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Abstract
We investigated the production of aluminumand beryllium ions via pulsed laser ablation using
355 nmwavelength and 5 ns long laser pulses. The ablation threshold of Al+ andBe+wasmeasured to
be 0.9±0.1 (stat.)±0.3 (syst.) J cm−2 and 1.4±0.1(stat.)±0.4 (syst.) J cm−2 respectively. By
employing electrostatic retarding potentials, the kinetic energy profile of the ablated ionswas
characterized as a function of laser fluence. Around the ablation threshold, we reliably produced
between 108 and 1010 ions, approximately 5%ofwhichwere dynamically trapped in a Penning–
Malmberg trap.

1. Introduction

Trapped ions are routinely used for precisionmeasurements [1–3] and quantum computing applications [4].
The need for ions is largely fulfilled by producing atoms from a resistively heated oven [5–9] and subsequently
ionizing themusing an electron or laser beam. To achieve the desired number of ions, an oven is typically
operated for tens of seconds and at temperatures in excess of 500K. Ionsmay also be loaded into a trap using a
laser-cooled source of neutral atoms [10, 11], or directly via laser ablation of a target surface [12–17].

Presently, there is considerable interest in the antihydrogen trapping community to use beryllium ions to
sympathetically cool positrons for antihydrogen production [18–21]. The antihydrogen trapping experiments
take place in a Penning trap under extreme high vacuum (P<10−12mbar) and cryogenic temperatures
(T<100 K). In such conditions, the use of a traditional atomic oven is unfeasible. Ovens produce a large and
continuous flux of particles which is undesirable. The use of ovens also results in a significant heat loadwhich is
not suitable for experiments conducted in cryogenic environments. Laser ablation offers an alternative
mechanismof ion creation that ismore amenable to such vacuum and temperature constraints. Furthermore,
geometrical constraints imposed by Penning traps requires the ablation target to bemounted axially far away
from the trap electrodes,making direct production of ions that follow field-lines into the trap highly desirable.

Previous studies on the laser ablation of beryllium are sparse [22, 23]. Aluminumhowever has been the
subject of several ablation studies using time-of-flight [24–26] and charge collectionmeasurements [22, 27–29].
In all of these studies, significant ion productionwas typically observed for laser fluences around 1–2 J cm−2.
Suchfluences are easily achievable using standard, commercially available pulsed laser sources.Moreover, ion
formationwith kinetic energies of several eV have been observed for laser fluences near the ablation threshold
[26, 27, 29]. These energies are small enough that the ions can be dynamically trapped in a typical antihydrogen
Penning trap. Studies with aluminum therefore allow us to benchmark our apparatus beforemoving onto
beryllium.

In this paperwe report on the production of aluminumand beryllium ions in vacuumby laser pulses
incident on the respectivemetal ablation target. The particle yields were extracted by operating the target
material as a Faraday Cup. Additionally, the kinetic energies of ejected charged particles were investigated using
electrostatic blocking potentials. The kinetic energy distributions (KEDs) of the emittedAl+ andBe+ ionswere
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analyzed for several different laser fluences (up to 2 J cm−2 and 4 J cm−2 for aluminumand beryllium
respectively).We also report a set of successful attempts to hold Be+ ions in a Penning–Malmberg trap for
several seconds.We confirm the viability of pulsed laser ablation as a potentialmechanism to deliver enough
trappable Be+ ions to sympathetically cool positrons inALPHA [20].

2. Experiment

The experimental setup is comprised of a vacuumchamber (background pressure<5×10−8mbar), ametal
ablation target (aluminumor beryllium), a Penning–Malmberg trap, a combined dualmicro-channel plate and
phosphor screen detector (Photonis,model: QS19930A-1), and an electronic system for data acquisition and
analysis. A schematic for the setup is shown infigure 1, and a scaled drawing of the apparatus is provided in
figure 2(a).

To produce the laser-ablated plasma, we used frequency-tripledNd:YAG laser pulses at 355 nmwavelength
and 5 ns pulse length (FWHM). The laser pulses hit themetal target (purity>99%, thickness∼0.5 mm) at an
incidence angle of approximately 50°with respect to the target normal. The laser beamwas focused by a 25 cm
focal length lens onto the target surface. The laser beamwaist (1/e2 radius)wasmeasured to be 16.6±2.5 μm
bypassing a knife edge across the beam and inferred by analysis of burn patterns on exposed burn paper. The
laser energy wasmonitored by a calibrated photodiode showing a shot-to-shot fluctuationwithin 10%of the
average value. The overall uncertainty on the value of the laser fluence ismainly due to the systematic uncertainty
in the determination of the spot size.

A singlemeasurement consists of a laser pulse that is reflected by amirror and hits the ablation target (see
figures 1 and 2(c)). Ions generated are accelerated by the acceleration plate, with some of the ions passing
through the aperture as a divergent beam. The target (cathode) and acceleration plate (anode) are electrically
insulated from each other, and an external power supply can be used to apply a potential bias on each of these
components (VC andVA for cathode and anode respectively). Thefive electrodes of the stack alongwith an
external solenoid form aPenning–Malmberg trap. Themagnetic field from solenoid serves to guide the ions
from the source to theMCP, and to confine the ions radially for trapping. As shows infigure 2(b), the peakfield
at the center of the trapping region is about 900Gauss. Ions reaching the electrodesmay therefore be blocked,
trapped, accelerated/decelerated, or simply allowed to pass through. Ions exiting the electrode stack are detected
at theMCPdetector and imaged by aCCDcamera.

The target was biased atVC=+40V in order to accelerate the ions away from the surface. AVA=−10V
accelerating potential assisted in removing the ablated ions from the target and reducing the divergence of the
beam. The release of laser-ablated ions resulted in amomentary (∼2 μs) charge deficit on the target surface,
whichwas recorded by a digitizing oscilloscope (Tektronix,model: DPO5104).

Beyond the electrode stack, the ionswere detected at theMCPdetector whose front, back, and phosphor
screenwere biased at−600 V, 800 V, and 4400 V respectively. Bymeans of a pickoff circuit connected to the
front of theMCP, the charge arriving at theMCP front was recorded. TheMCP and camerawere used to
concurrently image the radial distribution of the charges. In thismanner, it was possible to calibrate the intensity
of the acquired image against the total charge arriving at theMCP front.

Figure 1. Simplified schematic of the experimental setup. A laser pulse is focused on ametal target generating ions. The solenoid
magnetic field guides the ions from the source to theMCP. The electrode stack can be used to block, trap, and/or accelerate the ions.
The ions can be ejected to the combinedMCP-Phosphor detector, which generates light. A camera situated just outside the vacuum
region of the ablation chamber images the light. The components are not drawn to scale.
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3. Results and discussion

3.1. Singly charged ion ablation threshold and total charge yield
By lowering the pulse energy sufficiently, the laserfluence can be lowered to the point where the ablation signal is
below the background level. This gives us ameasurement of the upper limit on theminimum fluence required
for ion production, also known as the ablation threshold. In our setup, aminimumcharge, ∣ ∣ >Q e 108 (where
Q is the total charge and e is the charge of the electron), must be ablated to produce a signal that is distinguishable
frombackground.

The total charge that leaves the aluminumand beryllium targets as a result of laser ablation is shown in
figure 3. For the lowest pulse energy of 10 μJ used in this experiment (fluence 0.9 J cm−2), the ablation signal is
just above background for Al+, with a yield of∼0.2×109 charges. This implies that the ablation threshold for
aluminum lies below 0.9 J cm−2, consistent with a previously reported value of 0.8 J cm−2 for analogous laser
parameters [26] . Similarly in the case of beryllium, the ablation threshold for singly-charged ions lies just below
1.4 J cm−2, nearly 50% larger than the estimate for Al+. Given that themelting point of beryllium (1560K) is a
factor of∼1.67 larger than that of aluminum, the higher ablation threshold for beryllium is qualitatively
consistent with earlier reports wheremetals with highmelting points are observed to have relatively higher
ablation thresholds for singly-charged ions [29].

For fluences above 1.1 J cm−2 in aluminumand 2.9 J cm−2 in beryllium, the charge yield increases linearly.
Similar ion yield increases withfluence have previously been reported [25].

Figure 2. (a) Scaled half-section view of the key components of the apparatus. (b)On-axismagnetic field strength plotted as a function
of axial position. (c) Scaled drawing of the ion source. The purple arrow shows the path taken by the laser pulse to reach the ablation
target.
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3.2. IonKED
Tomeasure theKEDof the ablated species, blocking potentials between 0 and 150 Vwere applied on electrode
E3. The emitted particles from the source that successfully crossed the potential barrier and passed through the
Penning trapwere incident on theMCP and the resulting light was imaged by theCCDcamera.

Figure 4 shows typicalMCP images for the ablation of aluminumat three different fluences. At afluence of
1.4 J cm−2, only one cloud of charges was seen. At the 1.9 and 2.3 J cm−2 however, two distinct clouds of charges
were observed. The appearance of the secondary cloud at higher fluencesmay indicate the production of doubly-
charged aluminum ions, suggesting an ablation threshold for Al2+ between 1.4 and 1.9 J cm−2.Within the
measurement error, this is consistent with previously reported thresholds of 3 J cm−2 [25] and 1.4 J cm−2 [26].

Figure 3.Number of charges leaving the aluminum (red) and beryllium (blue) ablation targets as a function of laserfluence. The error
bars at each data point are standard errors of themean.Weobserve an ablation threshold of 0.9 J cm−2 for aluminumand 1.4 J cm−2

for beryllium.

Figure 4.TypicalMCP images from ablating the aluminum target with (a) 1.4, (b) 1.9, and (c) 2.3 J cm−2 laser pulses. Thewhite
rectangle defines the region of interest that separates the primary cloud from the rest of the image. All pictures use the same length
scale but different intensity scaling.
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Figure 5 shows typicalMCP images for the ablation of beryllium at four different fluences. At afluence of 2.3
J cm−2, only one cloud of charges was seen. At the 2.7, 3.1 and 3.5 J cm−2, two distinct clouds of charges were
observed, indicating as before the production of doubly-charged ions. This suggests afluence threshold between
2.3 and 2.7 J cm−2 for Be2+. Thefluence threshold of Be2+ has not previously been reported.

Infigures 4 and 5, we observe that ions hitting theMCP result in a star-shaped image. Additionally, singly
and doubly charged ion species appear to separate. Both of these features occur due to stray electric fields near
the front of theMCP.We identified these effects at a later date with a similar, independent experimental setup.
At the time of data taking, we had not anticipated these effects and did not have the ability to remove these stray
fields.

We define a region of interest (shownby awhite rectangle infigures 4 and 5) that includes the primary cloud
but avoids the secondary cloud in all of the recordedMCP images. Ameasure of the number of singly-charged
ions can then be obtained by summing the intensities of all of the pixels within this region and subtracting the
background, whichwe call theMCP image intensity. In order to extract a KEDof singly-charged ions from these
MCP images, we take the averageMCP image intensity at each blocking potential and perform a least-squares fit
to a cumulative doubleMaxwell–Boltzmann distribution function.

Figure 6 shows the aluminumKEDdata and resulting doubleMaxwell–Boltzmannfits at three different
fluences. The consistency of thefits to the datamay be interpreted as the charges originating due to two separate
ion formation processes. Similar observations have previously been reported in [26].

The berylliumKEDdata and associated doubleMaxwell–Boltzmann fits at five differentfluences are shown
infigure 7. Aswith aluminum, the fits to the data are consistent with the charges originating from two separate
ion formation processes. Due to the large error bars on some of our data points, we emphasize only the
qualitative nature of our results and note that higher fluences generally result in the production ofmore
energetic ions.

3.3. Be+ trapping
The following sequencewas used to dynamically trap ions from the ion source and subsequently image themon
theMCP:

1. Erect a potential barrier for the ions by applying an electric potential on E5.

2. Transmit a single laser pulse to the ablation target to create ions.

3.Wait a specified amount time to allow ions from the ion source to enter the electrode stack.

4. Apply an electrode potential on E1 to trap the ions inside the stack.

Figure 5.TypicalMCP images from ablating the beryllium target with (a) 2.3, (b) 2.7, (c) 3.1, and (d) 3.5 J cm−2 laser pulses. Thewhite
rectangle defines the region of interest that separates the primary cloud from the rest of the image. All pictures use the same length
scale but different intensity scaling.
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5.Hold the trapped ions for the desired duration.

6. Dump the trapped ions onto theMCPby quickly (∼1 μs) dropping the potential on E5 to 0V.

Beryllium ionswere successfully trapped at a laser pulse energy of 300 μJ andfluence of 2.9 J cm−2. 200V
potentials were applied to both E1 and E5, and a gate delay of 8 μs was used. The intensity of the observedMCP
image corresponded to approximately 1.7×108 trapped ions.

Figure 8 shows the number of trapped Be+ ions as a function of holding time. The ionswere held for a
minimumof 3 s, up to 22 s. The average number of trapped ionswas 1.6×108 ions,more than two orders of
magnitude higher thanwhat is required for the sympathetic cooling of positrons in theALPHA antihydrogen
experiment [20].

Figure 6.MCP image intensity as a function of the on-axis blocking potential from ablating the aluminum target with 1.4 (red), 1.9
(green), and 2.3 (blue) J cm−2 laser pulses. The error bars shown are standard errors of themean. A doubleMaxwell–Boltzmann
cumulative distribution function isfitted to each dataset.

Figure 7.MCP image intensity as a function of the on-axis blocking potential from ablating the beryllium target with 1.9 (red), 2.3
(green), 2.7 (blue), 3.1 (purple), and 3.5 (orange) J cm−2 laser pulses. The error bars shown are standard errors of themean. A double
Maxwell–Boltzmann cumulative distribution function isfitted to each dataset.
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In order to estimate the trapping efficiency, we note that when the the trapping electrodes are grounded, the
ions striking theMCP saturate theMCP image, with the image intensity corresponding to the arrival of at least
3×109 ions. Using this value, we determine an upper bound for the trapping efficiency at 5.3%.

4. Conclusion

Wehave investigated the production of aluminumand beryllium ions using single 355 nmablation pulses. The
production of Al+ requires at least 0.9 J cm−2 laser fluencewhereas the ablation threshold for Al2+ is between 1.4
and 1.9 J cm−2. In our experiments, we observe higher ion yields and higher kinetic energies with increasing
laserfluence. For fluences up to 2.3 J cm−2,most of the aluminum ions produced have axial kinetic energies less
than 80 eV. The observedfluence thresholds andKEDs are consistent with available literature on aluminum
ablation,making our test apparatus a reliable tool to study othermetals of interest, in particular beryllium.

For beryllium, at least 1.4 J cm−2 laserfluence is required to produce Be+ and between 2.3 and 2.7 J cm−2 for
Be2+. Aswith aluminum, using higher fluences for ablation result inmore energetic ions and larger ion yields.
Fluences up to 3.0 J cm−2may be employed to produce ions that have kinetic energies less than 80 eV and ion
yields in excess of 109, suitable for trapping inALPHA.

By choosing appropriate electrode potentials and gate timing, ions released by the sourcewere trapped in a
Penning–Malmberg trap. For the trap used in our experiment, the electrode stack is relatively short compared to
the nominal bunch length of the ion cloud, therefore only a small fraction of ionsmay be trapped. The trap in
ALPHA is significantly longer however, sowe expect amuch higher trapping efficiency.
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