF ) appears
in the decomposition (2.1.2) we say that α is in the orbit of ρ. The recalled description
is a recap of a part of [33]. We say that a representation is regular if its orbit contains
a matrix whose image in Mn(OF /pF ) has abelian centralizer in GLn(OF /pF ). Krakovski,
Onn and Singla [25] constructed all such representations under the condition that the



2.1. INTRODUCTION 25

characteristic of the residue field of F is odd. Stasinski and Stevens in [34] constructed
all regular representations of GLn(OF ). In [33] Stasinski asked which cuspidal types are
regular.

We give a full description of cuspidal types on GL2(OF ) in terms of orbits. For a
character ψ̄ᾱ on K l let StabGL2(OF )ψ̄ᾱ be the preimage of StabGL2(OF /pr)ψ̄ᾱ through the
canonical projection GL2(OF )� GL2(OF /pr). Recall that a polynomial xn+an−1x

n−1 +

. . .+a0 is called Eisenstein if a1, . . . , an−1 ∈ pF and a0 ∈ pF \ p2
F . The following theorem

gives a full description of cuspidal types on GL2(OF ) in terms of orbits.

Theorem 2.1.2. A cuspidal type on K2 := GL2(OF ) is precisely a one-dimensional twist
of one of the following:

1. a representation inflated from some irreducible cuspidal representation of GL2(kF );

2. a representation whose orbit contains a matrix whose characteristic polynomial is
irreducible mod pF ;

3. a representation whose orbit contains a matrix β whose characteristic polynomial is
Eisenstein and which satisfies one of the following conditions:

(a) it has conductor at least 4;

(b) it has conductor r = 2 or 3 and is isomorphic to IndK2

StabK2
(ψ̄β̄)

θ where θ |
U
b r+1

2 c
M

=

mψβ for certainm ∈ Z and θ does not contain the trivial character of

(
1 pr−2

F

0 1

)
.

We also give a description of cuspidal types on GLp(OF ) with p prime. Let I be the
OF -order consisting of matrices that are upper triangular modulo pF . Let UI be the group
of invertible elements of I and let PI be the Jacobson radical in I. We choose ΠI such
that ΠII = PI. We prove the following result:

Theorem 2.1.3. If λ is a cuspidal type on K := GLp(OF ), then it is a one-dimensional
twist of one of the following:

1. a representation which is inflated from an irreducible cuspidal representation of GLp(kF );

2. a representation whose orbit contains a matrix whose characteristic polynomial is
irreducible modulo pF ;

3. a representation whose orbit contains a matrix of the form Πj
IB where 0 < j < p and

B ∈ UI.

Moreover if a representation is a one-dimensional twist of a representation of the form (3)

and has conductor at least 4, or is of the form (1) or (2), then it is a cuspidal type.
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Theorem 2.1.3 for p = 2 coincides with Theorem 2.1.2 as long as a representation is of
the conductor r > 4. Theorem 2.1.2 for representations of conductor r = 2 or 3 gives a
more precise description of cuspidal types on GL2(OF ).

Representations whose orbit contains a matrix whose characteristic polynomial is irre-
ducible modulo pF are regular. In Subsection 2.3.3 we prove that a matrix of the form Πj

IB

with 0 < j < p and B ∈ UI is regular if and only if j = 1. The characteristic polynomial of
a matrix of the form ΠIB is Eisenstein. However the characteristic polynomial of a matrix
of the form Πj

IB with 1 < j < p is not Eisenstein. Therefore a cuspidal type on GLp(OF )

of conductor r ≥ 4 is regular if and only if its orbit contains a matrix whose character-
istic polynomial is irreducible modulo pF or a matrix whose characteristic polynomial is
Eisenstein. In particular, for p > 2 even for big conductors there are cuspidal types which
are not regular. Indeed, if a representation has conductor at least 4 and is of the form (3)

from the above theorem with j > 1 then it is a cuspidal type but it is not regular.

2.1.3 Perspectives

To the best of our knowledge the regular representations of GLp(OF ) form the biggest
family of irreducible smooth representations of GLp(OF ) which has been described in
terms of orbits so far. Our description of cuspidal types in terms of orbits suggests that
even though the cuspidal types are not always regular they can be described in terms of
orbits.

It could be also interesting to study representations which correspond to the regular
cuspidal types under the inertial Langlands correspondence. We recall the precise state-
ment of the inertial Langlands correspondence. Denote by WF the Weil group of F and by
IF the inertia subgroup. For an infinite-dimensional irreducible smooth representation π of
GLn(F ) we denote byWD(π) the Weil–Deligne representation ofWF which corresponds to
π through the local Langlands correspondence. Paskunas in [30] proved the following result
(the inertial Langlands correspondence): for a smooth n-dimensional representation
τ of IF which extends to a smooth irreducible Frobenius semisimple representation of WF

there exists a unique up to isomorphism smooth irreducible representation ρ of GLn(OF )

which satisfies the following condition: for every irreducible smooth infinite-dimensional
representation π of GLn(F ) we have π contains ρ if and only ifWD(π) |IF is isomorphic to
τ . Moreover ρ has multiplicity at most one in π. Having a description of cuspidal types in
terms of orbits, it would also be interesting to look how the properties of orbits of cuspidal
types translate to properties of the corresponding representations of IF .

Finally, the problem of describing cuspidal types can be also studied in other cases of
maximal compact subgroups of other reductive p-adic groups.
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2.1.4 Outline of the Chapter

In Section 2.2 we recall the properties of hereditary orders and simple strata which in
our case are specific because we consider GLp(F ) with p prime. In 2.2.3 we give an explicit
description of simple strata which is one of crucial ingredients in the proof of Theorem
2.1.3. In 2.2.4 we recall the classification of irreducible cuspidal representations of GLp(F )

and we study twists of cuspidal representations with minimal level. In 2.2.5 we recall some
basic notions from Clifford theory. In these terms we describe cuspidal types.

In Section 2.3 we prove the two main results of this chapter: Theorem 2.1.2 and
Theorem 2.1.3. Then we determine which of cuspidal types on GLp(OF ) are regular.

In Section 2.4 we give an example of two representations of GL2(OF ) with the same
orbit but one representation is a cuspidal type and the other is not.

2.1.5 Notation

We will write bac for the biggest integer less than or equal to a and trA for the trace of a
matrix A. For any local non-Archimedean field E we will denote by OE its ring of integers,
by pE the maximal ideal in OE , by $E a prime element in E, by O×E invertible elements
of OE and by kE the residue field of E. We fix a non-Archimedean local field F and a
prime number p. Let E/F be a finite field extension. Write e(E/F ) for the ramification
index and f(E/F ) for the residue class degree. Let G := GLp(F ) and K := GLp(OF ). We
write Z for the center of G. We denote by V a vector space over F of dimension p and
A := EndF (V ). For a local field E we denote by νE the additive valuation which takes 1
on a uniformizer. Write π for a representation of GLn(F ) and let χ be a character of F×.
Set χπ := (χ ◦ det)⊗ π. For B a subgroup of G we denote by NG(B) the normalizer of B
in G.

2.2 Simple strata and cuspidal representations

2.2.1 Cuspidal types on K

Paskunas in [30] has proven the unicity of (cuspidal) types:

Theorem 2.2.1 (cf [30], Theorem 1.3 ). Let π be an irreducible cuspidal representation of
G. Then there exists a smooth irreducible representation ρ of K depending on I(π), such
that ρ is a cuspidal type on K for I(π). Moreover, ρ is unique (up to isomorphism) and it
occurs in π |K with multiplicity 1.

Denote by XF (G) the group of F -rational characters of G. Denote by ‖ · ‖F normalized
absolute value on F . Define

◦G =
⋂
φ∈XF (G) Ker(‖ φ ‖F ).
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The following proposition will be a useful tool while describing cuspidal types in terms of
orbits.

Proposition 2.2.2 (cf [9], 5.4 Proposition). Let π be an irreducible cuspidal representation
of G of the form π ∼= c-IndGJ τ1 for τ1 a representation of some compact mod Z open subgroup
J . Let J◦ = J ∩ ◦G and let τ be an irreducible component of τ1 |J◦. Then J◦ is the unique
maximal compact subgroup of J and τ is a cuspidal type on J◦ for I(π).

Remark 2.2.3 ([9]). Every irreducible cuspidal representation of GLp(F ) is of the form
as in Proposition 2.2.2.

Remark 2.2.4. Theorem 2.2.1, Proposition 2.2.2 and Remark 2.2.3 do not use the as-
sumption that p is prime.

2.2.2 Hereditary orders

Let A = EndF (V ) where V is of prime dimension p. In this section we recall basic notions
associated to hereditary orders in A. The given description of principal orders relies on the
fact that V is of a prime dimension. In the general case things are more complicated. For
more detailed discussion on hereditary orders we refer to ([9], 1.1). Lemmas 2.2.5 and 2.2.8
play an important role for us and they are not true for non-principal hereditary orders.
We call a finitely generated OF -submodule of V containing an F -basis of V an OF -lattice
in A. An OF -order in A is an OF -lattice in A which is also a subring of A (with the same
identity element). A sequence L = {Li : i ∈ Z} of OF -lattices satisfying the following
conditions:

1. Li+1  Li, i ∈ Z

2. there exists e ∈ Z such that pFLi = Li+e for every i ∈ Z

is called an OF -lattice chain in V . We call e = e(L) = e(A(L)) the OF -period of L. For
n ∈ Z and an OF -lattice chain L define

EndnOF (L) = {g ∈ A : gLi ⊆ Li+n, i ∈ Z}.

Taking n = 0 we get End0
OF (L) =: A(L) = A an OF -order in A. We call such OF -

order a hereditary order. A hereditary order A(L) is called principal if dimkF (Li/Li+1) =

dimkF (Lj/Lj+1) for every i, j ∈ Z. Let L be an OF lattice chain. Then End1
OF is the

Jacobson radical of A(L). We denote it by PA or by P if the order is clear form the
context. It is an invertible fractional ideal and we have

Pn
A = Pn = EndnOF (L) for any n ∈ Z.
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We also have pFA = P
e(A)
A . We denote by U(A) = U0

A the group of invertible elements in
A and we define the subgroups

UnA = 1 + Pn
A for any n ∈ N, n > 1.

We define the normalizer of A as

K(A) = {g ∈ G : gAg−1 = A}

or equivalently if A = A(L) for some lattice chain L as

K(A) = {g ∈ G : gL ∈ L for any L ∈ L}.

We now restrict our attention to principal orders.

Lemma 2.2.5. Any principal order is GLp(F )-conjugate to M = Mp(OF ) or to order I

which consists of matrices with coefficients in OF and uppertriangular modulo pF :

M =


OF · · · · · · OF
... · · · · · ·

...
... · · · · · ·

...
OF · · · · · · OF

 and I =


OF · · · · · · OF
pF

. . . . . .
...

...
. . . . . .

...
pF · · · pF OF

 .

Proof. The proof is based on the notion of an OF -basis of an OF -lattice chain. For the
reference see ([9], 1.1). Let L = {Li : i ∈ Z} be an OF -lattice chain in V . An OF -basis
of L is an F -basis {v1, . . . , vp} of V such that it is an OF -basis of some Lj ∈ L and
Li = qpl=1p

f(i,l)
F vi, i ∈ Z, for some integers f(i, 1) 6 f(i, 2) 6 . . . 6 f(i, p). Any OF -lattice

chain has an OF -basis.
Take A(L) to be a principal order with L = {Li : i ∈ Z} an OF -lattice chain. We

want to show that A is GLp(F )-conjugate to M or I. Let {v1, . . . , vp} be an OF -basis of
L. We use this basis to identify A with Mp(F ). Let Lmax be the OF -lattice chain formed
by OF -lattices of the form

pjF (OF v1 + . . .+OF vl + pF vl+1 + . . .+ pF vp)

where 1 6 l 6 p and j ∈ Z. The OF -lattice chain L is contained in Lmax (see [9, 1.1]).
Since L is principal dimkF (Li/Li+1) = dimkF (Ll/Ll+1) for any i, l ∈ Z. It is easy to see
that

∑e(L)
i=1 dimkF (Li/Li+1) = p. Therefore e(L) = 1 or p. With this identification we are

going to deduce that A(L) is either M or I. If e(L) = 1 then L consists of OF -lattices of
the form pjF (OF v1 + . . . + OF vp) for j ∈ Z and A = M. If e(L) = p then L = Lmax and
A(L) = I.
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Denote

ΠM = $F Idp×p and ΠI =



0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . .

...

0
. . . . . . . . . 1

$F 0 · · · · · · 0


where Idp×p denotes the identity matrix of size p× p.

Corollary 2.2.6. For a principal order A there exists an element a such that PA = aA =

Aa.

Proof. By Lemma 2.2.5 it is enough to check the statement for M and I. By simple
computation we see that taking a = ΠM for M and a = ΠI for I we obtain the desired
equalities.

We call an element a from Corollary 2.2.6 a prime element in A.

Remark 2.2.7. In particular, PM = ΠMM = MΠM and PI = ΠII = IΠI.

For a principal order we can deduce a more specific form of the normalizer:

Lemma 2.2.8. Let A be a principal order. Then K(A) = UA o 〈ΠA〉.

Proof. By definition UA is contained in K(A). Since ΠAA = PA = AΠA also the subgroup
generated by ΠA is contained in K(A). Therefore the group generated by UA and ΠA is
contained in K(A). On the other hand the group UA〈ΠA〉 contains the center. It is compact
modulo center and it is a maximal subgroup of G with this property. Therefore K(A) is
generated by UA and ΠA. By ([9], section 1.1) the subgroup UA is normal in K(A). The
intersection UA ∩ 〈ΠA〉 is trivial.

A normalizer K(A) is an open compact modulo center subgroup of G (see [9], section
1.1).

Define
νA(a) = max{n ∈ Z : a ∈ Pn

A}.

2.2.3 Simple strata

A simple stratum is a notion used in the classification of irreducible cuspidal representations
of GLp(F ). We recall the definition and then we prove its properties which are crucial in
the description of cuspidal types. We focus on simple strata which come from principal
orders as these ones are used in the classification of irreducible cuspidal representations of
GLp(F ). Again the given properties rely on the fact that the dimension of V is prime. We
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use a definition (Definition 2.2.12) of a simple stratum which is not a standard one (comes
from [8]) but we prove that in the cases interesting for us it is equivalent with the one used
in [9]. The goal of this subsection is to prove Proposition 2.2.16.

Definition 2.2.9. A 4-tuple [A, n, r, β] is called a stratum in A if A is a hereditary OF -
order in A, n, r are integers such that n > r and β ∈ A is such that νA(β) > −n.

We say that two strata [A1, n1, r1, β1] and [A2, n2, r2, β2] are equivalent if

β1 + Pr1
1 = β2 + Pr1

2

where P1 (resp. P2) is the Jacobson radical of A1 (resp. A2). We will keep this notation
for the rest of the chapter. If n > r > bn2 c > 0, then we can associate with a stratum
[A, n, r, β] a character ψβ : U r+1

A → C× which is trivial on Un+1
A and defined as follows

ψβ(x) = ψ(tr(β(1 − x))). We say that a representation π of GLp(F ) contains a stratum
[A, n, r, α] if π contains the character ψα of U r+1

A . We define the normalized level of a
representation π as

l(π) = min{ n

e(A)
: (A, n) such that A is a hereditary order, n ∈ N, n > 0

and π contains a trivial character of Un+1
A }.

We say that a stratum [A, n, n−1, β] is fundamental if β+P1−n
A does not contain nilpotents

from A. We say that two strata [A1, n1, r1, β1] and [A2, n2, r2, β2] intertwine in G if there
exists x ∈ G such that x(β2 + P−r2A2

)x−1 ∩ (β1 + P−r1A1
) 6= ∅.

Let H1, H2 be two compact open subgroups of G and let π1 (resp. π2) be an irreducible
smooth representation of H1 (rep. H2). Take g ∈ G. Write Hg

1 := g−1H1g. Define πg1
to be a representation of Hg

1 such that πg1(h) = π1(ghg−1) for any h ∈ H1. We say that
g ∈ G intertwines π1 with π2 if HomHg

1∩H2
(πg1 , π2) 6= 0.

Lemma 2.2.10. (see [10, 11.1 Proposition 1] and [2, Lemma 1.13.5 ]) Let π be an irre-
ducible cuspidal representation of G. Let A1, A2 be principal orders and let [A1, n1, n1 −
1, β1] and [A2, n2, n2 − 1, β2] be two strata contained in π. Then they intertwine.

In order to introduce the simple stratum we first define a notion of a minimal element
over F .

Definition 2.2.11. Let E/F be a finite field extension with E = F [β]. We say that β is
minimal over F if the following is satisfied:

• gcd(νE(β), e(E/F )) = 1 and

• $−νE(β)
F βe(E/F ) + pE generates the extension of the residue fields kE/kF .

Definition 2.2.12. A stratum [A, n, n− 1, β] is called simple if
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1. E = F [β] is a field

2. βA = P−nA

3. β is minimal over F

Let π be an irreducible cuspidal representation of G which contains a simple stratum
[A, n, n− 1, β]. Since we consider GLp(F ) with p prime there are only two possibilities for
the degree [F [β] : F ]. Namely it is 1 or p.

Lemma 2.2.13. (see [9, 1.5.6 Exercise]) Let [A, n, n−1, β] be a simple stratum with A = M

or I. Denote E = F [β]. Then E× ⊆ K(A).

Proof. First we prove that β ∈ K(A). Take an OF -lattice chain L = {Li : i ∈ Z} such that
A = A(L). Take arbitrary Li ∈ L. We want to have βLi ∈ L. The fractional ideal Pn

A is
invertible and Pn

AP
−n
A = A. We have

Li−n = ALi−n = P−nA Pn
ALi−n ⊆ P−nA Li = βALi = βLi ⊆ Li−n.

Therefore βLi = Li−n ∈ L for any i ∈ Z and β ∈ K(A).
Since β is minimal over F the value νE(β) is coprime with e(E/F ). Therefore there

exist n1, n2 ∈ Z such that 1 = n1νE(β) + n2e(E/F ) = νE(βn1$n2
F ). We can write any

element from E× as u(βn1$n2
F )m for some u ∈ O×E , m ∈ Z and βn1$n2

F ∈ K(A). To finish
the proof it is enough to show that O×E ⊆ K(A). First we want to show that OE ⊆ A.

By the definition of a minimal element $−νE(β)
F βe(E/F ) + pE generates kE/kF so OE =

OF [$
−νE(β)
F βe(E/F )] +$EOE . Iterating

OE =OF [$
−νE(β)
F βe(E/F )] +$EOE = OF [$

−νE(β)
F βe(E/F )]+

$EOF [$
−νE(β)
F βe(E/F )] + . . .+$p−1

E OF [$
−νE(β)
F βe(E/F )] + pFOE

By Nakayama’s Lemma,

OE =OF [$
−νE(β)
F βe(E/F )] +$EOF [$

−νE(β)
F βe(E/F )] + . . .

+$p−1
E OF [$

−νE(β)
F βe(E/F )].

We can take $E = βn1$n2
F ∈ K(A). Since 1 = νE($E) = e(E/F )

[E:F ] νF (det(βn1$n2
F )),

νF (det(βn1$n2
F )) > 0 and$E ∈ A. Similarly νE($

−νE(β)
F βe(E/F )) = 0 so$−νE(β)

F βe(E/F ) ∈
A and OE ⊆ A.

To sum up we proved OE ⊆ A. Therefore O×E ⊆ UA ⊆ K(A).

Remark 2.2.14. Assume [A, n, n−1, β] is not equivalent to a stratum [A, n, n−1, β′] with
β′ a scalar matrix. By Lemma 2.2.13 and [9, 1.4.15] our definition of a simple stratum
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coincides with the standard definition of a simple stratum in which the hereditary order is
M or I and r = n− 1 (see [9, 1.5.5]).

Lemma 2.2.15. Let A = M or I. Let β ∈ A be such that β ∈ K(A) and E = F [β] is a
field. Assume [A, n, n − 1, β] is not equivalent to [A, n, n − 1, β′] with β′ a scalar matrix
and assume E× ⊆ K(A). Then

• e(E/F ) = e(A)

• νE(β) = νA(β).

Proof. For the first equality observe that by [9, 1.2.4 Proposition] e(E/F ) divides e(A).
Pick an OF -lattice chain L = {Li : i ∈ Z} such that A = A(L). Fix i a natural number.
Li/Li+1 is a vector space over kF . Define f(A) to be the dimension of Li/Li+1 over kF .
Since A is a principal order the number f(A) does not depend on the choice of i and
e(A)f(A) = p. We also have e(E/F )f(E/F ) = p. Therefore to finish the proof it is
enough to prove that f(E/F ) divides f(A). By [9, 1.2.1 Proposition], Li/Li+1 is a vector
space over kE and f(E/F ) divides f(A).

For the second equality write νA(β) = n. Then by the definition β ∈ Pn
A \ P

n+1
A .

Since β is an element of the normalizer K(A) = 〈ΠA〉 n UA the matrix β is of the form
β = Πn

AC where C is an element of UA. Therefore νF (det(β)) = np
e(A) and νE(β) =

e(E/F )
[E:F ] νF (det(β)) = n = νA(β).

The following description will be useful in the proofs of the main theorems.

Proposition 2.2.16. Let [A, n, n − 1, β] be a stratum with A = M or I which is not
equivalent to a stratum [A, n, n− 1, β′] with [F [β′] : F ] = 1. The stratum [A, n, n− 1, β] is
simple if and only if n = −νA(β) and

1. A = M and the characteristic polynomial of $n
Fβ is irreducible modulo pF or

2. A = I and $
bn
p
c+1

F β is of the form Πj
IB where 1 6 j 6 p− 1, B ∈ UI.

Proof. Assume that [M, n, n−1, β] is a simple stratum. We want to prove that the charac-
teristic polynomial of $n

Fβ is irreducible modulo pF and νM(β) = −n. The second follows
from the definition of a simple stratum. By the definition β is minimal over F and in
particular $−νE(β)

F βe(E/F ) + pE generates the extension kE/kF . By Lemma 2.2.13 and
Lemma 2.2.15, −νE(β) = −νM(β) = n and e(E/F ) = e(M) = 1. Therefore $n

Fβ + pE

generates kE/kF . This means that the minimal polynomial of $n
Fβ is irreducible modulo

pF and is of degree p. This implies that the minimal polynomial modulo pF is equal to
the characteristic polynomial modulo pF . Therefore the characteristic polynomial of $n

Fβ

is irreducible modulo pF .
Assume now that [I, n, n−1, β] is a simple stratum. We want to show that n = −νI(β)

and $
bn
p
c+1

F β is of the form Πj
IB where 0 < j < p and B ∈ UI. By the definition of a
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simple stratum n = −νI(β), β ∈ K(I) = 〈ΠI〉 n UI and there exists a unique j ∈ N and

B ∈ UI such that $
bn
p
c+1

F β = Πj
IB. We want to show that 0 < j < p. By the definition

j = νI($
bn
p
c+1

F β) = −n+ p(bn
p
c+ 1).

The element β is minimal over F and n = −νE(β) is coprime with p. Therefore 0 < j =

p(bnp c+ 1)− n < p.

For the opposite direction take a stratum [M, n, n−1, β] and assume that the character-
istic polynomial of $n

Fβ is irreducible modulo pF and νM(β) = −n. We want to show that
the stratum [M, n, n− 1, β] is simple. E is a field because the minimal polynomial of $n

Fβ

is irreducible. We show that β ∈ K(M). By Lemma 2.2.8, K(M) = GLp(OF )o 〈$F Idp×p〉.
Denote the characteristic polynomial of $n

Fβ by f . Since f is irreducible modulo pF

the element f(0) = det($n
Fβ) does not belong to pF . By the assumption β ∈ P−n and

$n
Fβ ∈M. Therefore $n

Fβ ∈ GLp(OF ) and in particular β ∈ K(M). By the assumption,
$M(β) = −n and since β ∈ K(M) we have βM = P−nM . We want to show that β is mini-
mal over F . The element $n

Fβ + pE generates the extension of the residues fields and the
extension is of degree p. Therefore f(E/F ) = p, e(E/F ) = 1 and the first condition from
the definition of a minimal element is satisfied. Compute νE(β) = e(E/F )

[E:F ] νF (det(β)) = n.

Since the characteristic polynomial of $n
Fβ = $

−νE(β)
F βe(E/F ) is irreducible modulo pF ,

$
−νE(β)
F βe(E/F ) + pE generates the field extension kE/kF .

Finally consider a stratum [I, n, n−1, β] with n = −νI(β) and β of the form$
−bn

p
c−1

F Πj
IB

where 0 < j < p, B ∈ UI. We want to prove that the stratum [I, n, n − 1, β] is sim-
ple. First we prove that E = F [β] is a field. Denote by f the characteristic polyno-
mial of Πj

IB. If j = 1 then f(x) = xp modulo pF and f(0) = det(Πj
IB) = u$F for

some u ∈ OF . We deduce that f(x) is Eisenstein and therefore it is irreducible. In
particular, E is a field. Consider now the case when j is an arbitrary integer number
0 < j < p. Since j is coprime with p, there exists m1,m2 ∈ Z such that m1j + m2p = 1

and $m2
F (Πj

IB)m1 = ΠIB1 for some B1 ∈ UI. Since ΠIB1 generates a field exten-
sion of degree p this means that also E = F [Πj

IB] is a field. By definition β ∈ K(I),

νI(β) = −n and βI = Pn
I . The characteristic polynomial f(x) of $

bn
p
c+1

F β is equal to
xp modulo pF . Therefore the extension kE/kF is trivial and to check that β is mini-
mal it is enough to check that νE(β) is coprime with e(E/F ) = p. By the assumption
νE(β) = e(E/F )

[E:F ] νF (det(β)) = −p(bnp c + 1) + j = νI(β) = −n. If p would divide n, then
νE(β) = −n − p + j = −n and j = p which is impossible. Therefore β is minimal over
F .
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2.2.4 Cuspidal representations of G

In this subsection we recall the classification of irreducible cuspidal representations of
G = GLp(F ). The classification originates in Carayol’s work ([14]). We will follow [27]
and [8]. The goal of this subsection is to recall the proof of the following theorem:

Theorem 2.2.17. Let π be an irreducible cuspidal representation of G. Then there exists
a character χ of F× such that χπis of one of the following form:

1. c-IndGKZ Λ with Λ such that Λ |K is inflated from some irreducible cuspidal represen-
tation of GLp(kF ),

2. l(π) > 0 and π contains a simple stratum [A, n, n− 1, β1] with n > 1 and A principal
such that there exists a stratum [A, n, n− 1, β] equivalent to [A, n, n− 1, β1] such that

π ∼= c-IndGJ Λ where J = F [β]×U
bn+1

2
c

A and Λ restricted to U
bn

2
c+1

A contains ψβ

Moreover every representation π satisfying one of the above is cuspidal.

Remark 2.2.18. If π is an irreducible cuspidal representation with the minimal normalized
level among all its one-dimensional twist π ⊗ χ then π satisfies 1. or 2. from Theorem
2.2.17.

Remark 2.2.19. If an irreducible representation of G contains some stratum then it con-
tains all strata G-conjugate to it. Therefore in Theorem 2.2.17 we can assume that A = M

or I.

Before the proof of Theorem 2.2.17 we state some lemmas.

Lemma 2.2.20. (see [9, 2.4.11]) Let A be a hereditary order and let n ∈ N, n > 1. Then
any character of UnA which factors through a determinant is of the form ψβ where β is a
scalar matrix.

Lemma 2.2.21. Let A be a principal hereditary order. Let π be an irreducible cuspidal rep-
resentation of GLp(F ) which contains a simple stratum [A, n, n−1, β1]. Then the following
conditions are equivalent:

1. there exists a stratum [A, n, n − 1, β] equivalent to [A, n, n − 1, β1] such that [F [β] :

F ] = 1

2. there exists a character χ of F× such that l(χπ) < l(π)

Proof of Lemma 2.2.21. First we assume that there exists a stratum [A, n, n− 1, β] equiv-
alent to [A, n, n−1, β1] with [F [β] : F ] = 1. We want to show that there exists a character
χ of F× such that l(χπ) < l(π). Assume β =: bIdp is a scalar matrix. By definition

βA = PA so e(A) divides n. Using β we define a character χ1 of (1 + p
n
e(A)

F )/(1 + p
n
e(A)

+1

F ):

χ1(1 + x) := ψ(bx).
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The determinant map induce the homomorphism:

UnA/U
n+1
A → (1 + p

n
e(A)

F )/(1 + p
n
e(A)
−1

F ). (2.2.1)

Now we will show that χ1◦det coincides with a character ψα of UnA/U
n+1
A . For this see both

ψβ and χ1◦det as characters of UnA . Let x ∈ Pn
A. By Leibniz formula det(1+x) = 1+trx+y

for some y ∈ pn+1
F . We have βy ∈ pF so

χ1 ◦ det(1 + x) = χ1(1 + trx+ y) = ψ(a(trx+ y)) = ψ(tr(βx)) = ψβ(1 + x).

Denote by χ2 an extension of χ1 to F×. Define χ(1 + x) := χ2(1 + x)−1. Then χ is a
character which satisfies the desired property.

For the converse assume that there exists a character χ of F× such that l(χπ) < l(π).
We want to prove that there exists a stratum [A, n, n− 1, β] equivalent to [A, n, n− 1, β1]

such that β is a scalar matrix. Denote π1 := χπ. Denote by χ−1 the character of F× such
that χ−1(x) = χ(x)−1 for every x ∈ F×.

The representation π1 is irreducible and cuspidal. By Proposition 2.2.23, if l(π1) > 0

then π1 contains a simple stratum [A1, n1, n1− 1, γ] with A1 principal. By the assumption
l(π1) < l(χ−1π1) so χ−1 ◦ det ⊗ ψγ |Un1+1

A1

6= 1. If l(π1) = 0 then π1 contains the trivial

character of An1
1 with A1 = M and n1 = 0. Therefore in both cases there exists m > n1 +1

such that
χ−1 ◦ det |UmA1

6= 1 and χ−1 ◦ det |Um+1
A1

= 1. (2.2.2)

We can write χ−1 ◦ det |UmA1
as ψβ2 for some β2 ∈ P−mA1

/P−m+1
A1

. By Lemma 2.2.20 we can
take β2 to be a scalar matrix.

To sum up we have proven that π = χ−1π1 contains a stratum [A1,m,m− 1, b2Idp]. It
is a fundamental stratum. By Lemma 2.2.10, the stratum [A1,m,m− 1, b2Idp] intertwines
with [A, n, n − 1, β1]. By [9, 2.6.1, 2.6.4] the stratum [A, n, n − 1, β1] is equivalent to
[A1,m,m− 1, b2Idp].

Lemma 2.2.22 (see Corollary 7.15 and 9.3, [8]). Let π be an irreducible smooth repre-
sentation of G which contains a simple stratum [A, n, n − 1, β] with n > 1 and A prin-
cipal. Assume [F [β] : F ] = dimF (V ). Then π is cuspidal and π ∼= c-IndGJ Λ0 where

J = F [β]×U
bn+1

2
c

A . Moreover there exists a simple stratum [A, n, n − 1, β′] equivalent to
[A, n, n− 1, β] and such that Λ0 |

U
bn2 c+1

A

contains ψβ′.

Proof. By the assumption π contains a character ψβ of UnA . There exists an extension ψβ′
of ψβ which is also contained in π. We have β′ ≡ β

(
mod P1−n

A

)
. The matrix β is of

the form (1) or (2) from Proposition 2.2.16 and such that [F [β] : F ] 6= 1 so F [β′] is a
field, β′ is minimal over F and β′ ∈ K(A). By [9, 1.5.8 Theorem] the G-intertwining of ψβ′
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is J := F [β′]×U
bn+1

2
c

I . Since J is compact modulo Z there exists an irreducible smooth
representation Λ of J which is contained in π and which contains ψβ when restricted to
U
bn

2
c+1

A . By [10, Theorem 11.4 and Remark 1], c-IndGJ Λ is irreducible and cuspidal. By
Frobenius reciprocity π ∼= c-IndGJ Λ.

Proposition 2.2.23. [27, Theorem 3.2] Let π be an irreducible cuspidal representation of
G. Then l(π) = 0 or π contains a simple stratum [A, n, n− 1, β] with A principal.

Proof of Theorem 2.2.17. An irreducible smooth representation of G whose normalized
level is 0 is cuspidal if and only if it is of the form (1) from ([9, Theorem 8.4.1]). Therefore
we restrict our consideration to representations of G with normalized level strictly greater
than 0.

Take an irreducible cuspidal representation π of G with l(π) > 0. We want to show
that there exists a character χ of F× such that χπ is of the form (1) or (2) from Theorem
2.2.17. Assume that for any character χ of F× we have l(π) 6 l(χπ). By Proposition
2.2.23, π contains a simple stratum [A, n, n−1, β] with A principal. By Lemma 2.2.21 and
Lemma 2.2.22, π is of the form as in (2).

Moreover if π of the form (2) then by Lemma 2.2.22 it is cuspidal and a one-dimensional
twist of an irreducible cuspidal representation of G is irreducible cuspidal.

2.2.5 Irreducible representations of GLp(OF ) in terms of orbits

Let ρ be an irreducible smooth representation of K = GLp(OF ) with conductor r > 1.
In this subsection we adjust the notation from a description of representations of K as in
subsection 2.1.2 to be more consistent with the notation from [10].

Denote l = [ r+1
2 ] and l′ = r − l. As in subsection 2.1.2 by Clifford’s theorem

ρ̄ |Kl= m
⊕
ᾱ1∼ᾱ0

ψ̄ᾱ1 (2.2.3)

for some matrix ᾱ0 ∈ Mp(OF /pl
′
F ), m ∈ N and ψ̄ᾱ1 : K l → C× defined in the following

way ψ̄ᾱ1(1 + x) = ψ($−r+1
F tr(α1x̂)) for some lifts α1, x̂ ∈ Mp(OF ). The characters ψ̄ᾱ1

do not depend on choices of lifts. In our case it will be more convenient to look at ρ as a
representation of K not GLp(OF /prF ). By (2.2.3) we can write

ρ |U lM= m
⊕
ᾱ1∼ᾱ0

ϕ$−r+1
F α1

(2.2.4)

where ϕ$−r+1
F α1

: U lM → C× and ϕ$−r+1
F α1

(1 + x) = ψ($−r+1
F trα1x).

Note that if ψ$−r+1
F α1

defined as in subsection 2.2.2 is a character of the group U lM then
ϕ$−r+1

F α1
= ψ$−r+1

F α1
. However if ψ$−r+1

F α1
is a character of another group (for example

UmI with any m ∈ N and m > 1) the last equality does not hold. We introduce this
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notation to underline the importance of the group on which a given character acts.
For the sake of simplicity characters in the decomposition (2.2.4) are indexed by matrices
from Mp(OF ) instead of matrices in Mp(OF /pl

′
F ) as in (2.2.3) however we are still taking

sums over the conjugacy class in Mp(O/pl
′
F ).

We say that a representation ρ contains a matrix α1 in its orbit if it admits the decom-
position of the form (2.2.4). We say that two orbits {αi}i∈I and {βi}i∈J are equivalent if
{ᾱi}i∈I = {β̄i}i∈J where ā denotes the image of an element a ∈ Mp(OF ) in Mp(OF /pl

′
F ).

Note that the notion of equivalence depends on r. From now on we consider orbits up to
equivalence.

Remark 2.2.24. By Clifford theory, if a representation ρ admits the decomposition (2.2.3)
then it is isomorphic to Ind

GLp(OF /prF )

StabGLp(OF /p
r
F

)ψ̄ᾱ1
θ̄ for some θ̄ irreducible representation of

StabGLp(OF /prF )ψ̄ᾱ1 which contains ψ̄ᾱ1. Therefore as a representation of K, ρ is iso-
morphic to IndK

StabK ψ̄ᾱ1
θ where θ is an inflation of θ̄ to StabKψ̄ᾱ1.

2.3 Cuspidal types on K in terms of orbits

In this section we give a description of orbits of cuspidal types. We show that if a repre-
sentation is a cuspidal type on K = GLp(OF ) then it contains an orbit of a certain form.
We also determine which orbits provide cuspidal types under condition that the conductor
of a cuspidal type is at least 4. This in particular allows us to determine which cuspidal
types on K with conductor at least 4 are regular representations.

2.3.1 Cuspidal types on GLp(OF )

The goal of this subsection is to prove the following theorem.

Theorem 2.3.1. If λ is a cuspidal type on K = GLp(OF ), then it is a one-dimensional
twist of one of the following:

1. a representation which is inflated from an irreducible cuspidal representation of GLp(kF );

2. a representation whose orbit contains a matrix whose characteristic polynomial is
irreducible modulo pF ;

3. a representation whose orbit contains a matrix of the form Πj
IB where 0 < j < p and

B ∈ UI.

Moreover if a representation is a one-dimensional twist of a representation of the form (3)

and has conductor at least 4, or is of the form (1) or (2), then it is a cuspidal type.

Remark 2.3.2. Let π be an irreducible cuspidal representation of G. A type for I(π) is
regular if and only if l(π) = m or m− 1

p for certain m ∈ Z.
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Before the proof of Theorem 2.3.1 we state auxiliary lemmas.

Lemma 2.3.3. Let A = M or I and let J be an open compact modulo Z subgroup of K(A).
Denote by J◦ the maximal compact subgroup of J . Then J◦ = J ∩ UA = J ∩K.

Proof. By Lemma 2.2.8, K(A) = 〈ΠA〉nUA. Since any non-trivial subgroup of 〈ΠA〉 is not
compact J◦ has to be contained in UA and J◦ ⊆ J ∩UA. The subgroup J is closed and UA

is compact so J ∩UA is compact. Therefore J◦ = J ∩UA. Since J◦ is the unique maximal
compact subgroup of J and J ∩K is compact, J ∩K ⊆ J◦. We also have UA ⊆ K and
J◦ = J ∩ UA ⊆ J ∩K.

Let H be a locally profinite group. Let π1 and π2 be representations of H. We write
π1 ∼ π2 if there exists h ∈ H such that π1 = πh2 . The following is a variation on Clifford’s
theorem:

Proposition 2.3.4. Let H be a locally profinite group, N a normal open compact subgroup
of H and let (π1, V1) be an irreducible admissible smooth representation of H. Then

π1 |N= m
⊕
ρ1∼ρ

ρ1

for certain m ∈ Z and ρ an irreducible smooth representation of N .

Proof. Denote by N̂ the set of equivalence classes of irreducible smooth representations of
N . Let ρ ∈ N̂ . The ρ-isotypic component of V1 is a sum of irreducible N -subspaces of V1

of class ρ. We denote it by V ρ
1 . By [10, 2.3 Proposition]

V1 =
⊕
ρ∈N̂

V ρ
1 .

Fix some ρ ∈ N̂ . Since π1 is irreducible we have V1 =
∑

g∈G gV
ρ

1 =
∑

g∈G gV
ρg

1 =⊕
ρ1∼ρ V

ρ1
1 . Since π1 is admissible and ker(ρ) is open V ρ

1 ⊆ V
ker(ρ)

1 is finite dimensional
hence V ρ

1
∼= mρ for certain m ∈ Z. Therefore π1 |N= m

⊕
ρ1∼ρ ρ1.

Remark 2.3.5. If H ⊆ GLp(F ) is compact modulo Z then by [19, Theorem 2.1] every
irreducible smooth representation of H is finite dimensional and hence admissible.

Lemma 2.3.6. Let U be a compact open subgroup of K and let π be an irreducible cuspidal
representation of G. Let ρ′ be a cuspidal type on U for I(π) and let ρ be an irreducible
smooth representation of K which contains ρ′. Moreover assume that ρ is contained in
π |K . Then ρ is a cuspidal type on K for I(π).

Proof. Take an irreducible smooth representation π1 of G. We want to show that π1 |K
contains ρ if and only if I(π1) = I(π). If π1 |K contains ρ then it also contains ρ′ and by
the assumption I(π) = I(π1). For the reverse implication assume that I(π1) = I(π). By
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the definition π1
∼= π ⊗ χ ◦ det for certain unramified character χ of F× so π1 |K∼= π |K .

Therefore π1 contains ρ.

Lemma 2.3.7. Consider a stratum [A, n, n − 1, α] with A principal, n > 1. Let J =

F [α]×U
bn+1

2
c

A and let π be an irreducible cuspidal representation such that π ∼= c-IndGJ Λ

with Λ such that Λ |
U
bn2 c
A +1

contains ψα. Denote by J◦ the maximal compact subgroup of

J . Then Λ |J◦ is irreducible.

Proof. Let Λ |J◦=
∑

i∈I λi for a certain set I and irreducible representations λi of J◦.
First we show that for any i, l ∈ I we have λi ∼= λl. Take i, l ∈ I. By Proposition
2.2.2 the representations λi and λl are cuspidal types on J◦ for I(π). By Lemma 2.3.6
irreducible components of c-IndKJ◦ λi and c-IndKJ◦ λl are cuspidal types on K for I(π). By
Theorem 2.2.1 a cuspidal type on K for I(π) is unique and appears in π with multiplicity
one so c-IndKJ◦ λi and c-IndKJ◦ λl are irreducible and c-IndKJ◦ λi

∼= c-IndKJ◦ λl. By Frobenius
reciprocity and Mackey’s formula this implies that there exists k ∈ K which intertwines λl
with λi, i.e.

HomJ◦∩(J◦)k

(
λkl |J◦∩(J◦)k , λi |J◦∩(J◦)k

)
6= 0. (2.3.1)

On the other hand we can apply Proposition 2.3.4 and Remark 2.3.5 to the representa-
tion Λ. The group J◦ is the maximal compact subgroup of J so after J-conjugation it
remains the maximal compact subgroup of J . Therefore J◦ is a normal subgroup of J . By
Proposition 2.3.4 there exists j ∈ J such that λl ∼= λji . Together with (2.3.1) this implies

Hom(J◦)k∩J◦
(
λjki |(J◦)k∩J◦ , λi |(J◦)k∩J◦

)
6= 0.

Since J◦ is normal in J we have (J◦)jk = (J◦)k and jk intertwines λi. In particular, jk
intertwines Λ. An element from G intertwines Λ with itself if and only if it belongs to J
so jk ∈ J as otherwise c-IndGJ Λ would not be irreducible (see [10, 11.4 Theorem and 11.4
Remark 1,2]). This means k ∈ K ∩ J = J◦ and by (2.3.1) λi ∼= λl.

We proved Λ |J◦= mλi for somem ∈ Z. By Mackey formula π |K contains c-IndKJ◦(Λ |J◦
) = m c-IndKJ◦ λi. The representation c-IndKJ◦ λi is a cuspidal type for I(π) on K. By
Theorem 2.2.1 m = 1 so Λ |J◦= λi is irreducible.

By the above lemma and by [30] we know the following.

Lemma 2.3.8. (see [30, Proposition 3.1]) Let π and Λ be as in Lemma 2.3.7. Then
c-IndKJ◦(Λ |J◦) is a cuspidal type on K for I(π).

Proof of Theorem 2.3.1. First we prove that if a representation is a cuspidal type on K

then it is of the form (1), (2) or (3) from Theorem 2.3.1. Let λ be a cuspidal type on K
for I(π) with some irreducible cuspidal representation π of G. Let χ be a one-dimensional
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character of F×. Since λ is a cuspidal type on K if and only if χλ is a cuspidal type on
K, by Theorem 2.2.17, we can assume that either l(π) = 0 or l(π) > 0 and it contains a
simple stratum [A, n, n− 1, α] with n > 0, A principal and such that

π ∼= c-IndGJ Λ, (2.3.2)

where J = F [α]×U
bn+1

2
c

A and Λ |
U
bn2 c+1

A

= mψβ for some m ∈ N and ψβ some extension of

ψα to U b
n
2
c+1

A . We have β ≡ α mod P1−n
A and the stratum [A, n, n− 1, α] is equivalent to

[A, n, n− 1, β]. Therefore without lose of generality we can take β = α and consider ψα as
a character of U b

n
2
c+1

A . By Remark 2.2.19 we can assume A = M or A = I.

The subgroup J is open, contains and is compact modulo Z. Since α is minimal,
J ⊆ K(A).

Now we consider two cases depending on the level of π.

Case 1 Assume l(π) = 0. By Theorem 2.2.17, there exists Λ a representation of ZK
which is an extension of an inflation of some irreducible cuspidal representation of GLp(kF )

such that π ' c-IndGZK Λ. The group K is the maximal compact subgroup of G which is
contained in ZK and by definition Λ |J∩K is irreducible. By Proposition 2.2.2, Λ |K is a
cuspidal type on K for π. By Paskunas’ unicity theorem ([30], Theorem 1.3), λ ∼= Λ |K .
Therefore λ is inflated from an irreducible cuspidal representation of GL2(kF ) and λ is of
the form 1 from Theorem 2.3.1.

Case 2 Assume l(π) > 0. By Theorem 2.2.17, π contains a simple stratum [A, n, n− 1, α]

with n > 1, A a principal order and such that π ' c-IndGJ Λ where J = F [α]×U
bn+1

2
c

A and
Λ |

U
bn2 c+1

A

contains ψα.

The proof in this case will contain two steps. In the first step we will show that λ |
U

[n2 ]+1

A

contains ψα. In the second we will compute the conductor r of λ in terms of n and we will
show that the orbit of λ contains the matrix $r−1

F α whose image in Mp(OF /pl
′
F ) satisfies

the properties from the statement of Theorem 2.3.1.

Step 1: By Lemma 2.3.7, Λ |J◦ is irreducible and by Proposition 2.2.2, Λ |J◦ is a cuspidal
type on J◦ for π. By Lemma 2.3.8, IndKJ◦(Λ |J◦) is a cuspidal type on K for π and by
Theorem 2.2.1, IndKJ◦(Λ |J◦) ∼= λ. By Mackey formula λ |

U
[n2 ]+1

A

contains ψα.

Step 2 : We will consider two subcases depending on the choice of a hereditary order A.
Subcase 1 Assume A = M. The representation λ when restricted to Un+1

M contains
ψα |Un+1

A
= 1Un+1

A
. Since Un+1

M is an open normal subgroup of K and K is compact, λ |Un+1
M

is a direct sum of irreducible representations and each of them is conjugated to the triv-
ial character. This means λ |Un+1

M
is trivial and λ factors through GLp(OF /pn+1

F ). Since
νA(α) = −n, the character ψα as a character of UnM is non-trivial and λ does not factor
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through GLp(OF /pnF ). Therefore λ has conductor r = n+ 1.

Denote as before l = [ r+1
2 ] and let α0 := $r−1

F α. By Step 1, λ |U lM contains ψα =

ϕ$−r+1
F α0

= ϕ$−nF α0
. Therefore α0 is contained in the orbit of λ. By Proposition 2.2.16,

the characteristic polynomial of α0 is irreducible mod pF .
Subcase 2 Assume A = I. We compute the conductor of λ in terms of n. The Step 1
provides some information about restrictions of λ to subgroups U iI for certain i. However
to compute the conductor we need information about the restricitions to subgroups U jM
for certain j. To switch between these two classes of subgroups we will use the following
inclusion:

U i+pmI ⊇ U2+m
M for all 1 < i 6 p+ 1 (2.3.3)

By Step 1, λ |Un+1
I

contains the trivial character and by (2.3.3) λ |
U
bnp c+2

M

contains the

trivial character. By similar argument as in Subcase 1 this shows that λ factors through
GLp(OF /p

bn
p
c+2

F ). We want to show that λ is of conductor bnp c+ 2. By Step 1, λ |
U
bn2 c+1

I

contains ψα where α = $
−bn

p
c−1

F Πj
IB for 0 < j := p(bnp c + 1) − n < p and B ∈ UI.

In particular λ |
U
bn2 c+1

I ∩U
bnp c+1

M

contains ψα |
U
bn2 c+1

I ∩U
bnp c+1

M

. Assume ψα |
U
bn2 c+1

I ∩U
bnp c+1

M

is

trivial. Then α ∈ P
−bn

2
c

I + P
−bn

p
c

M and

B = $
bn
p
c+1

F Π−jI α ∈ Π−jI PM + P
−bn

2
c+pbn

p
c+p−j

I = Πp−j
I M + P

n−bn
2
c

I ⊆ ΠI (M + I) .

Since B ∈ UI this gives a contradiction. Therefore ψα |
U
bnp c+1

M ∩U
bn2 c+1

I

is non-trivial. In

particular λ |
U
bnp c+1

M

is non-trivial and λ is of conductor bnp c+ 2. Denote r = bnp c+ 2 and

as before l = b r+1
2 c. Summing up we know that λ contains ψα = ψ

$−r+1
F ΠjIB

the character

of U
bn

2
c+1

I but we would like to know that it contains ψβ the character of U
b
bnp c+3

2
c

M where

Πj
I$
bn
p
c+1

F β ∈ UI.

The sketch of the end of the proof of this case is as follows. Depending on n and p

sometimes U lM ⊆ U
bn

2
c+1

I and then $r−1
F α is contained in the orbit of λ and we are done.

Unfortunately this not always the case. If this inclusion does not hold then we can assume
that λ contains in its orbit β such that ψβ |

U lM∩U
bn2 c+1

I

= ψα |
U lM∩U

bn2 c+1

I

and from that we

shall deduce that β is of the desired form.

First assume n ≡ 1 mod p. In this case we show U lM ⊆ U
bn

2
c+1

I . If n = 1 then
U lM = U1

M ⊆ U1
I = U

bn
2
c+1

I . Therefore by (2.3.3) for any n ∈ N, n > 1 we have

U
bn

2
c+1

I ⊇ U
b b
n
2 c−1

p
c+2

M . (2.3.4)

We want to show that the index b b
n
2
c−1

p c + 2 is equal to l. Let a ∈ N. If n = 2ap + 1

then b b
n
2
c−1

p c + 2 = a + 1 = b
bn
p
c+3

2 c. On the other hand if n = (2a + 1)p + 1 then
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b b
n
2
c−1

p c + 2 = bap+b
p+1

2
c−1

p c + 2 = a + 2 = b
bn
p
c+3

2 c = l. Therefore by (2.3.4) we have

U
bn

2
c+1

I ⊇ U lM. Since we are considering n coprime with p in particular this ends the proof
in the case p = 2.

Assume now p 6= 2 and n = b + 2ap for a, b ∈ N such that p + 2 6 b 6 2p − 1.

In this case we also want to show U lM ⊆ U
bn

2
c+1

I . Again U
bn

2
c+1

I ⊇ U
b b
n
2 c−1

p
c+2

M and

b b
n
2
c−1

p c+ 2 = bap+b
b
2
c−1

p c+ 2 = a+ 2 = b
bn
p
c+3

2 c = l.

It remains to consider the case p 6= 2 and n = b+ 2pa for a, b ∈ N and 2 6 b 6 p− 1.
Unfortunately in this case U lM is not always contained in U b

n
2
c+1

I . However we can study
the behaviour of λ on U lM ∩ U

bn
2
c+1

I and then deduce the desired result. Take β from the
orbit of λ. We want to show that we can pick β such that Πn

Iβ ∈ UI. Since λ |
U
bn2 c+1

I

contains ψα we know that λ |
U lM∩U

bn2 c+1

I

contains ψα |
U lM∩U

bn2 c+1

I

. On the other hand by

the definition of the orbit of λ

λ |
U lM∩U

bn2 c+1

I

= mλ

⊕
β̄′∼β̄

ψβ′ |
U lM∩U

bn2 c+1

I

(2.3.5)

for some mλ ∈ N. Therefore we can assume

ψβ |
U lM∩U

bn2 c+1

I

= ψα |
U lM∩U

bn2 c+1

I

. (2.3.6)

We compute now the intersection U lM ∩U
bn

2
c+1

I . Define C to be the matrix with 1’s on the
antidiagonal and 0′s elsewhere:

C =


0 · · · 0 1

0 · · · 1 0
...

...
1 0 · · · 0


For h ∈ N, 1 6 h 6 2p − 1 define Bh := CB′h where B′h = (bs,t)16s,t6p is such that

bs,t = p2
F if s+ t 6 h+ 1 and pF otherwise. In other words for h < 2p− 1

Bh =



pF · · · · · · · · · · · · pF
...

. . . . . . . . . . . .
...

pF
. . . . . . . . . . . .

...

p2
F

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
p2
F · · · p2

F pF · · · pF


or Bh =



p2
F · · · p2

F pF · · · pF
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . pF

...
. . . . . . . . . . . . p2

F
...

. . . . . . . . . . . .
...

p2
F · · · · · · · · · · · · p2

F


where first h diagonals (counting from the bottom left corner) have entries p2

F and the rest
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have entries pF .

Compute

U lM ∩ U
bn

2
c+1

I =U
b
bnp c+3

2
c

M ∩ U b
n
2
c+1

I = Ua+1
M ∩ Upa+b b

2
c+1

I

=1 +$a
F (PM ∩P

b b
2
c+1

I ) = 1 +$a
FBb b

2
c.

Combining this with the equality (2.3.6) we get tr((β − α)$a
FBb b

2
c) ⊆ pF .Therefore β ∈

α+$−aF $−2
F B2p−1−b b

2
c. Then

Πn
Iβ ∈ Πn

Iα+ Πn
I$
−a−2
F B2p−1−b b

2
c ⊆ UI + Πb

I$
2a−a−2
F B2p−1−b b

2
c (2.3.7)

⊆

UI +$−2
F Πb

IB2p−1−b b
2
c if a = 0

UI + PI ⊆ UI otherwise.
(2.3.8)

Therefore if a > 1 then
Πn

Iβ ∈ UI.

Assume now that a = 0. Then n = b, r = b bpc + 2 = 2 and l = 1. The character ψβ
is a character of U1

M which is trivial on U2
M. We show that there exists β1 ∈ P−nI such

that β − β1 ∈ Mp(OF ) and Πn
Iβ1 ∈ UI. If β − β1 ∈ Mp(OF ) then (β − β1)P1

M ⊆ P1
M,

ψ(tr((β−β1)P1
M)) = 0 and ψβ = ψβ1 as characters of U1

M. Therefore to finish the proof it is
enough to prove the existence of β1. In other words we want to show β ∈ Π−nI UI+Mp(OF ).
By inclusions (2.3.7) and (2.3.8) and since n = b we have

β ∈ Π−nI UI +$−2
F Πb−n

I B2p−1−b b
2
c = Π−bI UI +$−2

F B2p−1−b b
2
c.

Combining that with $−2
F B2p−b b

2
c−1 = Π

−b b
2
c

I I + Mp(OF ) we get β ∈ Π−bI UI + Mp(OF ).
This proves that if a representation is a cuspidal type then it is of the form (1) or (2) or
(3) from the theorem.

Now we prove that a one-dimensional twist of a representation which is of the form 3 and
has conductor at least 4 or of the form 1 or 2 is a cuspidal type. Since a one-dimensional
twist of a cuspidal type is a cuspidal type we can consider given representations up to
one-dimensional twists.

Case 1 Let ρ be an irreducible smooth representation of K which is inflated from
an irreducible cuspidal representation of GL2(kF ). We can extend ρ to an irreducible
representation of KZ. Denote this extension by Λ. By Theorem 2.2.17, π = c-IndGKZ Λ is
an irreducible cuspidal representation of G. By Proposition 2.2.2, Λ |K is a cuspidal type
on K for π which means that ρ is a cuspidal type on Kfor π.

Case 2 Assume ρ is an irreducible smooth representation of K either whose orbit
contains a matrix with characteristic polynomial irreducible mod pF or with conductor at
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least 4 and an orbit containing a matrix of the form Πj
IB for j ∈ N, 0 < j < p and B ∈ UI.

Denote the matrix with the given property by β0 and by r the conductor of ρ. Let π be
an irreducible smooth representation of G which contains ρ. First we will prove that π
contains a simple stratum. We will divide the proof into two subcases depending on the
property of β0.

Subcase 1 Assume β0 is a matrix with the characteristic polynomial irreducible mod
pF . Define n = r − 1 and β = $−nF β0. Since π contains the character ψβ of U b

r+1
2
c

M ⊇ UnM
the representation π contains the stratum [M, n, n − 1, β]. By Proposition 2.2.16, the
stratum is simple.

Subcase 2 Assume now that ρ has conductor r > 3 and has an orbit containing a
matrix β0 of the form Πj

IB for some j ∈ N, 0 < j < p and B ∈ UI. Denote β = $−r+1
F β0.

We have νI(β) = −p(r − 1) + j. Put n := p(r − 1) − j. The stratum [I, n, n − 1, β] is
simple. We have UnI ⊆ 1 + $r−2

F Pp−j
I ⊆ U r−2

M . For r > 3 the last one is contained in

U
b r+1

2
c

M = U lM. Since π contains ψβ which is a character of U lM ⊇ UnI , π contains a simple
stratum [I, n, n− 1, β].

Therefore, we showed that in both subcases π contains some simple stratum, say
[A, n, n − 1, β]. Since our considerations are up to one dimensional twist we can assume
that l(π) 6 l(χπ) for any character χ of F×. By Lemma 2.2.22 π is cuspidal.

Subcase 2a Assume now that π contains a simple stratum [M, n, n− 1, β].
Take π1 to be an irreducible smooth representation of G such that l(π1) 6 l(χπ1)

for any character χ of F×, π1 contains ρ and such that π1
∼= c-IndGJ Λ with Λ such that

Λ |
U
bn2 c+1

M

contains ψβ as a character of U b
n
2
c+1

M . By Lemma 2.3.8, to finish the proof it is

is enough to show ρ ∼= IndKJ∩K (Λ |J∩K). Since ρ is contained in π1, we have

HomK(ρ, (c-IndGJ Λ) |K) 6= 0.

By Mackey formula and Frobenius reciprocity there exists g ∈ J \G/K such that

HomK(ρ, c-IndKJg∩K(Λg |Jg∩K)) ∼= HomJg∩K(ρ |Jg∩K ,Λg |Jg∩K) 6= 0 (2.3.9)

where Λg denotes the representation Λg(x) = Λ(gxg−1) for any x ∈ Jg ∩K. In particular,
Hom

U
bn2 c+1

M ∩(U
bn2 c+1

M )g
(ρ,Λg) 6= 0. Denote the subgroup U b

n
2
c+1

M by H. By Proposition 2.3.4

and Remark 2.3.5, ρ |H is a multiple of a direct sum of one-dimensional representations
and each of them is conjugate to ψβ by an element of K. Therefore there exist g1 ∈ K
such that

HomH∩Hg(ψg1

β |H∩Hg , ψgβ |H∩Hg) 6= 0.

Since g1 ∈ NG(H) = UM o 〈ΠM〉 the previous is equivalent to

Hom
Hg1∩(Hg1 )g

−1
1 g(ψβg1 |Hg1∩(Hg1 )g

−1
1 g , (ψβg1 )g

−1
1 g |

Hg1∩(Hg1 )g
−1
1 g) 6= 0
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where βg1 = g−1
1 βg1. Therefore g−1

1 g intertwines stratum [M, n, n−1, βg1 ]. Since [M, n, n−
1, β] is simple and g1 ∈ K the stratum [M, n, n − 1, βg1 ] is also simple. By [9, 1.5.8],
g−1

1 g ∈ g−1
1 Jg1 and therefore g ∈ JK. By (2.3.9), ρ is isomorphic to c-IndKJ∩K(Λ |J∩K)

and ρ is a cuspidal type on K for I(π1).

Subcase 2b Assume now that π contains a stratum [I, n, n − 1, β]. The restriction
ρ |

U
bn2 c+1

I

contains a character ψα such that

ψβ |
U lM∩U

bn2 c+1

I

= ψα |
U lM∩U

bn2 c+1

I

. (2.3.10)

In a similar way as from (2.3.6) we deduce from (2.3.10) that α is of the form $−r+1
F Πj

IB
′

with some B′ ∈ UI. Take π1 to be an irreducible smooth representation of G such that
l(π1) 6 l(χπ1) for any character χ of F× and which contains ρ and such that π1

∼= c-IndGJ Λ

with Λ such that Λ |
U
bn2 c+1

I

contains ψα as a character of U b
n
2
c+1

I . Let ρ1 be an irreducible

component of ρ |UI
such that ρ1 |

U
bn2 c+1

I

contains ψα. Then

HomUI

(
ρ1,
(
c-IndGJ Λ

)
|UI

)
6= 0.

By Mackey formula and Frobenius reciprocity there exists g ∈ J \G/UI such that

HomUI

(
ρ1, c-IndUI

Jg∩UI
(Λg |Jg∩UI

)
)
∼= Hom Jg∩UI

(ρ1 |Jg∩UI
,Λg |Jg∩UI

) 6= 0. (2.3.11)

In particular
Hom

U
bn2 c+1

I ∩
(
U
bn2 c+1

I

)g (ρ,Λg) 6= 0.

Denote by H1 the subgroup U
bn

2
c+1

I . There exists g1 ∈ UI such that

HomH1∩Hg
1

(
ψg1
α |H1∩Hg

1
, ψgα |H1∩Hg

1

)
6= 0.

Since g1 ∈ NG(H1) = UI o 〈ΠI〉 the previous one is equivalent to

Hom
H
g1
1 ∩(Hg1 )g

−1
1 g

(
ψαg1 |

H
g1
1 ∩(H

g1
1 )g

−1
1 g , (ψαg1 )g

−1
1 g |

H
g1
1 ∩(H

g1
1 )g

−1
1 g

)
6= 0.

Therefore g−1
1 g intertwines stratum [I, n, n − 1, αg1 ]. Since [I, n, n − 1, α] is simple and

g1 ∈ UI the stratum [I, n, n− 1, αg1 ] is also simple. Therefore g ∈ JUI. By (2.3.11), ρ1 is
isomorphic to c-IndUI

J∩UI
(Λ |J∩UI

). Therefore ρ ∼= c-IndKJ∩UI
(Λ |J∩UI

) and ρ is a cuspidal
type on K for I(π1).
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2.3.2 Cuspidal types on GL2(OF )

The goal of this subsection is to prove the following theorem:

Theorem 2.3.9. A cuspidal type on K2 = GL2(OF ) is precisely a one-dimensional twist
of one of the following:

1. a representation inflated from some irreducible cuspidal representation of GL2(kF );

2. a representation whose orbit contains a matrix which characteristic polynomial is
irreducible mod pF ;

3. a representation whose orbit contains a matrix β whose characteristic polynomial is
Eisenstein and which satisfies one of the following:

(a) it has conductor at least 4;

(b) it has conductor r = 2 or 3 and is isomorphic to IndK2

StabK2
(ψ̄β̄)

θ where θ |
U
b r+1

2 c
M

=

mψβ for certainm ∈ Z and θ does not contain the trivial character of

(
1 pr−2

F

0 1

)
.

Remark 2.3.10. Any matrix of the form ΠIB for B ∈ UI has a characteristic polynomial
which is Eisenstein. Moreover any matrix whose characteristic polynomial is Eisenstein is
GLp(OF )-conjugate to one of the form ΠIB, B ∈ UI.

Proof. By Theorem 2.3.1, to prove the theorem it is enough to prove that a representation
of K whose conductor is 2 or 3 and whose orbit is equivalent to an orbit which contains a
matrix of the form ΠIB for B ∈ UI is a cuspidal type if and only if 3b or 3c from Theorem
2.3.9 is satisfied.

Assume that ρ is a representation whose orbit is equivalent to an orbit containing a
matrix of the form ΠIB for B ∈ UI. Denote by r the conductor of ρ. Assume that r = 2

or 3. The proof contains two steps.
Step 1 In this step we show the following statement:

A representation ρ is a cuspidal type if and only if there exists π an irreducible smooth
representation of G which contains ρ and whose normalized level is l(π) > r − 2.

First we prove that if ρ with conductor 2 or 3 and an orbit containing a matrix of
the form ΠIB for B ∈ UI is a cuspidal type then there exists an irreducible smooth
representation π of G which contains ρ and whose normalized level is strictly greater
than r− 2. For contrary, assume that ρ is a cuspidal type and every π irreducible smooth
representation of G which contains ρ has l(π) 6 r−2. Denote by π1 an irreducible cuspidal
representation of G for which ρ is a type. In particular, π1 contains ρ. This means that
l(π1) 6 r − 2.
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If r = 2, then l(π1) = 0 and by ([10], 14.5 Exhaustion theorem), π1
∼= c-IndGK2Z Λ for

some Λ such that Λ |K2 is inflated from an irreducible cuspidal representation of GL2(kF ).
By Proposition 2.2.2, Λ |K2 is a type for π1. By Theorem 2.2.1, Λ |K2

∼= ρ. Since the
conductor of ρ is 2 this is impossible.

Assume now r = 3. Then l(π1) 6 1. By analogous argument as before the normalized
level of π1 cannot be zero. Assume now that l(π1) = 1

2 . By [10, 12.9 Theorem], the
representation π1 contains some fundamental stratum [A, 1, 0, a] with e(A) = 2. If π1

contains some stratum, then it contains all of its G-conjugates. Therefore we can assume
π1 contains a stratum [I, 1, 0, a] for certain a. We want to show that this stratum is simple.
By [10, 13.1 Proposition 1], we have aI = P−1

I . In particular, a ∈ K(I), νI(a) = −1 so
a = ΠIB for some B ∈ UI. By Proposition 2.2.16, the stratum [I, 1, 0, a] is simple. By
Lemma 2.2.21 and Lemma 2.2.22, the representation π1

∼= c-IndGJ Λ for certain J and Λ

such that Λ |U2
I
= 1U2

I
. By the unicity of types ρ ∼= IndK2

J∩K2
(Λ |J∩K2) and by Mackey’s

formula it contains Λ |J∩K2 . The group K2 is compact so ρ |U2
I
is trivial. Since U2

M ⊆ U2
I

this means ρ |U2
M

is trivial. The conductor of ρ is 3 so this is impossible.
Assume now that l(π1) = 1 and for every χ character of F× we have l(π1) 6 l(χπ1). By
([10],14.5 Exhaustion theory), π1 contains a simple stratum. Since the level is 1 it has
to be of the form [A, e(A), e(A) − 1, a]. As before we can assume A = M or I. We have
U2
M ⊆ U3

I so we can assume π1 contains a stratum of the form [M, 1, 0, a] for certain a. In
similar way as before, by the unicity of types and by Lemma 2.2.22 we deduce ρ |U2

M
is

trivial which again is impossible.
Assume now that there exists χ a character of F× such that l(χπ1) = 0 or 1

2 . Applying
analogous arguments as before but for χρ and χπ1 we deduce that χρ |U2

I
is trivial. In

particular, χρ |U2
M

is trivial. Therefore χ ◦ det |U3
M

is trivial. By the following lemma it is
impossible.

Lemma 2.3.11. Let ρ be an irreducible smooth representation of K with conductor r > 1

and an orbit containing a matrix whose characteristic polynomial is Eisenstein. Let χ be
a character of F× such that χ ◦ det |UrM is trivial. Then the conductor of χρ is bigger than
or equal to r.

Proof. Let {βi}i∈I be an orbit of ρ. Without loss of generality we can assume that the
characteristic polynomial of β1 is Eisenstein.

By Lemma 2.2.20 χ ◦ det |Ur−1
M

is of the form ψα for some α ∈ P−r+1
M with α scalar.

By the definitions of ψβi and ψα

χρ |Ur−1
M

=
⊕

i∈I ψ$−r+1
F βi+α

|Ur−1
M

.

The restriction χρ |Ur−1
M

is trivial if and only if every $−r+1
F βi + α ∈ P−r+2

M . If it holds
then in particular β1 +$r−1

F α ∈ PM which is impossible.



2.3. CUSPIDAL TYPES ON K IN TERMS OF ORBITS 49

Now we prove the converse: if there exists an irreducible smooth representation of G
which contains ρ and whose normalized level is strictly greater than r − 2 then ρ is a cus-
pidal type. Therefore assume that there exists π an irreducible representation of G which
contains ρ and such that l(π) > r − 2. The representation ρ has an orbit containing a
matrix of the form α0 = ΠIB with B ∈ UI. Let α = $−r+1

F α0. In particular, ρ contains

the character ψα of U
b r+1

2
c

M = U r−1
M . We want to show that ψα has an extension to U2r−3

I

which is trivial on U2r−2
I and which is contained in ρ. Since αU2r−2

I ⊆ U1
I , ψα is trivial not

only on U rM but also on U2r−2
I . Therefore ψα can be seen as a character of U r−1

M /U2r−2
I . We

have U r−1
M /U2r−2

I ⊆ U2r−3
I /U2r−2

I and the last one is abelian so ψα has a one-dimensional
extension to U2r−3

I /U2r−2
I which is contained in π. This extension is of the form ψβ for

β ∈ P−2r+3
I . This means the stratum [I, 2r − 3, 2r − 4, β] is contained in π and ψβ is

contained in ρ. Since the normalized level of π is strictly greater than r − 2, it is equal to
2r−3

2 . By ([10], 12.9 Theorem) the stratum [I, 2r − 3, 2r − 4, β] is fundamental which as
before implies it is simple. Similarly as in the proof of Theorem 2.3.1 this means that ρ is
a cuspidal type. This ends the proof of the first step.

By Remark 2.2.24, the representation ρ is isomorphic to IndK2

StabK2
(ψ̄β̄)

θ for some β̄ ∈
M2(OF ) and θ an irreducible representation of StabK2(ψ̄β̄).

Step 2 Assume now that ρ has conductor r = 2 or 3. To finish the proof it is enough
to show the following statement:

The representation θ contains the trivial character of the subgroup

(
1 pr−2

F

0 1

)
if and only

if every irreducible smooth representation of G containing ρ has normalized level less than
or equal to r − 2.

Denote by ψβ the lift of ψ̄β̄ to the character of U r−1
M which is trivial on U rM. Since U r−1

M

is a normal subgroup of StabK2(ψ̄β̄) by Clifford theory we can assume θ |Ur−1
M

is a multiple

of ψβ . Set β0 := $r−1
F β. Up to conjugation β̄0 ∈ M2(kF ) is of the form

(
0 1

0 0

)
. Therefore

we can assume that the character ψβ is trivial when restricted to

(
1 + pr−1

F pr−1
F

0 1 + pr−1
F

)

and θ is trivial when restricted to this subgroup. Since

(
1 + pr−1

F pr−1
F

0 1 + pr−1
F

)
and the

group

(
1 pr−2

F

0 1

)
generate the subgroup

(
1 + pr−1

F pr−2
F

0 1 + pr−1
F

)
we can replace in the
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statement the subgroup

(
1 pr−2

F

0 1

)
by

(
1 + pr−1

F pr−2
F

0 1 + pr−1
F

)
. The subgroups U rM and(

1 + pr−1
F pr−2

F

0 1 + pr−1
F

)
generate the group

(
1 + pr−1

F pr−2
F

prF 1 + pr−1
F

)
which is conjugate by the

matrix

(
0 1

$F 0

)
to U r−1

M . Therefore if θ contains the trivial character of

(
1 + pr−1

F pr−2
F

0 1 + pr−1
F

)
then every irreducible smooth representation of G containing ρ contains the trivial char-
acter of U r−1

M .
Now assume that every irreducible smooth representation of G which contains ρ has nor-
malized level less than or equal to r − 2. Since StabK2(ψ̄β̄) is a closed subgroup of the

Iwahori subgroup

(
O×F OF
pF O×F

)
which is compact it is a compact subgroup. By ([10, 11.1

Proposition 1]), there exists g ∈ G such that

Hom(Ur−1
M )g∩StabK2

(ψ̄β̄)(1(Ur−1
M )g∩StabK2

(ψ̄β̄), θ) 6= 0.

Therefore θ contains the trivial character of (U r−1
M )g ∩StabK2(ψ̄β̄). This property depends

only on the double coset NG(U r−1
M )gStabK2(ψ̄β̄) where NG denotes the normalizer of a

subgroup in G.
Firstly we will show to what kind of elements of G we can restrict our considerations. By
[33], section 2, StabGL2(OF /prF )(ψ̄β̄) = (OF /prF )[β̂]×K1

2 where β̂ is a lift of β̄ to a matrix in
M2(OF /prF ) and K1

2 = K1 with p = 2. Therefore

StabK2(ψ̄β̄) =
⋃
a∈O×F

(
a+ pF OF
pF a+ pF

)
.

By [10, 12.3] NG(U r−1
M ) = K2Z. Since

(
O×F OF
pF O×F

)
=
⋃
c∈O×F

(
c 0

0 1

)
StabK2(ψ̄β̄) and

$m
F

(
0 1

1 0

)
∈ K2Z for any m ∈ Z by [10, 17.1 Proposition] we can assume that g is of

the form either g1,n,c =

(
1 0

0 c$n
F

)
or g2,n,c =

(
c$n

F 0

0 1

)
for some c ∈ O×F and n ∈ N.

Compute

(U r−1
M )g1,n,c ∩ StabK2(ψ̄β̄) =

(
1 + pr−1

F pr−1+n
F

pr−1−n
F ∩ pF 1 + pr−1

F

)

(U r−1
M )g2,n,c ∩ StabK2(ψ̄β̄) =

(
1 + pr−1

F pr−1−n
F ∩ OF

pr−1+n
F 1 + pr−1

F

)
.

In particular, θ contains the trivial character of at least one of the following:

1.
⋂
n>0,c∈O×F

(U r−1
M )g1,n,c ∩

⋂
c∈O×F

(U r−1
M )g2,0,c ∩ StabK2(ψ̄β̄) =

(
1 + pr−1

F 0

pr−1
F 1 + pr−1

F

)
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2.
⋂
n>0,c∈O×F

(U r−1
M )g2,n,c ∩ StabK2(ψ̄β̄) =

(
1 + pr−1

F pr−2
F

0 1 + pr−1
F

)
.

The restriction θ |Ur−1
M

is a multiple of ψβ . In particular, since ψβ

((
1 + pr−1

F 0

pr−1
F 1 + pr−1

F

))
=

ψ(OF ) is non-trivial θ does not contain the trivial character of

(
1 + pr−1

F 0

pr−1
F 1 + pr−1

F

)
.

Therefore θ contains the trivial character of

(
1 + pr−1

F pr−2
F

0 1 + pr−1
F

)
.

Corollary 2.3.12. Every cuspidal type on K2 is a regular representation. However not
every regular representation of K2 is a cuspidal type on K2.

2.3.3 Regularity of cuspidal types

In this subsection we determine which cuspidal types are regular. More precisely we deter-
mine which matrices from Theorem 2.3.1 (2) and (3) are regular. Of course matrices whose
characteristic polynomial is irreducible modulo pF are regular. In Proposition 2.3.14we
prove that matrices of the form ΠIB for B ∈ UI are regular. In Proposition 2.3.15 we
prove that matrices of the form Πj

IB for j ∈ N, 1 < j < p and for B ∈ UI are not regular.
In our consideration we do not have to restrict our consideration to the prime dimension
of V . We work with matrices of arbitrary dimension n.

Fix n a natural number bigger than or equal to 2. Define I, ΠI analogously as in
subsection 2.2.2 but for the dimension n. First we prove a lemma useful for the proof of
Proposition 2.3.14.

Lemma 2.3.13. Let M ∈ GLn(OF ) be a matrix whose characteristic polynomial is Eisen-
stein. Then any g ∈ GLn(F ) such that g−1Mg ∈ Mn(O) is of the form g ∈ ZGLn(F )(M)GLn(OF )

where ZGLn(F )(M) denotes the centralizer of M in GLn(F ). In particular, there exists an
element h ∈ GLn(OF ) such that h−1Mh = g−1Mg.

Proof. Take the lattice Λ = OnF . We want to show that for any matrix Q ∈ GLn(F )

QΛ = Λ if and only if Q ∈ GLn(OF ). (2.3.12)

Indeed, if for any matrix Q1 ∈ GLn(F ) then Q1Λ ⊆ Λ if and only if Q1 ∈ Mn(OF ).
Therefore if QΛ = Λ then Q ∈ Mn(OF ) and also Λ = Q−1Λ so Q−1 ∈ Mn(OF ). Hence
Q ∈ GLn(OF ). Conversely if Q ∈ GLn(OF ) then QΛ ⊆ Λ and Q−1Λ ⊆ Λ so Λ = QΛ.
By the condition (2.3.12) to prove the lemma it is enough to show that gΛ = zΛ for some
z ∈ ZGLn(F )(M).

Let E = F [M ]. Since the characteristic polynomial of M is irreducible E is a field.
The action ofM on Fn makes it a one-dimensional E-vector space. Fix a non-zero element
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v ∈ Fn. The following map is an isomorphism of E-vector spaces i : E 3 x 7→ xv ∈ Fn.
By definition it is E-linear homomorphism. Since both E and Fn are finitely dimensional
over E to check that i is a bijection it is enough to check that i is injective. Assume it is
not. Then take x, y ∈ E such that x 6= y and xv = yv. Then det(x − y) = 0 but this is
impossible because x− y is invertible.

Below we will show that Λ and gΛ are OE-modules. Assume for now that it is true.
Recall that fractional ideals of E are finitely generated OE-submodules of E. Since i is
E-linear there exist fractional ideals I1 and I2 of E such that i(I1) = Λ and i(I2) = gΛ.
Since fractional ideals of E are generated by powers of M there exists an integer number
j such that gΛ = M jΛ. Of course M j ∈ ZGLn(F )(M). Therefore to finish the proof it is
enough to show that OEΛ ⊆ Λ and OEgΛ ⊆ gΛ.

We want to show that OE = OF + OFM + . . . + OFMn−1. Since the residue field
of E and F are the same it we have OE = OF + OEM . Therefore OE =

∑∞
j=0OFM j .

We want to show that for j > n we have OFM j ⊆ OF + OFM + . . . + OFMn−1. We
do it by the induction. If j = n then since the characteristic polynomial of M is equal
to the minimal polynomial it is true. Assume that we have the inclusion for j. Then
OFM j+1 ⊆ OFM + OFM2 + . . . + OFMn ⊆ OF + OFM + . . . + OFMn−1. Therefore
OE = OF +OFM + . . .+OFMn−1.

Of course OFΛ ⊆ Λ and OF gΛ ⊆ gΛ. Therefore it is enough to check that MΛ ⊆ Λ

and MgΛ ⊆ gΛ. Since both M and g−1Mg are matrices in Mn(OF ), these are true.

Proposition 2.3.14. Let M ∈ Mn(OF ) be a matrix whose characteristic polynomial is
Eisenstein and denote the characteristic polynomial by f . Then M is GLn(OF )-conjugate
to a companion matrix of f which is regular. In particular, M is regular.

Proof. Denote by C the companion matrix of f . We prove that since f is irreducible the
matrices M and C are GLn(F )-conjugate. Define the following maps: for any polynomial
b with coefficients in F

h1 : F [M ] 3 b(M) 7→ b(M) ∈ Mn(F ) and h2 : F [M ] 3 b(M) 7→ b(C) ∈ Mn(F ).

Of course h1 is well defined. To check that h2 is well defined it is enough to check that
h2(0) = 0. The polynomial f is irreducible and therefore the minimal polynomial of both
M and C is equal f . Therefore h2(0) = h2(f(M)) = f(C) = 0. By definition h1 and h2 are
F -algebra homomorphisms. Since f is irreducible F [M ] is a field. By the Skolem–Noether
theorem there exists B ∈ GLn(F ) such that h1 = Bh2B

−1 so in particular M = BCB−1.
Therefore by Lemma 2.3.13 the matrices M and C are GLn(OF )-conjugate. Since C is
regular M is also regular.

Observe that f(x) the characteristic polynomial of ΠIB, with B ∈ UI, is equal to xp
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modulo pF and f(0) = det(ΠIB) = u$F for some u ∈ O×F . Therefore f(x) is Eisenstein
and Proposition 2.3.14 proves that matrices of the form ΠIB are regular.

Proposition 2.3.15. Matrices of the form Πj
IB for j ∈ N, 1 < j < p and B ∈ UI are not

regular.

Proof. Denote by D the image of Πj
IB modulo pF . Assume the contrary, that D is regular.

Denote by Π̄I the reduction of ΠI modulo pF . Every matrix of the form D is nilpotent.
By [15, 14.11 Proposition], D is GLp(kF )-conjugate to Π̄I. This is impossible because

Dp−1 6= 0 and
(

Π̄j
I

)p−1
= 0. This gives us a contradiction and we proved that D is not

regular.

2.4 Example

In this section we give an example of two representations of K2 = GL2(OF ) with the same
orbits and the same conductor but one of them will be a cuspidal type and the second will
not. This illustrates the fact that it is not always enough to determine orbits to determine
if a given representation is a cuspidal type.

Let S =
⋃
a∈O×

(
a+ pF OF
pF a+ pF

)
, β1 = $−1

F

(
0 1

$F 0

)
and β2 = $−1

F

(
0 1

0 0

)
.

Define θ1, θ2 : S → C as follows:

θ1(aIdp + x) = ψ(tr(a−1β1x)) and θ2(aIdp + x) = ψ(tr(a−1β2x))

where a ∈ O× and x ∈

(
pF OF
pF pF

)
. Denote

ρ1 := IndK2
S θ1 and ρ2 := IndK2

S θ2.

Proposition 2.4.1. The maps θ1 and θ2 are well-defined homomorphisms. Both repre-
sentations ρ1 and ρ2 have conductor 2 and contain the matrix β0 := $Fβ1 in their orbits.
The representation ρ1 is a cuspidal type but ρ2 is not.

Proof. First we show that θ1 and θ2 are well-defined homomorphisms. Take a, b ∈ O×F and

x, y ∈

(
pF OF
pF pF

)
such that aId2 + x = bId2 + y. Then (b−1 − a−1)Id2 = a−1b−1(y − x) ∈(

pF OF
pF pF

)
and (b−1−a−1) ∈ pId2. Therefore a−1x−b−1y = a−1x−b−1(x+(a−b)Id2)) =

(a−1 − b−1)x− (ab−1 − 1)Id2 ∈

(
OF pF

p2
F OF

)
. Compute
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θ1(aId2 + x)θ1(bId2 + y)−1 =ψ(tr(β1(a−1x− b−1y)))

⊆ψ

(
tr

(
$−1
F

(
0 1

$F 0

)(
OF pF

p2
F OF

)))
= 1

and similarly

θ2(aId2 + x)θ2(bId2 + y)−1 ⊆ ψ

(
tr

(
$−1
F

(
0 1

0 0

)(
OF pF

p2
F OF

)))
= 1.

This shows that θ1 and θ2 are well defined. For any c ∈ O×F , x, y ∈

(
pF OF
pF pF

)
we have

tr(cβ1xy) ∈ pF and tr(cβ2xy) ∈ pF .

Therefore θ1 and θ2 are homomorphisms.
Both ρ1|U1

M
and ρ2|U1

M
contain ψβ1 so ρ1 and ρ2 have conductor 2 and contain $Fβ1

in their orbits.
First we prove that ρ2 is not a cuspidal type. This of course can be deduced from Theo-

rem 2.3.9 but to give an explicit example we give a specific proof. For contradiction assume
that ρ2 is a cuspidal type for an irreducible cuspidal representation π of GL2(F ). The rep-
resentation ρ2 has conductor 2 so l(π) > 0. On the other hand θ2|1 + pF OF

0 1 + pF


= 1

and θ2|U2
M

= 1. The groups

(
1 + pF OF

0 1 + pF

)
and U2

M generate

(
1 + pF OF
p2
F 1 + pF

)
. The

latter is GL2(F )-conjugate to U1
M. This means that l(π) = 0 and we get the contradiction.

By Theorem 2.3.9, ρ1 is a cuspidal type.
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Chapter 3

On the optimal rate of
equidistribution in number fields.

This chapter is joint work with Mikołaj Frączyk and it comes from our preprint paper [18].

3.1 Introduction

3.1.1 Optimal rate of equidistribution in number fields.

In this chapter we study the optimal rate of "local" equidistribution in the rings of integers
of number fields. First we will make precise what kind of equidistribution we mean. For
any ring A we may map it into the profinite completion Â = lim←A/I where I runs over
all cofinite ideals in A. The additive group of Â is a compact topological group so it is
equipped with a unique Haar probability measure m. We say that a sequence of finite
subsets En ⊂ A equidistributes in A if the sequence of probability measures on Â

µn :=
1

|En|
∑
x∈En

δx

converges weakly-* to the Haar measure m. If k is a number field and A = Ok is its
ring of integers this means that (En)n∈N equidistributes in Ôk =

∏
pOkp where p runs

over prime ideals of Ok and Okp is the ring of integers in the completion kp. In practice,
for example when En are given by some arithmetic construction, it is often easier to
prove that the equidistribution holds in Okp for each prime p than that it holds in the
product

∏
pOkp . This is why we focus on the weaker notion of local equidistribution

in Ok. We say that (En)n∈N locally equidistributes in Ok if for every prime ideal p the
sequence of probability measures µn (defined as above) converges weakly to the unique
Haar probability measure on Okp . We can measure the rate of equidistribution in Okp by
looking at the p-adic valuation of the product of differences

∏
s 6=s′∈En(s − s′). Using the

57
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pigeon principle, one can show that νp
(∏

s 6=s′∈En(s− s′)
)
≥
∑|En|−1

m=1

∑∞
i=1b

m
qi
c, where q

is the size of the residue field of kp. When the equality is achieved for each n we say that
(En)n∈N equidistributes optimally in Okp . It happens, for example, when En are sets
of the first n elements of a sequence (ai)i∈N which is a p-ordering (Definition 3.1.3). The
p-orderings were introduced by Manjul Bhargava in [5] in order to generalize the notion of
the factorial to any Dedekind domain (or even subsets of Dedekind domains) and to extend
the classical results of Pólya on integer valued polynomials in Q[t] to arbitrary Dedekind
domains [5, Theorem 14]. While it is easy to see that for a fixed finite set P of primes p

one can find a sequence En that equidistributes optimally in Okp for all p ∈ P it is not
clear if there exists a sequence of sets En that equidistributes optimally for all primes p

at the same time. It is certainly possible in Z because we we can take En = {1, 2, . . . , n}.
As the main result of this chapter we prove that k = Q is the only number field for which
Ok enjoys this property. As a corollary we answer the question of Bhargava [5, Question
3] for rings of integers in number fields. Bhargava asked which Dedekind domains admit
simultaneous p-orderings. Our main result implies that Z is the only ring of integers where
this is possible.

3.1.2 p-orderings and equidistribution

Let A be a ring and let I be an ideal of A. We say that a finite subset S ⊆ A is almost
uniformly distributed modulo I if for any a, b ∈ A we have

| {s ∈ S | s− a ∈ I} | − | {s ∈ S | s− b ∈ I} |∈ {−1, 0, 1} . (3.1.1)

If A/I is finite the condition (3.1.1) is equivalent to the following∣∣∣∣| {s ∈ S | s− a ∈ I} | − |S|
|A/I|

∣∣∣∣ < 1. (3.1.2)

Let k be a number field and let Ok be its ring of integers.

Definition 3.1.1. We call a finite subset S ⊆ Ok n-optimal if |S| = n+1 and S is almost
uniformly equidistributed modulo every power pl, l ≥ 1 for every prime ideal p of Ok.

The n-optimal sets are in a sense locally as uniformly equidistributed as possible. The
sequences of n-optimal sets are precisely the ones that equidistribute optimally in Okp for
all primes p at the same time. The main result of this chapter determines the numbers
fields k where the rings of integers Ok admits arbitrarily large n-optimal sets.

Theorem 3.1.2. Let k be a number field different than Q. Then there is a natural number
n0 such that there are no n-optimal sets for n ≥ n0.

In particular, unless k = Q there are no sequences of finite subsets that equidistrubute
optimally modulo all prime powers. Motivation for considering n-optimal subsets comes
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from the theory of integer valued polynomials and from the study of p-orderings. We recall
the definition of a p-ordering in a subset of Ok, following [5].

Definition 3.1.3. Let S ⊂ Ok and let p be a non-zero proper prime ideal. A sequence
(ai)i∈N ⊂ S is a p-ordering in S if for every n ∈ N we have

vS(p, n) := vp

(
n−1∏
i=0

(ai − an)

)
= min

s∈S
vp

(
n−1∏
i=0

(ai − s)

)
,

where vp stands for the additive p-adic valuation on k. The value vS(p, n) does not depend
on the choice of a p-ordering ([5]).

Bhargava defines the generalized factorial as the ideal n!S =
∏

p p
vS(p,n) where p

runs over primes in Ok. A sequence (ai)i∈N ⊂ S is called a simultaneous p-ordering
in S if it is a p-ordering in S for every prime ideal p. Simultaneous p-orderings are also
called Newton sequences [12,13]. A sequence (ai)i∈N ⊂ Ok is a simultaneous p-ordering in
Ok if and only if the set {a0, a1, . . . , an} is n-optimal for every n ∈ N (see [11, Proposition
2.6]) . In [5, 6] Bhargava asks what are the subsets S ⊂ Ok (or more general Dedekind
domains) admitting simultaneous p-orderings and in particular for which k the ring Ok
admits a simultaneous p-ordering. The last question was addressed by Melanie Wood in
[36] where she proved that there are no simultaneous p-orderings in Ok if k is an imaginary
quadratic field. This result was extended in [1, Theorem 16] to all real quadratic number
fields Q(

√
d) except possibly for d = 2, 3, 5 and d ≡ 1 mod 8. Existence of a simultaneous

p-ordering implies that there are n-optimal sets in Ok for all n. As a corollary of Theorem
3.1.2 we get:

Corollary 3.1.4. Q is the unique number field whose ring of integers admits a simultaneous
p-ordering.

This answers [5, Question 3] for rings of integers in number fields. Note that having
an upper bound on n such that there exists an n-optimal set is a priori stronger than
non-existence of simultaneous p-orderings because not every n-optimal set can be ordered
into an initial fragment of a simultaneous p-ordering. We do not know any example of a
Dedekind domain that has arbitrarily large n-optimal sets but no simultaneous p-orderings.
We remark that the ring Fq[t] admits a simultaneous p-ordering [5, p. 125]. It would be
interesting to know which finite extensions F of Fq[t] have the property that OF admits a
simultaneous p-ordering.

3.1.3 Test sets for integer valued polynomials.

The notions of p-orderings and n-optimal sets are connected to the theory of integer valued
polynomials. Let P ∈ k[X] be a polynomial. We say that P is integer valued on S ⊂ Ok
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if P (S) ⊂ Ok. Following [12] we denote the module of integer valued polynomials of degree
at most n by

In(S,Ok) = {P ∈ k[X]|degP ≤ n, P (S) ⊂ Ok} .

We call a subset E ⊂ Ok an n-universal set if the following holds. A polynomial P ∈ k[X]

is integer valued (on Ok) if and only if P (E) ⊂ Ok. It is easy to prove, using Lagrange
interpolation, that |S| ≥ n + 1 for any n-universal set S. It was shown in [11, 35] that if
|S| = n + 1 then S is n-universal if and only if it is almost uniformly distributed modulo
all powers of all prime ideals. In our notation the latter is equivalent to S being n-optimal.
It is proved in [11] that for every n ∈ N there exists an n-universal set of size n+ 2, so it
is interesting to ask whether there are n-universal sets of cardinality n+ 1 (i.e. n-optimal
sets). For k quadratic imaginary number field it was proven in [11] that there is an upper
bound on n such that there exists an n-optimal set. This generalizes the analogous result
for k = Q(

√
−1) from [35]. For general quadratic number fields Cahen and Chabert [13]

proved that there are no 2-optimal sets, except possibly in Q(
√
d), d = −3,−1, 2, 3, 5 and

d ≡ 1 mod 8. From our main result and [11, Theorem 4.1.] we deduce the following.

Corollary 3.1.5. Let k 6= Q be a number field. Then for n ∈ N sufficiently large the
minimal cardinality of an n-universal set in Ok is n+ 2.

3.1.4 Average number of solutions of a unit equation

One of our key technical ingredients in the proof of Theorem 3.1.2 is the following bound,
which can be interpreted as a bound on the average number of solutions of the unit equation
[37]. To shorten notation we will write ‖x‖ = |Nk/Q(x)| for x ∈ k.

Theorem 3.1.6. Let k be a number field of degree N with d Archimedean places and let
B ∈ R. There are constants Θ1,Θ2,Θ3,Θ4 dependent only on k and B such that for every
a ∈ Ok, 0 < X ≤ ‖a‖eB and κ = min

{
1

2N(N−1) ,
1

4N−1

}
we have

|
{
x ∈ Ok| ‖x(a− x))‖ ≤ X2

}
| ≤ Θ1X

1+κ‖a‖−κ+Θ2(logX)2d−2+Θ3 log log log log ‖a‖+Θ4.

The traditional form of the unit equation is

α1λ1 + α2λ2 = 1 where α1, α2 ∈ k×

and the indeterminates λ1, λ2 are the units of Ok. We may consider an equivalent form of
the unit equation

α1λ1 + α2λ2 = α3 where α1, α2, α3 ∈ Ok. (3.1.3)

It is clear that the number of solutions depends only on the class of (α1, α2, α3) in the
quotient of the projective space P2(k)/(O×k )3. Let ν(α1, α2, α3) be the number of solutions
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of (3.1.3). It was known since Siegel [32] that ν(α1, α2, α3) is finite and Evertse [16] found
an upper bound independent of α1, α2, α3

ν(α1, α2, α3) ≤ 3× 7N .

In fact, Evertse, Györy, Stewart and Tijdeman [17] showed that except for finitely many
points [α1, α2, α3] ∈ P2(k)/(Ok)3 the equation (3.1.3) has at most two solutions. Theorem
3.1.6 gives a quantitative control on the "average" number of solutions of (3.1.3) as α1, α2 ∈
Ok/O×k , ‖α1α2‖ ≤ X2 and ‖α3‖ is fixed with ‖α3‖ not much smaller than X.

Theorem 3.1.7. Let k be a number field of degree N with d Archimedean places, let B ∈ R
and put κ = min

{
1

2N(N−1) ,
1

4N−1

}
. There exist constants Θ1,Θ2,Θ3,Θ4 dependent only

on k and B such that for every α3 ∈ Ok, 0 < X ≤ ‖α3‖eB we have∑
α1,α2∈Ok/O×k
‖α1α2‖≤X2

ν(α1, α2, α3) ≤ Θ1X
1+κ‖α3‖−κ+ Θ2(logX)2d−2 + Θ3 log log log log ‖α3‖+ Θ4.

The number of terms in the sum is of order X2 logX so Theorem 3.1.7 shows that the
average value of ν(α1, α2, α3) is

O(Xκ−1‖α3‖−κ(logX)−1 + (logX)2N−1X−2 + (log log log log ‖α3‖)NX−2(logX)−1).

Unless ‖α3‖ � ee
eX

2 logX

this improves (on average) on the pointwise bound of Evertse,
Györy, Stewart and Tijdeman [17].

3.1.5 Outline of the proof

To prove Theorem 3.1.2 we argue by contradition. We assume that there exists a sequence
Sni of ni-optimal subsets where ni tend to infinity. Let V := k ⊗Q R ' Rr1 × Cr2 . First
we show (Theorem 3.3.1) that for each ni there exists a cylinder (see Definition 3.2.18)
Cni ⊆ V of volume O(ni) containing Sni . This fact was implicit in the proofs of Theorem
3.1.2 for k = Q(

√
−1) in [35] and for k quadratic imaginary in [11]. The argument in

[11, 35] relied on a technique called "discrete collapsing" 1 which crucially uses the fact
that the norm Nk/Q is convex for any quadratic imaginary number field k. Finding a way
to prove Theorem 3.3.1 for a general number field k is one of the main contributions of this
chapter. A key number-theoretical input is provided by Proposition 3.2.5 which counts the
number of x ∈ Ok such that |Nk/Q(x(a−x))| ≤ X2 for some X > 0 and a ∈ Ok subject to
the condition |Nk/Q(a)| ≥ Xe−B where B is a fixed real number. The proof of Proposition

1In [11] it was called simply "collapsing". We add the adjective discrete to distinguish it from the
collapsing for measures used in the present work.
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3.2.5 combines a variant of Ikehara’s Tauberian theorem, counting points of Ok in thin
cylinders and the Baker–Wüstholz’s theorem on linear forms in logarithms.

Let ∆k be the discriminant of k. From Theorem 3.3.1 we deduce (Corollary 3.3.2) that
there exists a compact set Ω and sequences (sni)i∈N, (tni)i∈N ⊂ V with ‖sni‖ = ni|∆k|1/2

such that the rescaled sets s−1
ni (Sni − tni) are all contained in Ω. Thus, it makes sense to

look at subsequential weak-* limits of measures

µni :=
1

ni

∑
x∈Sni

δs−1
ni

(x−tni )
.

Any such limit will be called a limit measure. It is always a probability measure supported
on Ω, absolutely continuous with respect to the Lebesgue measure and of density2 at
most one3 (see Lemma 3.5.2). By passing to a subsequence if necessary we can assume
that µni converges to a limit measure µ. The measure µ contains the information about
the asymptotic geometry of the sets Sni . Our strategy is to exploit the properties of
n-optimal sets to show that no such limit measure can exist. We introduce a notion of
energy of probability measures on V (see Definition 3.5.3). For any compactly supported
probability measure ν on V , absolutely continuous with respect to the Lebesgue measure
and of bounded density we define

I(ν) :=

∫
V

∫
V

log ‖x− y‖dν(x)dν(y),

where ‖ · ‖ : V → R extends the norm |Nk/Q| from k to V = k ⊗Q R. The volume formula
for n-optimal sets (see [11, Corollary 5.2]) allows us to prove (Proposition 3.5.4) that for
any limit measure µ we have

I(µ) = −1

2
log |∆k| −

3

2
− γk + γQ,

where γk, γQ are the Euler–Kronecker constants of k andQ respectively (c.f. [22]). We know
that the norm of the product of differences in an n-optimal set must be minimal among
the norms of products of differences in all subsets of Ok of cardinality n+ 1 ([11, Corollary
5.2]). In other words the volume of an n-optimal set is minimal among volumes of subsets
of Ok of cardinality n+ 1. This is used to show that µ minimizes the energy I(µ) among
all probability measures of density bounded by one (Lemma 3.5.5). The last property
forces strong geometric constraints on µ. In Proposition 3.5.6 we show that any such
energy-minimizing measure must be of the form µ(A) = Leb(A ∩ U) where Leb is the
Lebesgue measure on V and U is an open set of measure 1 whose boundary satisfies
certain regularity conditions. This part of the argument uses the collapsing procedure

2By density we mean the Radon–Nikodym derivative with respect to the Lebesgue measure.
3The reason why we introduced the factor |∆k|1/2 in the formula sni = ni|∆k|1/2 is to ensure that the

limits have density at most 1.



3.1. INTRODUCTION 63

for measures (Definition 3.4.1) which is analogous to the discrete collapsing from [11] and
similar to the Steiner symmetrization. We remark that if the field k is not imaginary
quadratic then there is no reasonable discrete collapsing procedure for subsets of Ok. The
passage from subsets of Ok to measures on V seems crucial for this part of the argument.

At this point we have established that µni converges weakly-* to µ = Leb|U for some
open subset U of V with sufficiently regular boundary. This is equivalent to saying that
Sni = (Ok ∩ (sniU + tni)) t Rni where the remainder satisfies |Rni | = o(ni). The idea for
the last part of the proof is to show that for ni sufficiently large, there is a prime ideal
pni such that Sni fails to be almost uniformly equidistributed modulo pni . This part is
analogous to the proofs in [11,35] but slightly harder since we do not know the shape of U
explicitly. This problem is solved by relating the almost uniform distribution of Sni with
the lattice point discrepancy of U (see 3.6.1). If Sni were almost uniformly distributed
modulo all prime ideals then the maximal discrepancy of U would be strictly less than 1

(Lemma 3.6.3). On the other hand, we show (Lemma 3.6.4) that once dimR V ≥ 2 and
∂U is smooth enough the maximal discrepancy of U must be strictly greater than 1. This
is the only place in the proof where we use the assumption that k 6= Q. We deduce that
there must be a prime pni such that Sni in not uniformly equidistributed modulo pni . This
contradicts the fact that Sni is ni-optimal and concludes the proof.

3.1.6 Notation

Let k be a number field of degree N and let Ok be the ring of integers of k. Numbers
r1, r2 are respectively the number of real and complex places of k. Put d = r1 + r2. The
field k is fixed throughout the chapter and so are the numbers N, r1, r2, d. We identify
V with Rr1 × Cr2 . For v = (v1, . . . , vd) ∈ V define ‖v‖ =

∏r1
i=1 |vi|

∏r1+r2
i=r1+1 |vi|2. We

will write V × = {v ∈ V | ‖v‖ 6= 0} and O×k for the unit group of Ok. Let Nk/Q : k → Q
be the norm of the extension k/Q. The field k embeds in V and ‖x‖ = |Nk/Q(x)| for
every x ∈ k. We write ∆k for the discriminant of k. We use standard big-O and little-o
notation. The base of all logarithms is e. We will write A,A∞,Af for the rings of adeles,
infinite adeles and finite adeles respectively4. We will write Leb for the Lebesgue measure
on V , which is the product of Lebesgue measures on the real and complex factors. For
any measure µ and measurable sets E,F we will write µ|E(F ) = µ(E ∩ F ). We write
BR(x,R) (BC(x,R)) for the ball of radius R around x ∈ R (x ∈ C). We will write
M1(V ) (resp. P1(V )) for the set of finite (resp. probability) measures ν on V which are
absolutely continuous with respect to the Lebesgue measure and such that the Radon–
Nikodym derivative satisfies dν(v)/dLeb(v) ≤ 1 for almost every v ∈ V . For any real
number t we will write [t] = max {z ∈ Z| z ≤ t} . If G is a group we will write Ĝ for the
group of unitary characters of G.

4 The adeles and ideles are present only in the last part of the Appendix, in the proof of Lemma 3.7.2.
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3.1.7 Structure of the chapter

In Section 3.2 we develop estimates on the number of lattice points in Ok satisfying certain
norm inequalities. The goal is to prove Proposition 3.2.5 and deduce Theorem 3.2.1.
These inequalities control the number of points x ∈ Ok for which the product of norms
Nk/Q((x − y)(x − z)) is bounded where y, z are two far-away points in Ok. In 3.2.1
we recall the Aramaki–Ikehara tauberian theorem. In 3.2.2 we prove Proposition 3.2.5
modulo some lemmas relying on diophantine approximation techniques. The sub-section
3.2.3 completes the missing part of the proof using Baker–Wüstholz inequalities on linear
forms in logarithms. In 3.2.4 we explain briefly why Theorem 3.1.7 follows from Theorem
3.2.1.

Section 3.3 is devoted to the proof of Theorem 3.3.1. This is the technical heart of
the chapter where we prove that n-optimal sets can be suitably renormalized. In 3.3.1 we
gather some basic observations on norms of differences in an n-optimal set and in 3.3.2
couple them with the results of Section 3.2 to get the Theorem 3.3.1.

In Section 3.5 we define and study the properties of limit measures. In 3.5.1 we prove
that they have density bounded by 1. In 3.5.2 we define the notion of energy for measures
on V and prove that the limit measures must minimize the energy in the class of prob-
ability measures of density at most 1. Next in 3.5.3 we study the geometric properties
of such energy minimizing measures and describe them in Proposition 3.5.6. The proof
of Proposition 3.5.6 crucially uses the collapsing procedure which is described in detail in
Section 3.4.

In Section 3.6 we show that limit measures cannot exist. In the first part 3.6.1 we recall
the notion of lattice point discrepancy and relate it to limit measures. In 3.6.2 we prove
Theorem 3.1.2.

The Section 3.4 is devoted to the collapsing procedure for measures on V . We mainly
study its effect on the energy.

Finally in the Appendix we provide a proof of a folklore result on density of measures
and likely well known variant of the prime number theorem for number fields.

3.2 Counting problem

The main result of this section is Proposition 3.2.5. It is a key ingredient in the proof of
Theorem 3.3.1 on the shape of n-optimal sets in Ok. As a corollary of Proposition 3.2.5
we get the following counting result that may be of independent interest.

Theorem 3.2.1. Let k be a number field of degree N with d Archimedean places, let B ∈ R
and put κ = min

{
1

2N(N−1) ,
1

4N−1

}
. There exist constants Θ1,Θ2,Θ3,Θ4 dependent only

on k and B such that for every X > 0 and a ∈ Ok such that ‖a‖ ≥ Xe−B we have

|
{
x ∈ Ok| ‖x(a− x)‖ ≤ X2

}
| ≤ Θ1X

1+κ‖a‖−κ+Θ2(logX)2d−2+Θ3 log log log log ‖a‖+Θ4.
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To state Proposition 3.2.5 we need to introduce some notations and auxiliary objects.
For v ∈ V we will write |v|i for the absolute value of i-th coordinate.

Definition 3.2.2. A good fundamental domain of O×k in V × is a set F which is a
finite union of convex closed cones in V × such that F/R× is compact in the projective space
P(V ), intF ∩ λ(intF) = ∅ for every λ ∈ O×k , λ 6= 1 and V × =

⋃
λ∈O×k

λF . For technical
reasons we will also require that the boundary ∂F does not contain any points of Ok.

We have the following elementary observation.

Lemma 3.2.3. Let F be a good fundamental domain of O×k in V ×. Then there exists
a constant C0 > 0 such that every v ∈ F satisfies C−1

0 ‖v‖1/N ≤ |v|i ≤ C0‖v‖1/N for
i = 1, . . . , d.

Proof. The set F/R× is a compact subset of V ×/R×. The functions vR× 7→ |v|i/‖v‖1/N

and vR× 7→ ‖v‖1/N/|v|i are continuous so they are bounded and admit maxima on F/R×.
We can take C0 to be the biggest of the two maxima.

We will often use this lemma in the latter part of the proof and sometimes we shall do
so without additional comment. LetWk be the torsion subgroup of O×k and let ξ1, . . . , ξd−1

be a basis of a maximal torsion free subgroup5 of O×k . Every element λ ∈ O×k is uniquely
expressed as a product λ = wξb11 . . . ξ

bd−1

d−1 with w ∈ Wk and bi ∈ Z for i = 1, . . . , d − 1.

We define an l∞ norm on O×k by ‖λ‖∞ := maxi=1,...,d−1 |bi|. From now on we fix the basis
ξ1, . . . , ξd−1 as well as the associated norm ‖ · ‖∞.

Lemma 3.2.4. There exists a constant α > 0 such that maxi=1,...,d log |λ|i ≥ α‖λ‖∞ for
every λ ∈ O×k .

Proof. Put ‖λ‖0 := maxi=1,...,d log |λ|i. Both ‖ · ‖0, ‖ · ‖∞ extend uniquely to norms on
O×k ⊗Z R ' R

d−1. Since any two norms on Rd−1 are comparable, there exists a constant
α > 0 such that α‖λ‖∞ ≤ ‖λ‖0 ≤ α−1‖λ‖∞ for every λ ∈ O×k .

By definition if we are given a good fundamental domain F then every element y ∈ Ok
except 0 decomposes uniquely as y = xλ for x ∈ F ∩ Ok, λ ∈ O×k . Let us fix a good
fundamental domain F . For a ∈ Ok, a 6= 0 and X > 0 we define the set

S(a,X) =
{

(x, λ) ∈ (F ∩Ok)×O×k | ‖x(a− xλ−1)‖ ≤ X2, ‖x‖ ≤ X
}
.

Proposition 3.2.5. Let k be a number field of degree N with d Archimedean places, let
B ∈ R and put κ = min

{
1

2N(N−1) ,
1

4N−1

}
. Choose a good fundamental domain F . There

exist constants Θ1,Θ2,Θ3,Θ4 dependent only on k,F and B such that for every X > 0

and a ∈ Ok such that ‖a‖ ≥ Xe−B we have
5We recall that the rank of O×k is d− 1 by Dirichlet’s unit theorem.
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1. |S(a,X)| ≤ Θ1X
1+κ‖a‖−κ + Θ2(logX)2d−2 + Θ3 log log log log ‖a‖+ Θ4.

2. Suppose that a ∈ F . For every ε > 0 there exists M such that

|{(x, λ) ∈ S(a,X)| ‖λ‖∞ ≥M}| ≤

εX1+κ‖a‖−κ + Θ2(logX)2d−2 + Θ3 log log log log ‖a‖+ Θ4.

The proof consists of dividing the set S(a,X) in two parts S1, S2 where S1 consists
of pairs (x, λ) where ‖λ‖∞ is "not too big" compared to log ‖a‖ − log ‖x‖ and S2 is the
complement of S1. To estimate the size of S1 we will use the Aramaki–Ikehara Tauberian
theorem (Section 3.2.1) and to control S2 we rely on Baker–Wüsholz’s theorem on linear
forms in logarithms and counting integer points in cylinders (Section 3.2.3). Theorem 3.2.1
is an easy consequence of Proposition 3.2.5.

Proof of Theorem 3.2.1. It is enough to show that |
{
x ∈ Ok| ‖x(a− x)‖ ≤ X2

}
| ≤ 2|S(a,X)|+

2. Note that the set
{
x ∈ Ok| ‖x(a− x)‖ ≤ X2

}
is invariant under the map x 7→ a − x.

The inequality ‖x(a − x)‖ ≤ X2 implies that either ‖x‖ ≤ X or ‖a − x‖ ≤ X. For any
such x different than 0 and a there exists a pair (y, λ) ∈ S(a,X) such that λ−1y = x or
λ−1y = a− x. This proves that |

{
x ∈ Ok| ‖x(a− x)‖ ≤ X2

}
| ≤ 2|S(a,X)|+ 2. Theorem

3.2.1 now follows6 from Proposition 3.2.5 (1).

3.2.1 Aramaki–Ikehara theorem

We will need an extension of the classical Tauberian theorem of Wiener and Ikehara due
to Aramaki [3]. Our goal is Lemma 3.2.8 and it is the only result form this section that
we will be using later.

Theorem 3.2.6. (Aramaki [3]) Let Z(s) =
∑

n∈N
an
ns be a Dirichlet series convergent for

Re(s) sufficiently large. Assume that Z(s) satisfies the following conditions:

1. Z(s) has a meromorphic extension to C with poles on the real line.

2. Z(s) has the first singularity at s = a > 0 and Aj ∈ C for j = 1, . . . , p are such that

Z(s)−
p∑
j=1

Aj
(j − 1)!

(
− d

ds

)j−1 1

s− a

is holomorphic in {s ∈ C | Re(s) > a− δ} for some δ > 0.

3. Z(s) is of polynomial order of growth with respect to Im(s) in all vertical strips,
excluding neighborhoods of the poles.

6With roughly 2 times bigger constants.
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Then, there exists δ0 > 0 such that for all X ≥ 1

∑
n≤X

an =

p∑
j=1

Aj
(j − 1)!

(
d

ds

)j−1(Xs

s

)∣∣∣∣∣
s=a

+O(Xa−δ0).

Corollary 3.2.7. Let (an)n∈N be a sequence of positive real numbers such that the Dirichlet
series Z(s) =

∑∞
n=1

an
ns satisfies the hypotheses of Theorem 3.2.6. Then for every integer

m ≥ 0 and X ≥ 1 we have

1. there exists δm > 0 such that

∑
n≤X

an(log n)m =

p∑
j=1

Aj
(j − 1)!

(
d

ds

)m+j−1(Xs

s

)∣∣∣∣∣
s=a

+O(Xa−δm).

2. If Z(s) has a simple pole at 1 with residue ρ then there exists δ > 0 such that∑
n≤X

an(logX − log n)m = m!ρX +O(X1−δ).

Proof. 1. Note that
∑∞

n=1
an(logn)m

ns =
(
− d
ds

)m
Z(s). The derivative

(
− d
ds

)m
Z(s) is

meromorphic on C with poles on the real line. Cauchy’s integral formula implies
that

(
− d
ds

)m
Z(s) is of polynomial order of growth with respect to Im(s) on vertical

strips away from the poles. The desired formula follows from Aramaki theorem
applied to

(
− d
ds

)m
Z(s).

2. By the previous point we have
∑

n≤X an(log n)m = ρ
(
d
ds

)m (Xs

s

)∣∣∣
s=1

+ O(X1−δm).

We use this identity in the following computation:∑
n≤X

an(logX − log n)m =

=
m∑
l=0

(
m

l

)
(−1)m−l(logX)l

∑
n≤X

an(log n)m−l

=

m∑
l=0

(
m

l

)
(−1)m−l

(
d

ds

)l
Xs−1

∣∣∣∣∣
s=1

ρ

(
d

ds

)m−l (Xs

s

)∣∣∣∣∣
s=1

+O(X1−δ)

=ρ

m∑
l=0

(
m

l

) (
− d

ds

)l
X1−s

∣∣∣∣∣
s=1

(
− d

ds

)m−l (Xs

s

)∣∣∣∣∣
s=1

+O(X1−δ)

=ρ

(
− d

ds

)m(
X1−sX

s

s

)∣∣∣∣
s=1

+O(X1−δ)

=m!ρX +O(X1−δ)

where δ = min {δ0, . . . , δm}.
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The following lemma is a key ingredient in the proof of Proposition 3.2.5.

Lemma 3.2.8. Let ρk be the residue of the Dedekind zeta function ζk(s) at s = 1, let hk
be the class number of k and let wk be the size of the torsion subgroup of O×k . For every
m ≥ 0 there exists δ0 > 0 such that for every X ≥ 1 we have

1. ∑
a∈Ok/O×k

0<N(a)≤X

logN(a)m =
ρk
hk
X(logX)m +O(X1−δ0)

and

2. ∑
a∈Ok/O×k

0<N(a)≤X

(logX − logN(a))m = m!
ρk
hk
X +O(X1−δ0).

Proof. Let χ1, . . . , χhk be the characters of the class group of k, with χ1 = 1. The L-
functions L(s, k, χ) =

∑
a
χi(a)
(Na)s are entire for i ≥ 2 and L(s, k, 1) is the Dedekind zeta

function of k with unique simple pole at s = 1 with residue ρk. All of them are of
polynomial growth on vertical strips. Consider the Dirichlet series

G(s) =
∑

a∈Ok/O×k
0<N(a)

1

N(a)s
=

∑
a

principal

1

(Na)s
=

1

hk

hk∑
i=1

L(s, k, χi).

It has non-negative coefficients and extends to a meromorphic function on C with a simple
pole at s = 1 with residue ρk

hk
. Equalities (1),(2) follow from Corollary 3.2.7 applied to

G(s).

3.2.2 Proof of Proposition 3.2.5

We adopt the following convention. The constants Ci, Bi appearing in the inequalities
successively throughout the proof are dependent on k and B alone. This is usually not
a straightforward observation, but the proof is structured so that it is clear that Ci, Bi
depend only on k,B and the constants Cj , Bj for j < i. As we want to keep the proof
reasonably short we omit the computations of exactly how big Ci, Bi should be in terms
of k and B.

Proof. (1) The problem is invariant under multiplying a by O×k so we may assume, without
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loss on generality, that a ∈ F . Recall that ‖a‖ ≥ Xe−B and

S := S(a,X) =
{

(x, λ) ∈ (F ∩Ok)×O×k |‖x(a− xλ−1)‖ ≤ X2, ‖x‖ ≤ X
}

=
{

(x, λ)| log
∥∥∥λ− x

a

∥∥∥ ≤ 2 logX − log ‖a‖ − log ‖x‖, ‖x‖ ≤ X
}
.

Let α be the constant from Lemma 3.2.4. We define

S1 :=

{
(x, λ) ∈ S|‖λ‖∞ ≤

2

α

(
2 logX −

(
2− 1

2N

)
log ‖x‖ − 1

2N
log ‖a‖

)}

and S2 := S \ S1. We start be estimating the size of S1. We will use the fact that for
non-negative R the number of λ ∈ O×k with ‖λ‖∞ ≤ R is at most O(Rd−1) + |Wk|.

|S1| ≤
∑

x∈F∩Ok
‖x‖≤X

∣∣∣∣{λ ∈ O×k |‖λ‖∞ ≤ 2

α

(
2 logX −

(
2− 1

2N

)
log ‖x‖ − 1

2N
log ‖a‖

)}∣∣∣∣
=

∑
x∈F∩Ok
‖x‖≤X

∣∣∣∣{λ ∈ O×k |‖λ‖∞ ≤ (4N − 1)

Nα

(
4N

4N − 1
logX − 1

4N − 1
log ‖a‖ − log ‖x‖

)}∣∣∣∣

Put log Y = 4N
4N−1 logX − 1

4N−1 log ‖a‖. The summands in the last formula vanish unless
‖x‖ ≤ Y so we get

|S1| ≤
∑

x∈F∩Ok
‖x‖≤Y

∣∣∣∣{λ ∈ O×k |‖λ‖∞ ≤ (4N − 1)

Nα
(log Y − log ‖x‖)

}∣∣∣∣
≤

∑
x∈F∩Ok
‖x‖≤Y

(
C1 (log Y − log ‖x‖)d−1 + C2

)

≤C3Y = C3X
1+ 1

4N−1 ‖a‖−
1

4N−1 .

The last passage uses Lemma 3.2.8. It remains to bound the size of |S2|.

Lemma 3.2.9. Put B1 := α−1((logX − log ‖a‖)N−1 + 2 logC0 + log 2) where C0 is as in
Lemma 3.2.3. Let (x, λ) ∈ S2. Then either ‖λ‖∞ < B1 or there exists i ∈ {1, . . . , d} such
that

log
∣∣∣x
a
− λ
∣∣∣
i
≤ −α‖λ‖∞

2N − 2
−
(

1

N
+

1

2N(N − 1)

)
(log ‖a‖ − log ‖x‖) + log 2. (3.2.1)
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Proof. Assume that ‖λ‖∞ ≥ B1 and that (x, λ) ∈ S2. Let j ∈ {1, . . . , d} be such that
|λ|j is maximal. By Lemma 3.2.4 we have log |λ|j ≥ α‖λ‖∞. Since ‖λ‖∞ ≥ B1 we have
log |λ|j ≥ (logX − log ‖a‖)N−1 + 2 logC0 + log 2. By Lemma 3.2.3 log

∣∣x
a

∣∣
j
≤ (log ‖x‖ −

log ‖a‖)N−1 + 2 logC0 ≤ (logX − log ‖a‖)N−1 + 2 logC0. It follows that |λ|j ≥ 2|xa |j so
we have log |xa − λ|j ≥ log |λ|j − log 2. From this and the fact that (x, λ) ∈ S2 we deduce
that

log |λ|j ≥α‖λ‖∞ ≥
α

2
‖λ‖∞ +

(
2 logX − 4N − 1

2N
log ‖x‖ − 1

2N
log ‖a‖

)
and

log
∣∣∣x
a
− λ
∣∣∣
j
≥α

2
‖λ‖∞ +

(
2 logX − 4N − 1

2N
log ‖x‖ − 1

2N
log ‖a‖

)
− log 2. (3.2.2)

At the same time |λ|j ≥ 1 because ‖λ‖ = 1 so we also have log
∣∣x
a − λ

∣∣ ≥ − log 2. This
observation is valid even if B1 < 0. By definition of S we have

log
∥∥∥x
a
− λ
∥∥∥ ≤ 2 logX − log ‖a‖ − log ‖x‖.

Let f = 1 if j > r1 and f = 0 otherwise. Substracting (3.2.2) we get

r1∑
i=1,i 6=j

log
∣∣∣x
a
− λ
∣∣∣
i
+ 2

d∑
i=r1+1,i 6=j

log
∣∣∣x
a
− λ

∣∣∣
i
+ f log

∣∣∣x
a
− λ

∣∣∣
j
≤

−α
2
‖λ‖∞ −

2N − 1

2N
(log ‖a‖ − log ‖x‖) + log 2.

At least one term in the sum must be smaller or equal to the average. Therefore, for some
i we have

log
∣∣∣x
a
− λ
∣∣∣
i
≤ −α‖λ‖∞

2N − 2
−
(

1

N
+

1

2N(N − 1)

)
(log ‖a‖ − log ‖x‖) +

log 2

N − 1
. (3.2.3)

This is slightly better than what we needed to prove.

Put S0
2 := {(x, λ) ∈ S2|‖λ‖∞ ≤ B1} and for i = 1, . . . , d let

Si2 := {(x, λ) ∈ S2| inequality (3.2.1) holds } . (3.2.4)

Lemma 3.2.10. There is a constant C5 dependent only on k,B such that

|S0
2 | ≤ C5X

1+κ‖a‖−κ.

Proof. The number of λ satisfying ‖λ‖∞ ≤ B1, where B1 is as in Lemma 3.2.9, is at most
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O(1 +B1)d−1 ≤ O(Xκ‖a‖−κ) so there is a constant C4 such that

|S0
2 | ≤ C4X

κ‖a‖−κ
∑

x∈F∩Ok
‖x‖≤X

1 ≤ C5X
1+κ‖a‖−κ.

The last inequality uses Lemma 3.2.8.

We have the following estimate on |Si2| for i = 1, . . . , d.

Lemma 3.2.11. Let κ′ = 1
2N(N−1) . There are constants C6, C7, C8, C9 dependent on k,B

alone such that for i = 1, . . . , d we have

|Si2| ≤ C6X
1+κ′‖a‖−κ′ + C7(logX)2(d−1) + C8 log log log log ‖a‖+ C9.

The proof of the Lemma 3.2.11 relies on Baker–Wüstholz’s bounds on linear forms in
logarithms. We postpone it to the next section. By Lemma 3.2.9 we have S2 =

⋃d
i=0 S

i
2 so

|S| ≤|S1|+
d∑
i=0

|Si2| (3.2.5)

≤C3X
1+ 1

4N−1 ‖a‖−
1

4N−1 + C5X
1+κ‖a‖−κ + dC6X

1+κ′‖a‖−κ′ (3.2.6)

+ dC7(logX)2(d−1) + dC8 log log log log ‖a‖+ dC9. (3.2.7)

As κ = min
{

1
4N−1 , κ

′
}

and X‖a‖−1 ≤ eB we can deduce that

|S| ≤Θ1X
1+κ‖a‖−κ + Θ2(logX)2(d−1) + Θ3 log log log log ‖a‖+ Θ4, (3.2.8)

where Θ1,Θ2,Θ3,Θ4 depend only on k,B. This proves the first part of Proposition 3.2.5.
(2) LetM > 0. Put S[M ] := {(x, λ) ∈ S| ‖λ‖∞ ≥M} and S1[M ] = S1∩S[M ], S2[M ] =

S2 ∩ S[M ], Si2[M ] = Si2 ∩ S[M ]. The proof of this case is reduced to the following lemmas.

Lemma 3.2.12. For every δ > 0 there exists M1 such that for every M ≥M1

S1[M ] ≤ δX1+κ‖a‖−κ.

Proof.

|S1[M ]| ≤∑
x∈F∩Ok
‖x‖≤X

∣∣∣∣{λ ∈ O×k |M ≤ ‖λ‖∞ ≤ 2

α

(
2 logX −

(
2− 1

2N

)
log ‖x‖ − 1

2N
log ‖a‖

)}∣∣∣∣
=

∑
x∈F∩Ok
‖x‖≤X

∣∣∣∣{λ ∈ O×k |M ≤ ‖λ‖∞ ≤ 4N − 1

Nα

(
4N

4N − 1
logX − 1

4N − 1
log ‖a‖ − log ‖x‖

)}∣∣∣∣
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The summands in the last formula vanish unless M ≤ (4N−1)
Nα ( 4N

4N−1 logX− 1
4N−1 log ‖a‖−

log ‖x‖) i.e. log ‖x‖ ≤ 4N
4N−1 logX − 1

4N−1 log ‖a‖− Nα
(4N−1)M . Put log YM = 4N

4N−1 logX −
1

4N−1 log ‖a‖ − MNα
(4N−1) . We get

|S1[M ]| ≤
∑

x∈F∩Ok
‖x‖≤YM

∣∣∣∣{λ ∈ O×k |‖λ‖∞ ≤ 4N − 1

Nα
(log YM − log ‖x‖)

}∣∣∣∣
≤

∑
x∈F∩Ok
‖x‖≤YM

(
C1 (log YM − log ‖x‖)d−1 + C2

)

≤C3YM = C3X
1+ 1

4N−1 ‖a‖−
1

4N−1 e−
MNα
4N−1 .

For the last inequality we have used Lemma 3.2.8. As ‖a‖ ≥ Xe−B we have |S1[M ]| ≤
C21X

1+κ‖a‖−κe−
MNα
4N−1 . Clearly for M ≥ M1 sufficiently large we have C21e

−MNα
4N−1 ≤ δ.

The Lemma is proven.

We have the following analogue of Lemma 3.2.11.

Lemma 3.2.13. Let κ′ = 1
2N(N−1) . For every δ > 0 and i = 1, . . . , d there exists M2 such

that for every M ≥M2

Si2[M ] ≤ δX1+κ′‖a‖−κ′ + C7(logX)2(d−1) + C8 log log log log ‖a‖+ C9.

The proof is postponed to the next section. We will also need the following trivial
observation.

Lemma 3.2.14. There exists M3 such that for every M ≥M3 the set S0
2 [M ] is empty.

We are ready to prove Proposition 3.2.5 (2). Choose M such that S0
2 [M ] is empty,

Lemma 3.2.12 and Lemma 3.2.13 hold with δ = ε
eB(d+1)

. By Lemma 3.2.9 we have:

S[M ] = S1[M ] ∪ S2[M ] = S1[M ] ∪ S0
2 [M ] ∪

d⋃
i=1

Si2[M ]

|S[M ]| ≤ εX1+κ‖a‖−κ + dC7(logX)2(d−1) + dC8 log log log log ‖a‖+ dC9.

This concludes the proof of Proposition 3.2.5.
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3.2.3 Linear forms in logarithms and bound on |Si2|

The aim of this section is to show Lemma 3.2.11 i.e. an upper bound on |Si2| where Si2 is
the set defined by (3.2.4). Next we apply more or less the same argument to prove Lemma
3.2.13. Our main tool is the Baker–Wüstholz inequality on linear forms in logarithms
[4, Theorem 7.1]. We recall the definition of the logarithmic Weil height of an algebraic
number. Let K be a finite extension of Q and let ω ∈ K. Write Σ for the set of valuations
of K.

Definition 3.2.15. The logarithmic Weil height of ω is defined as

h(ω) =
1

[K : Q]

∑
ν∈Σ

aν max {0, log |ω|ν} ,

where aν = 2 if ν is a complex Archimedean place and aν = 1 otherwise. The value of h(ω)

does not depend on the choice of K.

The height enjoys the following sub-additivity property h(xy) ≤ h(x) + h(x) and
h(x/y) ≤ h(x) + h(y). For later use we define h′(ω) = max {h(ω), 1}. This definition
agrees with the one from [4, 7.2] up to a constant depending only on [Q(ω) : Q].

Theorem 3.2.16 ([4, Theorem 7.1]). Let α1, . . . , αn ∈ Q and let logαi be the value of
the main branch of logarithm for i = 1, . . . , n. Let D = [Q(α1, . . . , αn) : Q]. For every
b1, . . . , bn ∈ Z such that

Λ := b1 logα1 + . . . bn logαn 6= 0

we have
log |Λ| ≥ −Cn,Dh′(α1) . . . h′(αn) max

{
1, log max

i=1,...,n
|bi|
}
,

where Cn,D is a constant depending only on n and D.

We will apply this Theorem with αi being equal to the absolute values of units in O×k
or elements of F ∩ Ok. Recall that ξ1, . . . , ξd−1 form a basis of a maximal torsion free
subgroup of O×k so that every element λ ∈ O×k can be written as λ = wξb11 . . . ξ

bd−1

d−1 with w
torsion and ‖λ‖∞ := maxi=1,...,d−1 |bi|.

Corollary 3.2.17. Let x, y ∈ F ∩ Ok, let i ∈ {1, . . . , d} and let λ ∈ O×k . Then

log

∣∣∣∣log

∣∣∣∣xy λ
∣∣∣∣
i

∣∣∣∣ ≥ −C10(1 + log ‖x‖+ log ‖y‖) max {1, log ‖λ‖∞} ,

where C10 depends only on k and the choice of ξ1, . . . , ξd−1.

Proof. As x, y ∈ F ∩ Ok the definition of Weil height with K = k and Lemma 3.2.3
imply that h(x) ≤ 1

N log ‖x‖ + logC0 and similarly for y. We have h′(xy ) ≤ 1 + h(xy ) ≤
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1 + h(x) + h(y) = O(1 + log ‖x‖ + log ‖y‖). Write λ = wξb11 ξ
b2
2 . . . ξ

bd−1

d−1 with w being a
torsion element. Theorem 3.2.16 yields

log

∣∣∣∣log

∣∣∣∣xy λ
∣∣∣∣
i

∣∣∣∣ ≥ −Cd,N !h
′(
x

y
)h′(ξ1) . . . h′(ξd−1) max

{
1, log max

j=1,...,d−1
|bj |
}
.

Since maxj=1,...,d−1 |bj | = ‖λ‖∞ the Corollary follows.

Definition 3.2.18. A cylinder in V ' Rr1 × Cr2 is a set C which is a coordinate-wise
product of closed balls

C =

r1∏
i=1

BR(ti, Ri)×
d∏

i=r1+1

BC(ti, Ri),

with ti ∈ R for i = 1, . . . , r1, ti ∈ C for i = r1 + 1, . . . , d and Ri ∈ R≥0 for i = 1, . . . , d.

Lemma 3.2.19. Let C be a cylinder. Then |C ∩ Ok| ≤ 1 + C11Leb(C) where C11 is a
constant depending only on k.

Proof. First we prove that any cylinder C′ of volume strictly below πr24−r2 cannot contain
more than one point of Ok. Write

C′ =
r1∏
i=1

BR(t′i, R
′
i)×

d∏
i=r1+1

BC(t′i, R
′
i).

If x, y ∈ C′ then |x− y|i ≤ 2Ri for every i = 1, . . . , d. We deduce that

‖x− y‖ ≤
r1∏
i=1

2R1

d∏
i=r1+1

4R2
2 = 4r2π−r2LebC′ < 1.

On the other hand if x, y ∈ Ok are distinct then ‖x − y‖ = |Nk/Q(x − y)| ≥ 1. Hence C′

can contain at most one point from Ok. The lemma follows since we can cover C with at
most 1 + C11Leb(C) cylinders of volume πr24−r2 .

Lemma 3.2.20. For every z ∈ C with |1− z| ≤ 1
2 we have log | log |z|| ≤ log |1− z|+ log 2.

Proof. Let z = 1 − t. Then |t| ≤ 1
2 and log |z| = −

∑∞
n=1

tn

n . Hence | log |z|| ≤ 2|t| and
consequently log | log |z|| ≤ log |1− z|+ log 2.

We can are ready to prove Lemma 3.2.11.

Proof of Lemma 3.2.11. Recall that κ′ := 1
2N(N−1) . For λ ∈ O

×
k define

Si2(λ) :=
{
x ∈ F ∩ Ok|(x, λ) ∈ Si2

}
T i :=

{
λ ∈ O×k |S

i
2(λ) 6= ∅

}
.
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Put β = α
2N−2 . By definition, for every x ∈ Si2(λ) we have

log
∣∣∣x
a
− λ
∣∣∣
i
≤− β‖λ‖∞ −

(
1

N
+ κ′

)
(log ‖a‖ − log ‖x‖) + log 2.

log |x− aλ|i ≤− β‖λ‖∞ + log |a|i −
(

1

N
+ κ′

)
(log ‖a‖ − log ‖x‖) + log 2

≤− β‖λ‖∞ − κ′(log ‖a‖ − logX) +
1

N
logX + log 2 + logC0.

By Lemma 3.2.3 the set {x ∈ F ∩ Ok|‖x‖ ≤ X} is contained in the cylinder

r1∏
j=1

BR(0, C0X
1/N )×

d∏
j=r1+1

BC(0, C0X
1/N ).

Hence, Si2(λ) is contained in the cylinder

Ci(λ) =

r1∏
j=1,j 6=i

BR(0, C0X
1/N )×

d∏
j=r1+1,j 6=i

BC(0, C0X
1/N )×

BK(aiλi, 2C0X
1/N+κ′‖a‖−κ′e−β‖λ‖∞),

where K = R if i = 1, . . . , r1 and K = C otherwise. We have

Leb(Ci(λ)) ≤ C12X
1+κ′‖a‖−κ′e−β‖λ‖∞ if i = 1, . . . , r1

and
Leb(Ci(λ)) ≤ C12X

1+2κ′‖a‖−2κ′e−2β‖λ‖∞ if i = r1 + 1, . . . , r2.

We work under assumption that X ≤ ‖a‖eB so in the second case we have

C12X
1+2κ′‖a‖−2κ′e−2β‖λ‖∞ ≤ eBκ′C12X

1+κ′‖a‖−κ′e−β‖λ‖∞ .

By Lemma 3.2.19 we get

|Si2(λ)| ≤ 1 + C11Leb(Ci(λ)) ≤ 1 + C13X
1+κ′‖a‖−κ′e−β‖λ‖∞ .

Hence

|Si2| ≤
∑
λ∈T i
|Si2(λ)| ≤ |T i|+ C13X

1+κ′‖a‖−κ′
∑
λ∈O×k

e−β‖λ‖∞ (3.2.9)

≤|T i|+ C14X
1+κ′‖a‖−κ′ . (3.2.10)



76CHAPTER 3. ON THE OPTIMAL RATE OF EQUIDISTRIBUTION IN NUMBER FIELDS.

It remains to bound |T i|. First we show that for every λ ∈ T i we have

‖λ‖∞ ≤ C15 log ‖a‖ log log ‖a‖+ C16

(equation (3.2.13). We have

log
∣∣∣x
a
− λ
∣∣∣
i
≤− β‖λ‖∞ −

(
1

N
+ κ′

)
(log ‖a‖ − log ‖x‖) + log 2.

log
∣∣∣1− a

x
λ
∣∣∣
i
≤− β‖λ‖∞ + log |a|i − log |x|i −

(
1

N
+ κ′

)
(log ‖a‖ − log ‖x‖) + log 2

≤− β‖λ‖∞ − κ′(log ‖a‖ − logX) + log 2 + 2 logC0

≤− β‖λ‖∞ + κ′B + log 2 + 2 logC0 =: −β‖λ‖∞ +B2.

Here we define the constant B2 = κ′B + log 2 + 2 logC0 to lighten the notation. It follows
that for ‖λ‖∞ ≥ B2+log 2

β we will have
∣∣1− a

xλ
∣∣
i
≤ 1

2 and by Lemma 3.2.20

log | log
∣∣∣a
x
λ
∣∣∣
i
| ≤ −β‖λ‖∞ +B2 + log 2. (3.2.11)

Put B3 = max
{
B2+log 2

β , 3
}
. For ‖λ‖∞ ≥ B3 Corollary 3.2.17 yields

− C10(1 + log ‖x‖+ log ‖a‖) log ‖λ‖∞ ≤ −β‖λ‖∞ +B2 + log 2. (3.2.12)

The only thing we used is that ‖λ‖∞ ≥ 3 so max {1, log ‖λ‖∞} = log ‖λ‖∞. Using inequal-
ities log ‖x‖ ≤ logX ≤ log ‖a‖+B we get

−C10(1 +B + 2 log ‖a‖) log ‖λ‖∞ ≤ −β‖λ‖∞ +B2 + log 2.

For ‖λ∞‖ ≥ B3 ≥ B2+log 2
β we deduce that

‖λ‖∞ ≤ C15 log ‖a‖ log log ‖a‖+ C16. (3.2.13)

We proved this inequality under the assumption that ‖λ‖∞ ≥ B3 but by making C16 bigger
if necessary this inequality is also valid if ‖λ‖∞ ≤ B3. Inequality 3.2.13 already implies
a non-trivial upper bound of form |T i| = O((log ‖a‖ log log ‖a‖)d−1) + O(1). This is too
weak for our purposes when ‖a‖ is large. To get the desired bound we need to consider
the relations between pairs λ, λ′ ∈ T i with B3 ≤ ‖λ‖∞ ≤ ‖λ′‖∞.

Lemma 3.2.21. Let λ, λ′ ∈ T i with B3 ≤ ‖λ‖∞ ≤ ‖λ′‖∞. Then

β‖λ‖∞ −B2 − 2 log 2 ≤ C10(1 + 2 logX) log 2‖λ′‖∞.

Proof. Let x, x′ ∈ F ∩ Ok be such that (x, λ), (x′, λ′) ∈ Si2. Inequality (3.2.11) yields
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| log |axλ|i| ≤ 2e−β‖λ‖∞+B2 and the same for λ′. Taking the difference we get∣∣∣∣log

∣∣∣∣x′x λλ′−1

∣∣∣∣
i

∣∣∣∣ =
∣∣∣log

∣∣∣a
x
λ
∣∣∣
i
− log

∣∣∣ a
x′
λ′
∣∣∣
i

∣∣∣ ≤ 2eB2(e−β‖λ‖∞ + e−β‖λ
′‖∞) ≤ 4e−β‖λ‖∞+B2 .

Using Corollary 3.2.17 we get

−C10(1 + 2 logX) log 2‖λ′‖∞ ≤− C10(1 + log ‖x‖+ log ‖x′‖) max
{

1, log ‖λλ′−1‖∞
}

≤− β‖λ‖∞ +B2 + 2 log 2.

Therefore β‖λ‖∞ −B2 − 2 log 2 ≤ C10(1 + 2 logX) log 2‖λ′‖∞.

Let B4 ≥ max {9370, B3} be a constant dependent only on C10, B3 and B2 such that
whenever ‖λ‖∞ ≥ B4(logX)2 +B4 we have β‖λ‖∞−B2−2 log 2 ≥ C10(1+2 logX)‖λ‖1/2∞ .

We divide the set T i into two parts: a "tame" part T it :=
{
λ ∈ T i|‖λ‖∞ ≤ B4(logX)2 +B4

}
and a "wild" part T iw := T i \ T it . We have a simple estimate for |T it |

|T it | ≤ C18(logX)2(d−1) + C18,5. (3.2.14)

Let us list the elements of T iw as λ1, . . . , λL in such a way that ‖λl‖∞ ≤ ‖λl+1‖∞ for
l = 1, . . . , L− 1. Note that L = |T iw|. By Lemma 3.2.21 and choice of B4 we have

C10(1 + 2 logX)‖λl‖1/2∞ ≤ β‖λl‖∞ −B2 − 2 log 2 ≤ C10(1 + 2 logX) log 2‖λl+1‖∞.

Therefore ‖λl‖
1/2
∞ ≤ log 2‖λl+1‖∞ for l = 1, . . . , L − 1. Since ‖λl‖∞ ≥ 9370 we have

(log 2‖λl‖∞)2 ≤ ‖λl‖
1/2
∞ so

(log 2‖λl‖∞)2 ≤ log 2‖λl+1‖∞.

Now an elementary induction shows that log 2‖λL‖∞ ≥ (log 2×9370)2L−1
> e2L . Together

with (3.2.13) this yields

ee
2L

= ee
2|T

i
w|
≤ 2‖λL‖∞ ≤ 2C15 log ‖a‖ log log ‖a‖+ 2C16

|T iw| ≤ C19 log log log log ‖a‖+ C19,5. (3.2.15)

By (3.2.14) and (3.2.15) we get

|T i| ≤ C18(logX)2(d−1) + C19 log log log log ‖a‖+ C20 (3.2.16)

where7 C20 = C18,5 + C19,5. Together with (3.2.9) this gives Lemma 3.2.11.

7The non-integer indexes are a result of a correction of the proof that required introduction of additional
constants.
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The proof of Lemma 3.2.13 is very similar.

Proof of Lemma 3.2.13. We adopt notation from the proof of Lemma 3.2.11. By the same
reasoning as in the proof of Lemma 3.2.11 we get

|Si2[M ]| ≤
∑
λ∈T i
‖λ‖∞≥M

|Si2(λ)| ≤ |T i|+ C13X
1+κ′‖a‖−κ′

∑
λ∈Ok
‖λ‖∞≥M

e−β‖λ‖∞ . (3.2.17)

For M2 sufficiently large we have ∑
λ∈Ok

‖λ‖∞≥M2

e−β‖λ‖∞ ≤ δC−1
13

so (3.2.17) yields |Si2[M2]| ≤ δX1+κ′‖a‖−κ′ + |T i|. By inequality (3.2.16) we get

|Si2[M2]| ≤ δX1+κ′‖a‖−κ′ + C18(logX)2(d−1) + C19 log log log log ‖a‖+ C20.

The Lemma is proven.

3.2.4 Average number of solutions of unit equations

For completeness we explain how Theorem 3.1.7 follows from Theorem 3.2.1.

Proof of Theorem 3.1.7. Let a = α3. Assume that α1λ1 +α2λ2 = α3 for some λ1, λ2 ∈ O×k
and α1, α2 ∈ Ok. If we put x = α1λ1 then α2λ2 = a− x and ‖x(a− x)‖ = ‖α1α2‖. Hence,
the sum ∑

α1,α2∈Ok/O×k
‖α1α2‖≤X2

ν(α1, α2, α3)

counts the number of x ∈ Ok such that ‖x(a − x)‖ ≤ X2. This is the same quantity we
bound in Theorem 3.2.1.

3.3 Geometry of n-optimal sets.

As before let k be a number field of degree N and let d be the number of Archimedean
places of k. Recall that V ' Rr1 × Cr2 where r1, r2 are the numbers of real and complex
Archimedean places of k. The aim of this Section is to show the following theorem.

Theorem 3.3.1. There exists a positive constant Θ5 dependent only on k with the following
property. For every n-optimal set S ⊂ Ok there exists a cylinder (see Definition 3.2.18) C
of volume Θ5n such that S ⊂ C.
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We prove it in Section 3.3.2. As an easy consequence we get:

Corollary 3.3.2. There exist a positive constant A3 depending only on k such that the
cylinder Ω = BR(0, A3)r1 ×BC(0, A3)r2 has the following property. Let S be an n-optimal
set in Ok. Then there exists t, s ∈ V with ‖s‖ = n|∆k|1/2 such that s−1(S − t) ⊂ Ω.

Proof. Let C the cylinder from Theorem 3.3.1. Let t be the center of C. We have

S − t ⊂ C − t =

r1∏
i=1

BR(0, vi)×
d∏

i=r1+1

BC(0, vi),

with
∏r1
i=1(2vi)

∏d
i=r1+1(πv2

i ) = Leb(C) ≤ Θ5n. Let A3 = (Θ5|∆k|−1/22−r1π−r2/2)1/N . Put
s = (s1, . . . , sd) where si = vi(n|∆k|1/22r1πr2/2Leb(C)−1)1/N . Then ‖s‖ = n|∆k|1/2 and
s−1(C − t) ⊂ Ω because |s−1

i vi| = (Leb(C)n−1|∆k|−1/22−r1π−r2/2)1/N ≤ A3.

3.3.1 Generalities on n-optimal sets

Recall that for a finite subset F ⊂ Ok we define Vol(F ) =
∏
x 6=y∈F (x − y). For m ∈ N,

m > 0 let m!k := m!Ok be the generalized factorial in Ok in the sense of Bhargava [5] (see
subsection 3.1.2) . We remark that m!k is an ideal of Ok, not a number. We have shown
in [11, Proposition 2.6] that a set S ⊂ Ok of size n+ 1 is n-optimal if and only if

OkVol(S) =
n∏

m=0

m!2k. (3.3.1)

Also by [11, Proposition 2.6] for every subset F ⊂ Ok of size n+ 1 we have

‖Vol(F ))‖ = Nk/Q(OkVol(F )) ≥
n∏

m=0

|Nk/Q(m!2k)|. (3.3.2)

Lemma 3.3.3. Let S ⊂ Ok be an n-optimal set. Then for every x ∈ S we have∑
y∈S\{x}

log ‖x− y‖ ≤ logNk/Q(n!k) ≤ n log n+A1n,

where A1 ≥ 1 is a 8 constant depending only on k.

Proof. By (3.3.2) we have

log ‖Vol(S)‖ − 2
∑

y∈S\{x}

log ‖x− y‖ = log ‖Vol(S \ {x})‖ ≥
n−1∑
m=0

logNk/Q(m!k)
2.

8 We require A1 ≥ 1 only for technical reasons that will become apparent in the proof of Lemma 3.3.7.
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Using formula (3.3.1) we get
∑

y∈S\{x} log ‖x− y‖ ≤ logNk/Q(n!k). Second equality in the
lemma is [28, Theorem 1.2.4].

We immediately get:

Corollary 3.3.4. Let S be an n-optimal set. Then for every x 6= y ∈ S we have log ‖x−
y‖ ≤ n log n+A1n.

Remark 3.3.5. A posteriori we know that the bound in the above Corollary is very far off
but it will be used in the proofs to ensure that the quadruple-logarithmic error term from
Proposition 3.2.5 is negligible.

3.3.2 Proof of Theorem 3.3.1

As before, write N = [k : Q], d for the number of Archimedean places of k and κ =

min
{

1
2N(N−1) ,

1
4N−1

}
. Our first goal is to give an upper bound on the norms of differences

of pairs of elements in hypothetical n-optimal sets. We start with the following lemma,
giving a non-trivial lower bound on the product of norms of elements in two translates
F − x, F − y of a set F ⊂ Ok.

Lemma 3.3.6. Let B ∈ R, let F be a finite subset of Ok and let x, y ∈ F be such that
log |F | ≤ log ‖x− y‖+B. Then for every 0 < logX ≤ log ‖x− y‖+B we have

∑
z∈F\{x,y}

(log ‖(x− z)(y − z)‖) ≥ 2|F | logX − 2Θ1‖x− y‖−κ

1 + κ
(X1+κ − 1)

− 2Θ2

2d− 1
(logX)2d−1 − 2Θ3 log log log log ‖x− y‖ logX − 2Θ4 logX.

The constants Θi depend only on k and B.

Proof. By translating F if necessary we can assume that x = 0. Put a = y. Then the
leftmost sum takes the form ∑

z∈F\{0,a}

log ‖z(a− z)‖.

For t ≥ 1 let E(a, t) =
{
z ∈ Ok \ {0, a} |‖z(a− z)‖ ≤ t2

}
. We obviously have∑

z∈F\{0,a}

log ‖z(a− z)‖ ≥
∑

z∈F\{0,a}

min
{

log ‖z(a− z)‖, logX2
}
.
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Hence

∑
z∈F\{0,a}

min
{

log ‖z(a− z)‖, logX2
}

=
∑

z∈F\{0,a}

(
2 logX −

∫ X2

‖z(a−z)‖

dt

t

)

≥2|F | logX −
∑

z∈F\{0,a}

∫ X2

1
1E(a,t1/2)(z)

dt

t

=2|F | logX − 2

∫ X

1
|E(a, t) ∩ F |dt

t

≥2|F | logX − 2

∫ X

1
|E(a, t)|dt

t

≥2|F | logX − 2

∫ X

1

(
Θ1t

1+κ‖a‖−κ + Θ2(log t)2d−2

+Θ3 log log log log ‖a‖+ Θ4)
dt

t
.

The last inequality is an application of Theorem 3.2.1. Integrating the last expression we
get the desired inequality.

Lemma 3.3.7. There exists a constant Θ7, dependent only on k, such that for every n
sufficiently large and every n-optimal set S we have log ‖x − y‖ ≤ log n + Θ7 for every
x 6= y ∈ S.

Proof. Let A1 be the constant from Lemma 3.3.3, we recall that A1 ≥ 1 and it depends
only on k. Let x 6= y ∈ S. Either log ‖x− y‖ ≤ log n+A1 or we can we can apply Lemma
3.3.6 with F = S, logX = log n+ 2A1 and B = A1. In the latter case we get

∑
z∈S\{x,y}

(log ‖z − x‖+ log ‖z − y‖) ≥ 2(n+ 1)(log n+ 2A1)− 2Θ1‖x− y‖−κ

1 + κ
(Xκ+1 − 1)

− 2Θ2

2d− 1
(logX)2d−1 − 2Θ3 log log log log ‖x− y‖ logX − 2Θ4 logX,

where the constants depend only on k. By Corollary 3.3.4 we have log ‖x− y‖ ≤ n log n+

A1n so 2Θ3 log log log log ‖x − y‖ logX = o(n). The same holds for other error terms.
Hence, for n sufficiently large we have

∑
z∈S\{x,y}

(log ‖z − x‖+ log ‖z − y‖) ≥2n(log n+ 2A1)− 2Θ1‖x− y‖−κ

1 + κ
(ne2A1)κ+1 − o(n)

≥2n log n+ 3nA1 −
2Θ1‖x− y‖−κ

1 + κ
(ne2A1)κ+1.

By Lemma 3.3.3 we get

2n log n+ 2A1n ≥
∑

z∈S\{x,y}

(log ‖z − x‖+ log ‖z − y‖) + 2 log ‖x− y‖.



82CHAPTER 3. ON THE OPTIMAL RATE OF EQUIDISTRIBUTION IN NUMBER FIELDS.

Of course log ‖x− y‖ ≥ 0 so we deduce that

2n log n+ 2A1n ≥2n log n+ 3nA1 −
2Θ1‖x− y‖−κ

1 + κ
(ne2A1)κ+1

2Θ1‖x− y‖−κ

1 + κ
(ne2A1)κ+1 ≥A1n

Θ6 :=
2Θ1e

2A1+2κA1

A1(1 + κ)
≥‖x− y‖κn−κ

log Θ6 ≥κ(log ‖x− y‖ − log n).

Hence, for n sufficiently large log ‖x−y‖ ≤ log n+κ−1 log Θ6 where Θ6 depends only on k.
Lemma holds with Θ7 = max

{
κ−1 log Θ6, A1

}
. The constant Θ7 depends only on k.

The second ingredient in the proof of Theorem 3.3.1 is the following weaker version of
Theorem 3.3.1.

Lemma 3.3.8. For every δ > 0 there exists a constant Θ8 = Θ8(δ) such that for every
n sufficiently large and every n-optimal set S there exists a cylinder C1 of volume at most
nΘ8 such that |S ∩ C1| ≥ (1− δ)n.

Proof. We shall crucially use Proposition 3.2.5 (2) together with Lemma 3.3.7. In order
to use Proposition 3.2.5 (2) we fix a good fundamental domain F of O×k in V ×, a basis
ξ1, . . . , ξd−1 of a maximal torsion free subgroup of O×k and the associated norm ‖ · ‖∞ on
O×k . Put A2 = γk − γQ − 2. First note that by the volume formula [11, Corollary 5.2] for
large enough n we have

log(Vol(S)) =
∑

x 6=y∈S
log ‖x−y‖ = n2 log n+n2(γk−γQ−

3

2
)+o(n2) ≥ (n2 +n)(log n+A2).

Together with Lemma 3.3.7 this implies that there exists at least one pair x, y ∈ S such
that log n+A2 ≤ log ‖x− y‖ ≤ log n+ Θ7. Let us fix a pair x0, y0 with ‖x0− y0‖ maximal
among all pairs in S. By translating S if necessary we may assume that x0 = 0 and put
a = y0. Let X = ‖a‖. Then log n + A2 ≤ logX ≤ log n + Θ7. The question is invariant
under multiplying S by elements of O×k so we may assume without loss of generality that
a ∈ F . For every z ∈ S we have ‖z‖ ≤ X and ‖a− z‖ ≤ X so ‖z(a− z)‖ ≤ X2. Therefore,
with notation from Proposition 3.2.5 we have

S \ {0} ⊂
{
xλ−1|(x, λ) ∈ S(a,X)

}
. (3.3.3)

Let M > 0 be such that Proposition 3.2.5 (2) holds with ε = δ
2e
−Θ7 and B = 0. The
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constant M depends only on k and δ. For n sufficiently large we have

|S(a,X)[M ]| ≤δe
−Θ7

2
X1+κ‖a‖−κ + Θ2(logX)2d−2 + Θ3 log log log log ‖a‖+ Θ4

≤δ
2
n+ o(n) ≤ δn.

Let S ′ := S \
{

(xλ−1|(x, λ) ∈ S(a,X)[M ]
}
. By the inequality above S ′ contains at least

(1−δ)n elements. To prove the lemma it is enough to show that S ′ is contained in a cylinder
of volume at most nΘ8. By (3.3.3) we have S ′ ⊂

{
(xλ−1|(x, λ) ∈ S(a,X) \ S(a,X)[M ]

}
∪

{0} .
S(a, x) \ S(a,X)[M ] ⊂ {(x, λ)|x ∈ F ∩ Ok, ‖x‖ ≤ X, ‖λ‖∞ ≤M} .

By Lemma 3.2.3 we have a constant C0 > 0 such that C−1
0 ‖x‖1/N ≤ |x|i ≤ C0‖x‖1/N for

every x ∈ F an every i = 1, . . . , d. Let C21 = max‖λ‖∞≤M maxi=1,...,d |λ−1|i. Therefore,
for every (x, λ) ∈ S(a, x) \ S(a,X)[M ] and i = 1, . . . , d we have |xλ−1|i ≤ C21C0‖x‖1/N ≤
C21C0X

1/N ≤ C21C0e
Θ7/Nn1/N . It follows that S ′ is contained in the cylinder

C1 = BR(0, C21C0e
Θ7/Nn1/N )r1 ×BC(0, C21C0e

Θ7/Nn1/N )r2 .

The volume of C1 is n2r1πr2eΘ7CN0 C
N
21 =: nΘ8 where Θ8 depends only on k and δ.

We are ready to prove Theorem 3.3.1

Proof of Theorem 3.3.1. Assume that n is sufficiently large so that Lemma 3.3.7 holds and
Lemma 3.3.8 holds with δ = 1/100 and Θ8 = Θ8(1/100). Also for technical reasons we
require n ≥ 4d,Θ8 ≥ 1 and the constant C11 from Lemma satisfies C11 ≥ 1. This is not a
problem since they can be always replaced by a bigger constants as long as these constants
depend only on k. Let S be an n-optimal set and let C1 be a cylinder of volume nΘ8

containing at least 99n
100 points of S. Write

C1 =

r1∏
i=1

BR(ti, Ri)×
d∏

i=r1+1

BC(ti, Ri)

with t = (t1, . . . , td) ∈ V . Note that 2r1πr2
∏r1
i=1Ri

∏d
i=r1+1R

2
i = nΘ8. For a posi-

tive constant A > 0 (how big will be precised later) we put CA1 =
∏r1
i=1BR(ti, ARi) ×∏d

i=r1+1BC(ti, ARi). The idea of the proof is to show that for large A (how large depends
only on k) and every y 6∈ CA1 the intersection C1 ∩

{
x ∈ V |‖x− y‖ ≤ neΘ7

}
is too small to

contain 99% of S. Then from Lemma 3.3.7 and Lemma 3.3.8 we can deduce that y 6∈ S
and consequently that S ⊂ CA1 .

Let C11 be the constant from Lemma 3.2.19 and put

A = max
{

2, eΘ7(2N)N2r1πr2ΘN−1
8 CN11 + 1

}
.
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Suppose that y ∈ S \ CA1 . Since y 6∈ CA1 for every x ∈ C1 there exists a coordinate
i ∈ {1, . . . , d} such that |x − y|i ≥ (A − 1)Ri. Put ι = 1 if i ∈ {1, . . . , r1} and ι = 2

otherwise. If additionally ‖x− y‖ ≤ neΘ7 , then we have

r1∏
j=1,j 6=i

|x− y|j
d∏

j=r1+1,j 6=i
|x− y|2j ≤neΘ7R−ιi (A− 1)−1 (3.3.4)

≤(A− 1)−1 e
Θ72r1πr2

Θ8

r1∏
j=1,j 6=i

Rj

d∏
j=r1+1,j 6=i

R2
j (3.3.5)

≤
r1∏

j=1,j 6=i

Rj
2NΘ8C11

d∏
j=r1+1,j 6=i

(
Rj

2NΘ8C11

)2

. (3.3.6)

Hence, there exists j 6= i such that |x− y|j ≤ Rj
2NΘ8C11

. Define

C1(j) =

r1∏
l=1,l 6=j

BR(tl, Rl)×
d∏

l=r1+1,l 6=j
BC(tl, Rl)×Bkνj

(
tj ,

Rj
2NΘ8C11

)

and note that Leb(C1(j)) = nΘ8

(2NΘ8C11)
[kνj :R] ≤ n

2NC11
. From inequalities (3.3.4-3.3.6) we

deduce that {
x ∈ C1| ‖x− y‖ ≤ neΘ7

}
⊂

d⋃
l=1

C1(l). (3.3.7)

By Lemma 3.2.19 we get

|
{
x ∈ C1 ∩ Ok| ‖x− y‖ ≤ neΘ7

}
| ≤ d+ C11

dn

2NC11
≤ d+

n

2
≤ 3n

4
. (3.3.8)

Lemma 3.3.7 yields S ⊂
{
x ∈ Ok| ‖x− y‖ ≤ neΘ7

}
so we have

S ∩ C1 ⊂
{
x ∈ C1 ∩ Ok|‖x− y‖ ≤ neΘ7

}
.

In particular |
{
x ∈ C1 ∩ Ok| ‖x− y‖ ≤ neΘ7

}
| ≥ |S ∩C1| ≥ 99

100n. This contradicts (3.3.8).
Thereby we showed that S \ CA1 is empty, that is S ⊂ CA1 . As A depends only on k, the
volume of CA1 is nΘ5 where Θ5 = Θ8A

N depends only on k. Theorem 3.3.1 is proven.

3.4 Collapsing of measures

Write M1(V ), (P1(V )) for the set of finite measures (resp. probability measures) ν on
V which are absolutely continuous with respect to the Lebesgue measure such that the
density dν/dLeb is almost everywhere less or equal to 1. For i ∈ {1, . . . , d} and vi ∈ R
or C (depending on whether i corresponds to real or complex place) we will define an
operation called collapsing ci,vi : P1(V ) → P1(V ) that has the following property: either
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I(ci,vi(ν)) < I(ν) or ν is of a very specific form. It is a version of the Steiner symmetrization
([26]), but for measures inM1(V ) instead of subsets of V . We shall make it precise in a
moment. The operation of collapsing is the continuous analogue of the collapsing operation
on subsets of Ok used in [35] and [11] where it was defined for k quadratic imaginary. We
remark that for number fields k other than quadratic imaginary ones there is no reasonable
discrete collapsing procedure for subsets of Ok. In this section we study the effect of
collapsing on the energy of measures. Our goal is Corollary 3.4.8 which says that the
measures ν in P1(V ) that minimize the energy I(ν) are, up to translation, invariant under
all collapsing operations.

Definition 3.4.1. Let i ∈ {1, . . . , d} and vi ∈ R if i ∈ {1, . . . , r1} or vi ∈ C otherwise.
Let ν ∈M1(V ) be a measure with density f ∈ L1(V ). For x = (x1, . . . , xd) ∈ V define

Fi(x) :=

1
2

∫
R f(x1, . . . , xi−1, t, xi+1, . . . , xd)dt if i ∈ {1, . . . , r1}

1√
π

(∫
C f(x1, . . . , xi−1, t, xi+1, . . . , xd)dt

)1/2 if i ∈ {r1 + 1, . . . , d} .
(3.4.1)

Let h : V → R≥0 be given by

hi =


∫
·· ·
∫
1BR(vi,Fi(t1,...,vi,...,td))dt1 . . . d̂ti . . . dtd if i ∈ {1, . . . , r1}∫

·· ·
∫
1BC(vi,Fi(t1,...,vi,...,td))dt1 . . . d̂ti . . . dtd if i ∈ {r1 + 1, . . . , d} .

(3.4.2)

The collapsed measure ci,vi(ν) is given by the density hi. By construction ci,vi(ν) is sym-
metric with respect to the subspace V i := {v = (v1, . . . , vd) ∈ V |vi = 0} .

Collapsing is closely related the Steiner symmetrization in the following way. If V = Rd,
then for any measurable subset E ⊂ V we have ci,0(Leb|E) = Leb|Sti(E) where Sti(E) is
the Steiner symmetrization of E with respect to the hyperplane V i (c.f. [26]). For further
use we introduce a symmetric bilinear form onM1(V )×M1(V )

〈ν, ν ′〉 =

∫
V

∫
V

log ‖x− y‖dν(x)dν ′(y). (3.4.3)

The integral converges as soon as ν, ν ′ are finite signed measures with bounded density.
The energy can be expressed as I(ν) = 〈ν, ν〉. We will also need a modified version of the
bilinear form 〈·, ·〉 defined as

〈ν1, ν2〉δ :=

∫
V

∫
V

1

2
log(‖x− y‖2 + δ2)dν1(x)dν2(y) for δ ≥ 0.

Note that 〈ν1, ν2〉0 = 〈ν1, ν2〉. The following result is intuitively obvious but the proof is
quite involved.

Lemma 3.4.2. Let ν1, ν2 ∈ M1(R) and x ∈ R and let δ ≥ 0. Then 〈c1,x(ν1), c1,x(ν2)〉δ ≤
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〈ν1, ν2〉δ and equality holds if and only if there exists y ∈ R such that ν1, ν2 are restrictions
of the Lebesgue measure to some intervals centered in y.

Proof. Let m1 = ν1(R),m2 = ν2(R). Throughout the proof we will write Ei = [−mi
2 ,

mi
2 ].

We will prove that the minimum of 〈µ1, µ2〉δ with µi ∈M1(R) subject to condition µi(R) =

mi for i = 1, 2 is realized if and only if µ1, µ2 are Lebesgue measures restricted to translates
E1 + y,E2 + y for some y ∈ R. This is clearly equivalent to the lemma. The proof is
actually easier for δ > 0 and we will first prove it for δ > 0 and then deduce the general
statement. By abuse of notation for every pair of measurable sets I1, I2 ⊂ R we will write
〈I1, I2〉δ := 〈Leb|I1 ,Leb|I2〉δ.

Step 1. We will introduce a shifting/gluing operation G on finite sums of closed
intervals I1, I2 that strictly reduces the value of 〈I1, I2〉δ, preserves the measures of I1, I2

and can be applied until I1, I2 are two intervals centered in the same point. Write (I ′1, I
′
2) =

G(I1, I2) for the result of the operation G. We will show that for every δ ≥ 0

〈I1, I2〉 − 〈I ′1, I ′2〉 ≥ 〈I1, I2〉δ − 〈I ′1, I ′2〉δ > 0. (3.4.4)

We will show also that after finitely many applications G produces two concentric
intervals. This step proves the lemma for pairs Lebesgue measures restricted to finite
unions of intervals.

Before defining G we need to set up some notation. Let Ii = C1
i t . . . t C

ni
i be the

decomposition of Ii into connected components for i = 1, 2. We assume that C1
i , . . . , C

ni
i

are listed from the leftmost to the rightmost connected component. Let Cji = [aji , b
j
i ] and

put cji = (aji + bji )/2. First we look at the rightmost components Cn1
1 , Cn2

2 . Choose i ∈ 1, 2

such that cnii = max {cn1
1 , cn2

2 } . Consider two cases: first when cn1
1 6= cn2

2 and the second
when cn1

1 = cn2
2 and n1 > 1 or n2 > 1. Case 1. In the first case operation G replaces Cnii

with the translate Cnii − κ where κ = min
{
anii − b

ni−1
i , |cn1

1 − c
n2
2 |
}
. In this case either

G reduces the total number of connected components by 1 or makes Cn1
1 , Cn2

2 concentric.
We estimate 〈I1, I2〉δ − 〈I ′1, I ′2〉δ. Without loss on generality assume i = 2. We have

∆1,δ :=〈I1, I2〉δ − 〈I ′1, I ′2〉δ (3.4.5)

=
1

2

n1∑
l=1

∫
Cl1

(∫
C
n2
2

log(|x− y|2 + δ2)− log(|x− κ− y|2 + δ2)dx

)
dy. (3.4.6)

We know that 0 < κ ≤ cn2
2 − c

n1
1 ≤ cn2

2 − cl1 for l = 1, . . . , n1. By Lemma 3.4.3 ∆1,0 ≥
∆1,δ > 0. Case 2. Put κ = min

{
an1

1 − b
n1−1
1 , an2

2 − b
n2−1
2

}
with the convention that

b−1
i = −∞. Number κ is finite because we assume that n1 > 1 or n2 > 1. Operation
G replaces Cn1

1 , Cn2
1 with the translates Cn1

1 − κ,C
n2
2 − κ respectively. In this case the
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operation G reduces the total number of connected components by at least 1. We have

∆2,δ :=〈I1, I2〉δ − 〈I ′1, I ′2〉δ

=
1

2

n1−1∑
l=1

∫
Cl1

(∫
C
n2
2

log(|x− y|2 + δ2)− log(|x− κ− y|2 + δ2)dx

)
dy

+
1

2

n2−1∑
l=1

∫
Cl2

(∫
C
n1
1

log(|x− y|2 + δ2)− log(|x− κ− y|2 + δ2)dx

)
dy.

By Lemma 3.4.3 ∆2,0 ≥ ∆2,δ > 0. We have shown that G reduces the value of 〈I1, I2〉 and
that the reduction is the highest if δ = 0. We can apply G unless n1 = n2 = 1 and I1 and I2

are concentric. If a single application of G does not reduce the total number of connected
components then we were in the first case and the rightmost connected components of
I ′1, I

′
2 are concentric. This means that if we apply G to I ′1, I ′2 we will be in the second case

so this iteration of G will reduce the total number of connected components by at least 1.
This proves that G stops after at most 2(n1 + n2) iterations and then we are left with two
concentric intervals.

Step 2. We show that there exist bounded measurable sets Ji with Leb(Ji) = mi for
i = 1, 2 such that 〈J1, J2〉δ ≤ 〈ν1, ν2〉δ and the following holds: if we have equality, then
either ν1 = Leb|J1 and ν2 = Leb|J2 or one of J1 or J2 is disconnected9. Moreover if δ > 0

then J1, J2 are finite unions of closed intervals and equality holds if and only if ν1 = Leb|J1

and ν2 = Leb|J2 .

Let Pδ(x) := 1
2

∫
R log((x−y)2+δ2)dν1(y). Since ν1 ∈M1(R) this function is continuous

and bounded from below so there exists an α such that Leb(P−1
δ ((−∞, α))) ≤ m2 ≤

Leb(P−1
δ ((−∞, α])). Let J2 be any measurable subset of measure m2 such that

S1 := P−1
δ ((−∞, α)) ⊂ J2 ⊂ P−1

δ ((−∞, α]) := S2.

If δ > 0 then Pδ is analytic so Leb(P−1
δ ((−∞, α)) = Leb(P−1

δ ((−∞, α]). In that case we
choose J2 = P−1

δ ((−∞, α]). It is a finite sum of closed intervals because Pσ is analytic.
We go back to the general case and argue that 〈ν1,Leb|J2〉 ≤ 〈ν1, ν2〉 with an equality if
and only if suppν2 ⊂ P−1

δ ((−∞, α]) and ν2|S1 = Leb|S1 . Indeed

〈ν1, ν2〉δ =

∫
S1

Pδ(x)dν2(x) +

∫
S2\S1

Pδ(x)dν2(x) +

∫
R\S2

Pδ(x)dν2(x)

=

∫
S1

Pδ(x)dν2(x) + αν2(S2 \ S1) +

∫
R\S2

Pδ(x)dν2(x)

≤
∫
S1

Pδ(x)dx+ α(m2 − Leb(S1)) = 〈ν1,Leb|J2〉δ.

9This technical dychotomy is needed to prove the "if and only if" part of the lemma.
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The equality holds if and only if ν2(R\S2) = 0 and the mass of ν2 is as concentrated on S1

as possible i.e. ν2|S1 = Leb|S1 . If the equality holds and ν2 is not a restriction of Lebesgue
measure to S1 or S2 then we can choose J2 to be disconnected. Thus we can replace ν2

with ν ′2 = Leb|J2 in such a way that either 〈ν1,Leb|J2〉 < 〈ν1, ν2〉, or ν2 = Leb|J2 for some
closed interval J2, or 〈ν1,Leb|J2〉 = 〈ν1, ν2〉 and J2 is disconnected. Next, we perform the
same trick for ν ′2 to replace ν1 with Leb|J1 for some measurable set J1 of measure m1. If
ν2 = Leb|J2 then the symmetric argument provides J1 such that 〈Leb|J1 ,Leb|J2〉 < 〈ν1, ν2〉
or 〈Leb|J1 ,Leb|J2〉 = 〈ν1, ν2〉 and J1 is disconnected or ν1 = Leb|J1 . If δ > 0 we chose
J1, J2 as finite sums of closed intervals and the equality 〈ν1, ν2〉δ = 〈J1, J2〉δ holds if and
only if νi = Leb|Ji for i = 1, 2. This proves Step 2.

Step 3. We prove the lemma for δ > 0.
Let Ei := [−mi

2 ,
mi
2 ]. If δ > 0 then by Step 2 there are finite unions of closed intervals

J1, J2 such that 〈ν1, ν2〉δ ≥ 〈I1, I2〉δ with an equality if and only if νi = Leb|Ji for i = 1, 2.

By Step 1 〈J1, J2〉δ ≥ 〈E1, E2〉δ with an equality if and only if J1, J2 are concentric intervals.
Those two observations put together prove the lemma in the case δ > 0.

Step 4. Let Ei be as in Step 3, let δ > 0 and let I1, I2 be finite unions of intervals of
total lengths m1,m2 respectively. We show that 〈I1, I2〉 − 〈E1, E2〉 ≥ 〈I1, I2〉δ − 〈E1, E2〉δ.

Letm be the number of times we can apply operation G to I1, I2. Write I(j)
1 , I

(j)
2 for the

result of j-th iteration of G. Since G can be applied until we get two concentric intervals
we have up to translation I(m)

1 = E1, I
(m)
2 = E2. By inequality (3.4.4) we get

〈I(j)
1 , I

(j)
2 〉 − 〈I

(j+1)
1 , I

(j+1)
2 〉 ≥ 〈I(j)

1 , I
(j)
2 〉δ − 〈I

(j+1)
1 , I

(j+1)
2 〉δ.

Taking the sum from j = 0 to m− 1 we get 〈I1, I2〉 − 〈E1, E2〉 ≥ 〈I1, I2〉δ − 〈E1, E2〉δ.
Step 5. We prove the Lemma for compactly supported ν1, ν2.
Let Σ be an interval containing the supports of ν1, ν2. Let Ei be as in Step 3 and fix

δ > 0. We argue that 〈ν1, ν2〉 − 〈E1, E2〉 ≥ 〈ν1, ν2〉δ − 〈E1, E2〉δ. By Lemma 3.4.4 the map

(ν1, ν2) 7→ 〈ν1, ν2〉 − 〈E1, E2〉 − 〈ν1, ν2〉δ + 〈E1, E2〉δ

is weakly-* continuous onM1(Σ) ×M1(Σ). The set measures of form LebI where I is a
finite union of intervals is dense inM1(Σ) so by Step 4 we deduce that 〈ν1, ν2〉−〈E1, E2〉−
〈ν1, ν2〉δ + 〈E1, E2〉δ ≥ 0. From Step 3 it follows now that 〈ν1, ν2〉 ≥ 〈E1, E2〉. We can have
an equality only if 〈ν1, ν2〉δ = 〈E1, E2〉δ. In that case, again by Step 3, ν1, ν2 restrictions
of Lebesgue measure to concentric intervals of lengths m1,m2 respectively.

Step 6. We prove the general case. By Step 2 either we can find bounded measurable
sets I1, I2 of measures m1,m2 respectively such that 〈ν1, ν2〉 > 〈J1, J2〉 in which case Step
5 finishes the proof, or νi = Leb|Ji , i = 1, 2 in which case Step 5 again finishes the proof
or 〈ν1, ν2〉 = 〈J1, J2〉 and and J1 or J2 is disconnected. In the last case Step 5 yields
〈J1, J2〉 > 〈E1, E2〉. The lemma is proven.
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Lemma 3.4.3. Let δ ≥ 0, let ai < bi, i = 1, 2 be real numbers and put ci = (ai + bi)/2.
Assume that c2 > c1. For every 0 < κ ≤ c2 − c1 we have

∆δ :=

∫ b1

a1

(∫ b2

a2

log(|x− y|2 + δ2)− log(|x− y − κ|2 + δ2)dx

)
dy > 0.

Moreover ∆0 ≥ ∆δ for every δ ≥ 0.

Proof. For 0 < κ < c2 − c1 we have

d

dκ

∫ b1

a1

(∫ b2

a2

log(|x− y|2 + δ2)− log(|x− y − κ|2 + δ2)dx

)
dy

=

∫ b1

a1

(
− log(|a2 − y − κ|2 + δ2) + log(|b2 − y − κ|2 + δ2)

)
dy

=

∫ b2−a1−κ

b2−b1−κ
log(x2 + δ2)dx−

∫ a2−a1−κ

a2−b1−κ
log(x2 + δ2)dx > 0.

For the last inequality observe that [b2 − b1 − κ, b2 − a1 − κ] and [a2 − b1 − κ, a2 − a1 − κ]

are both intervals of length b1−a1. The center of the first one is b2−κ− c1 and the center
of the second is a2−κ− c1. We always have |b2−κ− c1| > |a2−κ− c1| so the first integral
is bigger because log(x2 + δ2) is strictly increasing in |x|.

We show that ∆δ is strictly decreasing in δ ≥ 0. We have

d

dδ

∫ b2−a1−κ

b2−b1−κ
log(x2 + δ2)dx−

∫ a2−a1−κ

a2−b1−κ
log(x2 + δ2)dx

=

∫ b2−a1−κ

b2−b1−κ

2δ

x2 + δ2
dx−

∫ a2−a1−κ

a2−b1−κ

2δ

x2 + δ2
dx < 0.

For the last inequality observe that the function 2δ
x2+δ2 is decreasing in |x|, both integrals

are over intervals of length b1− a1 and the first one is further from 0 than the second. We
deduce that d

dκ∆δ is decreasing in δ. Hence ∆0 ≥ ∆δ.

Lemma 3.4.4. Let Σ be a compact subset of R or C. The mapM1(Σ)×M1(Σ) 3 ν1, ν2 →
〈ν1, ν2〉 ∈ R is continuous with respect to weak-* topology.

Proof. Let f1, f2 be the densities of ν1, ν2 respectively. We have

〈ν1, ν2〉 =

∫
Σ

∫
Σ
f1(x)f2(y) log ‖x− y‖dxdy.

The map (ν1, ν2) 7→ f1 × f2 ∈ L2(Σ×Σ) is weakly-* continuous onM1(Σ)×M1(Σ) with
the weak topology on L2(Σ×Σ). The function (x, y) 7→ log ‖x− y‖ is in L2(Σ×Σ) so the
map (ν1, ν2) 7→ 〈ν1, ν2〉 is weakly-* continuous onM1(Σ)×M1(Σ).
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Lemma 3.4.5. Let ν1, ν2 ∈ M1(R) and x ∈ C . Then 〈c1,x(ν1), c1,x(ν2)〉 ≤ 〈ν1, ν2〉 and
equality holds if and only if there is an y ∈ C such that ν1, ν2 are the restrictions of the
Lebesgue measure to balls centered in y.

Proof. Step 1. We define collapsing along a line ` in C. First let us assume that ` is the
real line R ⊂ C. Let ν be finite a measure on C of bounded density f ∈ L1(C). For x ∈ R
let F (x) =

∫ +∞
−∞ f(x+ it)dt. We define h ∈ L1(C) as

h(x+ iy) =

1 if |y| ≤ F (x)/2

0 otherwise.
.

We write cR(ν) for the measure h(x+iy)dxdy. Let ν1, ν2 ∈M1(C), we argue that 〈ν1, ν2〉 ≥
〈cR(ν1), cR(ν2)〉 with an equality if and only if there exists t ∈ R such that ν1, ν2 are
translates of cR(ν1), cR(ν2) by it. Let f1, f2 be the densities of ν1, ν2 respectively. For
x ∈ R define νxi ∈M1(R) by dνxi (y) = fi(x+ iy)dy. We have

〈ν1, ν2〉 =

∫
R

∫
R

∫
R

∫
R

log((x1 − x2)2 + (y1 − y2)2)f1(x1 + iy1)f2(x2 + iy2)dx1dy1dx2dy2

=

∫
R

∫
R
〈νx1

1 , νx2
2 〉|x1−x2|dx1dx2 ≤

∫
R

∫
R
〈c0(νx1

1 ), c0(νx2
2 )〉|x1−x2|dx1dx2

=

∫
R

∫ F (x1)

−F (x1)

∫
R

∫ F (x2)

−F (x2)
log((x1 − x2)2 + (y1 − y2)2)f1(x1 + iy1)dx1dy1dx2dy2

=〈cR(ν1), cR(ν2)〉.

The inequality in the second line holds by Lemma 3.4.2 with equality if and only if νx1
1 , νx2

2

are Lebesgue measures restricted to concentric intervals for every x1, x2 ∈ R. Call t the
common center of these intervals. Then ν1, ν2 are translates of cR(ν1), cR(ν2) by it.

For ` 6= R we choose any isometry ι of C such that ι(`) = R and put c`(ν) =

ι−1(cR(ι∗ν)). Like before we have that 〈ν1, ν2〉 ≥ 〈c`(ν1), c`(ν2)〉 with an equality if and
only if there exists z ∈ `⊥ such that ν1, ν2 are translates of cR(ν1), cR(ν2) by z. Equiv-
alently we have 〈ν1, ν2〉 = 〈c`(ν1), c`(ν2)〉 if and only if there exists a line `′ parallel to `
such that νi = c`′(νi) for i = 1, 2.

Step 2. Let mi = νi(C) and let B1, B2 be closed balls of volumes m1,m2 respectively,
centered at 0. We show that for every ν1, ν2 ∈M1(C) compactly supported we have either
〈ν1, ν2〉 > 〈B1, B2〉 or ν1, ν2 are the Lebesgue measure restricted to concentric balls.

Let R > 0 be such that supp νi ⊂ BC(0, R) for i = 1, 2. By Lemma 3.4.4 there exists
a pair of measures ν ′1, ν ′2 ∈ M1(C) supported on BC(0, R) with ν ′1(C) = m1, ν

′
2(C) = m2

such that

〈ν ′1, ν ′2〉 = min
{
〈µ1, µ2〉|µ1, µ2 ∈M1(BC(0, R)), µ1(C) = m1, µ2(C) = m2

}
.
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We either have 〈ν1, ν2〉 > 〈ν ′1, ν ′2〉 or we can assume that νi = ν ′i for i = 1, 2. Choose
z, w ∈ C such that arg(z) − arg(w) 6∈ πQ. By Step 1 and choice of ν ′1, ν ′2 we have
〈czR(ν ′1), czR(ν ′2)〉 = 〈cwR(ν ′1), cwR(ν ′2)〉 = 〈ν ′1, ν ′2〉. Hence, by Step 1 there exist lines `1, `2
parallel to zR, wR respectively such that ν ′i = c`j (ν

′
i) for i = 1, 2 and j = 1, 2. By translat-

ing ν ′1, ν ′2 if necessary we may assume that `1 = zR, `2 = wR. Being collapsed implies that
densities of ν1, ν2 are characteristic functions of measurable sets, so we have νi = Leb|Ii
for some bounded measurable sets Ii. Let si be the orthogonal reflection in `i for i = 1, 2.
Since ν ′1, ν ′2 are collapsed along `1, `2 they are invariant under the group S of isometries
generated by s1, s2. Since arg(z)− arg(w) 6∈ πQ the group S is dense in O(2) (the orthog-
onal group group of C seen as R2). We deduce that I1, I2 must be (up to a measure 0 set)
closed balls B1, B2 respectively. This proves Step 2.

Step 3. We prove the lemma. Without loss of generality we can assume x = 0. Let
B1, B2 be as in Step 2. We need to show that 〈B1, B2〉 ≤ 〈ν1, ν2〉 with equality if and only
if ν1, ν2 are Lebesgue measures restricted to concentric balls. The method is similar to
Step 2 from the proof of Lemma 3.4.2. Consider P (z) = 2

∫
C log |x−z|dν1(x). Then P is a

continuous function on C such that |P (z)| tends to∞ as |z| → ∞. There exists α ∈ R such
that Leb(P−1((−∞, α))) ≤ m2 ≤ Leb(P−1((−∞, α])). Choose a bounded measurable set
I2 of measure m2 such that

S1 := P−1((−∞, α)) ⊂ I2 ⊂ P−1((−∞, α]) := S2.

Like in the Step 2 from the proof of Lemma 3.4.2 we have 〈ν1,Leb|I2〉 ≤ 〈ν1, ν2〉 with
an equality if and only if ν2|S1 = Leb|S1 and supp ν2 ⊂ S2. If the inequality is strict we
replace ν2 by Leb|I2 and apply the same reasoning to find I1 of measure m1 such that
〈I1, I2〉 ≤ 〈ν1,Leb|I2〉 < 〈ν1, ν2〉. In the second case we deduce that supp ν2 ⊂ S2 so ν2

is compactly supported. By the symmetry of the problem this is enough to deduce that
either ν1, ν2 are compactly supported or we can find bounded measurable sets I1, I2 with
measures m1,m2 such that 〈I1, I2〉 < 〈ν1, ν2〉. In the first case Step 2 finishes the proof
and in the second case again by Step 2 we have 〈B1, B2〉 ≤ 〈I1, I2〉 < 〈ν1, ν2〉.

As an easy consequence of Lemma 3.4.2 and Lemma 3.4.5 we get

Lemma 3.4.6. Let V = Rr1 × Cr2. Let ν1, ν2 ∈ M1(V ) and v = (v1, . . . , vd) ∈ V . Then
〈ci,vi(ν1), ci,vi(ν2)〉 ≤ 〈ν1, ν2〉 and equality holds if and only if there is an w = (w1, . . . , wd) ∈
V such that ν1 = ci,wi(ν1) and ν2 = ci,wi(ν2) for i = 1, . . . , d.

Proof. Assume without loss of generality that v = 0. We will first treat the case where i
corresponds to a real place. Write V i = {v ∈ V |vi = 0} and ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ V
where the unique non-zero entry is placed in the i-th coordinate. Let f1, f2 be the densities
of ν1, ν2. For x ∈ V i and j = 1, 2 define the measure νxj on R as dνxj (t) = fj(x + tei)dt.
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Note that for every f ∈ L1(V ) we have∫
V
f(v)dνj(v) =

∫
V i

∫
R
f(x+ tei)dν

x
j (t)dx.

By Lemma 3.4.2 we get

〈ν1, ν2〉 =

∫
V i

∫
V i
〈νx1 , ν

y
1 〉dxdy

≤
∫
V i

∫
V i
〈cvi(νx1 ), cvi(ν

y
2 )〉dxdy

=〈ci,vi(ν1), ci,vi(ν2)〉.

By Lemma 3.4.2 the equality holds if and only if there exists wi ∈ R such that for all
x, y ∈ V i the measures νx1 , ν

y
2 are the Lebesgue measure restricted to intervals centered in

wi ∈ R. In that case we also have ν1 = ci,wi(ν1) and ν2 = ci,wi(ν2). If i corresponds to a
complex case the proof is identical but we use Lemma 3.4.5 in place of Lemma 3.4.2.

Lemma 3.4.7. Let ν ∈ P1(V ) and let i ∈ {1, . . . , d} , vi ∈ R if i ∈ {1, . . . , r1} or vi ∈ C
otherwise. Then either I(ci,vi(ν)) < I(ν) or I(ci,vi(ν)) = I(ν) and there exists v′i such that
ν = ci,v′i(ν).

Proof. Use Lemma 3.4.6 for ν1 = ν2 = ν.

As a consequence of Lemma 3.4.7 we get:

Corollary 3.4.8. Let ν ∈ P1(V ) be a measure minimizing the energy I(ν) on P1(V ).
Then there exists v = (v1, . . . , vd) ∈ V such that ci,vi(ν) = ν for every i = 1, . . . , d.

3.5 Limit measures and energy

Let (ni)
∞
i=1 be an increasing sequence of natural numbers. Let k be a number field and

assume that (Sni)i∈N is a sequence of ni-optimal sets in Ok. By Corollary 3.3.2 there are
sequences (tni)i∈N ⊂ V, (sni)i∈N ⊂ V such that ‖sni‖ = ni|∆k|1/2 and s−1

ni (Sni − tni) ⊂ Ω.

Define a sequence of measures

µni :=
1

ni

∑
x∈S

δs−1
ni

(x−tni )
. (3.5.1)

Since Ω is compact we can assume, passing to a subsequence if necessary, that µni converges
to a limit probability10 measure µ. This observation uses crucially Corollary 3.3.2 and is
the key step in the proof of Theorem 3.1.2. Such limit measures are the central object of
study in this section.

10While µni are not probability measures because µni(V ) = 1 + 1
ni

any weak-* limit point will be a
probability measure.
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Definition 3.5.1. A probability measure µ on V is called a limit measure if it is a
weak-* limit of a sequence of measures µni constructed as above.

3.5.1 Density of limit measures

Let ν be a probability measure on V , absolutely continuous with respect to the Lebesgue
measure on V . The density of ν is the unique non-negative function f ∈ L1(V ) such that
dν = f(t)dt where dt is the Lebesgue measure. We say that ν is of density at most D if
f(t) ≤ D for Lebesgue-almost all t ∈ V .

Lemma 3.5.2. Any limit measure µ on V is of density at most 1.

Proof. Let (ni)i∈N and let (µni)i∈N be a sequence of measures defined as in (3.5.1) such
that µ is the weak limit of µni as i → ∞. By Lebesgue density theorem it is enough to
verify that µ(C) ≤ Leb(C) for every bounded cylinder C ⊂ V . We have

µni(C) =
1

ni
|Sni ∩ (sniC + tni)| ≤

1

ni
|Ok ∩ (sniC + tni)|.

Put Ci = sniC + tni . Since ‖sni‖ = |∆k|1/2ni the cylinder Ci has volume |∆k|1/2niLeb(C).
As Ok is a lattice of covolume |∆k|1/2 we get11 |Ok ∩ Ci| = |∆k|−1/2Leb(Ci) + o(Leb(Ci)).

Hence
µ(C) = lim

i→∞
µni(C) ≤ lim

i→∞

1

ni
(niLeb(C) + o(niLeb(C))) = Leb(C).

3.5.2 Energy of limit measures

We start by defining the two notions of energy for probability measures on V .

Definition 3.5.3. Let ν be a probability measure on V and write ∆(V ) = {(v, v)| v ∈ V } ⊂
V × V . We define energies I(ν), I ′(ν) as

I(ν) =

∫
V×V

log ‖x− y‖dν(x)dν(y)

I ′(ν) =

∫
V×V \∆(V )

log ‖x− y‖dν(x)dν(y)

provided that the integrals converge.

We will refer to I as energy and to I ′ as discretized energy since it is designed to
handle finitely supported atomic measures. The integral defining the energy converges for

11This does not work for a general lattice Λ ⊂ V . However, we know that Ok is invariant under
multiplication by O×k so we can multiply Ci by an element of O×k so that it becomes "thick" in every
direction.
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all compactly supported measures of bounded density. The main goal of this section is to
establish:

Proposition 3.5.4. Let k be a number field, let V = k⊗Q R and suppose that µ is a limit
measure on V . Then I(µ) = −1

2 log |∆k| − 3
2 − γk + γQ where γk, γQ are Euler–Kronecker

constants of k,Q respectively.

Proof. Let us fix a sequence (µni)i∈N of measure defined as in (3.5.1) such that µ is the
weak-* limit of µni as i→∞. Observe that by the volume formula [11, Corollary 5.2]

∑
x 6=y∈Sn1

log ‖x− y‖ = n2
i log ni + ni(−

3

2
− γk + γQ) + o(n2

i )

we have

I ′(µni) =
1

n2
i

∑
x 6=y∈Sni

log ‖s−1
ni (x− y)‖

=− ni + 1

ni
log ‖sni‖+

1

n2
i

(n2
i log ni + n2

i (−
3

2
− γk + γQ) + o(n2

i ))

=− 1

2
log |∆k| −

3

2
− γk + γQ + o(1).

Our task is reduced to proving that limi→∞ I
′(µni) = I(µ). This doesn’t simply follow from

the weak-* convergence because the logarithm is not continuous in the neighborhood of
0. We remedy that by approximating the logarithm by a well chosen family of continuous
functions.

Let T > 0. For x > 0 put logT x := max {−T, log x} and let logT 0 := −T . For any
compactly supported probability measure ν on V put:

IT (ν) =

∫
V×V

logT ‖x− y‖dν(x)dν(y). (3.5.2)

Note that we integrate over the diagonal as well. The function logT is continuous so we
get limi→∞ IT (µni) = IT (µ). On the other hand, by Lebesgue dominated convergence
theorem we have limT→∞ IT (µ) = I(µ) so I(µ) = limT→∞ limi→∞ IT (µni). We estimate
the difference IT (µni)− I ′(µni).

I ′(µni)− IT (µni) =
T (ni + 1)

n2
i

+
1

n2
i

∑
x 6=y∈Sni

‖s−1
n (x−y)‖≤e−T

(
log ‖s−1

n (x− y)‖+ T
)

(3.5.3)

=
T (ni + 1)

n2
i

+
1

n2
i

∑
x 6=y∈Sni

‖x−y‖≤‖sni‖e
−T

(log ‖x− y‖ − log ‖sni‖+ T ) (3.5.4)
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Hence

− 1

n2
i

∑
x 6=y∈Sni

‖x−y‖≤‖sni‖e
−T

(log ‖sni‖− log ‖x−y‖−T ) ≤ I ′(µni)− IT (µni) ≤
T (ni + 1)

n2
i

. (3.5.5)

We proceed to estimate the left hand side. Note that by Corollary 3.3.2 and our choice of
sni , tni there is a compact cylinder Ω = BR(0, A)r1×BC(0, A)r2 such that Sni ⊂ sni(Ω−tni).
Let Ω′ = BR(0, 2A)r1×BC(0, 2A)r2 . Then for every x, y ∈ Sni we have x−y ∈ sniΩ′. Hence∑

x 6=y∈Sni
‖x−y‖≤‖sni‖e

−T

(log ‖sni‖ − log ‖x− y‖ − T ) ≤
∑
x∈Sni

∑
z∈sniΩ

′

‖z‖≤‖sni‖e
−T

(log ‖sni‖ − log ‖z‖ − T )

(3.5.6)

= (ni + 1)
∑

z∈sniΩ
′

‖z‖≤‖sni‖e
−T

(log ‖sni‖ − log ‖z‖ − T ).

(3.5.7)

Let us fix a good fundamental domain of O×k acting on V × (see Definition 3.2.2) and a basis
ξ1, . . . , ξd−1 of a maximal torsion free subgroup of O×k together with the associated norm
‖ · ‖∞ on O×k . We can write sni = vλ0 with λ0 ∈ O×k , v ∈ F and ‖v‖ = ‖sni‖ = ni|∆k|1/2.
Put A4 := 2|∆k|1/2NC0A. By Lemma 3.2.3 we have

λ−1
0 sniΩ

′ = vΩ′ ⊂ Ω′′ := BR(0, n
1/N
i A4)r1 ×BC(0, n

1/N
i A4)r2 .

By Lemmas 3.2.4 and 3.2.3 for every x ∈ F and λ ∈ O×k such that xλ ∈ Ω′′ we have

‖λ‖∞ ≤ α−1(log(n
1/N
i ‖x‖−1/NA4C0)) =: C22(log ni − log ‖x‖) + C23.

We can estimate the sum in (3.5.7) by∑
z∈sniΩ

′

‖z‖≤‖sni‖e
−T

(log ‖sni‖ − log ‖z‖ − T ) =
∑

z∈λ−1
0 sniΩ

′

‖z‖≤‖sni‖e
−T

(log ‖sni‖ − log ‖z‖ − T )

≤
∑
x∈F

‖x‖≤ni|∆k|1/2e−T

(log ‖sni‖ − log ‖x‖ − T )|
{
λ ∈ O×k |‖λ‖∞ ≤ C22(log n− log ‖x‖) + C23

}
|.

Once T is sufficiently large we will have C22(log ni− log ‖x‖)+C23 ≤ 2C22(log ni− log ‖x‖)
for every x satisfying ‖x‖ ≤ ni|∆k|1/2e−T . Therefore, for T sufficiently large we can bound



96CHAPTER 3. ON THE OPTIMAL RATE OF EQUIDISTRIBUTION IN NUMBER FIELDS.

the last expression by

≤
∑
x∈F

‖x‖≤ni|∆k|1/2e−T

(log ‖sni‖ − log ‖x‖ − T )|
{
λ ∈ O×k |‖λ‖∞ ≤ 2C22(log ni − log ‖x‖)

}
|

≤C24

∑
x∈F

‖x‖≤ni|∆k|1/2e−T

(log ‖sni‖ − log ‖x‖ − T )(log ni − log ‖x‖)d−1

=C24

∑
x∈F

‖x‖≤ni|∆k|1/2e−T

(log ni − log ‖x‖+
1

2
log |∆k| − T )(log ni − log ‖x‖)d−1.

Put Y = ni|∆k|1/2e−T . The last expression becomes

C24

∑
x∈F
‖x‖≤Y

(log Y − log ‖x‖)(log Y − log ‖x‖+ (T − 1

2
log |∆k|))d−1

=C24

d−1∑
i=1

(
d− 1

i

)
(T − 1

2
log |∆k|)i

∑
x∈F
‖x‖≤Y

(log Y − log ‖x‖)d−i

≤C25T
d−1e−Tni.

For the last inequality we have used Lemma 3.2.8. The constant C25 depends only on k.
We wrap inequalities together to get

−ni + 1

ni
C25T

d−1e−T ≤ I ′(µni)− IT (µni) ≤
T (ni + 1)

n2
i

(3.5.8)

|I ′(µni)− IT (µni)| ≤
T (ni + 1)

n2
i

+
ni + 1

ni
C25T

d−1e−T . (3.5.9)

It follows that for any T sufficiently large we have lim supi→∞ |I ′(µni)−IT (µni)| ≤ C25T
d−1e−T .

Consequently

I(µ) = lim
T→∞

lim
i→∞

IT (µni) = lim
i→∞

I ′(µni) = −1

2
log |∆k| −

3

2
− γk + γQ.

The proposition is proved.

3.5.3 Measures of minimal energy

In this section we show that the limit measures, provided that they exist, realize the
minimal energy among all probability measures of density at most 1. Next we study the
properties of energy minimizing measures.

Lemma 3.5.5. For every compactly supported12 probability measure ν on V with density
12 The assumption on the support makes the proof easier but the statement should remain valid without
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at most 1 we have −1
2 log |∆k| − 3

2 − γk + γQ ≤ I(ν).

Proof. Let ν be a compactly supported probability measure on V of density at most 1.
Lemma 3.7.1 (in the appendix) affords a sequence En of subsets ofOk such that |En| = n+1

and the measures
νEn,n :=

1

|En|
∑
x∈En

δn−1/N |∆k|−1/2Nx

converge weakly-* to ν. Put log∗ t = log t of t > 0 and log∗ 0 = 0. For every measure µ on
V we have I ′(µ) =

∫ ∫
log∗ ‖x− y‖dµ(x)dµ(y). The function (x, y) 7→ log∗ ‖x− y‖ is lower

semicontinuous on R≥0 so

lim sup
n→∞

I ′(νEn,n) ≤ I ′(ν) = I(ν), (3.5.10)

lim sup
n→∞

1

(n+ 1)2

∑
x 6=y∈En

(log ‖x− y‖ − log n− 1

2
log |∆k|) ≤ I(ν). (3.5.11)

By [11, Corollary 5.2] we get

−1

2
log |∆k| −

3

2
− γk + γQ ≤ I(ν).

It follows that any limit measure realizes the minimal energy among all probability
measures of density at most 1. We turn to the investigation of such energy minimizing
measures. Our goal is to prove:

Proposition 3.5.6. Let ν be a compactly supported probability measure on V of density at
most 1 which is realizing the minimal energy among all such measures. Then there exists
an open set U such that ν = Leb|U and moreover there exists v ∈ V such that (∂U−v)∩V ×

is a codimension 1 subvariety of class C1 and λ(U − v) ⊂ U − v for every 0 < λ < 1.

We will writeM1(V ),P1(V ) for the sets of respectively finite measures and probability
measures on V with Lebesgue density bounded by 1. One of the key tools used to prove
Proposition 3.5.6 is the collapsing procedure ci,vi :M1(V )→M1(V ) (see Definition 3.4.1),
introduced and studied in the Section 3.4. We will also need the following identities.

Lemma 3.5.7. 1. For every x ∈ R, T > 0 we have

d

dx

(∫ T

−T
log |x− t|dt

)
= log(|T + x|)− log(|T − x|).

2. Write dxdy for the Lebesgue measure on C in coordinates z = x + iy. For every

it.
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seiθ ∈ C, s > 0 we have

∫
BC(0,T )

log |seiθ − z|2dxdy =

2πT 2 log T − πT 2 + πs2 if r ≤ T

2πT 2 log s otherwise,

d

ds

(∫
BC(0,T )

log |seiθ − z|2dxdy

)
=

2πs if s ≤ T
2πT 2

s otherwise.

Proof of Proposition 3.5.6. Let ν ∈ P1(V ) be a measure such that the energy I(ν) is
minimal on P1(V ). By Corollary 3.4.8 there exists v = (v1, . . . , vd) ∈ V such that ci,vi(ν) =

ν for every i = 1, . . . , d. Translating ν by −v we may assume that v = 0. We will construct
an open set U such that ν = Leb|U , λU ⊂ U for every 0 ≤ λ < 1 and ∂U ∩ V × is a
C1-submanifold of V × of codimension 1. Let PV , Pi, i = 1, . . . , d be functions on V defined
by

Pi(x) =

∫
V

log |x− y|idν(y) and PV (x) =

∫
V

log ‖x− y‖dν(y) =
d∑
i=1

Pi.

Clearly Pi(x) depends only on the i−th coordinate of x so it makes sense to abuse the no-
tation and write Pi(x) = Pi(xi). We will show that U can be chosen as U = P−1

V ((−∞, α))

for some α ∈ R. To prove that the boundary ∂U∩V × is a C1-submanifold we will establish
certain regularity properties of Pi for coordinates i = 1, . . . , d and use the implicit function
theorem. Starting from Step 3 we assume, for the sake of the proof, that V = R2.

Step 1. We show that there exists a unique α ∈ R such that Leb(P−1
V ((−∞, α))) = 1.

It is easy to see that P−1
V ((−∞, t))) is bounded for every t ∈ R. We will consider the

gradient ∇PV =
(

∂
∂xi
Pi(v)

)
i=1,...,d

allowing it to take value ±∞ on some coordinates. We

show that for almost all v ∈ V the gradient ∇PV (v) is non-zero. In such case the function
t 7→ Leb(P−1

V ((−∞, t))) is a continuous bijection from [ess inf PV ,+∞) to [0,+∞) so we
can find a unique α with Leb(P−1

V ((−∞, α))) = 1.

Let Fi, hi be the functions defined as in Definition 3.4.1. Since our measure is already
collapsed with respect to all coordinates, the function h1 = h2 = . . . = hd is the density of
ν. Hence for every i = 1, 2, . . . , d we have

Pi(xi) =


∫
·· ·
∫ (∫

BR(0,Fi(t1,...,0,...,td)) log |xi − ti|dti
)
dt1 . . . d̂ti . . . dtd if i ∈ {1, . . . , r1}∫

·· ·
∫ (∫

BC(0,Fi(t1,...,0,...,td)) log |xi − ti|2dti
)
dt1 . . . d̂ti . . . dtd if i ∈ {r1 + 1, . . . , d} .

(3.5.12)
Let x = (x1, . . . , xr1 , sr1+1e

iθr1+1 , . . . , sde
iθd) ∈ V . To shorten notation we will write V i for

the subset of V defined by vi = 0 and dvi and for the Lebesgue measure on V i. In these
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coordinates we have

Pi(xi) =


∫
V i

(∫
BR(0,Fi(vi))

log |xi − ti|dti
)
dvi if i ∈ {1, . . . , r1}∫

V i

(∫
BC(0,Fi(vi))

log |xi − ti|2dti
)
dvi if i ∈ {r1 + 1, . . . , d} .

(3.5.13)

By Lemma 3.5.7 for i = 1, . . . , r1 we have

d

dxi
Pi(xi) =

∫
V i

(
log |Fi(vi) + xi| − log |Fi(vi)− xi|

)
dvi (3.5.14)

and for i = r1 + 1, . . . , d

d

dsi
Pi(sie

iθi) =

∫
V i,Fi(vi)≤si

2πFi(v
i)2

si
dvi +

∫
V i,Fi(vi)>si

2πsidv
i. (3.5.15)

We have
d

dxi
PV =

d

dxi
Pi and

d

dsi
PV =

d

dsi
Pi.

Note that (3.5.14), (3.5.15) are strictly positive or +∞ as soon as xi > 0 or si > 0 and
strictly negative or −∞ if xi < 0. In particular the gradient ∇PV (v) is non-zero for v 6= 0.
This proves Step 1.

Step 2. Let U = P−1
V ((−∞, α)). We prove that ν = Leb|U and that λU ⊂ U for

every 0 ≤ λ < 1.

For any two measures µ, µ′ ∈M1(V ) we define a bilinear form

〈µ, µ′〉 :=

∫
V

∫
V

log ‖x− y‖dµ(x)dµ′(y).

With that definition we have I(µ) = 〈µ, µ〉 for every µ ∈ M1(V ). The function PV is
defined so that 〈ν, µ〉 =

∫
V PV (x)dµ(x) for every µ ∈ M1(V ). Let ν ′ = Leb|U ′ ∈ P1(V ).

By the choice of U we have 〈ν, ν ′〉 ≤ 〈ν, ν〉 with equality if and only if ν = Leb|U . Let
ε ≥ 0 be small and put νε = (1− ε)ν + εν ′. This measure is in P1(V ) so

I(νε) = (1− ε)2I(ν) + 2ε(1− ε)〈ν, ν ′〉+ ε2I(ν ′) ≥ I(ν).

We deduce that
d

dε
I(νε)

∣∣∣∣
ε=0

= 2(〈ν, ν ′〉 − 〈ν, ν〉) ≥ 0.

We already know that 〈ν, ν ′〉 − 〈ν, ν〉 ≤ 0 so 〈ν, ν ′〉 = 〈ν, ν〉 and ν = Leb|U . It remains to
show that λU ⊂ U for every 0 ≤ λ < 1. Note that U ⊂ P−1

V ((−∞, α]) so it will be enough
to prove that PV (λx) < PV (x) for every x ∈ V \ 0. This is true because the computations
from Step 1 imply that the derivative d

dλPV (λx) is strictly positive on (0,+∞) for every
v 6= 0.
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F2(0)

−F2(0)

−F1(0) F1(0)

(F2(x1), x1) = (x2, F1(x2))

U = P−1
V ((−∞, α)) kν1

kν2

Figure 3.5.1: The set U ⊂ V ' R2

Step 3. From now on we assume V = R2. The proof of the general case follows the
same outline with some parts being easier for complex coordinates13. By the previous steps
ν = Leb|U where U = P−1

V ((−∞, α)). The set U is contained in the box (−F1(0), F1(0))×
(−F2(0), F2(0)) (see Figure 3.5.1) and that is where we study the regularity properties of
P1, P2. The functions F1(t), F2(t) vanish outside (−F2(0), F2(0)), (−F1(0), F1(0)) respec-
tively and admit their maximum at t = 0. We show that the derivative d

dxi
Pi(xi) restricted

to (−Fi(0), Fi(0)) is in L2((−Fi(0), Fi(0))) for i = 1, 2. From now on we restrict P1, P2 to
(−F1(0), F1(0)), (−F2(0), F2(0)) respectively.

By (3.5.14) we have

∥∥∥∥ d

dx1
P1(x1)

∥∥∥∥
2

=

(∫ F1(0)

−F1(0)

(∫
R

(log |F1(t) + x1| − log |F1(t)− x1|) dt
)2

dx1

)1/2

≤
∫
R

(∫ F1(0)

−F1(0)
(log |F1(t) + x1| − log |F1(t)− x1|)2 dx1

)1/2

dt

≤2

∫ F2(0)

−F2(0)

(∫ F1(0)

−F1(0)
(log |F1(t) + x1|)2 dx1

)1/2

dt

≤2

∫ F2(0)

−F2(0)
O(F1(0)1/2(| logF1(0)|+ 1))dt < +∞.

Between the second and the third line we had right to restrict the outer integral from R to
[−F2(0), F2(0)] because outside this interval F1(t) is 0 so the inner integral vanishes. Same

13 In the real case the derivative of Pi is locally L2. For the complex coordinates Pi is uniformly bounded.
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computations show that ‖ d
dx2

P2(x2)‖2 < +∞. This concludes the proof of Step 3.

Step 4. We show that for every ε > 0 there exists Aε > 0 such that
∣∣∣ ddxiPi(xi)∣∣∣ ≥ Aε

for i = 1, 2 and every ε < |xi| ≤ Fi(0).

Let ε > 0 and let ε < |x1| ≤ F1(0). Assume that x1 > ε (i.e. x1 is positive). Since we
can always restrict to a smaller ε we will assume for technical reasons that 1

2−2εF2(0) > 0.
We have

d

dx1
P1(x1) =

∫ F2(0)

−F2(0)
(log |F1(t) + x1| − log |F1(t)− x1|)dt

≥
∫ F2(0)

−F2(0)

(
1− |F1(t)− x1|
|F1(t) + x1|

)
dt =

∫ F2(0)

−F2(0)

|F1(t) + x1| − |F1(t)− x1|
|F1(t) + x1|

dt

=2

∫ F2(0)

−F2(0)

min {F1(t), x1}
|F1(t) + x1|

dt ≥ 1

F1(0)

∫ F2(0)

−F2(0)
min {F1(t), x1} dt

≥ 1

F1(0)

∫ F2(0)

−F2(0)
min {F1(t), ε} dt.

To estimate the last quantity we go back to the definition of F1 (see Definition 3.4.1). It
implies that ∫ F2(0)

−F2(0)
2F1(t)dt = ν(V ) = 1. (3.5.16)

Let E1 := {t ∈ [−F2(0), F2(0)]|F1(t) ≥ ε}. For every t ∈ [−F2(0), F2(0)] we have F1(t) ≤
F1(0) so (3.5.16) yields F1(0)Leb(E1) + ε(2F2(0)−Leb(E1)) ≥ 1

2 . In particular Leb(E1) ≥
1
2
−2εF2(0)

F1(0)−ε . We get

d

dx1
P1(x1) ≥ 1

F1(0)

∫ F2(0)

−F2(0)
min {F1(t), ε} dt ≥ ε

F1(0)
Leb(E1) ≥

ε(1
2 − 2εF2(0))

F1(0)(F1(0)− ε)
> 0.

The final lower bound is positive and depends only on ε, F1(0) and F2(0). The same
computation gives a negative upper bound for d

dx1
P1(x1) when x1 < 0. The argument for

i = 2 is identical.

Step 5. We show that Pi(xi), i = 1, 2 are of class C1 on (−F2(0), F2(0)) and
(−F1(0), F1(0)) respectively.

The points (F1(t), t) for t ∈ [−F2(0), F2(0)] are in the boundary ∂U . Since U =

P−1
V ((−∞, α)) we have ∂U ⊂ P−1

V ({α}). As a consequence

P1(F1(t)) + P2(t) = PV ((F1(t), t)) = α for t ∈ [−F2(0), F2(0)].

The function P1 is strictly increasing on [0,+∞) so let us write P−1
1 for the inverse of P1

restricted to [0,+∞). Then, for t ∈ (0, F2(0)) we have

F1(t) = P−1
1 (α− P2(t)).
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We deduce that F1(t) is strictly decreasing on (0, F2(0)) and that

d

dt
F1(t) = − d

dt
P2(t)

(
d

ds
P1(s)

∣∣∣∣
s=F1(t)

)−1

(3.5.17)

whenever the formula is well defined. We have an analogous equation for F2 from which
it follows that F2 : (0, F1(0)) → (0, F2(0)) is the inverse of F1. Let ε > 0 be small. Then
for every 0 ≤ t < F2(0)− ε we have F1(t) > F1(F2(0)− ε) > 0. Let ε′ = F1(F2(0)− ε) and
let A = Aε′ be the constant from Step 4. Combining (3.5.17) with Step 4 we get∣∣∣∣ ddtF1(t)

∣∣∣∣ ≤ ∣∣∣∣ ddtP2(t)

∣∣∣∣A−1 for 0 ≤ t ≤ F2(0)− ε.

By Step 3 we have ∫ F2(0)−ε

0

∣∣∣∣ ddtF1(t)

∣∣∣∣2 dt ≤ ∥∥∥∥ ddtP2(t)

∥∥∥∥2

2

A−2 < +∞. (3.5.18)

The above will serve as an input to the Cauchy–Schwartz inequality. Put Gx(s) := log |s+

x| − log |s − x| for s ∈ [0, F2(0)]. A simple computation shows that Gx ∈ L2([0, F2(0)])

and that the map R 3 x → Gx ∈ L2([0, F2(0)]) is continuous. We will estimate d
dxP2(x)

for ε ≤ x ≤ F2(0)− 2ε. By (3.5.14) we have

d

dx
P2(x) =

∫ F1(0)

−F1(0)
(log |F2(t) + x| − log |F2(t)− x|)dt

and we use substitution t = F1(s) to get

=2

∫ F2(0)

0
(log |s+ x| − log |s− x|)

∣∣∣∣dF1(s)

ds

∣∣∣∣ ds
=2

∫ F2(0)−ε

0
(log |s+ x| − log |s− x|)

∣∣∣∣dF1(s)

ds

∣∣∣∣ ds
+2

∫ F2(0)

F2(0)−ε
(log |s+ x| − log |s− x|)

∣∣∣∣dF1(s)

ds

∣∣∣∣ ds.
We use Cauchy–Schwartz and (3.5.18) to estimate the first summand and get:

d

dx
P2(x) ≤2‖Gx‖2

∥∥∥∥dP2(t)

dt

∥∥∥∥
2

A−1 + 2

∫ F2(0)

F2(0)−ε
(log(2F2(0)− 2ε)− log ε)

∣∣∣∣dF1(s)

ds

∣∣∣∣ ds
=2A−1‖Gx‖2

∥∥∥∥dP2(t)

dt

∥∥∥∥
2

+ 2F−1
1 (F2(0)− ε)(log |(2F2(0)− 2ε)− log ε) < +∞.

Since d
dxP2(x) ≥ 0 for x ≥ 0 this establishes the finiteness of d

dxP2(x) on [0, F2(0)−2ε]. To
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show continuity we choose 0 ≤ x, x′ < F2(0)− 2ε and perform the same calculation to get∣∣∣∣dP2(t)

dt
|t=x −

dP2(t)

dt
|t=x′

∣∣∣∣ ≤ 2A−1‖Gx −Gx′‖2
∥∥∥∥dP2(t)

dt

∥∥∥∥
2

+2

∫ F2(0)

F2(0)−ε

∣∣log |x+ s| − log |x′ + s|+ log |x′ − s| − log |x− s|
∣∣ ∣∣∣∣dF1(s)

ds

∣∣∣∣ ds.
The right hand side tends to 0 as x′ → x so d

dxP2(x) is continuous on (0, F2(0)− 2ε]. We
let ε→ 0 and use symmetry of P2 to deduce that P2 is of class C1 on [−F2(0), F2(0)]\{0}.
Same proof shows that P1 is of class C1 on [−F1(0), F1(0)] \ {0} .

Step 6. We will deduce that F1, F2 are of class C1 on [−F2(0), F2(0)] \ {0},
[−F1(0), F1(0)] \ {0} respectively.

By symmetry it is enough to show that F1 is of class C1 on (0, F2(0)). For t ∈ (0, F2(0))

we have α = P1(F1(t)) + P2(t) so F1(t) = P−1
1 (α − P2(t)). By Step 5 P1 is of class C1 so

the same is true for P−1
1 on its domain of definition. As a composition of two C1 functions

F1 is of class C1.
Step 7. We have

∂U ∩ V × = {(t,±F1(t))|t ∈ (−F2(0), F2(0)) \ {0}} .

Being a finite disjoint union of graphs of functions of class C1 the set ∂U ∩ V × is a C1-
submanifold of codimension 1. This concludes the proof.

3.6 Non-existence of n-optimal sets.

3.6.1 Discrepancy and almost equidistribution

Let ν be any limit measure on V = k ⊗Q R. In this section we study the discrepancy of
the sets U such that ν = Leb|U which are provided by Proposition 3.5.6. We recall the
notion of lattice point discrepancy (see [21]).

Definition 3.6.1. Let V = Rr1 × Cr2 and fix a bounded measurable subset U of V . For
t ∈ V ×, v ∈ V let Nt(U, v) := | {(tU + v) ∩ Ok} | and define the discrepancy

Dt(U, v) := Nt(U, v)− |∆k|−1/2Leb(U)‖t‖.

And the maximal discrepancy

Dt(U) := ess sup
v∈V

|Dt(U, v)|.

We will need the following technical property of the maximal discrepancy.
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Lemma 3.6.2. Let U be a bounded measurable subset of V such that ∂U has zero Lebesgue
measure. Then either Dt(U) < 1 for all t ∈ V × or there exists δ > 0 a non-empty open
subset T ⊂ V × and a non-empty open subset W of V such that Dt(U, v) > 1 + δ for all
t ∈ T, v ∈W .

Proof. Let E =
⋃
x∈Ok

⋃
t∈V ×(x − t∂U) × {t} ⊂ V × V × and for every t ∈ V × let Et =

{v ∈ V |(v, t) ∈ E} =
⋃
x∈Ok(x− t∂U). Because the set U is bounded, the unions defining

E and Et are locally finite. We deduce that E and Et are closed and Et has measure 0 for
every t ∈ V ×. The function (v, t) 7→ Nt(U, v) is locally constant on (V × V ×) \ E so it is
constant on the connected components of (V × V ×) \ E. In particular, for every t ∈ V ×

the function v 7→ Dt(U, v) is constant on the connected components on V \ Et.
Assume that Dt0(U) ≥ 1 for some t0 ∈ V ×. The set of values of Dt0(U, v) is discrete

becauseDt0(U, v) ∈ N−|∆k|−1/2Leb(U)‖t0‖. We deduce that there exists a connected com-
ponent Qt0 of V \Et0 such that Dt0(U, v) ≥ 1 or Dt0(U, v) ≤ −1 for all (v, t) ∈ Qt0 . Assume
that the first inequality holds. Fix a point v0 ∈ Qt0 . Let Q be the unique connected com-
ponent of (V ×V ×) \E containing (v0, t0). For ε > 0 let Qε = {(v, t) ∈ Q|‖t‖ < ‖t0‖ − ε},
for ε small enough it is a non-empty open set because t0 lies in the interior of Q. Choose
open sets T ⊂ V ×,W ⊂ V such that W × T ⊂ Qε. For every (v, t) ∈ Qε we have

Dt(U, v) = Nt(U, v)− |∆k|−1/2Leb(U)‖t‖ =Nt0(U, v0)− |∆k|−1/2Leb(U)‖t‖

>Dt0(U, v0) + ε|∆k|−1/2Leb(U).

We deduce that Dt(U, v) > 1+δ with δ = εLeb(U)|∆k|−1/2 for t ∈ T and all v ∈W . In the
case Dt0(U, v) ≤ −1 the same argument works with Q′ = {(v, t) ∈ Q|‖t‖ > ‖t0‖+ ε} .

We show that if ν is a limit measure and U is the open set provided by Proposition
3.5.6 then U must have very low maximal discrepancy.

Lemma 3.6.3. Let ν be a limit measure on V and let U be an open set such that ∂U is
Jordan measurable of Jordan measure 0 and ν = Leb|U . Then U satisfies Dt(U) < 1 for
all t ∈ V ×.

Proof. We argue by contradiction. Assume that for some t0 ∈ V × we have Dt0(U) ≥ 1. By
Lemma 3.6.2 there exist open sets T ⊂ V ×,W ⊂ V and δ > 0 such that |Dt(U, v)| > 1 + δ

for every t ∈ T, v ∈ W . By making W smaller if necessary we may assume it is an open
cylinder in V , similarly by taking smaller T if necessary we may assume that there exists
κ > 1 such that κ−1 ≤ ‖t‖ ≤ κ for all t ∈ T . Let (ni)i∈N, (Sni)i∈N be a sequence of n-
optimal sets and let (tni)i∈N ⊂ V, (sni) ⊂ V ×, ‖sni‖ = ni|∆k|1/2 be such that the measures
νni defined as in (3.5.1) converge weakly-* to ν. Translating Sni be appropriate elements of
Ok we may assume that tni = 0, this will simplify considerably the formulas in the proof.
By [11, Corollary 2.4] the sets Sni are almost uniformly distributed modulo powers of
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every prime ideal p of Ok. This means that for every prime p of Ok, l ∈ N and a ∈ Ok we
have ∣∣∣∣|{x ∈ Sni |x− a ∈ pl

}
| − ni + 1

Npl

∣∣∣∣ < 1.

In order to get a contradiction we will exhibit a prime pni for all sufficiently large ni such
that Sni fails to be almost uniformly equidistributed modulo pni .

Let Eni := (sniU)∩Ok and put Rni = Sni∆Eni . Since νni converges weakly-* to Leb|U
and the boundary ∂U has Jordan measure 0 we can deduce that |Rni | = o(ni). The set
T−1 is open so by Corollary 3.7.3 (in the appendix) for ni sufficiently large there exists an
$ni ∈ sniT−1 ∩Ok such that the principal ideal pni := $niOk is prime. We argue that for
every x ∈ Ok ∩$niW we have

| {y ∈ Eni |x− y ∈ pni} | = |sniU ∩ ($niOk + x)| = Nsni$
−1
ni

(U,$−1
ni x).

Since sni$−1
ni ∈ T , $

−1
ni x ∈W and ‖sni$−1

ni ‖ = ni|∆k|1/2(Npni)
−1 we get∣∣∣∣| {y ∈ Eni |x− y ∈ pni} | −

ni
Npni

∣∣∣∣ = |Dsni$
−1
ni

(U,$−1
ni x)| > 1 + δ for all x ∈ $niW.

(3.6.1)
We showed that in some sense Eni fails "badly" to be almost uniformly equidistributed
modulo pni . From this we need do deduce that Sni is not almost equidistributed modulo
pni . Call x ∈ $niW ∩ Ok bad if (x + $niOk) ∩ Rni 6= ∅ and good otherwise. For good
points we have (x + pni) ∩ Eni = (x + pni) ∩ Sni . Our next goal is to prove that for
ni sufficiently large there exists at least one 14 good element in $niW . Let us estimate
the number of bad elements of $niW ∩ Ok. By Lemma 3.2.19 for every r ∈ Rni we have
|(r+$niOk)∩$niW | = |(r$−1

ni +W )∩Ok| = O(1). Hence we have at most O(|Rni |) = o(ni)

bad elements. On the other hand |$niW ∩ Ok| = ‖$ni‖Leb(W )|∆k|−1/2 + o(‖$ni‖).
We chose $ni ∈ sniT

−1 so κ−1ni|∆k|1/2 ≤ ‖$ni‖ ≤ κni|∆k|1/2 so the number of good
elements is Leb(W )niκ

−1 − o(ni). We infer that for ni sufficiently large there exists at
least one good element x ∈ $niW ∩Ok. Let x ∈ $niW ∩Ok be a good element. We have
Eni ∩ (x+ pni) = Sni ∩ (x+ pni) so by (3.6.1) we get∣∣∣∣| {y ∈ Sni |x− y ∈ pni} | −

ni + 1

Npni

∣∣∣∣ = |Dsni$
−1
ni

(U,$−1
ni x)− 1

Npni
| > 1+δ− 1

Npni
. (3.6.2)

We know that Npni = ‖$ni‖ ≥ κ−1|∆k|1/2ni so for ni sufficiently large (3.6.2) implies that
Sni in not almost equidistributed modulo pni . This is a contradiction because n-optimal
sets are almost uniformly equidistributed modulo all prime ideals of Ok.

The last ingredient that we will need in order to show that n-optimal sets cannot exist
for large n is the following lower bound on the discrepancy.

14 In fact we will show that most of them are good.
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Lemma 3.6.4. Assume that V = Rr1 ×Cr2 with r1 + 2r2 > 1. Let U be an open subset of
V such that ∂U ∩V × is a submanifold of V × of class C1 and λU ⊂ U for every 0 ≤ λ < 1.
Then there exists t ∈ V × such that Dt(U) > 1.

Proof. We claim that there exists t0 ∈ V ×, v0 ∈ V such that (t0∂U + v0) ∩ Ok contains
at least 3 points15. Let N = dimR V . For every v ∈ V × let us identify the tangent space
TvV

× with V in the obvious way. For every point p ∈ ∂U ∩ V × the tangent space Tp∂U
is a codimension 1 subspace of V . Call a (real) codimension 1 subspace H of V singular if
we have H ⊂ V \ V ×.

Step 1. We show that there is x0 ∈ ∂U ∩ V × such that Tp∂U is not singular. Write
GrN−1(V ) for the space parametrizing all (N − 1)-dimensional real vector subspaces of V .
The map φ(p) := [Tp∂U ] ∈ GrN−1(TpV

×) ' GrN−1(V ) is continuous on ∂U ∩ V × because
the latter is a C1-submanifold. Let M be any connected component of ∂U ∩ V ×. Either
the exists a point p ∈M such that Tp∂U is nonsingular or we can assume that the image
φ(M) consists solely of singular subspaces. The set of singular subspaces in GrN−1(V ) has
r1 elements, each corresponding to a real coordinate of V . Hence, φ(M) = H for some
singular subspace H. We deduce that M is contained in a hyperplane H ′ parallel to H.
In particular the r1 singular subspaces and H ′ cut out a bounded region of V . This is a
contradiction because r1+1 ≤ N+1 and the only way N+1 codimension 1 hyperplanes can
cut out a bounded region in N -dimensional space is when they are pairwise non-parallel.

Step 2. We construct a continuous map γ : [0, 1] → ∂U such that γ(0) = x0 and
‖γ(s) − γ(0)‖ > 0 for 0 < s ≤ 1. Choose any smooth complete Riemannian metric on
∂U ∩ V ×. Choose a vector w ∈ Tx0∂U such that ‖w‖ 6= 0. Let γ : [0,+∞) be the unique
geodesic ray such that γ(0) = x0 and d

dtγ(t) = w. We have d
dt‖γ(0)− γ(t)‖ = ‖w‖ 6= 0 so

for t small enough we have ‖γ(s)− γ(0)‖ > 0 for every s ≤ t. Up to reparametrizing γ we
may assume t = 1.

Step 3. We show that there exists s1 > 0 such that ((γ(s1) − x0)Ok + x0) ∩ ∂U
contains at least one point x1 except x0, γ(s1). First note that as s approaches 0 the norm
‖γ(s)− x0‖ tends to 0. Hence

lim
s→0
|(γ(s)− x0)Ok + x0) ∩ U | = +∞.

Let s1 = inf {s > 0||(γ(s)− x0)Ok + x0) ∩ U | ≤ |(γ(1)− x0)Ok + x0) ∩ U |} . The equality
above ensures that s1 > 0. The intersection ((γ(s1)−x0)Ok+x0)∩∂U must contain another
point except x0 and γ(s1) because otherwise the function s 7→ |(γ(s) − x0)Ok + x0) ∩ U |
would be constant in an open neighborhood of s1, contradicting the definition of s1.

Step 4. Put v0 = −x0(γ(s0)−x0)−1 and t0 = (γ(s0)−x0)−1. Then (t0∂U + v0)∩Ok
contains at least 3 points p1, p2, p3. Indeed, we may take p1 = 0, p2 = 1 and p3 = (x1 −
x0)(γ(s1)− x0)−1 where s1, x1 are provided by Step 3.

15 This is of course not true if V = R and U is an interval.
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Step 5. We will show that for every small enough ε > 0 there exists open neighborhood
W of v0 such that ((1− ε)t0U + v1)∩Ok = (t0U + v0)∩Ok and ((1 + ε)t0U + v1)∩Ok ⊃
(t0U + v0) ∩ Ok t {p1, p2, p3} for every v1 ∈W .

Choose ε > 0 such that ((1−ε)t0U+v0)∩Ok = (t0U+v0)∩Ok and (1+ε)t0U+v0)∩Ok ⊃
(t0U + v0) ∩ Ok t {p1, p2, p3}. The desired conditions are satisfied once ε is small enough
because (1 − ε)t0U ⊂ t0U and t0U ⊂ (1 + ε)U . Conditions ((1 − ε)t0U + v1) ∩ Ok =

(t0U + v0)∩Ok and ((1 + ε)t0U + v1)∩Ok ⊃ (t0U + v0)∩Ok t {p1, p2, p3} define an open
set of v1 so they hold for all v1 in an open neighborhood of v0.

Step 6. We show that for small enough ε > 0 we have either D(1−ε)t0(U) > 1 or
D(1+ε)t0(U) > 1. By Step 5 for every v1 ∈W we have N(1+ε)t0(U, v1)−N(1−ε)t0(U, v1) ≥ 3

so D(1+ε)t0(U, v1) − D(1−ε)t0(U, v1) ≥ 3 − |∆k|−1/2Leb(U)‖t0‖((1 + ε)N − (1 − ε)N ). By
choosing ε small enough we can ensure that D(1+ε)t0(U, v1)−D(1−ε)t0(U, v1) ≥ 5

2 . Set W
is open so it has positive measure. We deduce that D(1−ε)t0(U) + D(1+ε)t0(U) ≥ 5

2 . One
of them must be bigger than 1 so Step 6 and the lemma follows.

3.6.2 Proof of the main theorem

In this section we prove the main result of this chapter.

Proof of Theorem 3.1.2. We argue by contradiction. As before V = k ⊗Q R = Rr1 × Cr2 .
Assume that there is a sequence (ni)i∈N ⊂ N with ni →∞ such that for every i ∈ N there
exists an ni-optimal set Sni . By Theorem 3.3.2 there exists a compact cylinder Ω ⊂ V and
sequences sni , tni ⊂ V such that ‖sni‖ = ni|∆k|1/2 and s−1

ni (Sni − tni) ⊂ Ω. Put

νni :=
1

ni

∑
x∈Sni

δsni (x−tni ). (3.6.3)

Those measures are supported in Ω. Since Ω is compact we may assume, passing to a
subsequence if needed, that νni converges weakly-* to a probability measure ν. This a
measure that we called in Section 3.5 a limit measure. By Lemma 3.5.2 the measure ν
is absolutely continuous with respect to the Lebesgue measure on V and its density is
bounded by 1. By Proposition 3.5.4 we have I(ν) = −1

2 log |∆k| − 3
2 − γk + γQ where

γk, γQ are Euler–Kronecker constants of k,Q respectively. Recall that P1(V ) is the set of
absolutely continuous probability measures on V of density at most 1. By Lemma 3.5.5 the
measure ν realizes the minimal energy among all probability measures in P1(V ). Hence,
by Proposition 3.5.6 there exists an open set U of measure 1 such that ∂U ∩ V × is a C1-
submanifold of V × , λU ⊂ U for 0 < λ < 1 and (up to translation) ν = Leb|U . By Lemma
3.6.4 applied to U there exists t ∈ V × such that Dt(U) > 1. On the other hand Lemma
3.6.3 yields Dt(U) < 1 for every t ∈ V ×. This yields the desired contradiction.
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3.7 Appendix

3.7.1 Measure theory

Lemma 3.7.1. Let ν be a probability measure on V of density at most 1. Then there exists
a sequence of subsets (En)n∈N of Ok such that |En| = n+ 1 and the sequence of measures

νEn,n :=
1

n

∑
x∈En

δn−1/N |∆k|−1/2Nx (3.7.1)

converges weakly-* to ν.

Proof. The proof is based on a sequence of reductions to easier problems. First note that
if we manage to find a sequence of sets En ⊂ Ok such that the measures νEn,n converge
weakly-* to ν then |En| = n+ o(n). Removing or adding o(n) points to each En does not
affect the weak-* limit so we may easily obtain a desired sequence. The proof is reduced
to finding any sequence (En) of finite subsets of Ok such that νEn,n converges weakly-* to
ν. Let P ⊂M1(V ) be the set of finite measures for which this is possible.

Step 1. We prove that P is a closed convex subset ofM1(V ). The fact that P is closed
is immediate by definition. Thus, to prove that it is convex we only need to show that for
every ν, ν ′ ∈ P we have 1

2(ν + ν ′) ∈ P . Fix a set a1, . . . , a2N of representatives of Ok/2Ok.
Let En, E′n be sequences of subsets of Ok such that νEn,n, νE′n,n converge weakly-* to ν, ν ′

respectively. Define

F2Nn =

2n−1⋃
i=1

(ai + 2En) ∪
2n⋃

i=2n−1+1

(ai + 2E′n)

and Fm := F2N [m/2N ]. A simple computation shows that limm→∞ νFm,m = 1
2(ν + ν ′) so

the latter belongs to P .
Step 2. Let U ⊂ V be an open set of finite Lebesgue measure such that ∂U is Jordan

measurable and has Jordan measure 0. Then the measure ν(A) := Leb(A ∩ U) belongs to
P . Indeed it is enough to take En = Ok ∩ (n1/N , . . . , n1/N )U.

Step 3. For every measurable set E ⊂ V of finite measure the measure νE(A) :=

Leb(A ∩ E) is in P . This follows from the fact that the Lebesgue measure is Radon so
there exists a sequence of open sets Un containing E such that νUn converges weakly-* to
νE . Removing from Un a closed set of arbitrarily small Lebesgue measure we can assume
that ∂U has Jordan measure 0 so Step 2 applies.

Step 4. The convex hull of measures νE from the previous step is weakly-* dense
in the set of measures of density at most 1. Indeed, let ν be a finite measure with den-
sity f ∈ L1(V ) such that f(v) ≤ 1 almost everywhere. For every t ∈ [0, 1] let Et =

{v ∈ V |f(v) ≥ t}. Those are measurable sets of finite measure and we have ν =
∫ 1

0 νEtdt.
Hence, by convexity ν ∈ P . The lemma is proven.
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3.7.2 Angular distribution of prime ideals

We prove a version of prime number theorem for number fields where principal ideals are
weighted with respect to their "angular" position in V ×/O×k . This is very close to the
prime number theorem for products of cylinders and sectors proved by Mitsui [29]. The
version we need is a little bit different and we don’t need an explicit error term. The
following result is rather folklore, we include a short proof for completeness.

Lemma 3.7.2. Let k be a number field and let V = k ⊗Q R. Let ϕ : V × → C be a
continuous function such that ϕ(tλx) = ϕ(x) for every x ∈ V ×, λ ∈ O×k and t ∈ R×. For
a principal ideal I = aOk we put ϕ(I) := ϕ(a). Then

∑
N(pl)≤X
p principal

ϕ(p) logNp =
X

Rkhk

∫
I/O×k

ϕ(t)dt+ o(X),

where Rk, hk are the regulator and the class number of k and I := {v ∈ V | ‖v‖ = 1} .

Proof. Write A for the space of continuous functions ϕ satisfying the conditions in the
lemma. The unitary characters χ : V × → C× such that χ(λ) = 1 for every λ ∈ O×k and
χ(t) = 1 for every t ∈ R× span a dense subspace of A. As a consequence it is enough to
prove the statement for ϕ = χ with χ as above.

Our first step is to associate to χ a Hecke character. Write A× for the group of ideles
of k and A×∞ and A×f for the groups of infinite and finite ideles respectively. We distinguish
the subgroup A1 of ideles of idelic norm 1. Let K =

∏
pO
×
kp

be the maximal compact
subgroup of A×f . We identify V × with A×∞. By abuse of notation let us write χ for the
extension of χ to I ×K ⊂ A1 by setting χ(vk) = χ(v) for v ∈ I, k ∈ K. The character
χ factors through (I ×K)/O×k and the latter is a closed subgroup of A1/k× of index hk.
Let χ̂ be any extension of χ to A1/k×. There are precisely hk such extensions and the are
all of form ψχ̂ for ψ : A/A×∞Kk× =: Clk → C× where Clk stands for the class group of
k. Through the standard procedure χ̂ gives rise to an unramified Hecke character χ̂ such
that for every principal prime ideal p = aOk we have χ̂(p) = χ(a). For any ν : Clk → C×

consider the Hecke L-function

L(s, ψχ̂) :=
∏
p

(
1− ψ(p)χ̂(p)

(Np)s

)−1

.

By [24, Theorem 5.34] there exists a constant c > 0 such that the function L(s, ψχ̂) has at
most one zero in the region

Re z > 1− c

N log |∆k|(|Im z|+ 3)N
.

The exceptional zero is always real, less than 1 and can occur only when ψχ̂ is a real
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character. With this information at hand the standard argument used to prove the prime
number theorem (see [24, Theorem 5.13]) shows that∑

Npl≤X

ψ(p)χ̂(p) logNp = rX + o(X), (3.7.2)

where r = 1 if L(s, ψχ̂) has a simple pole at 1 and r = 0 otherwise. In our case r = 1 if
ψχ̂ = 1 and r = 0 otherwise. We take the average of (3.7.2) over all characters ψ : Clk →
C× to get

∑
Npl≤X

p principal

χ̂(p) logNp =
1

hk

∑
Npl≤X

∑
ψ∈Ĉlk

ψ(p)χ̂(p) logNp =

 X
hk

+ o(X) if χ = 1

o(X) otherwise.
.

Since
∫
I/O×k

1dt = Rk this agrees with the formula predicted by the lemma. We deduce
that the lemma holds for φ = χ. By our opening remarks this concludes the proof.

Corollary 3.7.3. Let U be a bounded open subset of V ×. Then for any t ∈ V × with ‖t‖
sufficiently large there is at least one element a ∈ tU ∩Ok such that aOk is a prime ideal.

Proof. First we prove the statement for t ∈ R× ⊂ V ×. Let U ′ be an open subset of U such
that U ′ ⊂ U . Put U ′′ = O×k R

×U ′. Let ϕ0 : V → R≥0 be any continuous function such
that ϕ0|U ′ = 1 and ϕ0 vanishes outside U . For v ∈ V put ϕ(v) :=

∑
x∈O×k

∫∞
0 ϕ0(txv)dtt .

Function ϕ is continuous, positive on U , supported on U ′′ and it satisfies the assumptions
of Lemma 3.7.2. As V ×/R×O×k is compact the function ϕ is necessarily bounded. There
exist a < 1 < b such that U ′′ ∩ {v ∈ V ×|a ≤ ‖v‖ ≤ b} ⊂ O×k U . By Lemma 3.7.2 there is a
positive constant c such that∑

aX≤N(pl)≤bX
p principal

ϕ(p) logNp = c(b− a)X + o(bX). (3.7.3)

The higher powers are negligible since we have
∑

N(pl)≤bX
l≥2

logNp = o(bX). Equation

(3.7.3) becomes ∑
aX≤N(p)≤bX
p principal

ϕ(p) logNp = c(b− a)X + o(bX). (3.7.4)

We deduce that for X sufficiently large there exists an element w ∈ X1/NO×k U ∩ Ok
such that wOk is prime. We replace w by wλ for some λ ∈ O×k to get an element of
X1/NU ∩ Ok generating a prime ideal. This proves the statement for t ∈ R× because we
can take X = ‖t‖.

To get the general case choose an open set W ⊂ V × and a finite set y1, . . . , ym of
elements of V × such that for every translate tU, t ∈ V × there exists an λ ∈ O×k , t0 ∈ R

× and
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i ∈ {1, . . . ,m} such that λt0yiW ⊂ tU . This can be always arranged because V ×/R×O×k
is compact. The case of the corollary that we have already proved applied to the open sets
yiW implies that for ‖t0‖ sufficiently large the sets t0yiW all contain a prime element. But
then so do the translates λt0yiW for every λ ∈ O×k . Since one of them is contained in tU
and ‖t0‖ → ∞ as soon as ‖t‖ → ∞ the corollary is proven.
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