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Abstract

This thesis is divided into two parts. The first one comes from the representation theory of
reductive p-adic groups. The main motivation behind this part of the thesis is to find new
explicit information and invariants of the types in general linear groups. Let F' be a non-
Archimedean local field and let O be its ring of integers. We give an explicit description
of cuspidal types on GL,(Op), with p prime, in terms of orbits. We determine which of
them are regular representations and we provide an example which shows that an orbit of
a representation does not always determine whether it is a cuspidal type or not. At the
same time we prove that a cuspidal type for a representation m of GL,(F) is regular if and
only if the normalised level of 7 is equal to m or m — }3 for m € Z.

The second part of the thesis comes from the theory of integer-valued polynomials
and simultaneous p-orderings. This is a joint work with Mikotaj Fraczyk. The notion of
simultaneous p-ordering was introduced by Bhargava in his early work on integer-valued
polynomials. Let k be a number field and let O, be its ring of integers. Roughly speaking a
simultaneous p-ordering is a sequence of elements from Oy, which is equidistributed modulo
every power of every prime ideal in Oy as well as possible. Bhargava asked which subsets
of Dedekind domains admit simultaneous p-ordering. Together with Mikotaj Fraczyk we

proved that the only number field k£ with O admitting a simultaneous p-ordering is Q.

Key words

Representation theory of p-adic reductive group, cuspidal types, number theory, integer-

valued polynomials, simultaneous p-orderings
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Résumé

Cette thése contient deux parties. La premiére porte sur la théorie des représentations
des groupes p-adiques. Le but est de trouver de nouvelles informations et de nouveaux
invariants des types cuspidaux de groupes linéaires généraux. Soit F' un corps local non
archimédien et soit Op son anneau des entiers. Nous décrivons les types cuspidaux sur
GL,(OF) (ot p est un nombre premier) en termes d’orbites. Nous déterminons quels types
cuspidaux sont réguliers et donnons un exemple qui montre que ’orbite de la représentation
ne suffit pas & déterminer si la représentation est un type cuspidal ou non. Nous montrons
qu’un type cuspidal pour une représentation = de GL,(F') est régulier si et seulement si le
niveau normalisé de 7 est égal & m ou m — % pour un certain m € Z.

La deuxiéme partie porte sur les polynémes & valeurs entiéres, les p-rangements si-
multanés (au sens de Bhargava) et I’équidistribution dans les corps des nombres. C’est
un projet joint avec Mikotaj Fraczyk. La notion de p-rangement provient des travaux de
Bhargava sur les polynémes a valeurs entiéres. Soit k£ un corps de nombres et soit Oy son
anneau des entiers. Une suite d’élements de O est un p-rangement simultané si elle est
équidistribuée modulo tous les idéaux premieres de O du mieux possible. Nous prouvons

que le seul corps de nombres k tel que Oy admette des p-rangements simultanés est Q.

Mots-clés

Théorie des représentations des groupes p-adiques, types cuspidaux, théorie des nombres,

polynémes & valeurs entiéres, p-rangements



Contents

Mntroductionl 13
(I Cuspidal types| 17
|1 Representation theory of p-adic groups and theory of types. | 19
[1.1 Representation theory of p-adic groups| . . . . . . . ... ... ... ... .. 19
MIT Basicd . . - . . o 19

[.L1.2  Characters of FX|. . . . . . . . . ... ... 20

[L.1.3  Smooth representations of GL,(F)| . . . . ... ... ... ... ... 21

(1.2 Typeson GL,(Op).| . . . . . . . . . 21

2 Cuspidal types on GL,(OF)| 23
1 TIntroductionl. . . . . . . . . . . 23
[2.1.1  Cuspidal types| . . . . . . . . . 23

[2.1.2  Cuspidal types in terms of orbits| . . . . . . . .. ... ... ... .. 24

[2.1.3  Perspectives|. . . . . . . . .. 26

[2.1.4  Outline of the Chapter|. . . . . . . .. ... ... ... ... ..... 27

215 Notationl. . . . . . . . . . . 27

[2.2  Simple strata and cuspidal representations| . . . . . . . ... ..o 27
[2.2.1 Cuspidal typeson K| . . . . . . . . ... Lo 27

[2.2.2  Hereditary orders| . . . . . . . . . .. .. ... 28

[2.2.3 Simple strata] . . . . ... 30

[2.2.4  Cuspidal representations ot G| . . . . . . . .. ... ... ... ... 35

[2.2.5 Irreducible representations of GL,(Op) in terms of orbits| . . . . . . 37

2.3 Cuspidal types on K in terms of orbits| . . . . . . . .. .. ... ... .. .. 38
[2.3.1 Cuspidal types on GL,(Op)| . . . . . ... ... ... ... .. .... 38

[2.3.2  Cuspidal types on GL2(Op)| . . . . . . .. .o 47

[2.3.3  Regularity of cuspidal types| . . . . . . . .. ... ... 51

4 xample| . . .o 53



12 CONTENTS
(I On the optimal rate of equidistribution in number fields.| 55
I3 On the optimal rate of equidistribution in number fields.| 57
3.1 Introduction|. . . . . . . . . . . 57
[3.1.1  Optimal rate of equidistribution in number fields.|. . . . . . . .. .. Y

[3.1.2  p-orderings and equidistribution|. . . . . . .. .. ... ... 98

[3.1.3  Test sets for integer valued polynomials.| . . . . . . . ... ... ... 59

[3.1.4  Average number of solutions ot a unit equation| . . . . . . . ... .. 60

[3.1.5  Outline of the proof] . . . . . . . . ... .. ... ... ... 61

B.1.6  Notation|. . . . . . . . . . . . . . 63

[3.1.7  Structure of the chapter| . . . . . . . ... ... 64

3.2 Counting problem| . . . . . . ... ... o 64
3.2.1 Aramaki-Ikehara theorem| . . . . . . . . .. ... ..., 66

[3.2.2  Proof of Proposition|3.2.5( . . . . . ... ... ... ... ...... 68

13.2.3  Linear forms in logarithms and bound on [S4|[ . . . . . ... .. ... 73

[3.2.4  Average number of solutions ot unit equations| . . . . . . . . ... .. 78

3.3  Geometry of n-optimal sets. | . . . . .. ... oo 0oL 78
[3.3.1  Generalities on n-optimal sets| . . . . . . . .. ... ... ... ... 79

B.32 Proofof TheoremB.3.1l. . . . . . . . .. ... .. ... ... ..... 80

3.4  Collapsing of measures| . . . . . . . . ... ... ... L 84
[3.5  Limit measures and energy| . . . . . . .. ... L 92
[3.5.1  Density of limit measures| . . . .. .. ... ... ... ... ... 93

[3.5.2  Energy of imit measures|. . . . . . ... ... ... L. 93

[3.5.3  Measures of minimal energy| . . . . . . . ... 96

[3.6  Non-existence of n-optimal sets.|. . . . . . . ... ... ... ... ...... 103
[3.6.1  Discrepancy and almost equidistribution| . . . . . . . .. .. ... .. 103

[3.6.2 Proof of the main theorem|. . . . . . . . ... ... .. L. 107

3.7 Appendix| . . . ... 108
[3.7.1  Measure theory| . . . . . . . ... 108

[3.7.2  Angular distribution of prime ideals| . . . . . ... ... ... ... 109




Introduction

In this thesis we distinguish two main projects. The first one comes from the representation
theory of reductive p-adic groups. The main motivation behind this project is to find new
invariants and information about the types in general linear groups. Let F' be a non-
Archimedean local field and let Op be its ring of integers. Let 7 be an irreducible cuspidal
representation of GL,,(F). By J(m) we will denote the inertial support of 7 (see (2.1.1))). A
cuspidal type (on K = GL,,(OF)) for J(r) is an irreducible representation A of GL, (OF)
which satisfies the following condition: an irreducible representation 71 of GL,,(F') contains
A if and only if the inertial support of m; coincides with that of w. The existence of cuspidal
types on GL,,(OF) easily follows from Bushnell and Kutzko’s work [9]. This is explained by
Paskunas in [30]. Paskunas also showed the unicity of cuspidal types on GL,(OF). More
precisely he proved that for any 7 irreducible cuspidal representation of GL,, (F') there exists
A an irreducible representation of K depending only on J(7) which is a cuspidal type on K.
Moreover A is unique up to isomorphism. The regular representations of GL,(OF) were
introduced by Shintani ([31]). Those are in certain sense the best behaved representations
of GL,(OF). In Chapter [2| we determine which cuspidal types on GL,(Op) (where p is
a prime number) are regular.

The second part of the thesis comes from the theory of integer-valued polynomials,
simultaneous p-orderings and equidistribution in number fields. This is a joint work with
Mikotaj Fraczyk. It comes from our preprint [18]|. Let k be a number field with ring of
integers Ok. In Chapter [3] we study how well finite subsets of O can be equidistributed
modulo powers of all primes ideals in O. We deduce that the only number field k£ whose
ring of integers Oy has a simultaneous p-ordering is Q.

In the following subsections we give an overview of the contents of Chapters [I} [2] and [3]
This overview will be short since both Chapter [2] and Chapter [3] has its own introduction

with the motivation, the structure of paper and the notation.

Chapter [1| - Representation theory of p-adic groups and the theory of
types

In this chapter we recall basic notions from the representation theory which we use in

Chapter We recall the notions of a smooth representation, induction and compact

13



14 INTRODUCTION

induction. Later we focus on irreducible smooth representations of GL,(F'). We also

mention results of Paskunas on types.

Chapter [2| - Cuspidal types

Let pr be the maximal ideal in Op. Any irreducible smooth representation p of GL,(OF)
factors through a finite group GL,(OF/p’) where r is a natural number bigger than or
equal to 1. The minimal natural number r with this property is called the conductor of the
representation p. Let p be an irreducible smooth representation of GL,,(OF) with conductor
r > 1. Sometimes it will be convenient to see p as a representation of GL,,(Or/p}). In this
case we will denote it by p. Let [ = L%J and let K! be the kernel of the projection from
GL,,(Or/p%) onto GL,(Op/pk). Note that K'/K" is an abelian group. Fix an additive
character ¢ : F' — C*. Denote by M,,(OF) the set of all n x n - matrices with entries in
Opr. By Clifford’s theorem

plgi=m @ Va, (0.0.1)
arvan

where a,a; € Mn(C’)p/p}_l), the equivalence classes of ~ are GL,(Op/p"!)-conjugacy
classes, m € N and the characters ¢z : K' — C* are defined as follows: 15(1 + 2) =
Y(tr(az)) for some lifts of z,& to elements in M, (Or). The definition of 15 does not
depend on the choice of lifts. If a matrix a € M,,(Op) is such that its image in M,,(Op /ph ")
appears in the decomposition we say that a is in the orbit of p. We say that
a representation is regular if its orbit contains a matrix whose image in M, (Or/pr) has
abelian centralizer. Krakovski, Onn and Singla [25] constructed all such representations
under the condition that the characteristic of the residue field of F' is different than 2.
Stasinski and Stevens in [34] described all regular representations of GL,(OF) in terms
of orbits. In [33| Stasinski asked which cuspidal types are regular. In Chapter 2| we will
obtain the following description of orbits of cuspidal types on GL2(OF).

Theorem 0.0.1. A cuspidal type on GLo(OF) is exactly a one-dimensional twist of one
of the following:

1. a representation inflated from some irreducible cuspidal representation of GLa(k);

2. a representation whose orbit contains a matrix whose characteristic polynomial is

irreducible modulo pp;

3. a representation whose orbit is equivalent to an orbit containing a matriz 3 whose
characteristic polynomial is Fisenstein and which satisfies one of the following con-

ditions:

(a) it has conductor at least 4;
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K

(b) it has conductor r = 2 or 3 and is isomorphic to IndStabK(J;B)

0 where 6 | L4l =
UWQ

1 r—2
mapg for certain m € Z and 0 does not contain the trivial character of (0 ]31? ) .

Let p be a prime number. We also obtained a description of orbits of cuspidal types on
GL,(OF) with conductor bigger than 3. Let J be the chain order consisting of matrices
that are upper triangular modulo pg, let U5 be the group of invertible elements of J and let
B35 be the Jacobson radical in J. Let Iy be a generator of 5. Denote by kp the residue
field of F'. We prove the following result:

Theorem 0.0.2. If A is a cuspidal type on K = GL,(OF), then it is a one-dimensional
twist of one of the following:

1. a representation inflated from an irreducible cuspidal representation of GLy(kp);

2. a representation whose orbit contains a matriz whose characteristic polynomial is

1rreducible modulo pr;

3. a representation whose orbit contains a matriz of the form H?IB where 0 < j < p and

B e U;.

Moreover if a representation is a one-dimensional twist of a representation of the form

(3) and has conductor bigger than 3, or is of the form (1) or (2), then it is a cuspidal type.

In particular this implies that a cuspidal type on GL,(OF) of conductor r > 4 is regular
if and only if its orbit contains a matrix whose characteristic polynomial is irreducible
modulo pr or a matrix whose characteristic polynomial is Eisenstein. In particular for

p > 2 even for big conductors there are cuspidal types which are not regular.

Chapter 3| - Optimal rate of equidistribution in number fields

Let k be a number field. Denote by Oy its ring of integers and let S be a subset of Ok.
Let p be a prime ideal in O. We say that (a;);cy is a p-ordering in S if for every n € N

vs(pn) = vy (115 (ai — an) ) = mingesvy ([T (0 — 9))

where v, is p-adic additive valuation in Of. The value vg(p,n) does not depend on
the choice of p-ordering. Bhargava defined the generalized factorial as the ideal nlg =
Hp pvs(®") where p runs over all prime ideals in @y. A sequence is called a simultaneous
p-ordering if it is a p-ordering for all prime ideals p in Of. Simultaneous p-ordering are also
called Newton sequences [13|. Bhargava in |5] asked which subsets of Dedekind domains
contain a simultaneous p-ordering. Wood in [36] has proved that there are no simultaneous
p-orderings in Oy, for k imaginary quadratic number field. This was generalized by Adam

and Cahen in [1] to all quadratic number fields Q(v/d) besides d = 2,3,5 and d = 1mod 8.
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In a joint work with Mikotaj Fraczyk we have proved that this true for any number field
[18]. The precise statement we prove is stronger. To state it properly we need to define
n-optimal sets. A finite set S C Oy is almost uniformly distributed modulo p if for

every a,b € Oy, we have
|[{seS|s—aep}|—|{seS|s—bep}le{-1,0,1}.

We say that a finite subset S C O with n+1 elements is n-optimal if it is almost uniformly
equidistributed modulo every power of p for every prime ideal p. If (a;);en is a simultaneous
p-ordering, then {a; | 0 < < n} forms an n-optimal set. In particular the non-existence
of n-optimal sets for n big enough implies non-existence of simultaneous p-orderings. The
idea for study n-optimal sets comes from the theory of integer valued polynomials. We say
that a polynomial f € k[z] is integer valued if f(Of) C O (see |12]). The n-optimal
sets are in some sense the smallest testing sets for finding such polynomials. Let n € N.
An equivalent definition of n-optimal sets is the following: a set .S is n-optimal if and only
if for every polynomial f € k[x] of degree at most n the following condition is satisfied:
f(S) C Oy implies that f is integer valued. In [11] together with Mikolaj Fraczyk and
Jakub Byszewski we have proved that for every k imaginary quadratic number field there
exists N € Z such that for n > N there are no n-optimal sets in the ring of integers of k.
In Chapter [3| we have proved that for every number field k different that Q there exsists
N € Z such that for n > N there are no n-optimal sets in Oy. Let us explain very briefly
what is the idea of the proof. We assume the contrary, i.e. that there exists S,,, a sequence
of n;-optimal sets with n; tending to infinity. Let V = k ®g R. First we show that for
every n there exists a cylinder in V' of the volume O(n) which contains S,,. Something
similar was proved in the case of imaginary quadratic number field in [11] but the general
case was much more complicated because the norm in this case is not always convex. In
the proof of that we used some number theoretical input, for example Ikehara’s Tauberian
theorem and Baker—Wiistholz’s theorem. Then we deduce that there exists a compact set
2 and sequences (S )nen, (tn)nen in V' with some restriction on the norm of s, such that
sets s,,1(S, — tn) are contained in Q. Define y,, = 1 > ees, O5=1(y—t,)- Since ) is compact
we consider weak -* limits of p,,. We call them limit measures. They provide information
about geometry of large n-optimal sets. We study properties of n-optimal sets to show

that limit measures cannot exist.
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Chapter 1

Representation theory of p-adic

groups and theory of types.

1.1 Representation theory of p-adic groups

In this chapter we give an introduction to representation theory of p-adic groups and we

also provide an introduction to the theory of types.

1.1.1 Basics

Let G be a locally profinite group and let (7, V') be a representation of G over C. Let F'

be a local non-Archimedean field.

Definition 1.1.1. We say that 7 is smooth if
V= Jv¥
H

where the union runs over open compact subgroups H of G and

VE.={veVv: x(hw=uv foral heH}.

One of the ways to construct a representation is by induction. Let H be a closed

subgroup of G. Let (o, W) be a smooth representation of H.
Definition 1.1.2. Define X to be set of functions f : G — W such that
1. f(hg) = o(h)f(g), for all h € H, g € G;

2. there exists a compact open subgroup Ky of G depending on f such that f(gk) = f(g)
fork € K.

19



20 REPRESENTATION THEORY OF 3-ADIC GROUPS AND THEORY OF TYPES.
We define the action of G on X by translation:

¥ :G — Aute(X)
X(g)f 91— florg)  g9.91 €G.

The representation (X, X) is called induction and we denote it by Ind%o.

Induction defined as above is a smooth representation.

Definition 1.1.3. Take X and X as before. Define
X.:={feX: suppf CHC for a compact subsetC of G}.

The representation (X |x., X.) is called compact induction and is denoted by c-Ind$ o.
Let F' be a local non-Archimedean field. Write O for its ring of integers and pg for

the maximal ideal in Op.

1.1.2 Characters of F'*

This section is a recap of |10, 1.6,1.8].

A continuous homomorphism G — C* is called a character of G.

Lemma 1.1.4. |10, 1.6 Proposition| Let x : G — C* be a group homomorphism. Then

the following conditions are equivalent
1. the kernel of x is open;
2. x 18 continuous.

By F* we denote the group of invertible elements in F'. Write Ul :== 14 p7 for m > 1
and Ug := Of. The group F* is locally profinite. Let x be a character of F*. By the
above lemma  is trivial on Up' for some m. Fix an additive character 1 of I’ such that
pr is the biggest fractional ideal in F' which is contained in the kernel of ¢. For a € F we
define a function v, : F* — C* as follows

Ya(z) = ¢(alz —1)).

Lemma 1.1.5./]10, 1.8 Proposition| Let m,n € Z be such that 0 < m < n < 2m + 1.
Denote by UFerl/Uﬁ+1 the group of characters of UFH/U};H, The map

pEn/p;m N U}Tj‘n+1/Ug+l

ar P ’U;,”H

is an tsomorphism.
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1.1.3 Smooth representations of GL, (F)

Irreducible smooth representations of GL,,(F") are well studied. We can divide them into
two classes. Representations from one of the classes are called cuspidal.

Let (m, V') be an irreducible smooth representation of G. Let P a parabolic subgroup
in G. Denote by L a Levi subgroup in P and by N the unipotent radical in P. Define

VN :=V/{r(n)v—v: neN,veV)

We call Viy a Jacquet module.

Definition 1.1.6. Let (7, V) be an irreducible smooth representation of G. We say that ©
1s cuspidal if Viy = 0 for every proper parabolic subgroup P in G.

A smooth irreducible representation of GG is not cuspidal then it is a parabolic in-
duction IndJGga for certain parabolic subgroup P in G and a cuspidal representation of
L. Therefore cuspidal representations are building blocks of irreducible smooth represen-
tations of G.

1.2 Types on GL,(Op).

The following section is based on [30]. The existence of cuspidal types on K relatively
easily follows from the work of Bushnell and Kutzko [9]. We recall the explanation of that
fact given by Paskunas |30]. Paskunas also showed the unicity of cuspidal types on K but
the proof of that is much more involved.

Let N > 1 be any natural number. For this section we fix an irreducible cuspidal
representation m of GLy(F'). Write G = GLy(F') and K := GLx(OpF). Let (J,\) be a

simple type |9, 5.5.10] occuring in 7 and coming from a simple stratum [2(, n, 0, 5]. Define
p = Indf N

Proposition 1.2.1. [30, Proposition 3.1] The representation p defined as above is a type
on K for 3(r).

proof First we show that p is irreducible. Denote E = F[f]. By |9, 5.5.11] g € G
intertwines A if and only if g € E*J (for a definition of intertwining see Section. Since
J is the unique maximal compact open subgroup of E*J we have EXJNK = J and p is
irreducible.

By Mackey’s formula 7 contains p. If m € J(m), then m |xk= 7 |g. Therefore if
71 € J(m) then 71 contains p.

For the reverse implication assume that an irreducible smooth representation my of G
contains p. Then 7 |; contains A. By |9, 6.2.3|, m € J(m).

O
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Chapter 2

Cuspidal types on GL,(Op)

2.1 Introduction

2.1.1 Cuspidal types

The main motivation behind this chapter is to find new explicit information and invariants
of types in general linear groups over a local non-Archimedean field. Let us recall the
definition of a cuspidal type. Let F' be a non-Archimedean local field and let Op be its
ring of integers. Denote by kp the residue field of F'. All representations we consider are
smooth and over C. Let n € N, n > 1 and let m be an irreducible cuspidal representation
of GL,,(F'). Let

J(m) ={m | ma =7 ® xodet for some unramified character x of F*} (2.1.1)

be the inertial support of .

Definition 2.1.1. Let H be a compact open subgroup of GL,(F), © an irreducible cuspidal
representation of GLy(F'). We say that an irreducible smooth representation \ of H is a
cuspidal type on H for J(m) if the following condition is satisfied: for any irreducible
smooth representation w1 of GLy,(F')

™ |lg contains X\ if and only if TI(m) = I(nm).

In this chapter we mostly consider types on GL,(OF) so we will supress K from the
notation. We say that a representation is a cuspidal type when it is a cuspidal type on
GL,,(Op) for J() for some irreducible cuspidal representation 7 of GL,,(F'). Henniart gave
an explicit description of cuspidal types on GL2(Op) in |7]. Bushnell-Kutzko’s construc-
tion of irreducible cuspidal representations of GL, (F') easily implies existence of cuspidal
types on GL,(Op). It is explained by Paskunas in [30]. Moreover Paskunas [30] proved

that for any irreducible cuspidal representation 7 of GL,(F) there exists A a unique up

23



24 CHAPTER 2. CUSPIDAL TYPES ON GLp(OF)

to isomorphism irreducible smooth representation of GL,,(Op) depending only on J(r)
which is a cuspidal type on GL,,(OF) for J(7). Using that and the local Langlands corre-
spondence he deduced an inertial Langlands correspondence. In rough terms the inertial
Langlands correspondence is a correspondence between cuspidal types on GL,(Of) and

certain irreducible representations of the inertia group of F. For a precise statement see
213
The regular representations of GL,(Of) were introduced by Shintani |31]. They were

rediscovered by Hill [20]. Those are in certain sense the best behaved representations of
GL,(OF). In this chapter we determine which cuspidal types on GL,(Op) (where p is a
prime number) are regular. Moreover we provide a precise description of all orbits which
can give cuspidal types on GL,(Op) with conductor at least 4. We precisely determine
orbits of cuspidal types in small conductor case for p = 2. We use tools from Clifford
theory, the classification of cuspidal representations of GL,,(F’) due to Bushnell and Kutzko
specialized to n = p and the properties of the actions of subgroups of GLa(F') on their
Bruhat—Tits buildings.

2.1.2 Cuspidal types in terms of orbits

Any irreducible smooth representation p of GL,,(OF) factors through a finite group GL,,(OF /p’)
where r is a natural number bigger than or equal to 1 and pr is the maximal ideal in Op.

The minimal natural number 7 with this property is called the conductor of the represen-
tation p. Let p be an irreducible smooth representation of GL,,(Or) with conductor r > 1.
Sometimes it will be convenient to view p as a representation of GL,(Op/p}). In this
case we will denote it by p. Let [ = L%J and let K'! be the kernel of the projection from
GL,,(Or/p%) onto GL,(Op/pL). Note that K! is an abelian group. We fix once and for

all an additive character ¢ : F — C* with conductor pr i.e., pr is the biggest fractional
ideal of F' on which ¢ is trivial. Denote by M, (OF) the set of all n x n - matrices with
entries in Op. By Clifford’s theorem (see |23, 6.2])

plii=m P Ya (2.1.2)

a~ay

where @; € M, (Or/p’s"), @ runs over the conjugacy class of a; under GL,(Or/p"!),
m € N and the characters 95 : K! — C* are defined as follows: ¢5(1+ x) = ¥(tr(az)) for
some lifts Z, @ of x, @ to elements in M,,(Op). The definition of ¢5 does not depend on
the choice of lifts. If a matrix o € M,,(OF) is such that its image in Mn(OF/p}_l) appears
in the decomposition we say that « is in the orbit of p. The recalled description
is a recap of a part of [33]. We say that a representation is regular if its orbit contains
a matrix whose image in M,,(Or/pr) has abelian centralizer in GL,, (O /pr). Krakovski,

Onn and Singla 25| constructed all such representations under the condition that the
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characteristic of the residue field of F' is odd. Stasinski and Stevens in [34] constructed
all regular representations of GL,,(Or). In |33 Stasinski asked which cuspidal types are
regular.

We give a full description of cuspidal types on GLa(Op) in terms of orbits. For a
character 15 on K! let StabGLZ(@F)zﬁ@ be the preimage of StabGLQ(OF/pr)z/_J@ through the
canonical projection GL2(Op) — GL2(Op/p"). Recall that a polynomial 2" + a,,_12" ! +
...+ aq is called Eisenstein if ay,...,a,-1 € pr and ag € pr \p% The following theorem

gives a full description of cuspidal types on GLy(Op) in terms of orbits.

Theorem 2.1.2. A cuspidal type on Ky := GLo(Op) is precisely a one-dimensional twist
of one of the following:

1. a representation inflated from some irreducible cuspidal representation of GLa(kp);

2. a representation whose orbit contains a matrix whose characteristic polynomial is

wrreducible mod pr;

3. a representation whose orbit contains a matriz 5 whose characteristic polynomial is

Eisenstein and which satisfies one of the following conditions:

(a) it has conductor at least 4;

Ky
StabKQ ("/)E)

(b) it has conductor r = 2 or 3 and is isomorphic to Ind 0 where 0 | | 1=
U,

r+1
—

1 r—2
mapg for certain m € Z and 0 does not contain the trivial character of (0 pfi ) .
We also give a description of cuspidal types on GL,(OF) with p prime. Let J be the
Op-order consisting of matrices that are upper triangular modulo pr. Let Uz be the group
of invertible elements of J and let 35 be the Jacobson radical in J. We choose IlI5 such
that II5J = P5. We prove the following result:

Theorem 2.1.3. If X is a cuspidal type on K := GL,(OF), then it is a one-dimensional
twist of one of the following:

1. a representation which is inflated from an irreducible cuspidal representation of GL,(kp);

2. a representation whose orbit contains a matrix whose characteristic polynomial is

irreducible modulo pp;

3. a representation whose orbit contains a matriz of the form H%B where 0 < 7 < p and
B e Us.

Moreover if a representation is a one-dimensional twist of a representation of the form (3)

and has conductor at least 4, or is of the form (1) or (2), then it is a cuspidal type.
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Theorem for p = 2 coincides with Theorem as long as a representation is of
the conductor r > 4. Theorem [2.1.2] for representations of conductor » = 2 or 3 gives a

more precise description of cuspidal types on GL2(OF).

Representations whose orbit contains a matrix whose characteristic polynomial is irre-
ducible modulo pp are regular. In Subsection we prove that a matrix of the form H%B
with 0 < j < p and B € Uj is regular if and only if j = 1. The characteristic polynomial of
a matrix of the form II5 B is Eisenstein. However the characteristic polynomial of a matrix
of the form H?IB with 1 < j < p is not Eisenstein. Therefore a cuspidal type on GL,(OF)
of conductor 7 > 4 is regular if and only if its orbit contains a matrix whose character-
istic polynomial is irreducible modulo pr or a matrix whose characteristic polynomial is
Eisenstein. In particular, for p > 2 even for big conductors there are cuspidal types which
are not regular. Indeed, if a representation has conductor at least 4 and is of the form (3)

from the above theorem with j > 1 then it is a cuspidal type but it is not regular.

2.1.3 Perspectives

To the best of our knowledge the regular representations of GL,(Op) form the biggest
family of irreducible smooth representations of GL,(Op) which has been described in
terms of orbits so far. Our description of cuspidal types in terms of orbits suggests that
even though the cuspidal types are not always regular they can be described in terms of

orbits.

It could be also interesting to study representations which correspond to the regular
cuspidal types under the inertial Langlands correspondence. We recall the precise state-
ment of the inertial Langlands correspondence. Denote by Wr the Weil group of F' and by
I the inertia subgroup. For an infinite-dimensional irreducible smooth representation 7 of
GL,,(F) we denote by W D(m) the Weil-Deligne representation of W which corresponds to
7 through the local Langlands correspondence. Paskunas in |30] proved the following result
(the inertial Langlands correspondence): for a smooth n-dimensional representation
7 of I'r which extends to a smooth irreducible Frobenius semisimple representation of Wg
there exists a unique up to isomorphism smooth irreducible representation p of GL,,(OF)
which satisfies the following condition: for every irreducible smooth infinite-dimensional
representation 7 of GL,,(F') we have 7 contains p if and only if W D(rx) |7, is isomorphic to
7. Moreover p has multiplicity at most one in 7. Having a description of cuspidal types in
terms of orbits, it would also be interesting to look how the properties of orbits of cuspidal

types translate to properties of the corresponding representations of Ir.

Finally, the problem of describing cuspidal types can be also studied in other cases of

maximal compact subgroups of other reductive p-adic groups.
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2.1.4 Outline of the Chapter

In Section we recall the properties of hereditary orders and simple strata which in
our case are specific because we consider GL,(F") with p prime. In we give an explicit
description of simple strata which is one of crucial ingredients in the proof of Theorem
In we recall the classification of irreducible cuspidal representations of GL,(F")
and we study twists of cuspidal representations with minimal level. In we recall some
basic notions from Clifford theory. In these terms we describe cuspidal types.

In Section we prove the two main results of this chapter: Theorem [2.1.2] and
Theorem Then we determine which of cuspidal types on GL,(Op) are regular.

In Section we give an example of two representations of GL2(OF) with the same

orbit but one representation is a cuspidal type and the other is not.

2.1.5 Notation

We will write |a] for the biggest integer less than or equal to a and trA for the trace of a
matrix A. For any local non-Archimedean field F we will denote by O its ring of integers,
by pr the maximal ideal in Op, by wg a prime element in E, by O invertible elements
of O and by kg the residue field of E. We fix a non-Archimedean local field F' and a
prime number p. Let E/F be a finite field extension. Write e(E£/F) for the ramification
index and f(E/F) for the residue class degree. Let G := GL,(F') and K := GL,(Op). We
write Z for the center of G. We denote by V' a vector space over F' of dimension p and
A :=Endp(V). For a local field E we denote by vg the additive valuation which takes 1
on a uniformizer. Write 7 for a representation of GL,,(F') and let x be a character of F'*.
Set xm := (x odet) ® . For B a subgroup of G we denote by Ng(B) the normalizer of B
in G.

2.2 Simple strata and cuspidal representations

2.2.1 Cuspidal types on K

Paskunas in [30] has proven the unicity of (cuspidal) types:

Theorem 2.2.1 (cf [30], Theorem 1.3 ). Let m be an irreducible cuspidal representation of
G. Then there exists a smooth irreducible representation p of K depending on J(m), such
that p is a cuspidal type on K for J(m). Moreover, p is unique (up to isomorphism) and it

occurs in T |k with multiplicity 1.

Denote by X (G) the group of F-rational characters of G. Denote by || - || 7 normalized

absolute value on F'. Define

°G = Noexpe Ker(ll ¢ lr).
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The following proposition will be a useful tool while describing cuspidal types in terms of

orbits.

Proposition 2.2.2 (cf |9], 5.4 Proposition). Let 7 be an irreducible cuspidal representation
of G of the form m™ =2 C—Ind§ 71 for 11 a representation of some compact mod Z open subgroup
J. Let J° = JN°G and let T be an irreducible component of 71 |jo. Then J° is the unique

maximal compact subgroup of J and T is a cuspidal type on J° for I(m).

Remark 2.2.3 (|9]). Every irreducible cuspidal representation of GLy,(F') is of the form
as in Proposition[2.2.3.

Remark 2.2.4. Theorem [2.2.1, Proposition and Remark do not use the as-

sumption that p is prime.

2.2.2 Hereditary orders

Let A = Endp(V') where V is of prime dimension p. In this section we recall basic notions
associated to hereditary orders in A. The given description of principal orders relies on the
fact that V is of a prime dimension. In the general case things are more complicated. For
more detailed discussion on hereditary orders we refer to (|9], 1.1). Lemmas and
play an important role for us and they are not true for non-principal hereditary orders.
We call a finitely generated Op-submodule of V' containing an F-basis of V' an Op-lattice
in A. An Op-order in A is an Op-lattice in A which is also a subring of A (with the same
identity element). A sequence £ = {L; : i € Z} of Op-lattices satisfying the following

conditions:
1. Li+1 g L;,i €Z
2. there exists e € Z such that ppL; = L;;. for every ¢ € Z

is called an Op-lattice chain in V. We call e = e(L) = e(A(L)) the Op-period of L. For
n € Z and an Op-lattice chain £ define

End%F (E) = {g cA: ng - Li+n7i S Z}

Taking n = 0 we get EndOOF(E) =: A(L) = A an Op-order in A. We call such Op-
order a hereditary order. A hereditary order (L) is called principal if dimy, (L;/Li11) =
dimy,, (L;j/Ljt1) for every i,5 € Z. Let £ be an Op lattice chain. Then EndéF is the
Jacobson radical of A(L£). We denote it by Py or by P if the order is clear form the

context. It is an invertible fractional ideal and we have

Py =P" = Endp,, (L) for any n € Z.
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We also have ppRl = ‘,]3;[(90. We denote by U(2) = Uj the group of invertible elements in

2l and we define the subgroups
Uy =1+ foranyneNn>1.
We define the normalizer of 2 as
RRA) ={geG:gAg™" =2}
or equivalently if % = 2((L) for some lattice chain £ as
RRA)={geG:gLe L forany L€ L}

We now restrict our attention to principal orders.

Lemma 2.2.5. Any principal order is GL,(F')-conjugate to M = My,(OF) or to order J

which consists of matrices with coefficients in O and uppertriangular modulo pp:

Op - - Op Op - - Op
M = and T = p.F

Proof. The proof is based on the notion of an Op-basis of an Op-lattice chain. For the
reference see (9], 1.1). Let £ = {L; : i € Z} be an Op-lattice chain in V. An Op-basis
of £ is an F-basis {v1,...,vp} of V such that it is an Op-basis of some L; € L and
L, = Hlepgi’l)vi, i € Z, for some integers f(i,1) < f(i,2) < ... < f(i,p). Any Op-lattice
chain has an Op-basis.

Take 2((L£) to be a principal order with £ = {L; : i € Z} an Op-lattice chain. We
want to show that 2 is GL,(F)-conjugate to M or J. Let {v1,...,v,} be an Op-basis of
L. We use this basis to identify A with M, (F"). Let Lyax be the Op-lattice chain formed
by Op-lattices of the form

p%((’)pvl + ...+ OFUZ +PFU41 + .. +ppvp)

where 1 < 1 < p and j € Z. The Op-lattice chain £ is contained in L.y (see |9, 1.1]).
Since £ is principal dimy, (L;/Li+1) = dimy, (L;/Liy1) for any i,] € Z. It is easy to see
that ngl) dimy, (Li/Liy1) = p. Therefore e(£) =1 or p. With this identification we are
going to deduce that (L) is either M or J. If e(L) = 1 then L consists of Op-lattices of
the form p%(OFvl +...+Opvy) for j € Z and A =M. If e(L) = p then £ = Lyax and
2A(L) =17. O
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Denote
0 1 0 0
IIyy = wrldpxp, and Il; =
0
wp 0 - oo 0

where Id,«, denotes the identity matrix of size p x p.

Corollary 2.2.6. For a principal order 2 there exists an element a such that Py = a2l =
Aa.

Proof. By Lemma it is enough to check the statement for 91 and J. By simple
computation we see that taking a = Ilgy for 9 and a = II5 for J we obtain the desired

equalities. O
We call an element a from Corollary a prime element in 2.

Remark 2.2.7. In particular, Pop = LgpN = Moy and Py = 1157

JM15.
For a principal order we can deduce a more specific form of the normalizer:
Lemma 2.2.8. Let 2 be a principal order. Then K(2) = Uy x (Ily).

Proof. By definition Uy is contained in £(2(). Since IIg2l = Po = Ally also the subgroup
generated by Ily is contained in K(2A). Therefore the group generated by Uy and Ily is
contained in £(2). On the other hand the group Uy (Ily) contains the center. It is compact
modulo center and it is a maximal subgroup of G with this property. Therefore £(21) is
generated by Uy and Ily. By ([9], section 1.1) the subgroup Uy is normal in K(2(). The
intersection Uy N (Ily) is trivial. O]

A normalizer £(2) is an open compact modulo center subgroup of G (see |9], section
1.1).

Define
vy(a) = max{n € Z: a € Py }.

2.2.3 Simple strata

A simple stratum is a notion used in the classification of irreducible cuspidal representations
of GL,(F"). We recall the definition and then we prove its properties which are crucial in
the description of cuspidal types. We focus on simple strata which come from principal
orders as these ones are used in the classification of irreducible cuspidal representations of

GL,(F). Again the given properties rely on the fact that the dimension of V' is prime. We
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use a definition (Definition [2.2.12)) of a simple stratum which is not a standard one (comes
from [8]) but we prove that in the cases interesting for us it is equivalent with the one used
in |9]. The goal of this subsection is to prove Proposition [2.2.16]

Definition 2.2.9. A 4-tuple [A,n,r, ] is called a stratum in A if A is a hereditary Op-
order in A, n,r are integers such that n > r and B € A is such that vy (5) > —n.

We say that two strata [, n1,r1, f1] and [e, ne, ra, f2] are equivalent if

B+ BT = B2 + By

where P (resp. P2) is the Jacobson radical of ; (resp. 2sz). We will keep this notation
for the rest of the chapter. If n > 7 > [§] > 0, then we can associate with a stratum
[, n,r,B] a character g : U&Jrl — C* which is trivial on UQTerl and defined as follows
Ya(x) = P(tr(B(1 — x))). We say that a representation m of GL,(F') contains a stratum
[?,n,7,a] if 7 contains the character ¥, of Uy™'. We define the normalized level of a

representation 7 as

e(A)

[(m) = min{ (A, n) such that A is a hereditary order, n € Nyn >0

and 7 contains a trivial character of Uy™*'}.

We say that a stratum [, n,n—1, 3] is fundamental if 3 +‘Bé[_" does not contain nilpotents
from A. We say that two strata [0, n1, 71, 51] and [z, ng, ro, B2] intertwine in G if there
exists x € G such that z(82 + Py, ?)z ™" 0 (B + Py ) # 0.

Let Hj, H2 be two compact open subgroups of G and let 71 (resp. m2) be an irreducible
smooth representation of Hy (rep. Hy). Take g € G. Write H{ := g7'H;g. Define 7{
to be a representation of HY such that 7{(h) = m (ghg™") for any h € Hy. We say that
g € G intertwines m with m if Homyoqy, (77, m2) # 0.

Lemma 2.2.10. (see |10, 11.1 Proposition 1| and |2, Lemma 1.13.5 |) Let ® be an irre-
ducible cuspidal representation of G. Let 1, o be principal orders and let [A1,n1,n1 —

1, 81] and [Ra,n9,n9 — 1, B2] be two strata contained in . Then they intertwine.

In order to introduce the simple stratum we first define a notion of a minimal element

over F'.

Definition 2.2.11. Let E/F be a finite field extension with E = F[3]. We say that 3 is

minimal over F if the following is satisfied:
e ged(ve(B),e(E/F)) =1 and
° w;VE(ﬂ)ﬂe(E/F) + pE generates the extension of the residue fields kg /kp.

Definition 2.2.12. A stratum [, n,n — 1, ] is called simple if
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1. E=FI[p] is a field

2. A ="Py"
3. B is minimal over F

Let 7 be an irreducible cuspidal representation of G which contains a simple stratum
[A,n,n—1,5]. Since we consider GL,(F') with p prime there are only two possibilities for
the degree [F'[5] : F|. Namely it is 1 or p.

Lemma 2.2.13. (see |9, 1.5.6 Exercise|) Let [, n,n—1, 5] be a simple stratum with A = M
or 3. Denote E = F|[f]. Then E* C &(2).

Proof. First we prove that 8 € R(21). Take an Op-lattice chain £ = {L; : i € Z} such that
A = A(L). Take arbitrary L; € L. We want to have 3L; € £. The fractional ideal Bj is
invertible and PyP, " = 2A. We have

Li—p =AL; = By " Py Li—n € Py"Li = PAL; = BL; € L.

Therefore SL; = L;—,, € L for any i € Z and g € K(2).

Since f is minimal over F' the value vg(f3) is coprime with e(E/F'). Therefore there
exist ni,ny € Z such that 1 = nvg(8) + nee(E/F) = vgp(fMwy’). We can write any
element from E* as u(f™ wp?)™ for some u € O, m € Z and fMwp? € K(A). To finish
the proof it is enough to show that O} C K(2). First we want to show that O C 2.

ve(B) ge(B/F)

By the definition of a minimal element w; +pg generates kg /kp so O =

OF[WI;VE(’B)ﬁE(E/F)] + wrOg. Iterating

Or :OF[W}:VE(ﬁ)/Be(E/F)] + wpOp = OF[w;VE(’B)ﬂe(E/F)]—i—
wEOF[w;”E(’B)ﬂe(E/F)] 4.+ w%—loF[w;VE(ﬂ)Be(E/F)] 4 prOg

By Nakayama’s Lemma,

Op =Oplwy""? 8B/ 4 wpOp(wy " ® g EIP) 4.
+’W%_l OF [w;VE(ﬁ)IBG(E/F)]

We can take wp = Mwy? € K(RA). Since 1 = vp(wg) = e[(gz/ff])up(det(ﬁnlw?)),
vr(det(fMwy?)) > 0 and wg € A. Similarly Z/E(w;VE(B)ﬁE(E/F)) =0so0 w;VE(’B)ﬁe(E/F) €
A and O C 2.

To sum up we proved O C 2. Therefore O C Uy C R(A). O

Remark 2.2.14. Assume [2,n,n—1, (] is not equivalent to a stratum [A,n,n—1, 5] with
B' a scalar matriz. By Lemma and |9, 1.4.15] our definition of a simple stratum
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coincides with the standard definition of a simple stratum in which the hereditary order is
MorT andr =n—1 (see |9, 1.5.5]).

Lemma 2.2.15. Let A = M or J. Let § € A be such that € R(A) and E = F[f] is a
field. Assume [, n,n — 1, 5] is not equivalent to [A,n,n — 1, 8'] with 8’ a scalar matriz
and assume E* C R(A). Then

o ¢(E/F) = e(2)

e vp(B) = ra(B).

Proof. For the first equality observe that by |9, 1.2.4 Proposition| e(E/F) divides e(2l).
Pick an Op-lattice chain £ = {L; : i € Z} such that 2 = 2(£). Fix ¢ a natural number.
L;/Lit+ is a vector space over kp. Define f(2() to be the dimension of L;/L;y; over kp.
Since 2 is a principal order the number f(2l) does not depend on the choice of i and
e()f(A) = p. We also have e(E/F)f(E/F) = p. Therefore to finish the proof it is
enough to prove that f(E/F) divides f(2(). By [9, 1.2.1 Proposition|, L;/L;41 is a vector
space over kg and f(E/F) divides f(2).

For the second equality write vy (8) = n. Then by the definition 5 € By \ ‘Bgﬂ.
Since [ is an element of the normalizer K(2A) = (Ily) x Uy the matrix § is of the form

p = II{C where C is an element of Uy. Therefore vp(det(5)) = e?g) and vg(B) =

B p(det(B)) = n = vu(B). -

The following description will be useful in the proofs of the main theorems.

Proposition 2.2.16. Let [, n,n — 1,3] be a stratum with A = M or T which is not
equivalent to a stratum [A,n,n — 1, '] with [F[8'] : F| = 1. The stratum [A,n,n — 1, 0] is
simple if and only if n = —vy(B) and

1. A =M and the characteristic polynomial of @B is irreducible modulo pr or
niyq )
2.A=7 andwl&f’wr B is of the form IIZB where 1 < j <p—1, B € U;.

Proof. Assume that [9t,n,n—1, 8] is a simple stratum. We want to prove that the charac-
teristic polynomial of w’.(3 is irreducible modulo pp and von(f8) = —n. The second follows
from the definition of a simple stratum. By the definition S is minimal over F' and in
particular w}”E(ﬁ)ﬁe(E/F) + pp generates the extension kp/kp. By Lemma and
Lemma —vg(B) = —vm(B) = n and e(E/F) = e(M) = 1. Therefore wif + pp
generates kg/kp. This means that the minimal polynomial of w3 is irreducible modulo
pr and is of degree p. This implies that the minimal polynomial modulo pr is equal to
the characteristic polynomial modulo pr. Therefore the characteristic polynomial of w3
is irreducible modulo pr.

Assume now that [J,n,n—1, 5] is a simple stratum. We want to show that n = —v5(f)

n

4] .
and w;”H B is of the form H‘%B where 0 < j < p and B € Us. By the definition of a
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simple stratum n = —v3(8), 8 € K(J) = (II3) x U; and there exists a unique j € N and
niiq )
B € Uj such that w;pH 8= HjjB. We want to show that 0 < j < p. By the definition

|2 )+1

j = vy m:—n+p<L§J+1>.

The element ( is minimal over F and n = —vg(f3) is coprime with p. Therefore 0 < j =
p(l3]+1)—n<p

For the opposite direction take a stratum [P, n,n—1, §] and assume that the character-
istic polynomial of w.f is irreducible modulo pp and von(f8) = —n. We want to show that
the stratum [0, n,n — 1, B] is simple. E is a field because the minimal polynomial of w3
is irreducible. We show that 3 € &(9). By Lemma [2.2.8, (M) = GL,(OF) X (wrldyxp).
Denote the characteristic polynomial of w3 by f. Since f is irreducible modulo pr
the element f(0) = det(w}/3) does not belong to pr. By the assumption 8 € BP~" and
wif € M. Therefore whf € GL,(OF) and in particular 5 € K(9). By the assumption,
won(B) = —n and since 3 € K(M) we have SM = P,;*. We want to show that 3 is mini-
mal over F'. The element w3 + pg generates the extension of the residues fields and the
extension is of degree p. Therefore f(E/F) = p, e(E/F) =1 and the first condition from
the definition of a minimal element is satisfied. Compute vg(5) = e(E/F) (det(p)) = n.

[B:F] VF
;VE(ﬁ)ﬁe(E/F) is irreducible modulo pp,

Since the characteristic polynomial of @i = @
w;VE(”B)ﬁe(E/F) + pg generates the field extension kg /kp.

-1
Finally consider a stratum [J, n, n—1, §] with n = —v5(8) and $3 of the form wFL”J

B
where 0 < j < p, B € U;. We want to prove that the stratum [J,n,n — 1, ] is sim-
ple. First we prove that E = F[3] is a field. Denote by f the characteristic polyno-
mial of H%B. If j = 1 then f(x) = 2P modulo pr and f(0) = det(H%B) = uwp for
some u € Op. We deduce that f(x) is Eisenstein and therefore it is irreducible. In
particular, E is a field. Consider now the case when j is an arbitrary integer number
0 < j < p. Since j is coprime with p, there exists mi,mo € Z such that m1j +mep =1
and wp? (H%B)m1 = II3B; for some By € Uj. Since II3B; generates a field exten-

sion of degree p this means that also £ = F[H%B] is a field. By definition 5 € K(J),

n

v3(B) = —n and BJ = P5. The characteristic polynomial f(x) of wIL;?JHﬁ is equal to
2P modulo pp. Therefore the extension kg/kp is trivial and to check that 8 is mini-
mal it is enough to check that vg(f3) is coprime with e(E/F) = p. By the assumption
ve(B) = e[(gz/}ﬁ? vr(det(8)) = —p(L5] +1) +j = v3(8) = —n. If p would divide n, then
vp(B) = —n—p+j = —n and j = p which is impossible. Therefore [ is minimal over
F. O




2.2. SIMPLE STRATA AND CUSPIDAL REPRESENTATIONS 35

2.2.4 Cuspidal representations of G

In this subsection we recall the classification of irreducible cuspidal representations of
G = GLp(F). The classification originates in Carayol’s work (|14]). We will follow [27]

and [8]. The goal of this subsection is to recall the proof of the following theorem:

Theorem 2.2.17. Let w be an irreducible cuspidal representation of G. Then there exists

a character x of F'* such that xmis of one of the following form.:

1. c-Ind%Z A with A such that A |k is inflated from some irreducible cuspidal represen-
tation of GLy(kr),

2. l(m) > 0 and 7 contains a simple stratum [A,n,n—1, f1] with n = 1 and A principal
such that there exists a stratum [A,n,n — 1, B] equivalent to [A,n,n— 1, 31] such that

~ G _ x 7l i ‘ L3 ]+1 ‘
m = c-Indj A where J = F[B]*Uy and A restricted to Uy contains g

Moreover every representation m satisfying one of the above is cuspidal.

Remark 2.2.18. If 7 is an irreducible cuspidal representation with the minimal normalized

level among all its one-dimensional twist m ® x then 7 satisfies 1. or 2. from Theorem

2217

Remark 2.2.19. If an irreducible representation of G contains some stratum then it con-
tains all strata G-conjugate to it. Therefore in Theorem[2.2.17 we can assume that A = M

~

or'J
Before the proof of Theorem we state some lemmas.

Lemma 2.2.20. (see |9, 2.4.11]) Let A be a hereditary order and let n € N, n > 1. Then
any character of Uy which factors through a determinant is of the form g where 3 is a

scalar matrix.

Lemma 2.2.21. Let 2 be a principal hereditary order. Let w be an irreducible cuspidal rep-
resentation of GLy(F') which contains a simple stratum [A,n,n—1, 51]. Then the following

conditions are equivalent:

1. there exists a stratum [A,n,n — 1, 8] equivalent to [A,n,n — 1, B1] such that [F[5] :
Fl=1

2. there exists a character x of F* such that [(xm) < l(m)

Proof of Lemma[2.2.21 First we assume that there exists a stratum [2(,n,n — 1, ] equiv-
alent to [, n,n —1, 4] with [F[f] : F] = 1. We want to show that there exists a character
x of F* such that I(x7) < I(m). Assume [ =: bId, is a scalar matrix. By definition

e(2A)

.
B2 = Py so e(A) divides n. Using B we define a character x; of (1+pp)/(1+ p}mﬁ ):

Yi(1+ @) = dh(ba).
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The determinant map induce the homomorphism:
_n_ n__q
U /U = L+ p) /(L +pp™ ). (2.2.1)

Now we will show that xiodet coincides with a character ¢, of Ug/ Uﬁ“. For this see both
1 and x1odet as characters of Uy. Let x € By. By Leibniz formula det(14+2) = 1+tra+y

for some y € p’lffl. We have By € pp so

x1odet(l+z) = x1(1+tre +y) = Y(a(trz + y)) = Y(tr(fz)) = Ys(1 + ).

Denote by x2 an extension of 1 to F*. Define x(1 + ) := y2(1 + #)~!. Then x is a
character which satisfies the desired property.

For the converse assume that there exists a character x of F* such that I(x7) < I(n).
We want to prove that there exists a stratum [, n,n — 1, 5] equivalent to [, n,n — 1, 3]
such that 3 is a scalar matrix. Denote 71 := y7. Denote by x~! the character of F* such
that x~!(z) = x(z)~! for every z € F’¥.

The representation 7 is irreducible and cuspidal. By Proposition if [(m1) >0
then 7y contains a simple stratum [2;,n1,n; — 1,7] with 20 principal. By the assumption
I(m1) < U(x"tm1) so x 71 odet ® 1, |U£11+175 1. If I(m1) = 0 then m; contains the trivial
character of 2" with 23 = 9t and n; = 0. Therefore in both cases there exists m > ny+1
such that

x ! odet \U;&% 1 and x 'odet \Ummlﬂz 1. (2.2.2)

m+1
1

We can write x ! o det |U2[m1 as g, for some By € Py "' /Py ™. By Lemma [2.2.20) we can

take B2 to be a scalar matrix.

To sum up we have proven that 7 = y !

71 contains a stratum [y, m, m — 1, bold,]. It
is a fundamental stratum. By Lemma the stratum [y, m, m — 1, boId,] intertwines
with [2(,n,n — 1,61]. By [9, 2.6.1, 2.6.4] the stratum [, n,n — 1,] is equivalent to
(A1, m,m — 1,bo1d,)].

O

Lemma 2.2.22 (see Corollary 7.15 and 9.3, [8]). Let m be an irreducible smooth repre-
sentation of G which contains a simple stratum [A,n,n — 1,5] with n > 1 and A prin-
cipal. Assume [F[B] : F] = dimp(V). Then 7 is cuspidal and © = c-Ind§ Ay where
J = F[B]XUQLIHTHJ. Moreover there exists a simple stratum [2A,n,n — 1, 5’| equivalent to

[2,n,n—1, 8] and such that Ag \UL%JH contains g .
A

Proof. By the assumption 7 contains a character 15 of Ugy. There exists an extension g
of 3 which is also contained in . We have ' = f (mod ‘335‘_"). The matrix 5 is of
the form (1) or (2) from Proposition and such that [F[3] : F] # 1so F[f] is a
field, #’ is minimal over F' and ' € £(2). By [9, 1.5.8 Theorem| the G-intertwining of ¢
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is J := F[p’ ]XUJLHTHJ. Since J is compact modulo Z there exists an irreducible smooth
representation A of J which is contained in 7 and which contains g when restricted to
UQLL%J—H. By |10, Theorem 11.4 and Remark 1], C-Indbcfv A is irreducible and cuspidal. By
Frobenius reciprocity 7 2 c-Ind§ A. O

Proposition 2.2.23. |27, Theorem 3.2| Let 7 be an irreducible cuspidal representation of

G. Then l(m) =0 or m contains a simple stratum [A,n,n — 1, B] with A principal.

Proof of Theorem[2.2.17. An irreducible smooth representation of G whose normalized
level is 0 is cuspidal if and only if it is of the form (1) from (|9, Theorem 8.4.1]). Therefore
we restrict our consideration to representations of G with normalized level strictly greater
than 0.

Take an irreducible cuspidal representation 7 of G with {(7) > 0. We want to show
that there exists a character x of F* such that x is of the form (1) or (2) from Theorem
. Assume that for any character y of F* we have I(7) < [(xm). By Proposition

2.2.23| 7 contains a simple stratum [, n,n — 1, 5] with 2 principal. By Lemma [2.2.21| and

Lemma [2.2.22 7 is of the form as in (2).
Moreover if 7 of the form (2) then by Lemma[2.2.22]it is cuspidal and a one-dimensional

twist of an irreducible cuspidal representation of G is irreducible cuspidal. O

2.2.5 Irreducible representations of GL,(OF) in terms of orbits

Let p be an irreducible smooth representation of K = GL,(Of) with conductor r > 1.
In this subsection we adjust the notation from a description of representations of K as in
subsection to be more consistent with the notation from [10].

Denote [ =[] and I = r — I. As in subsection by Clifford’s theorem

plgi=m @ Yy (2.2.3)

a1~ag

for some matrix @y € M,(Op/p%), m € N and ¢4, : K — C* defined in the following
way Ve, (1 4+ 2) = (wp THr(a1)) for some lifts a1,z € M,(Op). The characters g,
do not depend on choices of lifts. In our case it will be more convenient to look at p as a
representation of K not GL,(Of/p}). By we can write

Pl =m a Prrtia (2.2.4)

a1~QaQ
where Porrtia, Uty — C* and gpw;r+1a1(1 + ) = Y(wp Hragx).
Note that if 'l/)w;r+1 o, defined as in subsection is a character of the group Uén then

Porrtla, = ¢w;r+1a1. However if @bw;rﬂal is a character of another group (for example

Uy with any m € N and m > 1) the last equality does not hold. We introduce this
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notation to underline the importance of the group on which a given character acts.

For the sake of simplicity characters in the decomposition (2.2.4)) are indexed by matrices
from M, (OF) instead of matrices in M,(Or/pk) as in (2.2.3) however we are still taking
sums over the conjugacy class in M,(O/ plI;)

We say that a representation p contains a matrix «q in its orbit if it admits the decom-
position of the form (2.2.4). We say that two orbits {a;}ier and {5;}ics are equivalent if
{@&;Yier = {Bi}ics where @ denotes the image of an element a € M,(OF) in M,(Or/pk).
Note that the notion of equivalence depends on r. From now on we consider orbits up to

equivalence.

Remark 2.2.24. By Clifford theory, if a representation p admits the decomposition
GLp(Or/pE)

Stabgr, (0 /by, Y1
StabGLp(oF/p;)wal which contains 1g,. Therefore as a representation of K, p is iso-

morphic to IndgabK%lﬂ where 6 is an inflation of O to Stabyg, .

then it is isomorphic to Ind 0 for some 0 irreducible representation of

2.3 Cuspidal types on K in terms of orbits

In this section we give a description of orbits of cuspidal types. We show that if a repre-
sentation is a cuspidal type on K = GL,(Op) then it contains an orbit of a certain form.
We also determine which orbits provide cuspidal types under condition that the conductor
of a cuspidal type is at least 4. This in particular allows us to determine which cuspidal

types on K with conductor at least 4 are regular representations.

2.3.1 Cuspidal types on GL,(Op)
The goal of this subsection is to prove the following theorem.

Theorem 2.3.1. If A is a cuspidal type on K = GL,(OF), then it is a one-dimensional
twist of one of the following:

1. a representation which is inflated from an irreducible cuspidal representation of GLy(kr);

2. a representation whose orbit contains a matrix whose characteristic polynomial is

wrreducible modulo pr;

3. a representation whose orbit contains a matriz of the form H%B where 0 < j < p and
B e Us.

Moreover if a representation is a one-dimensional twist of a representation of the form (3)

and has conductor at least 4, or is of the form (1) or (2), then it is a cuspidal type.

Remark 2.3.2. Let w be an irreducible cuspidal representation of G. A type for I(m) is

regular if and only if I(m) = m or m — % for certain m € Z.
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Before the proof of Theorem we state auxiliary lemmas.

Lemma 2.3.3. Let 2 =9 orJ and let J be an open compact modulo Z subgroup of K(A).
Denote by J° the maximal compact subgroup of J. Then J°=JNUy =JNK.

Proof. By Lemma 2.2.8] R(2A) = (Ily) x Uy. Since any non-trivial subgroup of (Ily) is not
compact J° has to be contained in Uy and J° C JNUs. The subgroup J is closed and Ugy
is compact so J N Uy is compact. Therefore J° = J N Usy. Since J° is the unique maximal
compact subgroup of J and J N K is compact, J N K C J°. We also have Uy C K and
J°=JNUy CJNK. O

Let H be a locally profinite group. Let m; and ms be representations of H. We write
71 ~ o if there exists h € H such that m = 773. The following is a variation on Clifford’s

theorem:

Proposition 2.3.4. Let H be a locally profinite group, N a normal open compact subgroup

of H and let (w1, V1) be an irreducible admissible smooth representation of H. Then

m v=m & m

p1p
for certain m € Z and p an irreducible smooth representation of N.

Proof. Denote by N the set of equivalence classes of irreducible smooth representations of
N. Let p € N. The p-isotypic component of V] is a sum of irreducible N-subspaces of V;
of class p. We denote it by V. By |10, 2.3 Proposition]

Vi=Pv.

peN

Fix some p € N. Since m is irreducible we have V; = Yogec IV = Yhea gV’ =
Vlker(P)

is finite dimensional

O

D, -, V', Since m; is admissible and ker(p) is open V{ C

hence V{ = mp for certain m € Z. Therefore 7 |n= m@ple P1-

Remark 2.3.5. If H C GL,(F') is compact modulo Z then by [19, Theorem 2.1] every

wrreducible smooth representation of H is finite dimensional and hence admissible.

Lemma 2.3.6. Let U be a compact open subgroup of K and let w be an irreducible cuspidal
representation of G. Let p' be a cuspidal type on U for J(m) and let p be an irreducible
smooth representation of K which contains p'. Moreover assume that p is contained in

7 |k. Then p is a cuspidal type on K for J(r).

Proof. Take an irreducible smooth representation 7, of G. We want to show that 71 |x
contains p if and only if J(m1) = J(w). If m |k contains p then it also contains p’ and by

the assumption J(7) = J(m1). For the reverse implication assume that J(m) = J(7). By
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the definition 73 = 7 ® x o det for certain unramified character y of F* so 7 |x= 7 |k

Therefore w1 contains p. 0

Lemma 2.3.7. Consider a stratum [2A,n,n — 1,a] with A principal, n > 1. Let J =

ntl
F[a]XUQL[ 2] and let m be an irreducible cuspidal representation such that m = c—Ind?A

with A such that A |UL%J+1 contains o. Denote by J° the maximal compact subgroup of

J. Then A |jo is irveducible.

Proof. Let A |jo= ) ;c; Ai for a certain set I and irreducible representations \; of J°.
First we show that for any ¢,] € I we have \; = A;. Take i,l € I. By Proposition
the representations \; and \; are cuspidal types on J° for J(7). By Lemma [2.3.6
irreducible components of c—Indﬁ(o A; and c—Indﬁ(o A; are cuspidal types on K for J(m). By
Theorem a cuspidal type on K for J() is unique and appears in 7 with multiplicity
one so c-Ind%, \; and c-Ind%, \; are irreducible and c-Ind%, A; 2 c-Ind%. A;. By Frobenius
reciprocity and Mackey’s formula this implies that there exists £ € K which intertwines \;
with A, i.e.

Hom joy( joyr <)\§f |Jom(Jo)k, Ai |Jom(Jo)k:> # 0. (2.3.1)

On the other hand we can apply Proposition and Remark to the representa-
tion A. The group J° is the maximal compact subgroup of J so after J-conjugation it

remains the maximal compact subgroup of J. Therefore J° is a normal subgroup of J. By

Proposition there exists j € J such that \; = )\g . Together with 1' this implies
jk
Hom(Jo)kao ()\'Z ’(Jo)kao, Az ’(Jo)kao> % 0.

Since J° is normal in J we have (J°)/* = (J°)* and jk intertwines )\;. In particular, jk
intertwines A. An element from G intertwines A with itself if and only if it belongs to J
so jk € J as otherwise c—Ind? A would not be irreducible (see |10, 11.4 Theorem and 11.4
Remark 1,2]). This means k € K NJ = J° and by Ai =N
We proved A | jo= m); for some m € Z. By Mackey formula 7 | contains c-Ind%% (A | so
) = mc—Indfﬁ ;. The representation c—Indffo A; is a cuspidal type for J(w) on K. By
Theorem m =180 A |jo=\; is irreducible.
O

By the above lemma and by [30] we know the following.

Lemma 2.3.8. (see |30, Proposition 3.1]) Let m and A be as in Lemma [2.5.7] Then
c-Ind% (A | o) is a cuspidal type on K for 3(r).

Proof of Theorem[2.3.1]. First we prove that if a representation is a cuspidal type on K
then it is of the form (1), (2) or (3) from Theorem [2.3.1} Let A be a cuspidal type on K

for J(m) with some irreducible cuspidal representation 7 of G. Let x be a one-dimensional
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character of F*. Since A is a cuspidal type on K if and only if yA is a cuspidal type on
K, by Theorem [2.2.17] we can assume that either I[(7) = 0 or [(7w) > 0 and it contains a
simple stratum [, n,n — 1, ] with n > 0, 2 principal and such that

72 c-Ind§ A, (2.3.2)

ntl
where J = F[Oz]XUQL[ 1 and A ‘UL%J-H: mapg for some m € N and 13 some extension of
A

Yo tO UQLFHI. We have 8 = a mod ‘Béf" and the stratum [, n,n — 1, o] is equivalent to
[2,n,n — 1, B]. Therefore without lose of generality we can take § = « and consider 1), as
a character of UQEEJ—H. By Remark [2.2.19| we can assume 2f = 9T or /A = 7.

The subgroup J is open, contains and is compact modulo Z. Since « is minimal,

J C R).
Now we consider two cases depending on the level of .

Case 1 Assume [(7) = 0. By Theorem there exists A a representation of ZK
which is an extension of an inflation of some irreducible cuspidal representation of GLy,(kr)
such that 7 ~ C—IndgK A. The group K is the maximal compact subgroup of G which is
contained in ZK and by definition A |jnx is irreducible. By Proposition Algisa
cuspidal type on K for 7. By Paskunas’ unicity theorem (|30], Theorem 1.3), A = A |x.
Therefore A is inflated from an irreducible cuspidal representation of GLy(kr) and A is of
the form 1 from Theorem 2.3.11

Case 2 Assume [(m) > 0. By Theorem [2.2.17] 7 contains a simple stratum [, n,n — 1, a]

n+1J

with n > 1, 2 a principal order and such that = ~ c-Ind§ A where J = F [Oz]XUQLlT

A |U|_%J+1 contains .

and

A
The proof in this case will contain two steps. In the first step we will show that A |U[%1+1
A
contains 1. In the second we will compute the conductor r of A in terms of n and we will
show that the orbit of A contains the matrix ', ‘o whose image in M, (O /p%.) satisfies

the properties from the statement of Theorem [2.3.1

Step 1: By Lemma A | jo is irreducible and by Proposition A | jo is a cuspidal
type on J° for 7. By Lemma [2.3.8) Ind%% (A |0) is a cuspidal type on K for 7 and by
Theorem [2.2.1} Ind%% (A |70) 2 X. By Mackey formula A |U[%]+l contains .

2A
Step 2 : We will consider two subcases depending on the choice of a hereditary order 2.
Subcase 1 Assume 24 = 91. The representation A when restricted to USIH contains
Vo [gn+1= 1n+1. Since Ug};rl is an open normal subgroup of K and K is compact, A [ n+1
A A m
is a direct sum of irreducible representations and each of them is conjugated to the triv-
ial character. This means A |U§}t+1 is trivial and A factors through GLp((’)F/p;ffl). Since

vy (a) = —n, the character 1, as a character of Ug}; is non-trivial and A does not factor



42 CHAPTER 2. CUSPIDAL TYPES ON GLp(OF)

through GL,(Op/p%). Therefore A has conductor r =n + 1.

—C ; _
and let ag := w . By Step 1, A ‘Uéﬁ contains Y, =

Poortlay = Pamrag: Therefore aq is contained in the orbit of A. By Proposition [2.2.16

the characteristic polynomial of ¢y is irreducible mod pg.

Denote as before | = [ZH]

Subcase 2 Assume 2l = J. We compute the conductor of A in terms of n. The Step 1
provides some information about restrictions of A to subgroups sz’ for certain 7. However
to compute the conductor we need information about the restricitions to subgroups Ugﬁ
for certain j. To switch between these two classes of subgroups we will use the following
inclusion:

USPm O UE™  forall 1<i<p+1 (2.3.3)

By Step 1, A ’U;L“ contains the trivial character and by (2.3.3) A ]UL%HQ contains the

m
trivial character. By similar argument as in Subcase 1 this shows that A factors through
42
Ger((’)F/ple”J ). We want to show that A is of conductor | 7| + 2. By Step 1, A ’USL%J“

contains 1, where o = wFL »I- H%B for 0 < j:=p([3]+1) —n <pand B € Us.

In particular A |U§%H1MU“HI contains 1, |U§%Hl ULpJ“ Assume 1y, | pLE, %%Hl is
o -13]
trivial. Then a € ’13 5 + Bop ¥~ and

L51+1

B=w H;ja c ngmm + m;bjﬂ?[;]—&-p-]

— i+ C oy (m+9).

Since B € Ujy this gives a contradiction. Therefore 1, | lEIH . is non-trivial. In

nu;
particular A |U|_%J+1 is non-trivial and A is of conductor LfJ + 2. Denote r = [%] +2 and

Y

L5+

as before [ = . Summing up we know that A contains ¥, = ¥ the character

fULJ
L

HJJYDF ﬁGUj

wp T B
[Z]+3

| —5—]

but we would like to know that it contains 15 the character of Ugy where

The sketch of the end of the proof of this case is as follows. Depending on n and p
\. 1+1 r—1
Us?

sometimes Um and then wy, "« is contained in the orbit of A and we are done.
Unfortunately this not always the case. If this inclusion does not hold then we can assume
that A tains in its orbit £ such that np= n d f that

at A contains in its orbit § such that g ‘UéﬁﬂUijl Ve, |U2§ﬁmU§2H1 and from that we

shall deduce that 3 is of the desired form.

First assume n = 1 mod p. In this case we show Uéﬁ C UjL J+1 If n = 1 then
Uéﬁ = US}JI C Uj1 = UJLEJH. Therefore by (2.3.3)) for any n € N, n > 1 we have
N 131-1
gl o gl e (2.3.4)

We want to show that the index U 2)=
[5]-1 L5 J+
then [=2/—]+2 =a+1= [5—]

J+21sequaltol Let a € N. If n = 2ap + 1

On the other hand if n = (2a + 1)p + 1 then
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n|_ ni4s3
LLQIJD 1J +2= LMJ +2=a+2= LLPJ; | = 1. Therefore by (2.3.4) we have
thng ) Um. Since we are considering n coprime with p in particular this ends the proof

in the case p = 2.

Assume now p # 2 and n = b+ 2ap for a,b € N such that p+2 < b < 2p — 1.
|2
[F2o—1+2

In this case we also want to show Uéﬁ - UQL%JH. Again UjL%J+1 2 Uy
a 2 |+3
ErejEs = LMJ t2=at2= 2=
It remains to consider the case p # 2 and n = b+ 2pa for a,b e Nand 2 < b < p— 1.

Unfortunately in this case Uéﬁ is not always contained in UjL 5J+1. However we can study
the behaviour of A on Uén N UJLEJJrl and then deduce the desired result. Take g from the

orbit of A\. We want to show that we can pick 8 such that II53 € U;. Since A | L 41
contains 1, we know that A ‘Ul tzj+1. On the other hand by

the definition of the orbit of A m

eI contains 1y, | o, L

A |Ul AutEH = T P v |Ul LI (2.3.5)
B'~B

for some m) € N. Therefore we can assume

g |UéﬁﬁUL 1+1= Ya |Ul ulBi (2.3.6)
We compute now the intersection Ualn N Uijl. Define C' to be the matrix with 1’s on the
antidiagonal and (s elsewhere:
0 --- 0
0 1 0
C =
1 0 0

For h € N, 1 < h < 2p — 1 define By, := OBy, where B; = (bs)1<s,t<p is such that
bst = p% if s+t < h+1and pr otherwise. In other words for h < 2p — 1

B — prp o o T T or By — T
p%‘ ." ... ." ... : : ... '.. ... '.. p%‘

where first h diagonals (counting from the bottom left corner) have entries p% and the rest
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have entries pr.

Compute

n Lpl+3 n at| b
U Ut gl T gl S e el
%J"'l)

=1+ wh(PBm NP5 ) = 1+ @pB s .

Combining this with the equality (2.3.6) we get tr((8 — a)w%B ) C pp.Therefore g €
ning 4 t
a+wplwy B2p—1—L§J' Then

58 € o + 5wz By, o) CUs + IGwy "By, 1o (2.3.7)
—277b : _
Us +B5 C Us otherwise.
Therefore if a > 1 then
H?,B e Us;.

Assume now that @ = 0. Then n = b, r = LZ%J +2 =2and [ = 1. The character 13
is a character of Uglﬁ which is trivial on U2)2;n~ We show that there exists 81 € ;" such
that B — B € M,y(Op) and I28; € Us. If B — B; € M,(Op) then (8 — B1)Pl, C P,
Y(tr((B—51)Bip)) = 0 and ¥g = g, as characters of Ug,. Therefore to finish the proof it is
enough to prove the existence of 81. In other words we want to show 3 € IL;"U; +M,(OF).

By inclusions ([2.3.7) and (2.3.8) and since n = b we have

B ey "Us + wp 1y "B = II,°Us + wp’B

2p—1—| %] 2p—1-|5]

Combining that with WEQszngjfl = H;L%Jﬁ + M, (OF) we get 8 € H;ij + M, (OF).
This proves that if a representation is a cuspidal type then it is of the form (1) or (2) or
(3) from the theorem.

Now we prove that a one-dimensional twist of a representation which is of the form 3 and
has conductor at least 4 or of the form 1 or 2 is a cuspidal type. Since a one-dimensional
twist of a cuspidal type is a cuspidal type we can consider given representations up to
one-dimensional twists.

Case 1 Let p be an irreducible smooth representation of K which is inflated from
an irreducible cuspidal representation of GLa(kr). We can extend p to an irreducible
representation of KZ. Denote this extension by A. By Theorem = c—Indf(Z A s
an irreducible cuspidal representation of G. By Proposition A |k is a cuspidal type
on K for m which means that p is a cuspidal type on Kfor 7.

Case 2 Assume p is an irreducible smooth representation of K either whose orbit

contains a matrix with characteristic polynomial irreducible mod pr or with conductor at
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least 4 and an orbit containing a matrix of the form HgB forjeN,0< j<pand B € Us;.
Denote the matrix with the given property by £y and by r the conductor of p. Let 7 be
an irreducible smooth representation of G which contains p. First we will prove that 7
contains a simple stratum. We will divide the proof into two subcases depending on the
property of 3.

Subcase 1 Assume [ is a matrix with the characteristic polynomial irreducible mod
pr. Define n =r —1 and f = w"fy. Since 7 contains the character ¢3 of UDLJ:QLIJ 2 Up
the representation 7 contains the stratum [9%,n,n — 1,5]. By Proposition the
stratum is simple.

Subcase 2 Assume now that p has conductor » > 3 and has an orbit containing a
matrix fy of the form H%B for some j € N, 0 < j < p and B € Ujz. Denote g = w;rﬂﬁo.

We have v5(8) = —p(r — 1) + j. Put n := p(r — 1) — j. The stratum [J,n,n — 1, 3] is

simple. We have U} C 1 + @}, ‘Bp i C U 2. For r > 3 the last one is contained in
r+1

Uz)gt 2 _ Uzm- Since 7 contains g which is a character of Uzm 2 U%, m contains a simple

stratum [J,n,n — 1, 3.

Therefore, we showed that in both subcases m contains some simple stratum, say
[, n,n — 1,5]. Since our considerations are up to one dimensional twist we can assume
that [(7) < I(xm) for any character y of F*. By Lemma 7 is cuspidal.

Subcase 2a Assume now that 7 contains a simple stratum [9%, n,n — 1, 5].

Take m to be an irreducible smooth representation of G such that [(m) < (xm1)

for any character y of F* m contains p and such that m = c—Ind?A with A such that
Al

. o]+ . s
Lﬂﬂ contains 13 as a character of UDLJ?QJJr . By Lemma [2.3.8 to finish the proof it is

is enough to show p = Ind?m x (A |snK). Since p is contained in 71, we have
Homp (p, (c-Ind§ A) |x) # 0.
By Mackey formula and Frobenius reciprocity there exists g € J\ G/K such that
Homg (p, c-Ind % 1 (A9 | jonrc)) = Homong (p | goni, A |jonx) # 0 (2.3.9)

where A9 denotes the representation A9(z) = A(grg™") for any z € J9N K. In particular,

A(ULE ) (p, A9) # 0. Denote the subgroup UL I+ b H. By Proposition|2.3.4

and Remark p |m is a multiple of a direct sum of one-dimensional representations

HomUL%Hl

and each of them is conjugate to 13 by an element of K. Therefore there exist g € K
such that

Hom prnpe (ﬁf |HAHSY, 1/% |HmE9) # 0.

Since g1 € Ng(H) = Uy x (Ilgy) the previous is equivalent to

-1
91 9
Hglm(Hg1)91 9<w5 9 |H910 H91)91_197 (1/1591) ! |H910(H91)g1_19) 7& 0
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where 891 = gflﬁgl. Therefore gflg intertwines stratum [9%, n,n—1, 9']. Since [9N, n,n—
1,0] is simple and g; € K the stratum [P, n,n — 1,59'] is also simple. By [9, 1.5.8],

gflg € gfngl and therefore g € JK. By (D p is isomorphic to c-Ind5- (A |;nx)
and p is a cuspidal type on K for J(mq).

Subcase 2b Assume now that 7 contains a stratum [J,n,n — 1, 5]. The restriction

p ’Usl% J+1 contains a character ¢, such that

¥ | EIE (2.3.10)

L§J+1 /l/}a |

ULNU5 ULNU;

In a similar way as from (2.3.6)) we deduce from (2.3.10) that « is of the form w;THH%B’
with some B’ € Uj. Take m to be an irreducible smooth representation of G such that

I(m1) < I(xm1) for any character x of F* and which contains p and such that 7; 2 c-Ind§ A

UL J+1

with A such that A ] L |+1 contains 1, as a character of . Let p1 be an irreducible

component of p |y, such that pq | L |41 contains 1),. Then

Homy, (pl, (C—Ind§ A) |U3) #0.
By Mackey formula and Frobenius reciprocity there exists g € J\ G/U; such that
Homg, (Pl;c-lndggrwj (A9 |JgﬂU:;)> = Hom jonwu, (o1 [g9nwy, A |gonu,) # 0. (2.3.11)

In particular

Hom U:E%HIM(U}%HI)Q (p, A7) #0

L5]+1

Denote by Hy the subgroup Uy . There exists g1 € Uy such that

Hompy, prg <¢gf |tynmg > V2 |H10H19) # 0.

Since g1 € Ng(H1) = Uy x (II3) the previous one is equivalent to

—1
919
Hom H91Q(Hg1 o te <¢0‘ 91 |Hg1m(Hi71)gflg’ (¢a91) ! ’Hglm(H!n)gl 9> 7& 0.

Therefore g, g intertwines stratum [J,n,n — 1,a9']. Since [J,n,n — 1,a] is simple and
g1 € Uj the stratum [J,n,n — 1, a9'] is also simple. Therefore g € JU;. By (2.3.11)), py is
isomorphic to ¢-IndY? Jivy (A |nw, ). Therefore p = c—Indg{mUj (A |sv,) and p is a cuspidal
type on K for J(my).
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2.3.2 Cuspidal types on GLy(OF)
The goal of this subsection is to prove the following theorem:

Theorem 2.3.9. A cuspidal type on Ko = GLo(Op) is precisely a one-dimensional twist
of one of the following:

1. a representation inflated from some irreducible cuspidal representation of GLa(kp);

2. a representation whose orbit contains a matriz which characteristic polynomial is

wrreducible mod pr;

3. a representation whose orbit contains a matriz 5 whose characteristic polynomial is

Eisenstein and which satisfies one of the following:

(a) it has conductor at least 4;

Ko B
StabK2 (’L[JB)

(b) it has conductor r = 2 or 3 and is isomorphic to Ind 0 where 6 | |
U,

r+1
—

1 r—2
mapg for certain m € Z and 0 does not contain the trivial character of (0 pf; ) .

Remark 2.3.10. Any matriz of the form 5B for B € Uy has a characteristic polynomial
which is Fisenstein. Moreover any matrix whose characteristic polynomial is Fisenstein is
GL,(OF)-conjugate to one of the form I3 B, B € U;.

Proof. By Theorem to prove the theorem it is enough to prove that a representation
of K whose conductor is 2 or 3 and whose orbit is equivalent to an orbit which contains a
matrix of the form I3 B for B € Uj; is a cuspidal type if and only if 3b or 3¢ from Theorem
2.3.9is satisfied.

Assume that p is a representation whose orbit is equivalent to an orbit containing a
matrix of the form II3B for B € Uy. Denote by r the conductor of p. Assume that r = 2
or 3. The proof contains two steps.

Step 1 In this step we show the following statement:

A representation p is a cuspidal type if and only if there exists w an irreducible smooth

representation of G which contains p and whose normalized level is [(7) > r — 2.

First we prove that if p with conductor 2 or 3 and an orbit containing a matrix of
the form II5B for B € Uy is a cuspidal type then there exists an irreducible smooth
representation m of G which contains p and whose normalized level is strictly greater
than r — 2. For contrary, assume that p is a cuspidal type and every 7 irreducible smooth
representation of G which contains p has [(7w) < r—2. Denote by 71 an irreducible cuspidal
representation of G for which p is a type. In particular, m; contains p. This means that
l(m) <r—2.
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If r = 2, then I(m1) = 0 and by (|10], 14.5 Exhaustion theorem), m = c-Ind?QZA for
some A such that A |k, is inflated from an irreducible cuspidal representation of GLa(kr).
By Proposition A |k, is a type for m;. By Theorem A |k,= p. Since the
conductor of p is 2 this is impossible.

Assume now r = 3. Then [(7;) < 1. By analogous argument as before the normalized
level of 7 cannot be zero. Assume now that [(7) = % By [10, 12.9 Theorem]|, the
representation 7 contains some fundamental stratum [2,1,0,a] with e(2A) = 2. If m
contains some stratum, then it contains all of its G-conjugates. Therefore we can assume
71 contains a stratum [J, 1,0, a] for certain a. We want to show that this stratum is simple.
By |10, 13.1 Proposition 1|, we have aJ = &Bgl. In particular, a € K(J), v3(a) = —1 so
a = II3B for some B € U;. By Proposition the stratum [J, 1,0, a] is simple. By
Lemma and Lemma the representation m; = c¢-Ind§ A for certain J and A
such that A ]U:?: 1yz. By the unicity of types p = IndffrﬁKQ (A |jnk,) and by Mackey’s
formula it contains A |jnx,. The group K3 is compact so p | U2 is trivial. Since U92:rt C sz
this means p ‘Us%z is trivial. The conductor of p is 3 so this is impossible.

Assume now that [(m1) = 1 and for every x character of F'* we have I(71) < [(x71). By
(]10],14.5 Exhaustion theory), m contains a simple stratum. Since the level is 1 it has
to be of the form [, e(A),e(A) — 1,a]. As before we can assume 2 = 9 or J. We have
Uz)%t C Uf?’ so we can assume 71 contains a stratum of the form [0, 1,0, a] for certain a. In
similar way as before, by the unicity of types and by Lemma we deduce p | U2, is
trivial which again is impossible.

Assume now that there exists x a character of F'* such that I(xm) = 0 or % Applying
analogous arguments as before but for xp and xm; we deduce that xp | U2 is trivial. In
particular, xp |U§ﬁ is trivial. Therefore x o det |U93n is trivial. By the following lemma it is

impossible.

Lemma 2.3.11. Let p be an irreducible smooth representation of K with conductor r > 1
and an orbit containing a matriz whose characteristic polynomial is Eisenstein. Let x be
a character of F* such that x o det \U;R is trivial. Then the conductor of xp is bigger than

or equal to .

Proof. Let {B;}icr be an orbit of p. Without loss of generality we can assume that the

characteristic polynomial of 3; is Eisenstein.

By Lemma [2.2.20| x o det |;;»—1 is of the form v, for some a € 2]393{+1 with « scalar.
m

By the definitions of g, and 1,

Xp ‘Ugg;l: Dict Vo840 g

The restriction xp |;»—1 is trivial if and only if every wI;TJrlﬁi +a € ‘BgnrJ“Z. If it holds
m
then in particular 81 + w}_la € Pon which is impossible.
O
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Now we prove the converse: if there exists an irreducible smooth representation of G
which contains p and whose normalized level is strictly greater than r — 2 then p is a cus-
pidal type. Therefore assume that there exists 7 an irreducible representation of G which
contains p and such that I[(w) > r — 2. The representation p has an orbit containing a

matrix of the form oy = II5B with B € U;. Let a = w;’urlozo. In particular, p contains

L=
the character 1, of Uy

which is trivial on UJQT_2 and which is contained in p. Since aU§T_2 C U}, vq is trivial not

= U;ﬁ_l. We want to show that 1), has an extension to U:?r_g

only on Ug, but also on UjQT_Q. Therefore 1), can be seen as a character of Ugﬂ_l / szr—z' We

ave C and the last one is abelian so 1, has a one-dimensiona
have Ugy ' /US""2 C UZ"3/U2""? and the last one is abeli h dimensional
extension to szrf3 / U§T72 which is contained in 7. This extension is of the form g for
B8 e ‘33;2’"+3. This means the stratum [J,2r — 3,2r — 4, ] is contained in 7 and g is
contained in p. Since the normalized level of 7 is strictly greater than r — 2, it is equal to
=3 By ([10], 12.9 Theorem) the stratum [J,2r — 3,27 — 4, 3] is fundamental which as

efore implies it is simple. Similarly as in the proof of Theorem [2.3.1] this means that p is
before implies it is simple. Similarly as in the proof of Th 2.3.1] thi that p i
a cuspidal type. This ends the proof of the first step.

Ko

Stabiy ( %)9 for some 8 €

By Remark [2.2.24] the representation p is isomorphic to Ind

M3 (OpF) and 6 an irreducible representation of Stabg, (1/;3)

Step 2 Assume now that p has conductor » = 2 or 3. To finish the proof it is enough

to show the following statement:

r—2
The representation 6 contains the trivial character of the subgroup Pr if and only

if every irreducible smooth representation of G containing p has normalized level less than

or equal to r — 2.

Denote by 15 the lift of @B to the character of Ugn_l which is trivial on Ugy. Since Ug’ﬁ_l

is a normal subgroup of Stabg, (1/?5) by Clifford theory we can assume 6 |;—1 is a multiple
m
_ 01
of Y5. Set By := wf{lﬁ. Up to conjugation By € My(kp) is of the form 0 o) Therefore

Lppt pt )

we can assume that the character vz is trivial when restricted to ( 0 L]
+pp

14+ p'r—l pr—l
and 0 is trivial when restricted to this subgroup. Since OF . +F .1 | and the
b

1 r—2 1 r—1 r—2
group Pr generate the subgroup hr Pr _, | we can replace in the
0 1 0 L+p%
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statement the subgroup

p%”) by (LFPE PR

. The subgroups Uj, and
—1 m
1 0 1+ pk >

14+pi1t T—2 14 prl r—2
Pr Pr _, | generate the group Pr Pr _, | which is conjugate by the
0 1+4pp P 149k
0 1 1+ r—1 r—2
matrix to Ugﬁ_l. Therefore if 6 contains the trivial character of Pr Pr .
wr 0 0 1+ph

then every irreducible smooth representation of G containing p contains the trivial char-
acter of Upy L
Now assume that every irreducible smooth representation of G which contains p has nor-
malized level less than or equal to » — 2. Since Stabg, (@B) is a closed subgroup of the
05 Op I L

« which is compact it is a compact subgroup. By (|10, 11.1
br OF
Proposition 1]), there exists g € G such that

Iwahori subgroup (

Hom(Uggl)ngtabKQ(J;E)(1(U;;1)gm3tabK2 (D5) 0) # 0.

Therefore § contains the trivial character of (Uyy )9 N Stabg, @5) This property depends
only on the double coset Ng(Uyy *)gStaby, (&3) where Ng denotes the normalizer of a
subgroup in G.

Firstly we will show to what kind of elements of G we can restrict our considerations. By
[33], section 2, StabGLg(OF/p;ﬂ)(QEB) = (Op/p})[g]XK% where f3 is a lift of 3 to a matrix in
M2(Op/p%) and K3 = K! with p = 2. Therefore

a+pp Or )

Stasz ("ZJB) = UaE(’); ( br a+pr

0% 0 0 _
By |10, 12.3] No(Ui!) = K2Z. Since [ F "7} = U,cox ‘ Stab, (13) and

m

0 1
o Lo € KyZ for any m € Z by |10, 17.1 Proposition| we can assume that g is of

1 0 cw’h 0
the form either g, = Or gon.c = “r for some ¢ € (’); and n € N.
0 cwh 0 1

Compute
- . L+ppt pptte
(U’r‘ 1)g1,n,c N StabK (w—) — 1en 7-7
m 2\7p ph 1 Npp 1+p) 1

7 B 14+ prfl prflfn N OF
Ugy 1)92me N Stabg, (¥3) = g :
( m ) K2(¢B> <p7}*7—1+n 1 +p%_1

In particular, # contains the trivial character of at least one of the following:

_ _ _ 1 + p'r‘—l 0
L. nn?O,CEO; (U;ﬂ l)gl,n,c N mcé@? (U;R 1){]2,0,c N StabK? (¢B) = rfllr r—1
Pr L+pp
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B B 1 +pr—1 pr—2
r—1yg n,c ) — F F
2. Mysoecor (Ust om0 Stabr, (75) ( 0 1rpt)

- . . . . 1+pp ' 0
The restriction 6 |;»—1 is a multiple of ¢)3. In particular, since 9g ]if 1 =
E pr 1+ pl
. y . » 1+pit 0
¥(Op) is non-trivial 6 does not contain the trivial character of i ]
Pl 1+ph

1+ pr—l pr—Q
Therefore 6 contains the trivial character of F F Rk O
0 L+pp

Corollary 2.3.12. FEvery cuspidal type on Ko is a reqular representation. However not

every reqular representation of Ko is a cuspidal type on K.

2.3.3 Regularity of cuspidal types

In this subsection we determine which cuspidal types are regular. More precisely we deter-
mine which matrices from Theorem (2) and (3) are regular. Of course matrices whose
characteristic polynomial is irreducible modulo pp are regular. In Proposition [2.3.14we
prove that matrices of the form II5B for B € Uy are regular. In Proposition we
prove that matrices of the form HgB for j € N, 1 < j < p and for B € Uy are not regular.
In our consideration we do not have to restrict our consideration to the prime dimension
of V. We work with matrices of arbitrary dimension n.

Fix n a natural number bigger than or equal to 2. Define J, Il5 analogously as in

subsection [2:2.2] but for the dimension n. First we prove a lemma useful for the proof of

Proposition [2.3.14]

Lemma 2.3.13. Let M € GL,(OF) be a matriz whose characteristic polynomial is Eisen-
stein. Then any g € GLy(F) such that g~ Mg € M,,(O) is of the form g € ZaL, (7 (M)GL,(OF)
where Zgy,,(r) (M) denotes the centralizer of M in GL,(F'). In particular, there exists an
element h € GL,(Or) such that h"*Mh = g~*Mg.

Proof. Take the lattice A = O%. We want to show that for any matrix Q € GL,(F)
QA=A ifandonlyif @ € GL,(Op). (2.3.12)

Indeed, if for any matrix @1 € GL,(F) then Q1A C A if and only if @1 € M,(OF).
Therefore if QA = A then Q € M,,(Or) and also A = Q7 'A so Q= € M,,(OF). Hence
Q € GL,(OF). Conversely if @ € GL,(OFp) then QA C A and Q™'A C A so A = QA.
By the condition to prove the lemma it is enough to show that gA = zA for some
z € Zgr, (r)(M).

Let E = F[M]. Since the characteristic polynomial of M is irreducible E is a field.

The action of M on F™ makes it a one-dimensional E-vector space. Fix a non-zero element
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v € F™. The following map is an isomorphism of E-vector spaces i : £ > x — zv € F™.
By definition it is E-linear homomorphism. Since both E and F™ are finitely dimensional
over F to check that i is a bijection it is enough to check that ¢ is injective. Assume it is
not. Then take z,y € E such that z # y and xzv = yv. Then det(z — y) = 0 but this is
impossible because x — y is invertible.

Below we will show that A and gA are Og-modules. Assume for now that it is true.
Recall that fractional ideals of E are finitely generated Op-submodules of F. Since ¢ is
E-linear there exist fractional ideals I; and I» of E such that i(l;) = A and i(l2) = gA.
Since fractional ideals of E are generated by powers of M there exists an integer number
4 such that gA = M7A. Of course M7 € Zat,,(r)(M). Therefore to finish the proof it is
enough to show that OgA C A and OggA C gA.

We want to show that Op = Op + OpM + ...+ OpM™ . Since the residue field
of EF and F are the same it we have O = O + OgM. Therefore O = E;io OrpMJ.
We want to show that for j > n we have OpM? C Op + OpM + ...+ OpM™ 1. We
do it by the induction. If j = n then since the characteristic polynomial of M is equal
to the minimal polynomial it is true. Assume that we have the inclusion for j. Then
OpMITL C OpM + OpM? + ...+ OpM"™ C Op + OpM + ... + OpM"™ 1. Therefore
O = OF—FOFM-F...—FOFM”_I.

Of course OpA C A and OpgA C gA. Therefore it is enough to check that MA C A
and MgA C gA. Since both M and g~ Mg are matrices in M,,(OF), these are true. [

Proposition 2.3.14. Let M € M, (Of) be a matriz whose characteristic polynomial is
Fisenstein and denote the characteristic polynomial by f. Then M is GL,(Op)-conjugate

to a companion matrix of f which is regular. In particular, M is regular.

Proof. Denote by C' the companion matrix of f. We prove that since f is irreducible the
matrices M and C are GL,,(F)-conjugate. Define the following maps: for any polynomial

b with coefficients in F
hi: F[M]2b(M)— b(M) € M,,(F) and hg: F[M]>bM)— b(C) € M,(F).

Of course hy is well defined. To check that ho is well defined it is enough to check that
h2(0) = 0. The polynomial f is irreducible and therefore the minimal polynomial of both
M and C is equal f. Therefore ha(0) = ho(f(M)) = f(C) = 0. By definition h; and hy are
F-algebra homomorphisms. Since f is irreducible F[M] is a field. By the Skolem—Noether
theorem there exists B € GL,,(F) such that h; = BhoB~! so in particular M = BCB~ 1.
Therefore by Lemma the matrices M and C are GL,(Op)-conjugate. Since C' is
regular M is also regular.

O

Observe that f(z) the characteristic polynomial of II3B, with B € Uj, is equal to zP
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modulo pr and f(0) = det(IIyB) = uwp for some u € Of. Therefore f(z) is Eisenstein
and Proposition [2.3.14] proves that matrices of the form II;B are regular.

Proposition 2.3.15. Matrices of the form H%B forj eN, 1< j<pandB € U; are not

reqular.

Proof. Denote by D the image of HgB modulo pr. Assume the contrary, that D is regular.
Denote by II; the reduction of IIy modulo pp. Every matrix of the form D is nilpotent.
By |15, 14.11 Proposition|, D is GL,(kr)-conjugate to II;. This is impossible because
DP~=1 £ 0 and (ﬁ%)p_l = 0. This gives us a contradiction and we proved that D is not

regular. O

2.4 Example

In this section we give an example of two representations of Ko = GLo(Op) with the same
orbits and the same conductor but one of them will be a cuspidal type and the second will
not. This illustrates the fact that it is not always enough to determine orbits to determine
if a given representation is a cuspidal type.

1 1
Let S = Uanx (a—HJF Or )7 B = w;1 ( 0 0) and By = w;} <O >

pr a+pr wE 00
Define 61,605 : S — C as follows:

01(ald, + ) = ¢ (tr(a ™ frx)) and 6Oy(ald, + x) = (tr(a™ ' Baz))

where a € O* and z € P Or . Denote
Pr PFr

p1 = Ind§201 and pg = Ind§292.

Proposition 2.4.1. The maps 61 and 02 are well-defined homomorphisms. Both repre-
sentations p1 and ps have conductor 2 and contain the matrix By := wrB1 in their orbits.

The representation p1 is a cuspidal type but po is not.

Proof. First we show that 6; and 6, are well-defined homomorphisms. Take a,b € O} and

O
x,y € (pF F) such that alds 4+ = blds +y. Then (b~ —a !)Idy =a 10 (y —2) €
br Pr

O
pr CrF and (b~'—a~!) € pIdy. Therefore a 'z —b"'y = a "tz —b" (z+ (a—b)ldy)) =
br Pr
~1 1 -1 OF Pr
(@ =b" )z —(ab™" —1)Id2 € | . Compute
]JF OF
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01 (aldy + )01 (blde +y) ™" =¢(tr(Br(a™ 'z — b7'y)))

co o=t (0] O2F o =1
wr 0 pr Or
and similarly
» 1 (0 1\ (OFr pF _
02(aldy + 2)02(bldy +y) ™" S ¢ (tr (wF (0 0) \p% Or -

@)
This shows that 6 and 6y are well defined. For any ¢ € OF, z,y € (pF F) we have
PF PF

tr(cfizy) € prp and  tr(cfoxy) € pr.

Therefore #; and 65 are homomorphisms.

Both p1]U91Jt and p2|U31m contain g, so p; and py have conductor 2 and contain wpfy
in their orbits.

First we prove that p is not a cuspidal type. This of course can be deduced from Theo-
rem [2.3.9 but to give an explicit example we give a specific proof. For contradiction assume

that py is a cuspidal type for an irreducible cuspidal representation m of GLy(F'). The rep-

resentation py has conductor 2 so [(7w) > 0. On the other hand 65| =1
l+pr  Or
0 14+pFp
1 (@] 1 @)
and 62|;2 = 1. The groups tar o )and Ugﬁ generate +2pF F ). The
o 0  Il+pr pp l+pr

latter is GLa(F)-conjugate to Ugy. This means that {(7) = 0 and we get the contradiction.
By Theorem [2.3.9] p; is a cuspidal type.
O
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Chapter 3

On the optimal rate of

equidistribution in number fields.

This chapter is joint work with Mikotaj Fraczyk and it comes from our preprint paper [18|.

3.1 Introduction

3.1.1 Optimal rate of equidistribution in number fields.

In this chapter we study the optimal rate of "local" equidistribution in the rings of integers
of number fields. First we will make precise what kind of equidistribution we mean. For
any ring A we may map it into the profinite completion A= lim A/I where I runs over
all cofinite ideals in A. The additive group of Ais a compact topological group so it is
equipped with a unique Haar probability measure m. We say that a sequence of finite

subsets E,, C A equidistributes in A if the sequence of probability measures on A

1
R — 0z
S T 2

{L‘EEn

converges weakly-* to the Haar measure m. If k is a number field and A = O is its
ring of integers this means that (E,),en equidistributes in (/Q\k = Hp Ok, where p runs
over prime ideals of Oy and O, is the ring of integers in the completion ky. In practice,
for example when E,, are given by some arithmetic construction, it is often easier to
prove that the equidistribution holds in O, for each prime p than that it holds in the
product Hp Ok,. This is why we focus on the weaker notion of local equidistribution
in Or. We say that (E,)nen locally equidistributes in Oy if for every prime ideal p the
sequence of probability measures pu, (defined as above) converges weakly to the unique
Haar probability measure on O,. We can measure the rate of equidistribution in Oy, by

looking at the p-adic valuation of the product of differences [, ycp, (s — s'). Using the

o7
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pigeon principle, one can show that v, <HS¢S/€En(S - s’)) > ZlE"‘ ! oo Lmij, where ¢
is the size of the residue field of k,. When the equality is achieved for each n we say that
(En)nen equidistributes optimally in O,. It happens, for example, when E, are sets
of the first n elements of a sequence (a;);en which is a p-ordering (Definition [3.1.3)). The
p-orderings were introduced by Manjul Bhargava in [5] in order to generalize the notion of
the factorial to any Dedekind domain (or even subsets of Dedekind domains) and to extend
the classical results of Polya on integer valued polynomials in Q[¢t] to arbitrary Dedekind
domains |5, Theorem 14]. While it is easy to see that for a fixed finite set P of primes p
one can find a sequence Ej, that equidistributes optimally in Oy, for all p € P it is not
clear if there exists a sequence of sets F, that equidistributes optimally for all primes p
at the same time. It is certainly possible in Z because we we can take E,, = {1,2,...,n}.
As the main result of this chapter we prove that k = Q is the only number field for which
Oy enjoys this property. As a corollary we answer the question of Bhargava [5, Question
3| for rings of integers in number fields. Bhargava asked which Dedekind domains admit
simultaneous p-orderings. Our main result implies that Z is the only ring of integers where

this is possible.

3.1.2 p-orderings and equidistribution

Let A be a ring and let I be an ideal of A. We say that a finite subset S C A is almost

uniformly distributed modulo [ if for any a,b € A we have
|{s€eS|s—aecl}|—|{seS|s—-bel}l|e{-1,0,1}. (3.1.1)

If A/I is finite the condition (3.1.1)) is equivalent to the following

5]

seS| s—acl}|— ——
[{ses| H- o

<1. (3.1.2)

Let k£ be a number field and let Oy be its ring of integers.

Definition 3.1.1. We call a finite subset S C Oy n-optimal if |S| = n+1 and S is almost

uniformly equidistributed modulo every power p',1 > 1 for every prime ideal p of Oy.

The n-optimal sets are in a sense locally as uniformly equidistributed as possible. The
sequences of n-optimal sets are precisely the ones that equidistribute optimally in Oy, for
all primes p at the same time. The main result of this chapter determines the numbers

fields k where the rings of integers Oy admits arbitrarily large n-optimal sets.

Theorem 3.1.2. Let k be a number field different than Q. Then there is a natural number

ng such that there are no n-optimal sets for n > ng.

In particular, unless k = Q there are no sequences of finite subsets that equidistrubute

optimally modulo all prime powers. Motivation for considering n-optimal subsets comes
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from the theory of integer valued polynomials and from the study of p-orderings. We recall

the definition of a p-ordering in a subset of O, following [5].

Definition 3.1.3. Let S C Oy and let p be a non-zero proper prime ideal. A sequence
(a;)ien C S is a p-ordering in S if for every n € N we have

n—1 n—1
vs(p,n) == vy (H(ai - an)> = Igéigvp (H(ai - S)) ,

=0 =0

where vy stands for the additive p-adic valuation on k. The value vg(p,n) does not depend

on the choice of a p-ordering (|9]).

Bhargava defines the generalized factorial as the ideal nlg = Hp pus(®1) where p
runs over primes in O. A sequence (a;);ey C S is called a simultaneous p-ordering
in S if it is a p-ordering in S for every prime ideal p. Simultaneous p-orderings are also
called Newton sequences [12}13]. A sequence (a;);eny C O is a simultaneous p-ordering in
Oy, if and only if the set {ag,a1,...,a,} is n-optimal for every n € N (see |11, Proposition
2.6]) . In [5,/6] Bhargava asks what are the subsets S C Oj (or more general Dedekind
domains) admitting simultaneous p-orderings and in particular for which k& the ring Oy
admits a simultaneous p-ordering. The last question was addressed by Melanie Wood in
[36] where she proved that there are no simultaneous p-orderings in Oy if k is an imaginary
quadratic field. This result was extended in |1, Theorem 16] to all real quadratic number
fields Q(\/&) except possibly for d = 2,3,5 and d =1 mod 8. Existence of a simultaneous

p-ordering implies that there are n-optimal sets in Oy, for all n. As a corollary of Theorem

[3.1.2) we get:

Corollary 3.1.4. Q is the unique number field whose ring of integers admits a simultaneous

p-ordering.

This answers [5, Question 3| for rings of integers in number fields. Note that having
an upper bound on n such that there exists an n-optimal set is a priori stronger than
non-existence of simultaneous p-orderings because not every n-optimal set can be ordered
into an initial fragment of a simultaneous p-ordering. We do not know any example of a
Dedekind domain that has arbitrarily large n-optimal sets but no simultaneous p-orderings.
We remark that the ring Fy[t] admits a simultaneous p-ordering [5, p. 125]. It would be
interesting to know which finite extensions F' of F,[t] have the property that Op admits a

simultaneous p-ordering.

3.1.3 Test sets for integer valued polynomials.

The notions of p-orderings and n-optimal sets are connected to the theory of integer valued

polynomials. Let P € k[X] be a polynomial. We say that P is integer valued on S C O
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if P(S) C Oy. Following [12] we denote the module of integer valued polynomials of degree
at most n by
I1,(S,0r) = {P € k[X]|deg P <n,P(S) C Ok} .

We call a subset £ C O, an n-universal set if the following holds. A polynomial P € k[X]
is integer valued (on Op) if and only if P(E) C Ok. It is easy to prove, using Lagrange
interpolation, that |S| > n + 1 for any n-universal set S. It was shown in [11,135] that if
|S| = n + 1 then S is n-universal if and only if it is almost uniformly distributed modulo
all powers of all prime ideals. In our notation the latter is equivalent to S being n-optimal.
It is proved in [11] that for every n € N there exists an n-universal set of size n + 2, so it
is interesting to ask whether there are n-universal sets of cardinality n 4+ 1 (i.e. n-optimal
sets). For k quadratic imaginary number field it was proven in [11] that there is an upper
bound on n such that there exists an n-optimal set. This generalizes the analogous result
for k = Q(v/—1) from [35]. For general quadratic number fields Cahen and Chabert [13]
proved that there are no 2-optimal sets, except possibly in @(\/&), d=-3,-1,2,3,5 and

d =1 mod 8. From our main result and [11, Theorem 4.1.] we deduce the following.

Corollary 3.1.5. Let k # Q be a number field. Then for n € N sufficiently large the

minimal cardinality of an n-universal set in Oy is n + 2.

3.1.4 Average number of solutions of a unit equation

One of our key technical ingredients in the proof of Theorem is the following bound,
which can be interpreted as a bound on the average number of solutions of the unit equation

[37]. To shorten notation we will write ||z|| = | N q(x)| for = € k.

Theorem 3.1.6. Let k be a number field of degree N with d Archimedean places and let
B € R. There are constants ©1, 04, 03,04 dependent only on k and B such that for every

- 1 1
a€ O, 0< X < |lallef andn:mln{m,m} we have

] {x € Okl ||lz(a—2))| < X2} | < @1X1+“Ha\|_’"‘+@2(logX)Qd_z—i—@g log log log log ||a||+©4.
The traditional form of the unit equation is
a1 A1 + agAo = 1 where aq, ag € k*

and the indeterminates A1, A2 are the units of 0. We may consider an equivalent form of
the unit equation

1A + asXg = a3 where aq, a9, a3 € O, (3.1.3)

It is clear that the number of solutions depends only on the class of (a1, a9, as3) in the

quotient of the projective space P2(k)/(O;)3. Let v(a1, a2, av3) be the number of solutions
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of (3.1.3). It was known since Siegel [32] that v(aq, ag, a3) is finite and Evertse [16] found

an upper bound independent of a1, asg, ag
v(ag, ag,ag) < 3 X ™.

In fact, Evertse, Gyory, Stewart and Tijdeman [17] showed that except for finitely many
points [a1, e, ag] € P2(k)/(Of)3 the equation (3.1.3)) has at most two solutions. Theorem
3.1.6|gives a quantitative control on the "average" number of solutions of as ap, o €
Or/OF, [laras|| < X? and ||ag]| is fixed with ||| not much smaller than X.

Theorem 3.1.7. Let k be a number field of degree N with d Archimedean places, let B € R
and put K = min {m, Wl—l} There exist constants ©1, 09, O3, 0, dependent only
on k and B such that for every az € 0,0 < X < |laz|e? we have

Z v(ag, ag,ag) < @1X1+”“Hoz3||*”C + O4(log X)2d72 + O3 log log log log ||as]| + O4.

a1,a2€0 /OF
araz||<X?

The number of terms in the sum is of order X?log X so Theorem shows that the

average value of v(aq, g, a3) is

O(X" ag]|~*(log X)~* + (log X)*N "X 2 + (log log loglog [Jas |} X *(log X) 1),
e 2 og X
Unless |az|| > e° this improves (on average) on the pointwise bound of Evertse,

Gyory, Stewart and Tijdeman [17].

3.1.5 Outline of the proof

To prove Theorem [3.1.2| we argue by contradition. We assume that there exists a sequence
Sp, of n;-optimal subsets where n; tend to infinity. Let V := k ®g R ~ R™ x C™. First
we show (Theorem that for each n; there exists a cylinder (see Definition
Cn; €V of volume O(n;) containing S,,,. This fact was implicit in the proofs of Theorem
for k = Q(v/—1) in [35] and for k quadratic imaginary in [11]. The argument in
[11,135] relied on a technique called "discrete collapsing" Hwhich crucially uses the fact
that the norm Ny g is convex for any quadratic imaginary number field k. Finding a way
to prove Theorem for a general number field & is one of the main contributions of this
chapter. A key number-theoretical input is provided by Proposition [3.2.5 which counts the
number of 2 € Oy, such that [Ny q(x(a —x))] < X? for some X > 0 and a € Oy, subject to
the condition | Ny g(a)| > Xe~? where B is a fixed real number. The proof of Proposition

In [11] it was called simply "collapsing". We add the adjective discrete to distinguish it from the
collapsing for measures used in the present work.
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combines a variant of Ikehara’s Tauberian theorem, counting points of O in thin
cylinders and the Baker—Wiistholz’s theorem on linear forms in logarithms.

Let A, be the discriminant of k. From Theorem [3.3.1] we deduce (Corollary that
there exists a compact set  and sequences (sp, )ieN, (tn; )ien C V with ||s,,. || = ni|Ag|"/?
such that the rescaled sets s,;il (Sp; — tn,) are all contained in €. Thus, it makes sense to

look at subsequential weak-* limits of measures

1
Wn,; 1= n— Z 58771.1(50—75711-)'

v IESni

Any such limit will be called a limit measure. It is always a probability measure supported
on {2, absolutely continuous with respect to the Lebesgue measure and of densityﬂ at
most oneﬂ (see Lemma . By passing to a subsequence if necessary we can assume
that p,, converges to a limit measure p. The measure ;o contains the information about
the asymptotic geometry of the sets S,,. Our strategy is to exploit the properties of
n-optimal sets to show that no such limit measure can exist. We introduce a notion of
energy of probability measures on V' (see Definition . For any compactly supported
probability measure v on V', absolutely continuous with respect to the Lebesgue measure

and of bounded density we define

() = /V /V log [l — ylldv(z)dv(y),

where || - || : V' — R extends the norm |Nj, | from k to V =k ®g R. The volume formula
for n-optimal sets (see |11, Corollary 5.2|) allows us to prove (Proposition [3.5.4) that for
any limit measure p we have

1 3
I(u) = —510g\Ak\ 3 — 7 + Y0,

where i, Yo are the Euler-Kronecker constants of k and Q respectively (c.f. [22]). We know
that the norm of the product of differences in an n-optimal set must be minimal among
the norms of products of differences in all subsets of Oy, of cardinality n+1 (|11, Corollary
5.2]). In other words the volume of an n-optimal set is minimal among volumes of subsets
of O, of cardinality n + 1. This is used to show that x4 minimizes the energy I(u) among
all probability measures of density bounded by one (Lemma . The last property
forces strong geometric constraints on p. In Proposition [3.5.6] we show that any such
energy-minimizing measure must be of the form p(A) = Leb(A N U) where Leb is the
Lebesgue measure on V and U is an open set of measure 1 whose boundary satisfies

certain regularity conditions. This part of the argument uses the collapsing procedure

2By density we mean the Radon-Nikodym derivative with respect to the Lebesgue measure.
3The reason why we introduced the factor |Ag|*/? in the formula s,,, = n;|Ag|*/?
limits have density at most 1.

is to ensure that the
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for measures (Definition which is analogous to the discrete collapsing from [11] and
similar to the Steiner symmetrization. We remark that if the field &k is not imaginary
quadratic then there is no reasonable discrete collapsing procedure for subsets of Op. The
passage from subsets of O to measures on V seems crucial for this part of the argument.

At this point we have established that p,, converges weakly-* to u = Leb|y for some
open subset U of V with sufficiently regular boundary. This is equivalent to saying that
Sn;, = (O N (s, U + tp,;)) U Ry, where the remainder satisfies |Ry,,| = o(n;). The idea for
the last part of the proof is to show that for n; sufficiently large, there is a prime ideal
ppn,; such that S, fails to be almost uniformly equidistributed modulo p,,. This part is
analogous to the proofs in 11,35 but slightly harder since we do not know the shape of U
explicitly. This problem is solved by relating the almost uniform distribution of §,,; with
the lattice point discrepancy of U (see . If S,,, were almost uniformly distributed
modulo all prime ideals then the maximal discrepancy of U would be strictly less than 1
(Lemma [3.6.3). On the other hand, we show (Lemma that once dimg V' > 2 and
OU is smooth enough the maximal discrepancy of U must be strictly greater than 1. This
is the only place in the proof where we use the assumption that k& # Q. We deduce that
there must be a prime p,,, such that S, in not uniformly equidistributed modulo p,,. This

contradicts the fact that S,,, is n;-optimal and concludes the proof.

3.1.6 Notation

Let k£ be a number field of degree N and let O be the ring of integers of k. Numbers
r1,T9 are respectively the number of real and complex places of k. Put d = r; + ro. The
field k is fixed throughout the chapter and so are the numbers N,ri,7r3,d. We identify
V with R™ x C™. For v = (v1,...,vq) € V define |jv]| = [[:X, ]vZ\H:;;fil lvi%. We
will write V> = {v € V| |lv|| # 0} and O} for the unit group of Of. Let Nyg: k — Q
be the norm of the extension k/Q. The field & embeds in V' and |z|| = [Ny /()| for
every ¢ € k. We write Ay for the discriminant of k. We use standard big-O and little-o
notation. The base of all logarithms is e. We will write A, A, Ay for the rings of adeles,
infinite adeles and finite adeles respectivelyﬁ We will write Leb for the Lebesgue measure
on V', which is the product of Lebesgue measures on the real and complex factors. For
any measure 4 and measurable sets E, F we will write u|gp(F) = p(E N F). We write
Br(z,R) (Be(x,R)) for the ball of radius R around z € R (x € C). We will write
MYV (vesp. PL(V)) for the set of finite (resp. probability) measures v on V which are
absolutely continuous with respect to the Lebesgue measure and such that the Radon—
Nikodym derivative satisfies dv(v)/dLeb(v) < 1 for almost every v € V. For any real
number ¢ we will write [t] = max {z € Z|z < t}. If G is a group we will write G for the

group of unitary characters of G.

4 The adeles and ideles are present only in the last part of the Appendix, in the proof of Lemmam
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3.1.7 Structure of the chapter

In Section 3.2 we develop estimates on the number of lattice points in Oy, satisfying certain
norm inequalities. The goal is to prove Proposition [3.2.5| and deduce Theorem [3.2.1
These inequalities control the number of points x € Oy for which the product of norms
Nio((x — y)(z — 2)) is bounded where y, z are two far-away points in Of. In
we recall the Aramaki-Tkehara tauberian theorem. In [3.2.2] we prove Proposition
modulo some lemmas relying on diophantine approximation techniques. The sub-section
[3:2.3] completes the missing part of the proof using Baker—Wiistholz inequalities on linear
forms in logarithms. In [3.2.4] we explain briefly why Theorem follows from Theorem
B.2T

Section [3.3] is devoted to the proof of Theorem [3.3.1l This is the technical heart of
the chapter where we prove that n-optimal sets can be suitably renormalized. In [3.3.1] we
gather some basic observations on norms of differences in an n-optimal set and in [3.3.2]
couple them with the results of Section [3.2] to get the Theorem [3.3.1]

In Section [3.5 we define and study the properties of limit measures. In [3.5.1 we prove
that they have density bounded by 1. In[3:5.2) we define the notion of energy for measures
on V and prove that the limit measures must minimize the energy in the class of prob-
ability measures of density at most 1. Next in [3.5.3 we study the geometric properties
of such energy minimizing measures and describe them in Proposition [3.5.6, The proof
of Proposition [3.5.6] crucially uses the collapsing procedure which is described in detail in
Section [3.41

In Section [3.6] we show that limit measures cannot exist. In the first part [3.6.1] we recall
the notion of lattice point discrepancy and relate it to limit measures. In [3.6.2] we prove
Theorem

The Section is devoted to the collapsing procedure for measures on V. We mainly
study its effect on the energy.

Finally in the Appendix we provide a proof of a folklore result on density of measures

and likely well known variant of the prime number theorem for number fields.

3.2 Counting problem

The main result of this section is Proposition It is a key ingredient in the proof of
Theorem on the shape of n-optimal sets in Of. As a corollary of Proposition

we get the following counting result that may be of independent interest.

Theorem 3.2.1. Let k be a number field of degree N with d Archimedean places, let B € R

and put kK = min{m’wl—l

on k and B such that for every X >0 and a € Oy, such that ||a|| > Xe™ 8 we have

There exist constants ©1,09, ©3,0, dependent only

] {a: € Okl ||lz(a—2)| < X2} | < @1X1+“H(1H7”+@2(logX)2d72+@3 log loglog log ||a||+©4.
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To state Proposition [3.2.5] we need to introduce some notations and auxiliary objects.

For v € V' we will write |v|; for the absolute value of i-th coordinate.

Definition 3.2.2. A good fundamental domain of O; in V> is a set F which is a

finite union of convex closed cones in V> such that F /R* is compact in the projective space

P(V), intF N A(intF) = 0 for every A € O, A # 1 and V* = U, cox AF. For technical
k

reasons we will also require that the boundary OF does not contain any points of O.
We have the following elementary observation.

Lemma 3.2.3. Let F be a good fundamental domain of O in V*. Then there exists
a constant Cy > 0 such that every v € F satisfies Cy |Jv[|N < |v|; < Col|v||"N for
i=1,...,d.

Proof. The set F/R* is a compact subset of V*/R*. The functions vR* + [v];/||v]|"/™
and vR* — ||v]|*/N /|v|; are continuous so they are bounded and admit maxima on F/R*.

We can take Cj to be the biggest of the two maxima. O

We will often use this lemma in the latter part of the proof and sometimes we shall do
so without additional comment. Let W}, be the torsion subgroup of O; and let &, ...,&q—1
be a basis of a maximal torsion free subgroupﬂ of O;'. Every element A € O, is uniquely
expressed as a product A = wed! ...536511 with w € Wy and b; € Z for t = 1,...,d — 1.
We define an [*° norm on O; by ||Al|o := max;—;, . 4—1 |b;i]. From now on we fix the basis

&1, . .,&4—1 as well as the associated norm || -+ |-

Lemma 3.2.4. There exists a constant a > 0 such that max;—; _qlog|\|; > a||A||« for
every A € OF.

Proof. Put |Allo := max;=1,_qlog|Al;. Both || - [jo,| - |loc extend uniquely to norms on
OF @z R ~ R41. Since any two norms on R?~! are comparable, there exists a constant
a > 0 such that a||Alle < Ao < a7 |A|loo for every A € OF. O

By definition if we are given a good fundamental domain F then every element y € O
except 0 decomposes uniquely as y = xA for z € FN Oy, A € OF. Let us fix a good
fundamental domain F. For a € Ok, a # 0 and X > 0 we define the set

S(a, X) = {(az,)\) € (FNOy) x O] ||z(a — 227 Y| < X2 |z|| < X}.

Proposition 3.2.5. Let k be a number field of degree N with d Archimedean places, let
B € R and put kK = min {WJ{/_U, 4]\,1—_1} Choose a good fundamental domain F. There
exist constants ©1,09,03,0, dependent only on k, F and B such that for every X > 0
and a € Oy, such that ||a|| > Xe™B we have

5We recall that the rank of O is d — 1 by Dirichlet’s unit theorem.
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1. |S(a, X)| < 01 X#|a|| = + O2(log X)??~2 4 O3 loglogloglog ||a|| + O4.
2. Suppose that a € F. For every € > 0 there exists M such that

{(z, ) € S(a, X)[ Moo = M} <
X ||a)| 7" + Oa(log X)?472 + O3 loglogloglog ||a|| + O4.

The proof consists of dividing the set S(a, X) in two parts Sy, Se where S; consists
of pairs (x,\) where ||A]|s is "not too big" compared to log ||a|| — log||z| and Ss is the
complement of S1. To estimate the size of S; we will use the Aramaki—Ikehara Tauberian
theorem (Section and to control Sy we rely on Baker-Wiisholz’s theorem on linear
forms in logarithms and counting integer points in cylinders (Section. Theorem

is an easy consequence of Proposition [3.2.5]

Proof of Theorem[3.2.1 It is enough to show that | {z € O] [|z(a — 2)| < X?}| < 2|S(a, X)|+
2. Note that the set {z € Oy|||z(a — z)|| < X?} is invariant under the map = — a — z.
The inequality ||z(a — z)|| < X? implies that either ||z|| < X or |la — z|| < X. For any
such  different than 0 and a there exists a pair (y,\) € S(a, X) such that A=y = x or
A7y = a — z. This proves that | {z € O| |z(a — 2)|| < X?} | < 2|S(a, X)| + 2. Theorem

now followsﬁ from Proposition m (1). O

3.2.1 Aramaki-Ikehara theorem

We will need an extension of the classical Tauberian theorem of Wiener and Ikehara due
to Aramaki [3]. Our goal is Lemma and it is the only result form this section that

we will be using later.

Theorem 3.2.6. (Aramaki [3|) Let Z(s) = Y, %2 be a Dirichlet series convergent for

Re(s) sufficiently large. Assume that Z(s) satisfies the following conditions:
1. Z(s) has a meromorphic extension to C with poles on the real line.
2. Z(s) has the first singularity at s =a >0 and A; € C for j =1,...,p are such that

w0250 (5) o

Jj=1

is holomorphic in {s € C | Re(s) > a — d} for some § > 0.

3. Z(s) is of polynomial order of growth with respect to Im(s) in all vertical strips,

excluding neighborhoods of the poles.

SWith roughly 2 times bigger constants.
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Then, there exists g > 0 such that for all X > 1

Tyt (@) ()] o

Corollary 3.2.7. Let (an)nen be a sequence of positive real numbers such that the Dirichlet
series Z(s) = Y07 % satisfies the hypotheses of Theorem . Then for every integer

n=1 ns

m >0 and X > 1 we have

1. there exists 6,, > 0 such that

> an(logn)™ =3 Ajl ] <ci>m+j1 <)i>

a—0m
. G- +O(X20m).
n< Jj=

sS=a

2. If Z(s) has a simple pole at 1 with residue p then there exists § > 0 such that

Z an(log X —logn)™ = m!pX + O(X'7°).

n<X

Proof. 1. Note that Y 7, a"(lzﬂ = (—d%)mZ(s). The derivative (—d%)mZ(s) is
meromorphic on C with poles on the real line. Cauchy’s integral formula implies
that (—d%)m Z(s) is of polynomial order of growth with respect to Im(s) on vertical
strips away from the poles. The desired formula follows from Aramaki theorem

applied to (—%)m Z(s).

2. By the previous point we have 3, _y an(logn)™ = p (%)m (%) » + O(X170m),
We use this identity in the following computation: -
Z ap(logX —logn)™ =
n<X
= ()0 o )" X anflogm)™
l
=0 n<X
m l m—l
m m—I d s—1 d X 1-46
= -1 — | X — — 0]0.¢
2 (e (@) | (@) (5] ro

(27 (=) o

1

+O(X179)

where 0 = min {dg, ..., 0m }.
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O

The following lemma is a key ingredient in the proof of Proposition [3.2.5]

Lemma 3.2.8. Let pi be the residue of the Dedekind zeta function (i(s) at s = 1, let hy
be the class number of k and let wy, be the size of the torsion subgroup of Oy . For every

m > 0 there exists dg > 0 such that for every X > 1 we have

1.
Z log N(a)™ = %X(log X)™ 4+ O(X1%)
a€0y, /O)f k
0<N(a)<X
and
2.
Z (log X —log N(a))™ = m!%X +O(X10),
(16(916/(’)11< k
0<N(a)<X

Proof. Let x1,...,xn, be the characters of the class group of k, with x; = 1. The L-

functions L(s,k,x) = >, é{,(aa))s are entire for ¢ > 2 and L(s,k, 1) is the Dedekind zeta

function of k with unique simple pole at s = 1 with residue pi. All of them are of

polynomial growth on vertical strips. Consider the Dirichlet series

hy
1 1 1
G(S)_ Z N(a)s - ; (Na)s _EZL(SvkaXZ)
aEOk/(’): principal =1
0<N(a)

It has non-negative coefficients and extends to a meromorphic function on C with a simple
pole at s = 1 with residue %' Equalities (1),(2) follow from Corollary applied to
G(s). O

3.2.2 Proof of Proposition [3.2.5|

We adopt the following convention. The constants C;, B; appearing in the inequalities
successively throughout the proof are dependent on k and B alone. This is usually not
a straightforward observation, but the proof is structured so that it is clear that Cj, B;
depend only on k, B and the constants Cj, B; for j < i. As we want to keep the proof
reasonably short we omit the computations of exactly how big C;, B; should be in terms
of k and B.

Proof. (1) The problem is invariant under multiplying a by O} so we may assume, without
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loss on generality, that a € F. Recall that |la|| > Xe™? and

S:=8(a,X) ={(z,\) € (FNO) x Of|||lz(a —2A )| < X% ||| < X}
T
= {(@, Mhog [A = Z|| < 2108 X ~0g a]| - log]la]|, 2]l < X}

Let a be the constant from Lemma [3.2.4] We define

2 1 1
= 0o X — — - — [ —
51 {(:c,» € SlIAlle < = (21ogx (2 QN) log [z — 5 log Ha|)}

and So := S\ S1. We start be estimating the size of S;. We will use the fact that for
non-negative R the number of A € O with || A < R is at most O(RY1) + [Wy|.

2 1 1
sl 3 [{re ot s 2 (20x - (2- o Y oeliel - g toslol) |

zeFNOy
llzll<X
AN —1) [ 4N 1
- x <! - -
> |{reorinn s WD ([ onx - ot towlal — o )
zeFNOy
llzll<Xx

Put logY = ;22 log X — ;5 log ||a]|. The summands in the last formula vanish unless

lz|| <Y so we get

|S1] < Z

zeFNOy
=<y

< Z (Cl (logY — log ||:1c|])d_1 + C’g)

z€FNOy,
lzl<Y

SC:,)Y = 03X1+4N171 ||a||74le1.

AN — 1)
il < ¢ _
{AeOkHAnm_ o (log Y 1og||x||>}‘

The last passage uses Lemma It remains to bound the size of |Ss|.

Lemma 3.2.9. Put By := o~ }((log X —log ||a|)N~! + 2log Cy + log 2) where Cy is as in
Lemma[3.2.3 Let (z,\) € So. Then either |A||o < By or there exists i € {1,...,d} such
that

log‘g—)\
a

| Alloo 1 1
“onv 5 (v Toviv 1)U —1 log 2. 2.1
i STaN—2 \N TaNv -1 (log ||all —log [|z||) + log (3.2.1)
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|Al; is maximal. By Lemma we have log|A|; > a||A]|. Since ||A]|oc > B we have
log|Al; > (log X — log [la|[)N~! + 2log Cj + log 2. By Lemma log ‘%‘j < (log ||z|| —
log [lal )N~ + 2log Cp < (log X — log [|al|)N~! 4 2log Co. It follows that |Al; > 2|%|; so
we have log |2 — Al; > log|A|; — log2. From this and the fact that (z, ) € Sy we deduce
that

Proof. Assume that ||A| > Bi and that (z,\) € Sa. Let j € {1,...,d} be such that

N -1
2N

o 4 1
g ALy Zalle > 51 + (210g X - g o] - 51 toe o

and

N -1
2N

x a 4 1
o >= + — - — ) 2.
log’ )\‘j 2H)\HOO <2logX log ||z || 5N log\a||> log 2 (3.2.2)

At the same time |A[; > 1 because [|[A| = 1 so we also have log |2 — A| > —log2. This

observation is valid even if By < 0. By definition of S we have
x
log | £ = [| < 2108 X — og al| ~ 10g ]
a

Let f =1if 7 > r{ and f = 0 otherwise. Substracting (3.2.2)) we get
J g g

d
a a
2 Y log’E—)\‘i%—flog’E—)\‘j

1 T
Z log ‘— - A <
i=Ligj i=ri L]
2N —1
~SIlos = =57 (g lal| — log ]} + log2.

At least one term in the sum must be smaller or equal to the average. Therefore, for some

1 we have
x || A||oo 1 1 log
1 ‘—7)\ < - =+t —1 . 2.
o8 2 -3|, < 55 — (§ + sy ) Gosllall ~log el + 527 (323)
This is slightly better than what we needed to prove. O
Put SY := {(x,\) € S2||[A|lc < B1} and for i =1,...,d let
Si:={(x,\) € Sy inequality (3.2.1) holds }. (3.2.4)

Lemma 3.2.10. There is a constant Cs dependent only on k, B such that
551 < Cs X |a] "

Proof. The number of \ satisfying ||[A||cc < B1, where Bj is as in Lemma is at most
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O(1 + By)%! < O(X"||a||~") so there is a constant Cyy such that

9] < CaXlla| ™ Y 1< C5 X al|

zeFNO;
lzll<x
The last inequality uses Lemma [3.2.8 O
We have the following estimate on |S3| for i = 1,...,d.
Lemma 3.2.11. Let ¥’ = m There are constants Cg, C7, Cs, Cy dependent on k, B
alone such that fori=1,...,d we have

|5 < CeX ™ lal| ™" + Cr(log X)**Y + Cylogloglog log [|a]| + Co.

The proof of the Lemma [3.2.11] relies on Baker—Wiistholz’s bounds on linear forms in
logarithms. We postpone it to the next section. By Lemma we have Sy = Ug:o St so

d
S| <ISu]+ > 1S5 (3.2.5)
=0
<O XMW o "I 4+ Cs X R al| 7" + dCe X1 ||a]| (3.2.6)
+ dC7(log X)*4=V 4 dCglogloglog log ||a|| + dCs. (3.2.7)

As kK = min {Wl—lv Iil} and X|a||~! < e we can deduce that

15| <O1XHlal| ™" + Oa(log X)2@~V 4 ©31ogloglog log ||al| + O, (3.2.8)

where O1, 02, 03,0, depend only on k, B. This proves the first part of Proposition
(2) Let M > 0. Put S[M] := {(z,\) € S|[[A|oc > M} and S;[M] = S1NS[M], So[M] =
Sy N S[M], Si[M] = Si N S[M]. The proof of this case is reduced to the following lemmas.

Lemma 3.2.12. For every § > 0 there exists My such that for every M > M;
$1[M] < 0X+|a] ™.

Proof.

IN

2 1 1
—(2logX —[2— — | 1 ——1
2 (o — (2 gy ) toelell = g tog )}

4N —1 4N 1
SM < log X — 1 -1
v 0pin < e < B (0o x = it oglal ~ tog o) |

A

{A € OFIM < Al
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The summands in the last formula Vanish unless M < (4%;1) (2 log X — m log ||a|| —
log 7)) ie. log||z| < ;225 log X — gzt log [|al| — )M Put log Yy = 722 log X —
o log lla]l — %VNO{) We get
4N -1
[S1[M]] < A€ OfflIMlee < (log Yas — log ||))
Na
z€FNOy
el <Y

< Z <C’1 (log Yas — log |lz|)* " + Cg)
z€FNOy
lzl<Ym

<C3Yy = C3X1+4N IHQH - Te %]Nl

For the last inequality we have used Lemma As |lal]| > Xe B we have |S1[M]| <
C21X1+"|]a]\_"””e_i\f4\fji0{. Clearly for M > M sufficiently large we have C’gle_%VN—al < 4.
The Lemma is proven.

O

We have the following analogue of Lemma [3.2.11]

Lemma 3.2.13. Let k' =
that for every M > Mo

m. For every 6 >0 and i =1,...,d there exists My such

Si[M] < 6X M ||a|| = + C7(log X)21@=Y + Cgloglogloglog ||al| + Co.

The proof is postponed to the next section. We will also need the following trivial

observation.
Lemma 3.2.14. There exists M3 such that for every M > Ms the set SS[M] is empty.

We are ready to prove Proposition (2). Choose M such that S9[M] is empty,
Lemma [3.2.12f and Lemma 3| hold with ¢ = B(d+1) By Lemma we have:

d
S[M] = $1[M] U Sy[M] = Si[M] u Sg[M] u | S5[M]
=1

|S[M]| < eXH%la)| =" + dC7(log X)2 @~V 4 dCglog log log log ||al| + dCs.

This concludes the proof of Proposition [3.2:5] O
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3.2.3 Linear forms in logarithms and bound on |S}|

The aim of this section is to show Lemma i.e. an upper bound on |S%| where S% is
the set defined by . Next we apply more or less the same argument to prove Lemma
B.2.13] Our main tool is the Baker—Wiistholz inequality on linear forms in logarithms
[4, Theorem 7.1]. We recall the definition of the logarithmic Weil height of an algebraic
number. Let K be a finite extension of Q and let w € K. Write X for the set of valuations
of K.

Definition 3.2.15. The logarithmic Weil height of w is defined as
h(w) ! Za max {0, log |w|, }
= T v X bl vy
K0 = ©

where a, = 2 if v is a complex Archimedean place and a,, = 1 otherwise. The value of h(w)

does not depend on the choice of K.

The height enjoys the following sub-additivity property h(zy) < h(z) + h(z) and
h(z/y) < h(z) + h(y). For later use we define h'(w) = max{h(w),1}. This definition
agrees with the one from [4, 7.2| up to a constant depending only on [Q(w) : Q].

Theorem 3.2.16 (|4, Theorem 7.1]). Let a1,...,a, € Q and let loga; be the value of
the main branch of logarithm for i = 1,...,n. Let D = [Q(a1,...,a,) : Q]. For every
bi,...,by, € Z such that

A:=bilogay +...bylogay, #0

we have

log |[A| > —C, ph'(aq) ... K (o) max {1,log max \bzl} ,
i=1,....,n
where Cy, p 1s a constant depending only on n and D.

We will apply this Theorem with a; being equal to the absolute values of units in O}
or elements of F N O. Recall that &1,...,&;_1 form a basis of a maximal torsion free
subgroup of O} so that every element A € O/ can be written as A = wedt fzd_*ll with w

torsion and ||\l := max;=1 41 |bi|.

Corollary 3.2.17. Let x,y € FN O, leti € {1,...,d} and let X € O). Then

log |log > —Cho(1 + log ]| +log [y|) max {1,log || Alloc } ,

)

Y
)

where Chg depends only on k and the choice of &1,...,&q—1.

Proof. As z,y € F N O the definition of Weil height with K = k and Lemma [3.2.3

imply that h(z) < & log||z|| + log Cy and similarly for y. We have h’(%) <S1+h((§) <
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1+ h(z) + h(y) = O(1 + log ||z|| + log ||yll). Write A = webreh2 ... Zd__ll with w being a
torsion element. Theorem [3.2.16] yields

log |log

5\
y

> ~Can (). (G max {Llog a1y}
’i .7_ EARAS]

Since max;—1,._4-1|bj| = [|A]|oc the Corollary follows. O

Definition 3.2.18. A cylinder in V ~ R™ x C™ s a set C which is a coordinate-wise

product of closed balls

c:ﬂ (ti, Ri) HBctz,R
i=1

i=r1+1
witht; €R fori=1,...,r,t, €C fori=r+1,...,d and R; € R5¢ fori=1,...,d.

Lemma 3.2.19. Let C be a cylinder. Then |C N O] < 14 C11Leb(C) where C11 is a

constant depending only on k.

Proof. First we prove that any cylinder C’ of volume strictly below 77247"2 cannot contain

more than one point of Of. Write
1
¢’ =[] B, R H Be(th, RY).
i=1 i=r1+1

If z,y € C' then |z — y|; < 2R; for every i = 1,...,d. We deduce that

71 d
lz -yl < H2R1 H AR2 = 4" "2LebC’ < 1.
i=1 i=r1+1

On the other hand if z,y € O}, are distinct then |z — y|| = [Ny q(x — y)| > 1. Hence C’
can contain at most one point from Q. The lemma follows since we can cover C with at
most 1 + C11Leb(C) cylinders of volume 7724772, O

Lemma 3.2.20. For every z € C with |1 —z| < § we have log |log |z|| < log |1 —z| +log2.

Proof. Let z = 1 —t. Then [t| < 1 and log|z| = —Y0° , £, Hence |log|z|| < 2J¢| and

n=1 n

consequently log |log |z|| < log |1 — z| + log 2. O
We can are ready to prove Lemma [3.2.11]
Proof of Lemma[3.2.11 Recall that &’ := m For A € O} define

S3(\) = {z € FNO(z,)) € S5}
T":={X e OF[S5(\) # 0} .
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Put = 53%—. By definition, for every x € S5(\) we have

x 1
g £ = A], < = 81l = ( 3 + ) Goglal ~ 1og ) + log2.
a 7 N
1
g o~ @A, < = B + loglal; = (7 + ') ol ~ 1og ) + g
1
< — B|[Mleo — £’ (log ||a]| — log X) + N log X + log 2 + log Cy.

By Lemma the set {z € F N Okl||z|| < X} is contained in the cylinder

1 d
[IBr(0,Cox'™)x T[] Bc(0,CoX /™).
j=1 j=ri+l

Hence, S5()) is contained in the cylinder

T1 d
¢y = I[ Be.,Cox"™)x [  Be(0,Cox/V)x
g=L.5#i j=ri+1,j7i
B (aiXi, 2Co X YN ||a | 7 e Al
where K=Rif ¢ =1,...,r; and K = C otherwise. We have

Leb(C'(\) < Cro X |Ja|| = e PPl if 5 =1,...

and
Leb(C'(N)) < Cpro X2 ||| 72 ¢ 28l 5f 4 =4y 41,0 1o,

We work under assumption that X < [[alle” so in the second case we have
CroX T2 ||| 2% ¢=28IMloe < ¢BK' 0y, 1+ | |~ =Bl
By Lemma we get
[95(\)] < 14 CiLeb(C'(V)) < 1+ Cra X+ Jaf| = e PIMl=.
Hence

131 < S ISB)] < 77+ CoaX 4 fal| 37 e PR (3.2.9)
AET® A0}

T + CLa X |a) =" (3.2.10)
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It remains to bound |T%|. First we show that for every A\ € T® we have
Moo < Ci5log [|a]| loglog [|al| + Cie

(equation (3.2.13). We have
X 1 ,
log’g—)\‘i < =Bl Moo — N+f€ (log ||a|| — log ||z||) + log 2.

N
< — B M|oe — £’ (log ||a|| — log X) +log 2 + 2log Cy
< — B Moo + &' B +log 2 + 21og Cy =: —B||\||cc + Ba.

a 1
g1 = ], < = Bl + o lals ~toglels — (5 + ') Qog ol — o ) + g
T

Here we define the constant By = /B + log 2 + 2log Cj to lighten the notation. It follows
that for ||A||ec > % we will have |1 — %/\‘Z < 1 and by Lemma [3.2.20

a
log\log‘;)\’i\ < Bl Moo + Bz + log 2. (3.2.11)

Put B3 = max{%,i&}. For ||A]|oc > B3 Corollary [3.2.17] yields

— Cho(1 + log [|z]| +log [|al]) log [[Alloc < =B Allec + B2 + log 2. (3.2.12)

The only thing we used is that || A]|sc > 3 so max {1,log ||\||cc } = log||A]|cc. Using inequal-
ities log ||z|| < log X < log |la]| + B we get
~Cio(1 + B + 21og al]) g [Mse < —BlIAlloc + B + log2.

For || Aso|l = B3 > % we deduce that
A lloo < Ci5log ||al| loglog |la|| + Cie. (3.2.13)

We proved this inequality under the assumption that ||| > Bs but by making C1¢ bigger
if necessary this inequality is also valid if |A||cc < Bs. Inequality already implies
a non-trivial upper bound of form |T?| = O((log||a||loglog||a|)?~!) + O(1). This is too
weak for our purposes when ||a| is large. To get the desired bound we need to consider
the relations between pairs A\, ' € T% with B3 < [|A]loo < [|N]|oo-

Lemma 3.2.21. Let \, N € T" with By < || AM|oo < | N]loo- Then
Bl Ao — B2 — 2log 2 < Cio(1 + 21og X) log 2|| N || oo -

Proof. Let z,2’ € F N O be such that (z,A),(z/,\) € Si. Inequality (3.2.11) yields
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| log | 2)|;] < 2ePlMlee+B2 and the same for X'. Taking the difference we get

/
x AL < 2¢B2 (6—5”)\”00 + e—BH)\'Hoo) < 4o BlMoct+B2

log | —
x

’: llog‘g)\
i x

— log ’ﬁ/)\/
j x

(2

i
Using Corollary we get

—C1o(1 + 2log X ) log 2| N||oo < — C1o(1 + log ||z|| + log ||2'||) max {1,10g ||)\)\'_1HOO}
< — B Moc + B2 + 2log 2.

Therefore 8]|Alloc — B2 — 21log2 < Cio(1 + 2log X) log 2||X'|| - m

Let By > max {9370, B3} be a constant dependent only on Cg, B3 and By such that
whenever ||\l > Bs(log X)?+ By we have || A||oo — B2 —2log2 > Clo(l—l—QlogX)H)\HléZ.
We divide the set T into two parts: a "tame" part T} := {X € T*|||\||oc < Ba(log X)? + By}
and a "wild" part T :=T%\ Tf. We have a simple estimate for |T}|

IT7| < Cis(log X)XV + Cig 5. (3.2.14)

Let us list the elements of T¢ as A1,...,Ar in such a way that || N\]loc < |[Mg1lloo for

l=1,...,L— 1. Note that L = |T’|. By Lemma [3.2.21| and choice of By we have
Cho(1 + 2log X) | \i]|&? < Bl Ailloo — B2 — 2log 2 < Cio(1 + 21log X) 10g 2| Ar41|oo-

Therefore ||)\l||éé2 < log2||Ai41lleo for I = 1,...,L — 1. Since [|[A\i||oc > 9370 we have

(10g 2] Atlloo)? < [[Mi]127 s0

(log 2[|Ar]lo)? < 10g 2| A1 | oo

Now an elementary induction shows that log 2||Az|lse > (log 2 x 9370)2° ™" > €2”. Together

with ((3.2.13)) this yields
oL oI T |

e =€ < 2| ALlloo < 2C51og|allloglog ||al| + 2C16

|T;,| < Cigloglogloglog [|al| + Co 5. (3.2.15)

By (3.2.14) and (3.2.15]) we get

IT?| < C15(log X)2(d_1) + Cigloglogloglog ||a|| + Cao (3.2.16)

Whereﬂ Coo = C18,5 + Chg,5. Together with 1} this gives Lemma (3.2.11

"The non-integer indexes are a result of a correction of the proof that required introduction of additional
constants.
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O
The proof of Lemma [3.2.13]is very similar.

Proof of Lemma[3.2.13 We adopt notation from the proof of Lemma [3.:2.11] By the same

reasoning as in the proof of Lemma [3.2.11] we get

1SIMI < Y SN ST + CosX T al| T >0 e Pl (3.2.17)
AET? AEOy,
Moo >M Moo >M

For M5 sufficiently large we have

3 e < gopy

€Oy,
Moo =M

so (3.2.17) yields |Si[Ms]| < 6X ' ||a|| =" + |T*|. By inequality (3.2.16) we get
|S5[Mo]| < 6X |a] = + Cis(log X)* ¥ + Cig log log log log [|al| + Cao.

The Lemma is proven. O

3.2.4 Average number of solutions of unit equations

For completeness we explain how Theorem follows from Theorem [3.2.1]

Proof of Theorem[3.1.7. Let a = a3. Assume that oy A\; + oAz = as for some A\, Ay € O

and ag, as € O. If we put x = a;A\; then avds = a —z and ||z(a — x)|| = ||ar1az||. Hence,

Y v, 0n,08)

Oq,oqéok/olz<
araz||<X?

the sum

counts the number of x € Oy such that ||z(a — z)|| < X2. This is the same quantity we
bound in Theorem 3211 O

3.3 Geometry of n-optimal sets.

As before let k& be a number field of degree N and let d be the number of Archimedean
places of k. Recall that V' ~ R"™ x C"2 where rq1,r2 are the numbers of real and complex

Archimedean places of k. The aim of this Section is to show the following theorem.

Theorem 3.3.1. There exists a positive constant O dependent only on k with the following
property. For every n-optimal set S C Oy there exists a cylinder (see Definition C
of volume Osn such that S C C.
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We prove it in Section |3.3.2] As an easy consequence we get:

Corollary 3.3.2. There exist a positive constant As depending only on k such that the
cylinder Q = Br(0, A3)™ x Bc(0, A3)™ has the following property. Let S be an n-optimal
set in Oy. Then there exists t,s € V with ||s|| = n|Ag|"/? such that s~(S —t) C Q.

Proof. Let C the cylinder from Theorem [3.3.1] Let ¢ be the center of C. We have

rq d
S—tcC—t=]]Br(0,v)x [] Bel0,v),

=1 i=r1+1

with [T7%, (2v5) [T, 41 (70?) = Leb(C) < Osn. Let Az = (O5|A|71/22 1177 m2/2)/N Pyt
s = (s1,...,84) where s; = v;(n|Ag|/22" 772/ Leb(C)~)YN. Then ||s|| = n|Ag|"/? and
s7HC —t) C Q because |s; 'v;| = (Leb(C)n "t Ag| V22 mip=r2/2)UN < Aj, O

3.3.1 Generalities on n-optimal sets

Recall that for a finite subset F' C O we define Vol(F) = [[, . er(z —y). For m € N,
m = 0 let mly, := mlp, be the generalized factorial in O, in the sense of Bhargava [5] (see
subsection . We remark that m!; is an ideal of O, not a number. We have shown
in |11, Proposition 2.6] that a set S C Oy, of size n + 1 is n-optimal if and only if

n
OpVol(S) = [] m's- (3.3.1)
m=0
Also by |11, Proposition 2.6| for every subset F' C Oy of size n + 1 we have

IVOI(F)I| = Niyg(@Vol(F) = T 1Nig(mi). (3.3.2)
m=0
Lemma 3.3.3. Let S C Ok be an n-optimal set. Then for every x € S we have

Z log ||z — y|| <log Ny/q(nlk) < nlogn + An,
yeS\(z}

where A; > 1is a |§| constant depending only on k.

Proof. By (3.3.2]) we have

n—1

log [[Vol(S) =2 > logllz — y|| = log [Vol(S\ {z})|| = D log Ny g (m!x).
yeS\{z} m=0

8 We require A; > 1 only for technical reasons that will become apparent in the proof of Lemmam
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Using formula |i we get ZyES\{x} log ||z — y| < log N q(n!x). Second equality in the
lemma is |28, Theorem 1.2.4]. O

We immediately get:

Corollary 3.3.4. Let S be an n-optimal set. Then for every x # y € S we have log ||z —
yl| < nlogn+ Ain.

Remark 3.3.5. A posteriori we know that the bound in the above Corollary is very far off
but it will be used in the proofs to ensure that the quadruple-logarithmic error term from

Proposition |3.2.5 is negligible.

3.3.2 Proof of Theorem [3.3.1]

As before, write N = [k : Q], d for the number of Archimedean places of k and x =
min {m, ﬁ . Our first goal is to give an upper bound on the norms of differences
of pairs of elements in hypothetical n-optimal sets. We start with the following lemma,
giving a non-trivial lower bound on the product of norms of elements in two translates

F—a F—yofaset FCOg.

Lemma 3.3.6. Let B € R, let F be a finite subset of O and let x,y € F be such that
log |F| <log ||z — y|| + B. Then for every 0 < log X < log||z — y|| + B we have

201z —ylI”"

Xl-‘rl'{_l
1+k ( )

Y. (ogliz = 2)(y = 2)|) > 2|F|log X —
“€F\{z}
20,

~ 51T (log X)24=1 — 203 loglogloglog ||z — y|| log X — 204log X.

The constants ©; depend only on k and B.

Proof. By translating F' if necessary we can assume that x = 0. Put @ = y. Then the

leftmost sum takes the form

> logzla—2).

ze€F\{0,a}

For t > 1let E(a,t) = {z € O\ {0,a} |||z(a — 2)|| < ¢*} . We obviously have

Z log ||z(a — 2)|| > Z min{log||z(a—z)”,logX2}.

zeF\{0,a} zeF\{0,a}
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Hence
Z min{log||z(a—z)||,logX2} = Z (210gX / )
2€F\{0,a} 2€F\{0,a} (a=2)|
X dt
>2|F|log X — Z / 1E(at1/2)( )
z€F\{0,a}

X dt
=2 Fllog X —2 | |E(a,t) N F|
1

X dt
>2|F|log X — 2 |E(a,t)|?
1

b's
>2|F|log X — 2/ (@ﬁ”’“‘HaH_” + Oy (log t)?1~2
1
dt
+03loglogloglog ||a|| + @4)
The last inequality is an application of Theorem [3.2.1] Integrating the last expression we
get the desired inequality. O

Lemma 3.3.7. There exists a constant Oy, dependent only on k, such that for every n
sufficiently large and every n-optimal set S we have log||lz — y|| < logn + O7 for every
r#yes.

Proof. Let Aj be the constant from Lemma [3.3:3] we recall that A; > 1 and it depends
only on k. Let  # y € S. Either log ||z — y|| <logn + A; or we can we can apply Lemma
3.3.6| with FF =S8, log X =logn 4+ 2A; and B = A;. In the latter case we get

201z —ylI™"

>~ (logllz — @[l +log |z — yl|) > 2(n + 1)(logn + 24;) — (X —1)
1+x
zeS\{z,y}
2@2 2d—1
g1 (log X) — 203 loglogloglog ||z — y|/ log X — 204 1log X,

where the constants depend only on k. By Corollary we have log ||z — y|| < nlogn +
Ain so 203loglogloglog ||z — y||log X = o(n). The same holds for other error terms.

Hence, for n sufficiently large we have

20 —y||™"
S oglle —all + loglz — yl) 22n(ogn -+ 241) — 22U I g 2aryens o)
zeS\{z,y}

2@1”51' B ?J”_‘Li (n€2A1)n+1'

>2nlogn + 3nA; — T
K

By Lemma [3.3.3| we get

2nlogn+24in > Y (logllz — al| +log |z — y) + 2log [lz — y].
zeS\{z,y}
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Of course log ||z — y|| = 0 so we deduce that

20 —y||="
2nlogn + 2A1n >2nlogn + 3nA; — 1”1:I:_i_y”(neQAl)"”thl
K
201 ]|z —yl| ™" oA ka1
7 >A
T3n e )T 2Am
2@162141-"-25141
Og=——— >llz—yl|fn™"F
o= i 2=l

log ©¢ >r(log ||z — y| —logn).

Hence, for n sufficiently large log ||z —y|| < logn+ x~! log O where ©g depends only on k.
Lemma holds with ©7 = max {H_l log O, Al}. The constant ©7 depends only on k. [

The second ingredient in the proof of Theorem [3.3.1]is the following weaker version of

Theorem B.3.11

Lemma 3.3.8. For every 6 > 0 there exists a constant ©g = Og(d) such that for every
n sufficiently large and every n-optimal set S there exists a cylinder C1 of volume at most
nOsg such that |SNCi| > (1 —d)n.

Proof. We shall crucially use Proposition (2) together with Lemma . In order
to use Proposition (2) we fix a good fundamental domain F of O} in V*, a basis
&1, ..., &1 of a maximal torsion free subgroup of O} and the associated norm || - || on
Of. Put Ay =4, — yg — 2. First note that by the volume formula |11, Corollary 5.2| for

large enough n we have

3
log(Vol(§)) = 3 log | —yl| = n* logn+ (3 —7q — ) +o(n) > (n* +n)(logn-+ As).
T#YES

Together with Lemma this implies that there exists at least one pair z,y € S such
that logn + Az <log ||z —y|| <logn+ O7. Let us fix a pair xg, yo with ||zo — yo|| maximal
among all pairs in §. By translating S if necessary we may assume that zg = 0 and put
a = yo. Let X = ||a||. Then logn + Ay <log X < logn + ©7. The question is invariant
under multiplying S by elements of O} so we may assume without loss of generality that
a € F. For every z € S we have ||z|| < X and |la—z|| < X so ||z(a— 2)|| < X2. Therefore,
with notation from Proposition we have

S\ {0} c {aAM(z,\) € S(a, X)} . (3.3.3)

Let M > 0 be such that Proposition (2) holds with ¢ = ¢797 and B = 0. The
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constant M depends only on k and . For n sufficiently large we have

SeO7
|S(a, X)[M]| STXHKHGH_N + 05(log X)??72 + O3 loglogloglog ||a| + O4

)
§§n + o(n) < in.
Let &' := S\ {(zA7Y(z,\) € S(a, X)[M]}. By the inequality above S’ contains at least
(1—0)n elements. To prove the lemma it is enough to show that S’ is contained in a cylinder
of volume at most nOg. By (3.3.3) we have &’ C {(zA!|(z,\) € S(a, X) \ S(a, X)[M]} U

{0}
S(a, )\ S(a, X)[M] C {(z,\)|z € FN Oy, |lz] < X, |[As < M}.

By Lemma we have a constant Cy > 0 such that C;t|z||'/N < |z|; < Coll=||V/N for
every x € F an every i = 1,...,d. Let Ca1 = maxy|| <y Max;=1,. 4 |IA7Y;. Therefore,
for every (x,)\) € S(a,z)\ S(a, X)[M] and i = 1,...,d we have [ztA"!|; < Cy Colz| /N <

CglcoXl/N < 0216’0697/Nn1/N. It follows that &’ is contained in the cylinder
Cl = BR(O, 02100667/]\[??,1/1\7)” X B@(O, 02100667/Nn1/N)r2

The volume of C; is n2’”17r’”ze®7CéVCé\{ =: nOg where Og depends only on &k and §. O
We are ready to prove Theorem [3.3.1

Proof of Theorem[3.5.1. Assume that n is sufficiently large so that Lemma [3.3.7 holds and
Lemma holds with 6 = 1/100 and ©g = ©g(1/100). Also for technical reasons we
require n > 4d,Og > 1 and the constant C7; from Lemma satisfies C11; > 1. This is not a
problem since they can be always replaced by a bigger constants as long as these constants
depend only on k. Let & be an n-optimal set and let C; be a cylinder of volume nOsg

containing at least % points of §. Write

HBR ti, Ry) H Be(ti, Ri)

1=r1+1

with ¢t = (t1,...,tq) € V. Note that 27" [['1, R; H?:TH_I R? = n®s. For a posi-
tive constant A > 0 (how big will be precised later) we put C{* = [[/L, Br(t;, AR;) x
Hl 41 Be(ti, AR;). The idea of the proof is to show that for large A (how large depends
only on k) and every y € C{* the intersection C1 N {z € V|||z — y|| < ne®7} is too small to
contain 99% of S. Then from Lemma and Lemma [3.3.8] we can deduce that y € S
and consequently that S € C{*.

Let C;1 be the constant from Lemma and put

A = max {2, O (2NN or 72N 1oN 4 1} .
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Suppose that y € S\ CIA. Since y & Cf‘ for every x € C; there exists a coordinate
i € {1,...,d} such that |[x —y|; > (A—1)R;. Put v =11ifi e {1,...,r;} and ¢ = 2
otherwise. If additionally ||z — y|| < ne®7, then we have

71 d
II lz=vl; JI |=—ulf <ne® R7(A-1)7! (3.3.4)
i=1j#i jmritL gt
@727“1 ro T1 d
<Aa-)y"Z T I B [ R 335)

j=Llj#i  j=ri+l,j#i

ﬁ % . R\

< — 2 JI (s55—) (3356
= IN© (QN >

j=1,j#i 8011 j=rt1,j4 68011

Hence, there exists j # i such that |z — y|; < 2]\/({)%%' Define

r1 d
R.
H BR(tl,Rl) X H Bc(tl,Rl) X Bkyj (tj7 2]\[@;011)

I=1,1#j I=r1+1,l#j

and note that Leb(Cy(j)) = (ZNGBTIC(?T)['C”J"R] < 2NnC11' From inequalities (3.3.443.3.6) we

deduce that J
{zecilz—yll <ne®} c | Ja®). (3.3.7)

=1

By Lemma [3.2.19 we get
[{z eCinOlllz -yl <ne®} | <d+Cn dn_ g4 n <3 (3.3.8)
- B 2NCh1 — 27 4

Lemma yields § C {z € Ol ||z — y|| < ne®7} so we have
SNC C {xeCinNOlz -yl <ne®}.

In particular | {2 € C; N O/ ||z — y|| < ne®} | > |SNCi| > Fn. This contradicts .
Thereby we showed that S\ C is empty, that is S C CA As A depends only on k, the
volume of C{! is nO5 where ©5 = O3 A" depends only on k. Theorem is proven. [

3.4 Collapsing of measures

Write ML(V), (P1(V)) for the set of finite measures (resp. probability measures) v on
V' which are absolutely continuous with respect to the Lebesgue measure such that the
density dv/dLeb is almost everywhere less or equal to 1. For i € {1,...,d} and v; € R
or C (depending on whether ¢ corresponds to real or complex place) we will define an

operation called collapsing ¢; ., : P1(V) — PY(V) that has the following property: either
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I(ciq,(v)) < I(v)or vis of a very specific form. It is a version of the Steiner symmetrization
(]26]), but for measures in M*(V') instead of subsets of V. We shall make it precise in a
moment. The operation of collapsing is the continuous analogue of the collapsing operation
on subsets of O used in [35] and [11] where it was defined for k quadratic imaginary. We
remark that for number fields & other than quadratic imaginary ones there is no reasonable
discrete collapsing procedure for subsets of . In this section we study the effect of
collapsing on the energy of measures. Our goal is Corollary which says that the
measures v in P(V) that minimize the energy I(v) are, up to translation, invariant under

all collapsing operations.

Definition 3.4.1. Let i € {1,...,d} and v; € R ifi € {1,...,r1} orv; € C otherwise.
Let v € MY(V) be a measure with density f € LY(V). For x = (x1,...,24) €V define

1 .
5 Tl Ti1,t, Tia1,...,2q)dt ified{l,...,r
Fi(z) = ngf( 1 1 +1 d) f { 1} (3.4.1)

ﬁ (f(cf(xl,...,mi_l,t,mi+1,...,:rd)dt)l/2 ifi S {7“1 +1,...,d}.

Let h: V — R>q be given by

O dty...dt;...dtg ific{l,...r
h; = f f Bg(vi, Fi(t1,.., isentq)) PUL e d f { 1} (3.4.2)

f e f lBC(UivFi(tlv---7vi7---7td))dtl oo dtl PR dtd Zfl S {7‘1 + 1, ceey d} .

The collapsed measure c; ,,(v) is given by the density h;. By construction ¢; ., (v) is sym-

metric with respect to the subspace V' := {v = (v1,...,v4) € V|v; =0} .

Collapsing is closely related the Steiner symmetrization in the following way. If V = R?,
then for any measurable subset £ C V' we have c; o(Leb|g) = Leb|s,(r) where St;(E) is
the Steiner symmetrization of E with respect to the hyperplane V* (c.f. |26]). For further

use we introduce a symmetric bilinear form on M (V) x MY(V)

(v, /) = /V /V log |1z — ylldv(z)d/(3). (3.4.3)

The integral converges as soon as v,/ are finite signed measures with bounded density.
The energy can be expressed as [(v) = (v,v). We will also need a modified version of the

bilinear form (-, ) defined as

1
(V1,19)5 := / / 3 log(||z — y||2 + 52)dul(x)dug(y) for § > 0.
vV JV

Note that (v1,1v9)9 = (v1,12). The following result is intuitively obvious but the proof is

quite involved.

Lemma 3.4.2. Let vy,v5 € MY(R) and x € R and let § > 0. Then (c1.2(v1),c1,.(12))s <
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(11,9)s and equality holds if and only if there exists y € R such that v1,ve are restrictions

of the Lebesgue measure to some intervals centered in y.

Proof. Let mi1 = v1(R), ma = v2(R). Throughout the proof we will write E; = [—75%, 5]
We will prove that the minimum of (i1, pa)s with p; € M*(R) subject to condition ;(R) =
m; for i = 1,2 is realized if and only if u1, uo are Lebesgue measures restricted to translates
FE1 4+ y,Ey + y for some y € R. This is clearly equivalent to the lemma. The proof is
actually easier for § > 0 and we will first prove it for § > 0 and then deduce the general
statement. By abuse of notation for every pair of measurable sets I1, [ C R we will write

<Ila I2>5 = <Leb|f17Leb|I2>6-

Step 1. We will introduce a shifting/gluing operation G on finite sums of closed
intervals Iy, Iy that strictly reduces the value of (I, I2)s, preserves the measures of I, Io
and can be applied until 7, I are two intervals centered in the same point. Write (17, I}) =
G(I1,Iy) for the result of the operation G. We will show that for every 6 > 0

<11,IQ> <Il7I2> <I1,IQ> <Ii,[§>5 > 0. (344)

We will show also that after finitely many applications G produces two concentric
intervals. This step proves the lemma for pairs Lebesgue measures restricted to finite

unions of intervals.

Before defining G we need to set up some notation. Let I; = C’Z-1 U...UC" be the
decomposition of I; into connected components for i = 1,2. We assume that C}, .. NG
are listed from the leftmost to the rightmost connected component. Let Cij = [a f ) bf | and
put 67 = (aj + bj)/2 First we look at the rightmost components C}"*, C3?. Choose i € 1,2
such that ¢ = max {c]",cy?}. Consider two cases: first when ¢}* # ¢4? and the second
when ¢! = ¢4? and n; > 1 or ny > 1. Case 1. In the first case operation G replaces C;"

with the translate C]" — k where k = min {a?i — b;-”*l

et — 032]}. In this case either
G reduces the total number of connected components by 1 or makes C*, C§y? concentric.

We estimate (11, I2)s — (I}, I5)s. Without loss on generality assume i = 2. We have
Ay s :=(I1,I2)s — (I1, I5)s (3.4.5)

= Z/ (/ log(|lz — y|? + 6%) — log(|z — k — y|* + 52)d1'> dy. (3.4.6)
ct \Jcy?
We know that 0 < k < c¢}? —cll<c —¢cj forl =1,...,n;. By Lemma [3.4.3 Ay >
A;5 > 0. Case 2. Put kK = min {a — byt ! ,an? — b"2 1} with the convention that

b;l = —oo. Number k is finite because we assume that nqy > 1 or no > 1. Operation

G replaces C]"*, CT? with the translates CT"' — k,C5? — k respectively. In this case the
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operation G reduces the total number of connected components by at least 1. We have

Ao 5 :=(I1, I2)s — (11, I3)s

)

n1 1
= Z / (/ log(|lz — y|? + 6%) — log(|z — k — y|* + (52)da:> dy

ngl

) Z/ (/n log(|z — y|* + 0%) — log(\a:—n—y\2+52)dx> dy.

By Lemma Ao > Ay > 0. We have shown that G reduces the value of (I, I5) and
that the reduction is the highest if § = 0. We can apply G unless n; = ny = 1 and I; and I
are concentric. If a single application of G does not reduce the total number of connected
components then we were in the first case and the rightmost connected components of
I{, I}, are concentric. This means that if we apply G to I{, I}, we will be in the second case
so this iteration of G will reduce the total number of connected components by at least 1.
This proves that G stops after at most 2(ny + n2) iterations and then we are left with two

concentric intervals.

Step 2. We show that there exist bounded measurable sets J; with Leb(J;) = m; for
i = 1,2 such that (Ji, J2)s < (v1,12)s and the following holds: if we have equality, then
either v; = Leb|;, and vo = Leb|;, or one of J; or Jy is disconnectedﬂ. Moreover if § > 0
then Jj, Jo are finite unions of closed intervals and equality holds if and only if 1 = Leb]| j,
and vo = Leb| ,.

Let Ps(z) == 3 [ log((z—y)*+6%)dv1(y). Since v; € M!(R) this function is continuous
and bounded from below so there exists an « such that Leb(Pa_l((—oo,a))) < mg <

Leb(P; ! ((—00,a])). Let Jo be any measurable subset of measure ms such that
Si = Py ((—00,a)) C Jo C Py ((—00,a]) = Ss.

If § > 0 then Py is analytic so Leb(P; ' ((—00,a)) = Leb(P; ' ((—00,a]). In that case we
choose Jo = P;'((—00,a]). Tt is a finite sum of closed intervals because P, is analytic.
We go back to the general case and argue that (v, Leb|y,) < (11, 19) with an equality if
and only if suppry C P5_1((—oo, al) and vs|g, = Leb|g,. Indeed

(11, va)s = /S Py(a)dva(z) + /S P (@) + / Py(w)dva(2)

R\:S2

_/ Ps(z)dva(z) + ava(S2 \ S1) + / Ps(w)dva ()
St R\S2

S/ Ps(z)dz + a(ma — Leb(S1)) = (v1,Leb|,)s.
S1

9This technical dychotomy is needed to prove the "if and only if" part of the lemma.
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The equality holds if and only if v5(R\ S3) = 0 and the mass of v is as concentrated on S;
as possible i.e. 15|g, = Leb|g,. If the equality holds and v5 is not a restriction of Lebesgue
measure to S7 or So then we can choose .Jo to be disconnected. Thus we can replace v
with v/, = Leb| s, in such a way that either (v1, Leb|s,) < (v1, 1), or va = Leb|, for some
closed interval Jo, or (v, Leb|s,) = (v1,1v2) and Js is disconnected. Next, we perform the
same trick for v/} to replace vy with Leb|;, for some measurable set J; of measure my. If
vg = Leb| s, then the symmetric argument provides J; such that (Leb| s, , Leb| ) < (v1,v2)
or (Leb|y,Leb|s) = (v1,12) and Jp is disconnected or v; = Lebl|y,. If § > 0 we chose
J1, J2 as finite sums of closed intervals and the equality (v1,v9)s = (J1, J2)s holds if and
only if v; = Leb|;, for ¢ = 1,2. This proves Step 2.

Step 3. We prove the lemma for § > 0.

Let E; := [, 5], If 6 > 0 then by Step 2 there are finite unions of closed intervals
Ji, Jo such that (v1,1v2)s > (11, I2)s with an equality if and only if v; = Leb|;, for i = 1, 2.
By Step 1 (J1, J2)5 > (E1, E2)s with an equality if and only if Jq, J5 are concentric intervals.
Those two observations put together prove the lemma in the case § > 0.

Step 4. Let E; be as in Step 3, let 6 > 0 and let Iy, I be finite unions of intervals of
total lengths my, mo respectively. We show that (Iy, Is) — (F1, E2) > (I, I2)s — (E1, E2)s.

Let m be the number of times we can apply operation G to I, Is. Write Ifj), Iz(j) for the
result of j-th iteration of G. Since GG can be applied until we get two concentric intervals
we have up to translation Il(m) = F1, Iz(m) = F5. By inequality we get

(1, 157y = (1D ) = () 1) — (Y ).

Taking the sum from j = 0 to m — 1 we get (1, Is) — (E1, E2) > (11, I2)s — (E1, Ea)s.
Step 5. We prove the Lemma for compactly supported vy, vs.

Let 3 be an interval containing the supports of v1,v5. Let E; be as in Step 3 and fix
0 > 0. We argue that (v1,v2) — (E1, E2) > (v1,12)5 — (E1, E2)s. By Lemma the map

(v1,v2) = (v1,v2) — (E1, Ea) — (v1,v2)5 + (E1, E2)s

is weakly-* continuous on M!(X) x M!(X). The set measures of form Leb; where I is a
finite union of intervals is dense in M1 (X) so by Step 4 we deduce that (v1, o) — (E1, Ea) —
(v1,v2)5 + (E1, E2)s > 0. From Step 3 it follows now that (v, 12) > (E1, E2). We can have
an equality only if (v1,1v2)5 = (E1, F2)s. In that case, again by Step 3, v, vs restrictions
of Lebesgue measure to concentric intervals of lengths mi, mo respectively.

Step 6. We prove the general case. By Step 2 either we can find bounded measurable
sets I1, Iy of measures mq, my respectively such that (vq,v5) > (J1, J2) in which case Step
5 finishes the proof, or v; = Leb|;,,i = 1,2 in which case Step 5 again finishes the proof
or (v1,v9) = (J1,J2) and and Jy or J is disconnected. In the last case Step 5 yields
(J1,J2) > (Eq, Es). The lemma is proven. O
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Lemma 3.4.3. Let § > 0, let a; < b;,i = 1,2 be real numbers and put ¢; = (a; + b;)/2.

Assume that co > ¢1. For every 0 < k < co — ¢1 we have

b1 bo
Baim [ ([ ostin = o+ 6%) ~toutle —y =+ ) ) > 0.
al

az

Moreover Ag > As for every 6 > 0.

Proof. For 0 < k < cg — ¢1 we have

d (" 2 52 2 52
o log(Jx — y|* +6%) — log(|x —y — K| + 0%)dx | dy
al as

by
—/ (— log(Jag —y — Ii’2 + (52) +log(|be —y — /@]2 + 52)) dy

al

bos—a1—k as—a1—kK
:/ log(2* + 6%)dx — / log(z% 4 6%)dx > 0.
bo—b1—kK as—b1—kK
For the last inequality observe that [by — by — k,b2 — a1 — k] and [ag — b1 — K, a2 — a1 — K]
are both intervals of length b; — a1. The center of the first one is by — k — ¢; and the center
of the second is ag — k — ¢1. We always have |bs — k — ¢1| > |aga — k — ¢1] so the first integral
is bigger because log(z? + 62) is strictly increasing in |z|.
We show that Ay is strictly decreasing in § > 0. We have

d bo—ai1—k as—a1—kK
— log(z% + 6%)dx — / log(2? + 0%)dx
do bo—bi1—kK as—bi1—kK
bo—ai1—k 25 az—ai—kK 25
bo—bi—x <L +0 as—b1—k <L +0

For the last inequality observe that the function IQ%SQ is decreasing in |z|, both integrals
are over intervals of length b1 — a1 and the first one is further from 0 than the second. We
deduce that %Ag is decreasing in é. Hence Ay > Ags. O

Lemma 3.4.4. Let X be a compact subset of R or C. The map MY () x MY() 3 vy, 19 —

(r1,2) € R is continuous with respect to weak-* topology.

Proof. Let f1, fo be the densities of vy, 15 respectively. We have

(1,02} = /E /E £1(2) fa(y) log |1z — y|dady.

The map (v1,v2) — f1 X fo € L?(X x ¥) is weakly-* continuous on M*!(2) x M!(¥) with
the weak topology on L2(X x ¥). The function (z,y) + log ||z — y|| is in L?(X x X) so the
map (vi,v) — (11, 10) is weakly-* continuous on M1 (X) x ML(X). O
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Lemma 3.4.5. Let v1,v0 € MI(R) and x € C . Then (c1 (1), c1.(12)) < (v1,12) and
equality holds if and only if there is an y € C such that vi,vs are the restrictions of the

Lebesgue measure to balls centered in y.

Proof. Step 1. We define collapsing along a line ¢ in C. First let us assume that ¢ is the
real line R C C. Let v be finite a measure on C of bounded density f € L*(C). For z € R
let F(z) = [ f(x + it)dt. We define h € L*(C) as

1 if < F(x)/2
Mo iy {1 WIS F@/2
0 otherwise.

We write cg(v) for the measure h(z+iy)dzdy. Let vy, v € M(C), we argue that (vq, ve) >
(cr(v1),cr(v2)) with an equality if and only if there exists ¢ € R such that vy, vs are
translates of cg(v1),cr(v2) by it. Let fi, fo be the densities of vy, s respectively. For
z € R define v¥ € MY(R) by dv¥(y) = fi(x + iy)dy. We have

(vi,v2) :/ / / / log((z1 — 22)% + (y1 — v2)?) f1(z1 + iy1) fa(x2 + iyo)dzi dyr dradys

// 1/1 ’1/2 x1—m2|dx1dx2g/R/R@O(Vfl)?q)(y;m»x1—m2|d$1dw2
(z2)
// )// log((z1 — m2)* + (y1 — y2)?) f1 (@1 + iy1)dw1dyrdzadys
m1

=(cr(v1), cr(12))-

The inequality in the second line holds by Lemma with equality if and only if v]*, 152
are Lebesgue measures restricted to concentric intervals for every z1,z9 € R. Call t the

common center of these intervals. Then vy, vy are translates of cg(11), cr(v2) by it.

For ¢ # R we choose any isometry ¢ of C such that «({) = R and put c(v) =
1= (cr(1*v)). Like before we have that (v1,1v) > {(co(v1),co(10)) with an equality if and
only if there exists z € £+ such that vy,vy are translates of cg(v1),cr(v2) by z. Equiv-
alently we have (v1,15) = (co(v1),ce(v2)) if and only if there exists a line ¢’ parallel to ¢
such that v; = ¢y (v;) for i =1,2.

Step 2. Let m; = 1;(C) and let By, Bs be closed balls of volumes mj, ma respectively,
centered at 0. We show that for every vy, vs € M!(C) compactly supported we have either

(v1,2) > (B, Ba) or v, vy are the Lebesgue measure restricted to concentric balls.

Let R > 0 be such that suppv; C Be(0, R) for i = 1,2. By Lemma there exists
a pair of measures v}, vh € M(C) supported on B¢ (0, R) with 4(C) = mq,v4(C) = my
such that

(1, v5) = min { (p1, p2) |1, o € MY (Bc(0, R)), 11(C) = mu, pa(C) = ma} .
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We either have (v1,19) > (v],v4) or we can assume that v; = v} for i = 1,2. Choose
z,w € C such that arg(z) — arg(w) ¢ 7Q. By Step 1 and choice of vj,v} we have
(car(V]), ar (1)) = (cur (1)), cur(Vh)) = (¥4, V). Hence, by Step 1 there exist lines ¢1, {o
parallel to zR, wR respectively such that v} = Co; (V) for i = 1,2 and j = 1,2. By translat-
ing v, V4 if necessary we may assume that ¢; = zRR, fo = wR. Being collapsed implies that
densities of vy, 9 are characteristic functions of measurable sets, so we have v; = Leb|,
for some bounded measurable sets I;. Let s; be the orthogonal reflection in ¢; for : = 1, 2.
Since vy, vy are collapsed along (1, fs they are invariant under the group S of isometries
generated by s1, s2. Since arg(z) — arg(w) ¢ mQ the group S is dense in O(2) (the orthog-
onal group group of C seen as R?). We deduce that I, I must be (up to a measure 0 set)
closed balls Bi, Bs respectively. This proves Step 2.

Step 3. We prove the lemma. Without loss of generality we can assume z = 0. Let
B, By be as in Step 2. We need to show that (Bj, Ba) < (v1,v2) with equality if and only
if 1,10 are Lebesgue measures restricted to concentric balls. The method is similar to
Step 2 from the proof of Lemma Consider P(z) =2 [ log |z — z|dvy(x). Then P is a
continuous function on C such that |P(z)| tends to 0o as |z| — 0o. There exists a € R such
that Leb(P~1((—o0,a))) < ma < Leb(P~!((—00,a])). Choose a bounded measurable set

I of measure msy such that
Sy := P Y((—00,a)) C I, € P ((—00,a]) := Ss.

Like in the Step 2 from the proof of Lemma we have (v1,Leb|r,) < (vi,1v2) with
an equality if and only if 1s|g, = Leb|s, and supprs C So. If the inequality is strict we
replace vo by Lebl|z, and apply the same reasoning to find I; of measure m; such that
(In,I2) < (v1,Leb|,) < (v1,12). In the second case we deduce that suppra C Sa so v
is compactly supported. By the symmetry of the problem this is enough to deduce that
either vq, 19 are compactly supported or we can find bounded measurable sets I, Iy with
measures mj, mg such that (I, ls) < (v1,1v2). In the first case Step 2 finishes the proof
and in the second case again by Step 2 we have (By, Ba) < (I, Is) < (v1,12).

0

As an easy consequence of Lemma [3:4.2] and Lemma [3.4.5] we get

Lemma 3.4.6. Let V = R™ x C™2. Let vi,v5 € MY(V) and v = (v1,...,vq4) € V. Then
(i, (1), Ciw,; (12)) < (11, 12) and equality holds if and only if there is anw = (w1, ..., wq) €

V' such that v1 = ¢j ., (1) and vo = ¢, (1) fori=1,...,d.

Proof. Assume without loss of generality that v = 0. We will first treat the case where ¢
corresponds to a real place. Write V¢ = {v € V|vy; =0} and ¢; = (0,...,0,1,0,...,0) € V
where the unique non-zero entry is placed in the i-th coordinate. Let fi, fo be the densities

of v1,19. For z € V¥ and j = 1,2 define the measure vy on R as dvf(t) = fj(z + te;)d.
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Note that for every f € L1(V) we have

/f v)dv;(v /Z/fx+teldy()d

By Lemma we get

(v1,v9) / (vi,v})dxdy

7 1

/V 1 /V Z W) dady

<CZ,v1 (11),¢i Ui (12)).

<
<

IN

By Lemma [3.4.2] the equality holds if and only if there exists w; € R such that for all
z,y € V' the measures ¥, vy are the Lebesgue measure restricted to intervals centered in

w; € R. In that case we also have vy = ¢; 4, (V1) and vp = ¢; 4, (12). If ¢ corresponds to a
complex case the proof is identical but we use Lemma in place of Lemma, O

Lemma 3.4.7. Let v € PY(V) and leti € {1,...,d} ,v; e Rifi € {1,....,r} orv; € C
otherwise. Then either I1(c; ., (v)) < I(v) or I(ciw,(v)) = I(v) and there exists v} such that
V="Ciy (V)

Proof. Use Lemma for vy = vy =v. O

As a consequence of Lemma [3.4.7] we get:

Corollary 3.4.8. Let v € PY(V) be a measure minimizing the energy I(v) on PL(V).
Then there exists v = (v1,...,vq) € V such that ¢;,,(v) = v for everyi=1,...,d.

3.5 Limit measures and energy

Let (n;)$°, be an increasing sequence of natural numbers. Let k£ be a number field and
assume that (Sy,)ien is a sequence of n;-optimal sets in Ok. By Corollary there are
sequences (tn,)ien C V, (sn,)ien C V such that ||s,,|| = ni\Ak|1/2 and s,jil(Sni —tn,) C Q.

Define a sequence of measures

*Z‘Ssn (o—tn) (3.5.1)

v zes

Since (2 is compact we can assume, passing to a subsequence if necessary, that s, converges
to a limit probabilitﬂ measure u. This observation uses crucially Corollary and is
the key step in the proof of Theorem Such limit measures are the central object of

study in this section.

"While pn, are not probability measures because pn, (V) = 14 -1 any weak-* limit point will be a
probability measure.
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Definition 3.5.1. A probability measure p on V is called a limit measure if it is a

weak-* limit of a sequence of measures py,; constructed as above.

3.5.1 Density of limit measures

Let v be a probability measure on V', absolutely continuous with respect to the Lebesgue
measure on V. The density of v is the unique non-negative function f € L*(V) such that
dv = f(t)dt where dt is the Lebesgue measure. We say that v is of density at most D if
f(t) < D for Lebesgue-almost all ¢ € V.

Lemma 3.5.2. Any limit measure  on 'V is of density at most 1.

Proof. Let (ni)ieny and let (pn,)ien be a sequence of measures defined as in (3.5.1)) such
that p is the weak limit of p,, as ¢« = co. By Lebesgue density theorem it is enough to
verify that p(C) < Leb(C) for every bounded cylinder C C V. We have

1 1
:U’m(c) = TL7|SM N (Snzc + tm)| < ;‘Ok N (Smc + tm)’

Put C; = $,,C + tn,. Since ||sp,|| = |Ar|"/?n; the cylinder C; has volume |Ag|"/?n;Leb(C).
As O, is a lattice of covolume |A|Y/? we ge |0k NG| = |Ag|7Y/2Leb(C;) + o(Leb(Cy)).
Hence

1(C) = Tim i, (C) < lim — (nsLeb(C) + o(niLeb(C))) = Leb(C).

1—00 i—00 T;

3.5.2 Energy of limit measures
We start by defining the two notions of energy for probability measures on V.

Definition 3.5.3. Let v be a probability measure on' V- and write A(V') = {(v,v)|v e V} C
V x V. We define energies I(v),I'(v) as

1) = /V tog o = yldv(a)iv(y)

') = / log |l — ylldv(z)dv(y)
VXV\A(V)

provided that the integrals converge.

We will refer to I as energy and to I’ as discretized energy since it is designed to

handle finitely supported atomic measures. The integral defining the energy converges for

"This does not work for a general lattice A C V. However, we know that Oj is invariant under
multiplication by O so we can multiply C; by an element of O] so that it becomes "thick" in every
direction.
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all compactly supported measures of bounded density. The main goal of this section is to
establish:

Proposition 3.5.4. Let k be a number field, let V =k ®q R and suppose that p is a limit
measure on V.. Then I(u) = —% log |Ag| — % — Yk + Yo where v, vq are Euler—Kronecker

constants of k,Q respectively.

Proof. Let us fix a sequence (fin,)ien of measure defined as in (3.5.1) such that yu is the
weak-* limit of j,, as i — co. Observe that by the volume formula |11, Corollary 5.2]

3
>~ togllz—yl = nflogn: + ni(~5 — % + 1) + o(n?)
TAYESn,

we have

1 _
LY el
t x#yes’ﬂi

n; +1 1 3
= — ———log [sn,]| +ﬁ(n?10gni+”?(—§ — % +70) +o(nf))

I,(Nm)

? [

1 3
=—§log|Ak|—§—%+7@+0(1)-

Our task is reduced to proving that lim;_,oo I’ (tn,) = I (). This doesn’t simply follow from
the weak-* convergence because the logarithm is not continuous in the neighborhood of
0. We remedy that by approximating the logarithm by a well chosen family of continuous
functions.

Let T > 0. For z > 0 put log’ z := max{—T,logz} and let log” 0 := —7T'. For any

compactly supported probability measure v on V' put:
In(v) = / log” |z — ylldv(z)du(y). (3.5.2)
VxV

Note that we integrate over the diagonal as well. The function log” is continuous so we
get lim; o0 I7(tn;) = Ir(p). On the other hand, by Lebesgue dominated convergence
theorem we have limp_,o0 I7(1) = I(p) so I(p) = limy_oo im; o0 I7(ptn,). We estimate
the difference I (pn,;) — I'(pn, )-

T(nl + 1) 1 _
(i) = Ir(pn,) =——5—+ — > (log |5 (x — y)|| + T) (3.5.3)
: © aFyeSy,
sz (z—y) | <e 7

1
> > (log |lz — y[| —log [sn, | + T) (3.5.4)
e TFYESn,;
lo—yll<llsn; =T

|
+
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Hence
1 T(n; +1
LY Goglsalllog eyl ~T) < I(an) — Frl) < D (355)
( TAYESR, 1

le=yll<llsn;lle™™

We proceed to estimate the left hand side. Note that by Corollary and our choice of
Sn,, tn; there is a compact cylinder = Br(0, A)"™ x B¢ (0, A)"™ such that S,,, C sp,(Q2—1tp,).
Let ' = Bgr(0,2A)™ x Bc(0,2A)™. Then for every z,y € S,,, we have x—y € s,,,. Hence

> (log [|sn,[| = logllz =yl =T) < > > (log|lsn|l —log||2|| = T)

TFAYESn, TESn;  z€sn, Y
lz—ylI<llsn;lle=" I <llsn lle™"
(3.5.6)
=(mi+1) Y (logllsnll —log |lz]| = T).
z2€8n,; Y
llzlI<llsn;lle="
(3.5.7)

Let us fix a good fundamental domain of O, acting on V* (see Definition 3.2.2)) and a basis

&1,...,&—1 of a maximal torsion free subgroup of O} together with the associated norm
| |l on O;. We can write s,, = vAg with Ao € O}, v € F and |[v]| = [|sp,| = ng| Ag|'/2.
Put Ay := 2|A,|'/*NCyA. By Lemma we have

Ay Vs, @ =0 € Q= Br(0,n}N A))™ x Be(0,n)/N Ay)2.
By Lemmas and for every x € F and A € O] such that 2\ € Q" we have
Moo < @™ (log(n;™ |2 7YY 44Co)) =: Caa(log n; —log ||a]]) + Cas.

We can estimate the sum in (3.5.7) by

> (oglisnll —logllzl —T)= > (log|ls,|l —log]|z]| — T)
2€8n, QY ze)\o_lsniQ’
l21<llsn; lle=T 2l <llsn; lle=™
< > (log [[sn, || = log [lz]l = T)[ {\ € O;|[[Alloc < Ca2(logn —log ||z||) + Caz} |-
zeF

lzl|<nil Al /e~

Once T is sufficiently large we will have Caz(logn; —log||z||) + C23 < 2C22(logn; —log ||z ||)

for every x satisfying ||| < n;|Ag|'/2e~7. Therefore, for T sufficiently large we can bound
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the last expression by

< > (log [|sn, || = log [zl = T)[ {X € O [[|Alloo < 2C22(logn; —log |[z])} |
zeF
z]|<n|Ag|t/2e=T
<Cy > (log [|sn, || — log ||| — T')(log n; — log [|:[|)*~*
zeF
|zl <ni|Ag|t/2e=T
1 _
=Cyy Z (logn; — log ||z|| + §log |Ak| — T')(logn; — log HxH)d L

TeEF
[zl <ni|Ag|H/2e=T

Put Y = n;|Ax|"/2e~ 7. The last expression becomes

1 _

Cas Y (logY —log |al|)(log Y — log 2] + (T — 5 log |Ax]))*~!
TEF
lzl<Y

d—1
d—1 1 . _
—cu Y. (17 1) - Joglan X (ogy - ogal)’
=1

zeF
lzl|<Y

§025Td_1€_Tni.

For the last inequality we have used Lemma [3.2.8] The constant Css depends only on k.
We wrap inequalities together to get

n; +1 _ T(n; +1
- Cos T4 e™ < I'(pun,) — Ir(pin,) < (nz ) (3.5.8)
T(n; +1 i+ 1 1
7 (n) = Tr(n) < T 4 P L it (3.5.9)

It follows that for any T sufficiently large we have lim sup;_, o |1’ (ptn, ) —I7(pin,;)| < CosT? Le T,

Consequently

o . 1 3
I(p) = Jim lim Ip(pn,) = lim I (p,) = =5 log [Ak| = 5 = + 70

T—00 1—00

The proposition is proved. O

3.5.3 Measures of minimal energy

In this section we show that the limit measures, provided that they exist, realize the
minimal energy among all probability measures of density at most 1. Next we study the

properties of energy minimizing measures.

Lemma 3.5.5. For every compactly supporteﬂ probability measure v on V' with density

12 The assumption on the support makes the proof easier but the statement should remain valid without
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at most 1 we have —log |Ag| — 2 — v + g < I(v).

Proof. Let v be a compactly supported probability measure on V' of density at most 1.
Lemma[3.7.1] (in the appendix) affords a sequence E,, of subsets of O, such that |E,| = n+1

and the measures 1

VE,n ‘= m E 5n*1/N\Ak|*1/2N:L‘
n ZBGEn

converge weakly-* to v. Put log*t =logt of t > 0 and log* 0 = 0. For every measure p on

V we have I'(pn) = [ [log™ ||z — y||du(z)dp(y). The function (z,y) — log™ ||z — y|| is lower

semicontinuous on R>g so

limsup I'(vg, n) < I'(v) = I(v), (3.5.10)
n—oo
1 1

By |11, Corollary 5.2| we get

1 3
—§IOg|Ak‘ — 5 "k +0 < I(v).
OJ

It follows that any limit measure realizes the minimal energy among all probability
measures of density at most 1. We turn to the investigation of such energy minimizing

measures. Our goal is to prove:

Proposition 3.5.6. Let v be a compactly supported probability measure on V' of density at
most 1 which is realizing the minimal energy among all such measures. Then there exists
an open set U such that v = Leb|y and moreover there exists v € V' such that (OU —v)NV™*
is a codimension 1 subvariety of class C' and N(U —v) C U — v for every 0 < X < 1.

We will write M!(V), P1(V) for the sets of respectively finite measures and probability
measures on V with Lebesgue density bounded by 1. One of the key tools used to prove
Propositionis the collapsing procedure ¢; 5, : M (V) = ML(V) (see Deﬁnition,
introduced and studied in the Section We will also need the following identities.

Lemma 3.5.7. 1. For every x € R, T' > 0 we have
d T
— </ log |z — t|dt> =log(|T + z|) — log(|T — x|).
dz -T

2. Write dxdy for the Lebesgue measure on C in coordinates z = x + 1y. For every

it.
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se’? € C,s > 0 we have

A 21T?log T — T2 + ws®>  ifr <T
/ log |se? — z|2dxdy = 8 frs<
Be(0,T) 2712 log s otherwise,
d . 27s ifs <T
— / log |se? — z|%dzdy | = ) /
ds \ JBe(0,1) 2rL-  otherwise.

Proof of Proposition[3.5.6. Let v € PY(V) be a measure such that the energy I(v) is
minimal on P*(V). By Corollarythere exists v = (v1,...,v4) € V such that ¢; ., (V) =
v for every i = 1,...,d. Translating v by —v we may assume that v = 0. We will construct
an open set U such that v = Leb|y, AU C U for every 0 < A < 1 and U N V* is a
C'-submanifold of V* of codimension 1. Let Py, P;,i = 1,...,d be functions on V defined

by
d

Pi(z) = /Vlog |z — y|;dv(y) and Py (z) = /Vlog |z —ylldv(y) = ZB

i=1
Clearly P;(x) depends only on the i—th coordinate of x so it makes sense to abuse the no-
tation and write P;(z) = P;(x;). We will show that U can be chosen as U = P;;!((—00, @)
for some o € R. To prove that the boundary U NV * is a C'-submanifold we will establish
certain regularity properties of P; for coordinates i = 1,...,d and use the implicit function

theorem. Starting from Step 3 we assume, for the sake of the proof, that V = R2.

Step 1. We show that there exists a unique o € R such that Leb(Py,* ((—o0,a))) = 1.
It is easy to see that Py,'((—oc,t))) is bounded for every ¢+ € R. We will consider the
gradient VP = %H(U) 0 allowing it to take value +o00 on some coordinates. We
show that for almost all v € V' the gradient V Py (v) is non-zero. In such case the function
t + Leb(Py; ' ((—o0,t))) is a continuous bijection from [essinf Py, +00) to [0, +00) so we

can find a unique a with Leb(P‘;l((—oo, a))) =1

Let F;, h; be the functions defined as in Definition Since our measure is already
collapsed with respect to all coordinates, the function hy = hy = ... = hy is the density of

v. Hence for every ¢ = 1,2,...,d we have

f f (fB]R(O,Fi(tl7~~~707~~-»td)) log |x, — ti‘dti> dty .. Et\l ... dty if i € {1, .. .,7“1}

f f (fB([j(O,Fi(tl7~~~:07~~-»td)) log |.CCZ — ti‘ dtl) dty...dt;...dtg ifie {Tl +1,..., d} .
(3.5.12)
Let 2 = (x1,..., %, Spy 41607171, ..., 54¢"%) € V. To shorten notation we will write V* for

the subset of V defined by v; = 0 and dv’ and for the Lebesgue measure on V*. In these
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coordinates we have

fVi (fB]R(O,FZ'('Ui)) log ’.%1 — ti|dti) d’Ui ifi e {1, .. ,’1"1}

Pi(ay) = A (3.5.13)
Jyi (fBC(O,Fi(Ui)) log |z; — t4] dti) dvt ifie{r+1,...,d}.
By Lemma [3.5.7 for i = 1,...,r; we have
d , , .
%Pl(xl) = / (log |F;(v") 4 x| — log |F;(v") — a4]) dv’* (3.5.14)
i Vi
and fori=r1 +1,...,d
d A 2rF;(vh)? A
= Py(s;€"%) :/ 71'7(1))dv’ +/ 27 s;dv’. (3.5.15)
ds; ViF(i)<s;  Si Vi Fi(v)>s;
We have J J J J
Py=-2pand Zp,=-2Lp,
dxi v d.%i an dSZ' v dsi

Note that (3.5.14), (3.5.15) are strictly positive or +o00 as soon as x; > 0 or s; > 0 and

strictly negative or —oo if x; < 0. In particular the gradient V Py (v) is non-zero for v # 0.

This proves Step 1.

Step 2. Let U = Py, *((—o0,a)). We prove that v = Leb|y and that AU C U for
every 0 < A < 1.

For any two measures u, 1’ € M (V) we define a bilinear form

(i ) = /V /V log [l — ylldu(e)di ().

With that definition we have I(p) = (u,p) for every u € MY (V). The function Py is
defined so that (v, u) = [, Py (z)du(z) for every p € MY (V). Let v/ = Leb|yr € PY(V).
By the choice of U we have (v,v/) < (v,v) with equality if and only if v = Lebl|y. Let

€ > 0 be small and put v. = (1 — ¢)v + /. This measure is in P1(V) so
I(v.) = (1—e)2I(v) +2e(1 — &) (v, /) + 2I(V) > I(v).

We deduce that 4
—I(ve) =2({v,V") — (v,v)) > 0.
de =0

We already know that (v, ') — (v,v) <0 so (v,v') = (v,v) and v = Leb|y. It remains to
show that AU C U for every 0 < A < 1. Note that U C P;;'((—00,a]) so it will be enough
to prove that Py (Azx) < Py(x) for every € V'\ 0. This is true because the computations
from Step 1 imply that the derivative d%PV()\:n) is strictly positive on (0, +o0) for every

v #0.
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—F»(0)

Figure 3.5.1: The set U C V ~ R?

Step 3. From now on we assume V = R2. The proof of the general case follows the
same outline with some parts being easier for complex coordinate&F_gl By the previous steps
v = Leb|y where U = Py, ((—o0,a)). The set U is contained in the box (—F}(0), F1(0)) x
(—F3(0), F»(0)) (see Figure [3.5.1) and that is where we study the regularity properties of
Py, P,. The functions Fi(t), F»(t) vanish outside (—F»(0), F»(0)), (—F1(0), F1(0)) respec-
tively and admit their maximum at ¢ = 0. We show that the derivative d%bPZ(azz) restricted
to (—F;(0), F;(0)) is in L2((—F;(0), F;3(0))) for 4 = 1,2. From now on we restrict Pj, P; to
(—=F1(0), F1(0)), (—F5(0), F5(0)) respectively.

By we have

F1(0) 2 1/2
= / </ (10g\F1(t)+331|—10g\F1(t)—:r1|)dt> dx;
2 —F1(0) R

F1(0) 5 1/2
S/ / (10g|F1(t)+.T1‘ —10g|F1(t) —xl\) dxrq dt
R

—F1(0)

F20) [ [Fi(0) 1/2
52/ / (log |Fy(t) 4+ z1])* dzy | dt

—F»(0) —F1(0)

F»(0)
gz/ O(F1(0)/2(| log Fi (0] + 1))dt < +o0.
—F»(0)

Between the second and the third line we had right to restrict the outer integral from R to

[—F2(0), F»(0)] because outside this interval Fi(t) is 0 so the inner integral vanishes. Same

13 In the real case the derivative of P; is locally L?. For the complex coordinates P; is uniformly bounded.
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computations show that & Py(x9)||a < +00. This concludes the proof of Step 3.
dxo

Step 4. We show that for every € > 0 there exists A. > 0 such that ‘%Pi(xi)
for i = 1,2 and every ¢ < |z;| < F;(0).

> A,
Let € > 0 and let € < |z1| < F1(0). Assume that z1 > ¢ (i.e. x1 is positive). Since we
can always restrict to a smaller ¢ we will assume for technical reasons that % —2eF5(0) > 0.

We have

d F»(0)
4 p(a) :/ (log |Fy(t) + 21| — log | F1(t) — z1])dt

dm'l —FQ(O)
>/F2(0) (1_ [F1(t) —$1|> dt:/F2(0) [F1(8) + 21| = [F1(t) — 4]
~Jm0) |[F1(t) + 1] —F5(0) [F1(t) + 1
F2(0) s F»(0)
:2/ min{Fi(t), o}, 1L / min {F) (£), 1} dt
—m0) |F() + 21 F1(0) J_py(0

L™ i (Ri(0),9)
> min { F1(t), e} dt.
F1(0) /FQ(O) 1

To estimate the last quantity we go back to the definition of F} (see Definition [3.4.1)). It
implies that

F»(0)
/ 2F (t)dt = v(V) = 1. (3.5.16)
—F»(0)

Let Ey := {t € [-F2(0), F5(0)]| F1(t) > €}. For every t € [—F5(0), F»(0)] we have Fi(t) <
F1(0) so (3.5.16)) yields Fy(0)Leb(E1) +(2F(0) — Leb(E1)) > 3. In particular Leb(Eq) >
1 _2:1%(0) Wi
“Fo)— e get
d 1 RO £ e(L —2eF5(0))
—Pi(x]) > —— min {Fi(t),e} dt >——Leb(F) > 2 > 0.
de ) 2 F o) /_F2<o> A0, ehdt 2 5 oy e ED) 2 B o) - o)

The final lower bound is positive and depends only on &, F1(0) and F5(0). The same
computation gives a negative upper bound for ﬁPl (z1) when z; < 0. The argument for
¢ = 2 is identical.
Step 5. We show that Pj(z;),i = 1,2 are of class C' on (—Fy(0), F»(0)) and
(—F1(0), F1(0)) respectively.
The points (Fi(t),t) for t € [—F5(0), F»(0)] are in the boundary OU. Since U =
P ((—00,)) we have 9U C P! ({a}). As a consequence

Pl(F1<t)) + Pg(t) = P\/((Fl(t),t)) = fort € [—FQ(O),FQ(O)]

The function P is strictly increasing on [0, +00) so let us write P; L for the inverse of P
restricted to [0, +00). Then, for ¢t € (0, F5(0)) we have

Fi(t) = P (o — Pa(t)).
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We deduce that Fi(t) is strictly decreasing on (0, F>(0)) and that

-1
) (3.5.17)
SZFl(t)

whenever the formula is well defined. We have an analogous equation for F, from which
it follows that F3 : (0, F1(0)) — (0, F5(0)) is the inverse of Fj. Let € > 0 be small. Then
for every 0 <t < F5(0) — e we have Fy(t) > F1(F2(0) —¢) > 0. Let ¢’ = Fy(F»(0) —¢) and
let A = A, be the constant from Step 4. Combining with Step 4 we get

1F1(t) = —%Pz(t) (ipl(s)

d d

— < |—= -1 <t< —¢.
thl(t)' < ‘dtPg(t)‘A for 0 <t < Fy(0) —¢
By Step 3 we have
F»(0)—e d 2 d 2
/ Dl da < || Lrw| 42 < 400, (3.5.18)
0 dt dt )

The above will serve as an input to the Cauchy—Schwartz inequality. Put G,(s) := log |s+
x| —log|s — x| for s € [0, F5(0)]. A simple computation shows that G, € L2([0, F»(0)])
and that the map R 3 z — G, € L*([0, F5(0)]) is continuous. We will estimate - P»(z)
for e <x < F5(0) — 2¢. By we have

d Fl(O)
SoPaa) = [ (og|Fat) + | ~ log | Fa(t) — al)ds
x —F1(0)

and we use substitution t = Fj(s) to get

F»(0) dF
:2/ (log\s+x|—log\s—x|)‘ 1(s) ds
0 ds
F>(0)—e dF
:2/ (log|s—|—x|—log|s—x])’ 1(5) ds
0 ds
F»(0) dF.
+2/ (log |s + z| —log|s—x\)’1(5) ds.
Fo(0)—e ds

We use Cauchy—Schwartz and (3.5.18)) to estimate the first summand and get:

d dPy(t)|| 4 /F2<0> dFy(s)
—P <2||G, A 2 log(2F>(0) — 2¢) — 1 d
3P <200l || A7 2 [ (og(2m(0) ~22) ~loge) | s
dPs(t
=2A471|G, |2 H th( ) + 2FH(F2(0) — €)(log |(2F5(0) — 2¢) — loge) < +oo.
2

Since %Pg(:v) > 0 for z > 0 this establishes the finiteness of %Pg(l‘) on [0, F5(0) —2¢]. To
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show continuity we choose 0 < x, 2’ < F5(0) — 2¢ and perform the same calculation to get

dPQ( ) dPy(t)

<2471
|t=z 1Ge — Gull2 7

aPs(t)
dt "

2

F»(0) dF

+2/ log |z + s| — log |2 + s| + log |2’ — s — log]m—s\“ 1
F2(0)—¢

The right hand side tends to 0 as 2’ — x so - P,() is continuous on (0, F5(0) — 2¢]. We
let £ — 0 and use symmetry of P, to deduce that P, is of class O on [~ F3(0), F»(0)]\ {0}.
Same proof shows that P is of class C'! on [—Fy(0), F1(0)] \ {0} .

Step 6. We will deduce that Fy, Fy are of class C! on [—F3(0), F»(0)] \ {0},
[—F1(0), F1(0)] \ {0} respectively.

By symmetry it is enough to show that F is of class C* on (0, F»(0)). For t € (0, F5(0))
we have a = Py(Fy(t)) + Py(t) so Fi(t) = P '(a — Py(t)). By Step 5 P is of class C* so
the same is true for P, ! on its domain of definition. As a composition of two C'* functions
F is of class C1.

Step 7. We have
U NV* ={(t,£F(t))|t € (—F2(0), F»(0)) \ {0}}.

Being a finite disjoint union of graphs of functions of class C! the set U N V> is a C'-

submanifold of codimension 1. This concludes the proof. O

3.6 Non-existence of n-optimal sets.

3.6.1 Discrepancy and almost equidistribution

Let v be any limit measure on V = k ®g R. In this section we study the discrepancy of
the sets U such that v = Leb|y which are provided by Proposition We recall the

notion of lattice point discrepancy (see |21]).

Definition 3.6.1. Let V = R"™ x C™ and fizx a bounded measurable subset U of V. For
te V¥ veV et Ny(Uv):=|{(tU +v)NO}| and define the discrepancy

Dy(U,v) := Ny(U,v) — | Ar|~?Leb(U) ||t
And the mazimal discrepancy

Dy(U) := esssup | D¢(U, v)|.
veV

We will need the following technical property of the maximal discrepancy.
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Lemma 3.6.2. Let U be a bounded measurable subset of V' such that OU has zero Lebesgue
measure. Then either Di(U) < 1 for all t € V> or there exists 6 > 0 a non-empty open
subset T C V* and a non-empty open subset W of V' such that Dy(U,v) > 14§ for all
telT,veW.

Proof. Let E = U,co, Uierx (@ —t0U) x {t} CV x V* and for every t € V' let Ey =
{v e V|(v,t) € E} = U,eo, (x — tOU). Because the set U is bounded, the unions defining
FE and E; are locally finite. We deduce that E and E; are closed and E; has measure 0 for
every t € V. The function (v,t) — N (U, v) is locally constant on (V' x V*)\ E so it is
constant on the connected components of (V x V*)\ E. In particular, for every ¢t € V*
the function v — Dy(U,v) is constant on the connected components on V' \ Ej.

Assume that Dy, (U) > 1 for some tg € V*. The set of values of Dy, (U,v) is discrete
because Dy, (U, v) € N—|Ag|~/?Leb(U)||to||. We deduce that there exists a connected com-
ponent Q, of V'\ Ey, such that Dy, (U,v) > 1 or Dy, (U,v) < —1 for all (v,t) € Qy,. Assume
that the first inequality holds. Fix a point vg € Q¢,. Let @) be the unique connected com-
ponent of (V' x V*)\ E containing (vg, o). For e > 0 let Q° = {(v,t) € Q|||t|| < [[to]| — &},
for € small enough it is a non-empty open set because #j lies in the interior of . Choose
open sets T'C V* W C V such that W x T' C @Q°. For every (v,t) € Q° we have

Dy(U,v) = Ny(U,v) = |Ax| ™ *Leb(U)|[t]| =Nty (U, v0) — | Ak~ *Leb(U)][¢]
> Dy, (U, v0) + €| Ag|~/2Leb(U).

We deduce that Dy(U,v) > 140 with § = eLeb(U)|Ag| "'/ for t € T and all v € W. In the
case Dy, (U,v) < —1 the same argument works with Q" = {(v,t) € Q||[t|]| > [[to|| +¢}. O

We show that if v is a limit measure and U is the open set provided by Proposition
then U must have very low maximal discrepancy.

Lemma 3.6.3. Let v be a limit measure on V and let U be an open set such that OU is
Jordan measurable of Jordan measure 0 and v = Leb|y. Then U satisfies D;(U) < 1 for
allt e V.

Proof. We argue by contradiction. Assume that for some tg € V> we have Dy (U) > 1. By
Lemma [3.6.2] there exist open sets T C VX, W C V and § > 0 such that |Dy(U,v)| > 146
for every t € T)v € W. By making W smaller if necessary we may assume it is an open
cylinder in V, similarly by taking smaller T if necessary we may assume that there exists
k > 1 such that k=1 < ||t < k for all t € T. Let (n;)ien, (Sn,)ien be a sequence of n-
optimal sets and let (¢, )ien C V, (sn,) € V', |50, || = ni|Ax|*/? be such that the measures
Up, defined as in converge weakly-* to v. Translating S,,, be appropriate elements of
O we may assume that ¢,,, = 0, this will simplify considerably the formulas in the proof.

By [11, Corollary 2.4] the sets S, are almost uniformly distributed modulo powers of
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every prime ideal p of Q. This means that for every prime p of Ok, I € N and a € O we
have
n; +1

N | <L

‘|{w€8m|m—a€pl}|—

In order to get a contradiction we will exhibit a prime p,,, for all sufficiently large n; such
that S, fails to be almost uniformly equidistributed modulo p,,.

Let By, := (sp,U)NOy and put R, = Sy, AE,,. Since v, converges weakly-* to Leb|y
and the boundary OU has Jordan measure 0 we can deduce that |R,,| = o(n;). The set
T~ is open so by Corollary (in the appendix) for n; sufficiently large there exists an
@n; € 8, T~ N Oy such that the principal ideal p,,, := @y, Of is prime. We argue that for
every x € O Nwy, W we have

[{y € Enlz —y € pn}| = lsn,U N (@0, Ok + 2)| = N, 1 (U, ).

n; Wn;
Since sp,w,! € T, w, 'z € W and ||sp, @, | = ni| AR|Y?(Npp,) ™" we get

n;

Npn,

[{y € Ep,lt —y €pn, }| — = ‘Dsniwﬁf(U’ w;ilx)] > 1+ 0 for all z € w,, W.
(3.6.1)
We showed that in some sense E,, fails "badly" to be almost uniformly equidistributed
modulo p,,. From this we need do deduce that S, is not almost equidistributed modulo
pn;. Call 2 € w, W N O bad if (x + w,,Or) N R,, # 0 and good otherwise. For good
points we have (x + pp,) N Ey, = (T + pp,;) N Sp,. Our next goal is to prove that for
n; sufficiently large there exists at least one E good element in w,,W. Let us estimate
the number of bad elements of w,, W N O. By Lemma for every r € R,,, we have
|(r+wn, Op) Ny, W| = |(rw, '+ W)NO;| = O(1). Hence we have at most O(| Ry, |) = o(n;)
bad elements. On the other hand |w,,W N Ok| = ||y, ||[Leb(W)|Ak|~Y2 + o(||wn, ||).
We chose @, € sp, T ! so k70| AR|Y? < ||, || < kng|Ag|'/? so the number of good
elements is Leb(W)n;x~! — o(n;). We infer that for n; sufficiently large there exists at

least one good element x € w,,W N Oy. Let x € w,,IW N O} be a good element. We have
Ep, N (x4 pn;) = Sp; N (2 + pp,) so by (3.6.1) we get

n; +1 _ 1
{y € Snlr—yepn}|— = =D, _-1(U,@, 1) ———
; Npn,

| > 140———. (3.6.2)

Sn; Tn,;

Npn,

We know that Np,,, = ||@n, || > £~ Ak|/?n; so for n; sufficiently large (3.6.2) implies that
Sy, in not almost equidistributed modulo p,,. This is a contradiction because n-optimal

sets are almost uniformly equidistributed modulo all prime ideals of Of. O

The last ingredient that we will need in order to show that n-optimal sets cannot exist

for large n is the following lower bound on the discrepancy.

14 1n fact we will show that most of them are good.
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Lemma 3.6.4. Assume that V =R" x C™ with r1 +2ro > 1. Let U be an open subset of
V such that OU NV * is a submanifold of V> of class C* and \U C U for every 0 < X < 1.
Then there exists t € V> such that Dy(U) > 1.

Proof. We claim that there exists tg € V>, vy € V such that (to0U + vg) N Ok contains
at least 3 pointﬂ Let N = dimg V. For every v € V* let us identify the tangent space
T,V* with V in the obvious way. For every point p € OU N V* the tangent space 1,0U
is a codimension 1 subspace of V. Call a (real) codimension 1 subspace H of V singular if
we have H C V' \ VX,

Step 1. We show that there is zg € OU N V™ such that T,,0U is not singular. Write
Gry_1(V) for the space parametrizing all (N — 1)-dimensional real vector subspaces of V.
The map ¢(p) := [T,0U] € Gry_1(T,V*) ~ Gry_1(V) is continuous on OU NV * because
the latter is a C''-submanifold. Let M be any connected component of U N V*. Either
the exists a point p € M such that T,,0U is nonsingular or we can assume that the image
(M) consists solely of singular subspaces. The set of singular subspaces in Gry_1(V') has
r1 elements, each corresponding to a real coordinate of V. Hence, ¢(M) = H for some
singular subspace H. We deduce that M is contained in a hyperplane H' parallel to H.
In particular the 7, singular subspaces and H’ cut out a bounded region of V. This is a
contradiction because r1+1 < N+1 and the only way N +1 codimension 1 hyperplanes can
cut out a bounded region in N-dimensional space is when they are pairwise non-parallel.

Step 2. We construct a continuous map ~: [0,1] — 9U such that v(0) = xo and
Il7(s) —v(0)|]| > 0 for 0 < s < 1. Choose any smooth complete Riemannian metric on
oU N V*. Choose a vector w € T,,0U such that ||w| # 0. Let 7 : [0, +00) be the unique
geodesic ray such that v(0) = xo and %’y(t) = w. We have %ny(O) — ()| = ||w|| # 0 so
for ¢ small enough we have ||y(s) —~v(0)|| > 0 for every s < ¢t. Up to reparametrizing v we
may assume t = 1.

Step 3. We show that there exists s; > 0 such that ((y(s1) — z0)Ok + x0) N OU
contains at least one point 21 except g, y(s1). First note that as s approaches 0 the norm

l7(s) — xo|| tends to 0. Hence

lim |(y(s) — 20) Ok + x0) N U| = +o0.

s—0

Let s1 = inf {s > 0]|(y(s) — x0) O + x0) NU| < |(y(1) — 20) O + z0) NU|} . The equality
above ensures that s; > 0. The intersection ((y(s1)—z0)Ok+x0)NOU must contain another
point except g and 7(s1) because otherwise the function s — [(v(s) — 29)Ok + x0) N U]
would be constant in an open neighborhood of si, contradicting the definition of si.

Step 4. Put vy = —z¢(v(s0) — 7o) ! and o = (v(s0) — z0) . Then (to0U + vp) N Ok
contains at least 3 points p1,p2,p3. Indeed, we may take p; = 0,p2 = 1 and p3 = (1 —
x0)(v(s1) — 2o) ! where sy, x1 are provided by Step 3.

5 This is of course not true if V =R and U is an interval.
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Step 5. We will show that for every small enough € > 0 there exists open neighborhood
W of vy such that ((1 —e)toU +v1) N Ok = (toU + vo) N Ok and ((1 + €)toU +v1) N Ok D
(toU + vo) N Ok U {p1,p2,p3} for every vy € W.

Choose € > 0 such that ((1—&)toU+v9)NOk = (toU~+vo)NOy and (1+4¢)toU+v)NO D
(toU + vo) N O U {p1,p2,p3}. The desired conditions are satisfied once ¢ is small enough
because (1 — )toU C toU and toU C (1 + &)U. Conditions ((1 — e)toU + v1) N Of =
(toU +v9) N O and ((1+e)toU +v1) N Ok D (toU + vo) N O U {p1, p2, p3} define an open
set of v1 so they hold for all v; in an open neighborhood of vy.

Step 6. We show that for small enough ¢ > 0 we have either D(_.y,(U) > 1 or
D(14¢)t,(U) > 1. By Step 5 for every v1 € W we have Ny 4.y, (U, v1) — Nj—c)so (U, v1) > 3
50 D(tssyto (U 01) — Doy (Usvn) > 3 — | A" PLeb(D)llto|((1 + )N — (1 — &)V). By
choosing & small enough we can ensure that D(i oy, (U,v1) — D1—g)s, (U, v1) > % Set W
is open so it has positive measure. We deduce that D _.), (U) + D142y, (U) > g One
of them must be bigger than 1 so Step 6 and the lemma follows. O

3.6.2 Proof of the main theorem

In this section we prove the main result of this chapter.

Proof of Theorem[3.1.9. We argue by contradiction. As before V =k ®@g R = R x C".
Assume that there is a sequence (n;);eny C N with n; — oo such that for every i € N there
exists an n;-optimal set S,,,. By T heorem there exists a compact cylinder 2 C V' and
sequences sy, ,tn,. C V such that ||s,. || = ni|Ag|'/? and 51 (Sn; — tn;) C Q. Put

1
Vng 1= — > o (omtn)- (3.6.3)

N
v IESni

Those measures are supported in §2. Since () is compact we may assume, passing to a
subsequence if needed, that v, converges weakly-* to a probability measure v. This a
measure that we called in Section [3.5 a limit measure. By Lemma the measure v
is absolutely continuous with respect to the Lebesgue measure on V and its density is
bounded by 1. By Proposition we have I(v) = —%log|Ay| — 2 — v + vg where
Yk, Yo are Euler-Kronecker constants of k,Q respectively. Recall that PL(V) is the set of
absolutely continuous probability measures on V' of density at most 1. By Lemma[3.5.5| the
measure v realizes the minimal energy among all probability measures in P!(V'). Hence,
by Proposition there exists an open set U of measure 1 such that OU N V> is a C'-
submanifold of V* | AU C U for 0 < A < 1 and (up to translation) v = Leb|y. By Lemma
applied to U there exists t € V* such that D;(U) > 1. On the other hand Lemma
yields D;(U) < 1 for every t € V*. This yields the desired contradiction. O
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3.7 Appendix

3.7.1 Measure theory

Lemma 3.7.1. Let v be a probability measure on 'V of density at most 1. Then there exists

a sequence of subsets (Ep)nen of O such that |E,| =n+ 1 and the sequence of measures

1
VE,n = ﬁ Z 5n*1/N|Ak|71/2Nx (3.7.1)
zeb,

converges weakly-* to v.

Proof. The proof is based on a sequence of reductions to easier problems. First note that
if we manage to find a sequence of sets E, C Oy such that the measures vg, , converge
weakly-* to v then |E,| = n + o(n). Removing or adding o(n) points to each E,, does not
affect the weak-* limit so we may easily obtain a desired sequence. The proof is reduced
to finding any sequence (E,) of finite subsets of O, such that vg, , converges weakly-* to
v. Let P C MY (V) be the set of finite measures for which this is possible.

Step 1. We prove that P is a closed convex subset of M*(V). The fact that P is closed
is immediate by definition. Thus, to prove that it is convex we only need to show that for
every v, € P we have %(1/ +1') € P. Fix a set ay,...,aqn of representatives of Oy /20.
Let E,, E], be sequences of subsets of Oy, such that vg, ., Ve n converge weakly-* to v, v

respectively. Define

gn—1 on
Fovy = |J(@i+2E)0 ] (ai+2E))
i=1 i=2n—141
and Fy, 1= Fynpy,jon). A simple computation shows that limpy, e v, m = F(v+1) so

the latter belongs to P.

Step 2. Let U C V be an open set of finite Lebesgue measure such that 9U is Jordan
measurable and has Jordan measure 0. Then the measure v(A) := Leb(A N U) belongs to
P. Indeed it is enough to take E, = O, N (n*/N ... n/NU.

Step 3. For every measurable set £ C V of finite measure the measure vg(A) =
Leb(AN E) is in P. This follows from the fact that the Lebesgue measure is Radon so
there exists a sequence of open sets U, containing F such that vy, converges weakly-* to
vg. Removing from U, a closed set of arbitrarily small Lebesgue measure we can assume
that QU has Jordan measure 0 so Step 2 applies.

Step 4. The convex hull of measures vg from the previous step is weakly-* dense
in the set of measures of density at most 1. Indeed, let v be a finite measure with den-
sity f € LY(V) such that f(v) < 1 almost everywhere. For every t € [0,1] let E; =
{v € V|f(v) > t}. Those are measurable sets of finite measure and we have v = fol vg,dt.

Hence, by convexity v € P. The lemma is proven. O
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3.7.2 Angular distribution of prime ideals

We prove a version of prime number theorem for number fields where principal ideals are
weighted with respect to their "angular" position in V*/O;. This is very close to the
prime number theorem for products of cylinders and sectors proved by Mitsui [29]. The
version we need is a little bit different and we don’t need an explicit error term. The

following result is rather folklore, we include a short proof for completeness.

Lemma 3.7.2. Let k be a number field and let V = k®gR. Let ¢ : V* — C be a
continuous function such that o(tAz) = p(z) for every x € V* X € O) andt € R*. For
a principal ideal I = aOy, we put (1) := p(a). Then

X
> @(p)log Np = / p(t)dt + o(X),
Rihi Jz)0x

N(phH<x
p principal

where Ry, hy, are the regulator and the class number of k and Z := {v € V| |jv|| = 1}.

Proof. Write A for the space of continuous functions ¢ satisfying the conditions in the
lemma. The unitary characters x : V* — C* such that x(\) =1 for every A € O; and
x(t) =1 for every t € R* span a dense subspace of A. As a consequence it is enough to
prove the statement for ¢ = x with x as above.

Our first step is to associate to x a Hecke character. Write A* for the group of ideles
of k and A% and A? for the groups of infinite and finite ideles respectively. We distinguish
the subgroup A! of ideles of idelic norm 1. Let K = Hp O]?p be the maximal compact
subgroup of AJT. We identify V> with AX. By abuse of notation let us write x for the
extension of y to Z x K C Al by setting x(vk) = x(v) for v € T,k € K. The character
x factors through (Z x K)/O; and the latter is a closed subgroup of A!/k* of index hy.
Let X be any extension of x to A!/k*. There are precisely hj such extensions and the are
all of form vy for ¢ : AJAX Kk* =: Cly — C* where Cli stands for the class group of
k. Through the standard procedure ) gives rise to an unramified Hecke character X such
that for every principal prime ideal p = aOj we have X(p) = x(a). For any v : Cl — C*

consider the Hecke L-function

s(s,00) = [T (1- M)

P

By [24, Theorem 5.34] there exists a constant ¢ > 0 such that the function L(s,1X) has at

most one zero in the region

C

1-— .
ez > 1= Nog [ Ael (2] + 3)7

The exceptional zero is always real, less than 1 and can occur only when Y is a real
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character. With this information at hand the standard argument used to prove the prime

number theorem (see |24, Theorem 5.13]) shows that

S w(p)(p) log Np = X + o(X), (3.7.2)
Npl<X

where r = 1 if L(s,1X) has a simple pole at 1 and » = 0 otherwise. In our case r = 1 if
X = 1 and r = 0 otherwise. We take the average of (3.7.2)) over all characters ¢ : Cly —
C* to get

~ 1 R
D, X(P)logNp=5= > > (p)X(p)logNp = o
Npl<X k Np'<X yeCly, o(X) otherwise.
p principal

+o(X) ify=1

e

Since fI /O 1dt = Ry, this agrees with the formula predicted by the lemma. We deduce
k
that the lemma holds for ¢ = x. By our opening remarks this concludes the proof. O

Corollary 3.7.3. Let U be a bounded open subset of V*. Then for any t € V> with ||t||

sufficiently large there is at least one element a € tU N Ok such that aOy is a prime ideal.

Proof. First we prove the statement for t € R* C V. Let U’ be an open subset of U such
that U' C U. Put U” = OFR*U'. Let wg : V. — Rxq be any continuous function such
that ¢o|yr = 1 and g vanishes outside U. For v € V put p(v) := erokx I gpo(tzv)%.
Function ¢ is continuous, positive on U, supported on U” and it satisfies the assumptions
of Lemma As VX /R*O; is compact the function ¢ is necessarily bounded. There
exist a < 1 < bsuch that U" N{v e V*|a < |lv]| < b} C O;U. By Lemmathere is a

positive constant ¢ such that

> p(p)log Np =c(b— a)X + o(bX). (3.7.3)

aX<N(pH<bX
p principal

The higher powers are negligible since we have > Nph<bx 108 Np = o(bX). Equation

1>2
(3.7.3]) becomes

> @p)log Np = c(b— a)X + o(bX). (3.7.4)
aX<N(p)<bX
p principal

We deduce that for X sufficiently large there exists an element w € X/N OLU N Oy
such that wOy, is prime. We replace w by w for some A € O to get an element of
XYNU N Oy, generating a prime ideal. This proves the statement for ¢ € R* because we
can take X = ||¢]].

To get the general case choose an open set W C V* and a finite set y1,...,ym of
elements of V" such that for every translate tU,t € V' there exists an A € O;', to € R* and
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i € {1,...,m} such that Moy;W C tU. This can be always arranged because V*/R*O
is compact. The case of the corollary that we have already proved applied to the open sets
y; W implies that for ||tg|| sufficiently large the sets toy; W all contain a prime element. But
then so do the translates Atoy; W for every A € O;. Since one of them is contained in tU

and |[|tg]| — oo as soon as ||t|| — oo the corollary is proven. O
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