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Abstract. A numerical inverse analysis based on explicit sensitivity coefficients is developed for the 
simultaneous estimation of heat flux and heat transfer coefficient imposed on different parts of 
boundary of a general irregular heat conducting body made of functionally graded materials with 
spatially varying thermal conductivity. It is assumed that the thermal conductivity varies exponentially 
with position in the body. The body considered in this study is an eccentric hollow cylinder. The heat 
flux is applied on the cylinder inner surface and the heat is dissipated to the surroundings through the 
outer surface. The numerical method used in this study consists of three steps: 1) to apply a 
boundary-fitted grid generation (elliptic) method to generate grid over eccentric hollow cylinder (an 
irregular shape) and then solve for the steady-state heat conduction equation with variable thermal 
conductivity to compute the temperature values in the cylinder, 2) to propose a new explicit sensitivity 
analysis scheme used in inverse analysis, and 3) to apply a gradient-based optimization method (in 
this study, conjugate gradient method) to minimize the mismatch between the computed temperature 
on the outer surface of the cylinder and simulated measured temperature distribution. The inverse 
analysis presented here is not involved with an adjoint equation and all the sensitivity coefficients can 
be computed in only one direct solution, without the need for the solution of the adjoint equation. The 
accuracy, efficiency, and robustness of the developed inverse analysis are demonstrated through 
presenting a test case with different initial guesses. 
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1. Introduction 

Direct heat transfer problems deal with the determination of temperature distribution in a heat 
conducting body from the known boundary conditions, the thermo-physical properties, and 
the geometric configuration of the heat conducting body. Unlike the direct heat transfer 
problems, inverse heat transfer problems (IHTPs) are concerned with the determination of 
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the boundary conditions, the thermo-physical properties, and the geometric configuration of 
the heat conducting body from the temperature measurement taken at some points inside the 
body or on some part of the boundary. The temperature distribution over heat conducting 
bodies can be obtained accurately as long as the thermo-physical properties and the 
associated boundary conditions are precisely known. However, accurate knowledge of these 
parameters relies on conducting expensive experiments with sophisticated instruments. 
These parameters may be estimated in an inexpensive manner using inverse methods. Over 
the past decades, inverse analysis has been extensively used to determine the thermal 
conductivity (constant, temperature-dependent, and spatially varying parameter) and the 
convection heat transfer coefficient [1-31] , the heat flux [32-34], and the boundary shape of 
bodies [35-39] using temperature measurement taken at some points inside the body or on 
some part of the boundary. However, the inverse heat transfer problems are ill-posed and 
mathematically challenging because the ill-posed problems are inherently unstable and very 
sensitive to small errors in input data. With the advent of high-speed computers, different 
numerical methods have been developed to deal with the inverse heat transfer problems and 
their ill-posed nature and overcome the instabilities of these problems. Among such 
numerical methods are iterative regularization techniques in which the solution of the inverse 
problem is improved sequentially. In these iterative methods, the discrepancy principle may 
be used as a criterion to stop the iteration and obtain a reasonably stable solution [40, 41].  

Functionally graded materials (FGMs), a relatively new class of composite materials, are 

inhomogeneous composites which are composed of two or more constituents phases [42-44]. These 

materials have extensive applications in extremely high temperature environments such as nuclear 

reactors, pressure vessel, and chemical plants [45]. The properties of these materials (such as thermal 

conductivity, modulus of elasticity, density, etc) vary smoothly and continuously with position by 

gradually varying the volume fraction of constituent materials [42]. Exponential type is one of 
commonly used material graduation forms for considering the variation of thermal 
conductivity of the functionally graded materials with position. In addition to the stress analysis, 
the direct and inverse heat transfer analysis of functionally graded hollow cylinders has also 
received much attention due to extensive use of them in industry [46-49]. In [46], an inverse 
transient heat conduction analysis is presented to estimate the imposed heat flux or the 
convective heat transfer coefficient on the inner surface of a long multi-layered functionally 
graded cylinder using the measured temperature on the outer surface of the cylinder. In [47], 
the unknown space-dependent thermal conductivity of a functionally graded hollow cylinder is 
estimated using an inverse analysis. The conjugate gradient method and the discrepancy 
principle were employed and the success of the inverse method depends on the type of the 
boundary conditions. In [48], an analytical method is used to study the transient heat 
conduction in a cylindrical shell of functionally graded material. It is assumed that the thermal 
conductivity is the power function of the radius of the cylinder. In [49], an inverse analysis 
based on the conjugate gradient method is used to estimate the time-dependent heat flux at 
the inner surface of a functionally graded hollow cylinder by using the simulated temperature 
measurements taken within the cylinder. 

However, analytical and numerical solutions of the direct and inverse heat conduction 
problems in the functionally graded hollow cylinders include limitations such as one-
dimensional (radial) analysis only, complexity of numerical method, significant 
implementation efforts, inability to considering a variety of boundary conditions, solution of 
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additional equations such as adjoint equation, high computational cost, separate estimation, 
and accuracy. So an accurate, efficient, and easy to implement method to handle the direct 
and the inverse heat conduction problems with an ability to consider the Dirichlet, the 
Neumann, and the Robin boundary condition to estimate the unknown parameters separately 
and simultaneously may be required. The estimation of the unknown parameters 
simultaneously has the advantage that two or more parameters involved in heat transfer 
problems may be estimated more efficient than when the parameters are estimated 
separately due to the number of the direct problem solutions. Moreover, due to the 
importance of eccentricity in heat transfer analysis of hollow cylinders [50, 51], in this study, 
an eccentricity is added to the functionally graded hollow cylinder problem to reveal the 
applicability of the proposed method to the geometries including eccentricity (an irregular 
geometry). In other words, the proposed method can be equally applied to the direct and the 
inverse heat conduction problems in the functionally graded hollow cylinders with and without 
eccentricity.   

To our knowledge, simultaneous estimation of boundary conditions imposed on different 
parts of boundary of FGMs (heat conducting bodies with spatially varying thermal 
conductivity) with an irregular shape using an inverse heat transfer analysis has not been 
investigated as yet. In this study, a numerical inverse analysis based on a new explicit 
sensitivity analysis scheme is developed for the simultaneous estimation of applied heat flux 
and heat transfer coefficient in a functionally graded eccentric hollow cylinder with spatially 
varying thermal conductivity. The thermal conductivity is assumed to vary exponentially with 
position in the cylinder. The heat flux is applied on the cylinder inner surface and the heat is 
dissipated to the surroundings through the outer surface. The elliptic grid generation 
technique is used to generate a mesh over the irregular body and then solve for the steady-
state heat conduction equation by transforming the cylinder shape (physical domain), the 
governing equation and the associated boundary conditions onto the computational domain. 
The discretization in the computational domain is carried out by the finite-difference method, 
a method chosen for its simplicity and ease of implementation. The novel aspect of the 
inverse analysis is its very efficient and accurate sensitivity analysis scheme in which explicit 
and easy to implement expressions for the sensitivity coefficients are derived which allow for 
the efficient and accurate computation of all sensitivity coefficients in one single direct 
problem solution only without the need for the solution of adjoint equation. The conjugate 
gradient method is used to minimize the objective function which is the difference between 
the computed temperature on part of the boundary and the measured temperature.  

The gradient of the objective function with respect to the unknown variables (here the heat 
flux and the heat transfer coefficient) can be computed using the solution of the adjoint 
method. In addition to the mathematical complexity, the computational cost of the solution of 
the adjoint equation is comparable to the solution of the direct heat conduction equation. 
Hence, the total computational cost of the computation of the gradient of the objective 
function with respect to the variables is roughly equal to the computational cost of two direct 
heat conduction equation solution at each iteration. As an alternative, if the finite-difference 
method is used to compute the sensitivity of the objective function to the variables, two 
(number of variables here) additional solutions of the direct heat conduction equation are 
needed which means a computational cost of three solutions of the direct heat conduction 
equation at each iteration. As already mentioned, the explicit sensitivity coefficients derived in 
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this study allow for the computation of all sensitivity coefficients with a negligible 
computational cost thereby computing the gradient of the objective function in one single 
direct heat conduction equation solution only without the need for the solution of adjoint 
equation or additional solutions of the direct problem. As the inverse analysis used in this 
study involves a large number of iterations to recover the unknown variables, the use of the 
proposed sensitivity analysis scheme decreases the computational cost significantly (due to 
less computational cost at each iteration). As will be shown, the sensitivity analysis scheme is 
also accurate and robust. Moreover, as the heat flux is applied at the inner surface of the 
hollow cylinder and the temperature measurements are taken on the outer surface (a 
different surface from the applied heat flux surface), one needs to relate the measured 
temperatures to the heat flux conveniently. As will be shown, the chain rule using the variable 
thermal conductivity components may be used to obtain such a relation.  

It should be noted that the although the cylinder inner and outer surface shapes are regular 
(circular), the eccentric hollow cylinder shape is irregular. Moreover, the formulations 
developed in this study to solve direct and inverse problems are general and can also be 
used for irregular inner and outer surface shapes as long as the general body shape can be 
mapped onto regular computational domain. 

 

2. Governing equation 

The heat conducting body (eccentric hollow cylinder) shown in Fig. 1 is made of functionally 
graded materials in which thermal conductivity varies exponentially with position in the 

cylinder. In other words, 2 3(1 ) (1 )
1

a x a yk a e e . For this problem, the two-dimensional steady-

state heat conduction equation with no heat generation can be stated as below 

 ( ( , ) ) ( ( , ) ) 0   in physical domain 
T T

k x y k x y
x x y y

  (1) 

subject to the boundary conditions 

  on (inner) boundary surface i
i

T q

n k
  (2) 

 ( - ) on (outer) boundary surface 
o o

o

T h
T T

n k
  (3) 

where ( , )k x y  is the thermal conductivity which varies exponentially over the domain .  
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Fig. 1 Eccentric hollow cylinder made of functionally graded materials is subjected to convective heat transfer on 

outer surface and heat flux q  on inner surface. The thermal conductivity ( , )k x y  varies exponentially with 

position in the cylinder. 

  

 

         a)                                               b) 
Fig. 2. Eccentric hollow cylinder (the physical domain) (a) and the corresponding computational domain (b).  

 

Here as the body shape is irregular, the elliptic grid generation method is used to discretize 
the physical domain and then the finite-difference method is used to approximate the 
derivatives of the field variable (temperature) at grid nodes by algebraic ones. This method is 
based on mapping the irregular physical domain (Fig. 2a) from the x  and y  physical plane 

onto the  and  computational one (Fig. 2b). Then the heat conduction equation and the 

associated boundary conditions (Eqs.(1) to (3)) are transformed from the x  and y  physical 

plane to the  and  computational plane. More details on the implementation of the elliptic  

A B
C D
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grid generation technique and solution procedure for the steady-state heat conduction 
equation can be found in [52]. Since the thermal conductivity is not constant and is a spatially 
varying parameter, we can expand Eq. (1) as follows  

 
2 2

2 2
0

k T T k T T
k k

x x y yx y
  

by simplifying, we get 

 
2 2

2 2
( ) 0
T T k T k T

k
x x y yx y

  (4) 

for the exponential material graduation type 

 2 3(1 ) (1 )
1

a x a yk a e e   (5) 

 2 3(1 ) (1 )
2 1

a x a y
x

k
k a a e e

x
  (6) 

 2 3(1 ) (1 )
3 1

a x a y
y

k
k a a e e

y
  (7) 

Thus Eq. (4) becomes 

 2 3 2 3 2 3

2 2
(1 ) (1 ) (1 ) (1 ) (1 ) (1 )

1 2 1 3 12 2
( ) 0a x a y a x a y a x a yT T T T

a e e a a e e a a e e
x yx y

  (8) 

or 

 2 3

2 2
(1 ) (1 )

1 2 32 2
( ) 0a x a y T T T T

a e e a a
x yx y

  (9) 

Since 2 3(1 ) (1 )
1 0a x a yk a e e , we get 

by substituting for xT , yT , xxT , and yyT  using the transformation relationships and the finite-

difference expressions [52], Eq. (4) will be  

 2 32

1 1 1
( 2 ) ( ) ( ) 0T T T a y T y T a x T x T

J JJ
  (11) 

 
2 2

2 32 2
( ) 0
T T T T

a a
x yx y

  (10) 
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where  

 1, 1,

1
( )

2 i j i jf f f   

 , 1 , 1

1
( )

2 i j i jf f f   

 1, , 1,2i j i j i jf f f f   

 , 1 , , 12i j i j i jf f f f   

 1, 1 1, 1 1, 1 1, 1

1
( )

4 i j i j i j i jf f f f f   (12) 

where , ,f x y T . And 

 2 2x y   

 x x y y   

 Jacobian of  t  ransformatio  n  J x y x y   (13) 

are the coefficients obtained from the elliptic grid generation method. By knowing the values 

for la , 1,2,3l  as well as ,i jx  and ,i jy  (nodal coordinates) from the elliptic grid generation 

step, Eq. (11) may be solved using an algebraic solver such as Maple to obtain an 

expression for ,i jT  in the body, as follows 

, 1, 1, , 1 , 1 2 2 3 3

0.5
( 2 )

( )i j i j i j i j i jT T T T T T a Jy T a Jy T a Jx T a Jx T

  (14) 

The term 
T

n
 at a boundary surface in the physical domain is related to 

T
 and/or 

T
 at 

the corresponding transformed boundary surface in the computational domain. At the inner 

surface i  and the outer surface o  , we have [52]  

 at inner surface :
1

( )i
i

T
T T

n J
  (15) 

 2 2x y   
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 at outer surface :
1

( )o
o

T
T T

n J
  (16) 

Thus, the boundary condition equation at the outer surface o  for the exponential material 

graduation type is written as  

 conduction convection| |
o o

q q   (17) 

 ( )
o

o

T
k h T T
n

  (18) 

 ( )
1

( )
o

T Tk h T T
J

  (19) 

at the outer surface o , we have 

 , 1, 2,

1
(3 4

2
)M j M j M jT T T T   (20) 

 , 1 , 1

1
)(

2 M jM jT T T   (21) 

Therefore, Eq. (19) becomes 

 , 1, , ,
, ,

2 11 ,3 41

2 2
M j M M j

M
j M j M j

M jj

T T T T T
k T T

J
h   (22) 

where the coefficients J , , and  defined in Eq. (13) are computed using the finite-

difference coefficients associated with the outer surface o . Solving Eq. (22) for ,M jT  gives 

the temperature distribution on the boundary surface o  as follows 

 M j M j M j M j M j
M j

M j

k T T T T hJ T
T

k hJ

, 1, 2, , 1 , 1
,

,

(4 ) 2

3 2
  (23) 

or  

 
2 , 3 ,

2 , 3 ,

(1 ) (1 )

1 1, 2, , 1 , 1
, (1 ) (1 )

1

(4 ) 2

3 2

M j M j

M j M j

a x a y

M j M j M j M j
M j a x a y

a e e T T T T hJ T
T

a e e hJ
 (24) 
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In a similar fashion, we can compute the temperature distribution on the inner surface i . At 

the inner surface i , we have  

 
i

T
q k

n
  (25) 

 q k T T
J

1
( )   (26) 

where  

 j j jT T T T1, 2, 3,

1
3 4

2
)(   (27) 

 j jT T T1, 1 1, 12

1
)(   (28) 

Therefore, Eq. (19) becomes 

 j j j j
j

jT T T T T
q k

J

1, 2, 3, 1, 1 1, 1
1,

3 41

2 2
  (29) 

where the coefficients J , , and  are computed using the finite-difference coefficients 

associated with the inner surface i . Solving Eq. (22) for jT1,  gives the temperature 

distribution on the boundary surface i  as follows 

 j j j j j
j

j

k T T T T qJ
T

k
1, 2, 3, 1, 1 1, 1

1,
1,

(4 ) 2

3
  (30) 

or 

 
2 1, 3 1,

2 1, 3 1,

(1 ) (1 )

1 2, 3, 1, 1 1, 1
1, (1 ) (1 )

1

(4 ) 2

3

j j

j j

a x a y

j j j j
j a x a y

a e e T T T T qJ
T

a e e
  (31) 

Since the branch cut (AB or CD in Fig. 1a) is inside the physical domain, the same procedure 

employed to obtain an algebraic expression for i jT , (Eq. (14)) can also be used to obtain an 

expression for the temperature on the branch cut, iT ,1  (and hence i NT , , as i i NT T,1 , , 

i M1, , ). However, some changes are needed in the terms discretized by the finite-

difference method (Equation (12)) as follows (Fig. 3) 
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 i if f f1,1 1,1

1
( )

2
  

 i i Nf f f,2 , 1

1
( )

2
  

 i i if f f f1,1 ,1 1,12   

 i i i Nf f f f,2 ,1 , 12   

 i i i N i Nf f f f f1,2 1,2 1, 1 1, 1

1
( )

4
  (32) 

where f x y T, , .  

 

Fig. 3 Definition of nodes on the branch cut. 

 

3. The inverse analysis  
3.1 Objective function  

The aim of this study is to simultaneously identify the heat flux applied at the inner surface i  

, q , and the heat transfer coefficient at the outer surface o , h . To do so, an inverse analysis 

is used so that the square of the difference between the computed temperature of the outer 

surface o  and the measured temperature of the same surface is minimized. This can be 

mathematically expressed as 

 
2

 at ,  at 
min : : Eq.(1) in ,  BCs in Eqs.(2)-(3)

o
i o

m
q h

C T TJ   (33) 

where mT  is the measured temperature and C  is a positive constant and can be considered 

as 10 , 0,1,2,nC n . The inverse analysis is used to minimize the following objective 

function expression: 
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1

2
, ( , )

2

( )
m

N

M j M j
j

C T TJ   (34) 

 

3.2 Sensitivity analysis 

Computation of derivative of objective function with respect to unknown variables is required 
in gradient-based optimization methods. Here the inverse problem is concerned with the 
calculation of the sensitivity of the objective function J  defined by Eq. (34) to q  and h . Thus, 

we can write 

 
1 1

, ,
, ( , ) , ( , )

2 2

2 ( ) 2 ( )
m m

N N
M j M j

M j M j M j M j
j j

T T
C T T T T C

h h h

J
  (35) 

 
1 1

, ,
, ( , ) , ( , )

2 2

2 ( ) 2 ( )
m m

N N
M j M j

M j M j M j M j
j j

T T
C T T T T C

q q q

J
  (36) 

In Eqs. (35) and (36), 
,M jT

C
h

 and 
,M jT

C
q

 are called the sensitivity coefficients and may 

be explicitly expressed by taking derivative of Eq. (23) with respect to the heat transfer 
coefficient h  and the heat flux q  as follows  

 , , 1, 2, , 1 , 1

2
,

2 ( 4 3 )

(3 2 )

M j M j M j M j M j M j

M j

T J k T T T T T

h k hJ
  (37) 

For the exponentially varying thermal conductivity 2 3(1 ) (1 )
1

a x a yk a e e  we can write Eq. (37) 

as 

 
2 , 3 ,

2 , 3 ,

(1 ) (1 )

, 1 1, 2, , 1 , 1

(1 ) (1 ) 2
1

2 ( 4 3 )

(3 2 )

M j M j

M j M j

a x a y

M j M j M j M j M j

a x a y

T J a e e T T T T T

h a e e hJ
 (38) 

As the heat flux q  is applied at the inner surface and the temperature measurements are 

taken on the outer surface (a different surface from the applied heat flux surface), chain rule 

(using the thermal conductivity components such as 2a  or 3a ) may be used to relate the 

simulated measured temperature ,M jT  to the heat flux q  as follows 
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,

, 2

2

M j

M j

T

T a

q q

a

  (39) 

we can write Eq. (26), as follows 

 2 1, 3 1,(1 ) (1 )

1

1 1
( ) ( )j j

i i

a x a y
a eq k T T T T

J J
e   (40) 

Hence, the denominator of Eq. (39) can be written as 

 2 1, 3 1,(1 ) (1 )

1 1,
2

1
( )j j

i

a x a y

j T T
q

a x e e
Ja

  (41) 

where the terms T , T , J , , and  are computed using the finite-difference coefficients 

associated with the inner surface i  (as in Eq. (29)). Moreover, the numerator of Eq. (39) can 

be obtained by taking derivative of ,M jT  with respect to 2a  using Eq. (24), as follows 

2 , 3 ,

2 , 3 ,

(1 ) (1 )

, 1 , 1, 2, , 1 , 1

(1 ) (1 ) 2
2 1

2 (4 3 )

(3 2 )

M j M j

M j M j

a x a y

M j M j M j M j M j M j

a x a y

T a x e e hJ T T T T T

a a e e hJ
 

 (42) 

Therefore, the expression in Eq. (39) can be computed by dividing the expression in Eq. (42) 
by the one in Eq. (41): 

2 , 3 ,

2 , 3 , 2 1, 3 1,

(1 ) (1 )

, 1 , 1, 2, , 1 , 1

(1 ) (1 ) (1 ) (1 )2
1 1 1,

1
( )

2 (4 3 )

(3 2 )

M j M j

M j M j j j

i

a x a y

M j M j M j M j M j M j

a x a y a x a y

j

T a x e e hJ T T T T T

q
a e e hJ a x e e T T

J

 

 (43) 

Therefore, the sensitivity coefficients 
,M jT

C
h

and 
,M jT

C
q

 can be computed in only one 

single direct problem solution without the need for solving an adjoint equation. The sensitivity 
matrix Ja  can be explicitly written as 
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,2,2

,3,3

, 1 , 1

( 2) 1 ( 2) 1

,

MM

MM

h q

M N M N

N N

TT

qh
TT

C C qh

T T

h q

Ja Ja   (44) 

 

3.3 The Conjugate Gradient Method (CGM) 

The conjugate gradient optimization method (a gradient-based optimization method) is used 
here to solve the inverse heat transfer problem. The objective function given by Eq. (34) is 

minimized by searching along the direction of descent (k) d  using a search step length (k)   .  

where ,f h q . The direction of descent of the current iteration is obtained as a linear 

combination of the direction of descent of the previous iteration and the gradient direction
(k)  J . Therefore,  

 (k) (k) (k) (k 1)d dJ   (46) 

The Polak-Ribiere formula [53] is used to compute the conjugation coefficient: 

 

T T
(k) (k) (k 1) (k) (k) (k 1)

(k)

(k 1) 2 T
(k 1) (k 1)

( ) ( )J J J J J J

J J J

  (47) 

The search step-length is given as follows [41] 

 
, ( , )(k

(k) (k) T

(k) (k) T (k) k)

)

(

[ ] [ ]
  

[ ] [ ]
mM j M jTd T

d d

Ja

Ja Ja
  (48) 

 

3.3.1 Optimization algorithm 

The following algorithm presents the direct and inverse analysis steps used to simultaneously 
determine the heat flux applied at the inner surface of a functionally graded eccentric hollow 
cylinder and the heat transfer coefficient at the outer surface of the cylinder: 

 (k 1) (k) (k) (k)ff d   (45) 
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1. Specify the physical domain, the boundary conditions, and the measured outer surface 
temperature. 

2. Generate the boundary-fitted grid using the elliptic grid generation method. 

3. Solve the direct problem of finding the temperature values at any grid points of the physical 
domain using an initial values for the heat flux and the heat transfer coefficient  (initial guess 
for h  and q ). 

4. Using Eq. (34), compute the objective function ( (k)J ). 

5. If value of the objective function obtained in step 4 is less than the specified stopping 
criterion, the optimization is finished. Otherwise, go to step 6. 

6. Compute the sensitivity matrices hJa and qJa  from Eq. (44) 

7. Compute the gradient directions (k)
hJ  and (k)

qJ   from Eqs. (35) and (36), respectively. 

8. Compute the conjugation coefficients (k)
h  and (k)

q  from Eq. (47). For k 0   set (0) 0 .  

9. Compute the directions of descent (k)
hd  and (k)

qd  from Eq. (46). 

10. Compute the search step lengths (k)
h  and (k)

q  from Eq. (48). 

11. From Eq. (45), evaluate the new values for h  and q  separately, namely (k 1)h  and (k 1)q .  

12. Set the next iteration (k = k +1) and return to the step 2. 

 

3.4 stopping criterion 

Without measurement errors, the inverse problem can be terminated if 

 (k)J   (49) 

where  is a small specified number. In this study, for the case of no measurement error, 
510  and 610  (depending on the value of C ). However, the measured temperatures 

will contain errors. In this case, the objective function value will not be zero at the end of the 
iterative process. As the computed temperatures approach the measured temperatures 
containing errors, during the minimization of the objective function (Eq. (34)), large 
oscillations may appear in the inverse problem solution resulting in an ill-posed character for 
the inverse problem. However, the conjugate gradient method may become well-posed if the 
Discrepancy Principle is used to terminate the iterative procedure. In the Discrepancy 
Principle, if the difference between computed and measured temperatures is of the order of 
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magnitude of the measurement errors, then the solution is assumed to be sufficiently 
accurate, that is, 

where  is the standard deviation of the measurement errors, which is assumed constant in 
the present analysis. We can obtain the following value for  by substituting Eq. (50) into Eq. 
(34) (objective function definition)  

 2( 2)C N   (51) 

Then the iterative procedure is terminated when the following criterion is satisfied  

 
 

4. Results 
Since the numerical procedure explained here is concerned with an irregular shape (eccentric 
hollow cylinder) with different boundary conditions, we first validate the results of the heat 
conduction equation solution with the ones from the finite element analysis software 
COMSOL due to its capability to define analytical expression for the spatially varying thermal 
conductivity easily. To do so, a grid independency study is initially carried out for the 
exponential material graduation using four different grid sizes of 40 30 , 60 50 , 100 80 , 
and 200 150 . In the grid size of M N , M  and N  are the number of nodes in the radial 
and angular directions, respectively.  The numerical values of the coefficients involved are 

listed in Table 1: 

 

Table 1 Data used for the heat conduction problem involving exponential material graduation. 

2

W
( )
m
q  

W
( )
m. C
k  

2

W
( )
m . C
h  ( C)T   

1000  , ,(1 0.02 ) (1 0.05 )
10 i j i jx y
e e  10  30  

 

 computed measuredT T   (50) 

 (k)J   (52) 
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a)                                                            b) 

 

 
c)                                                            d) 

Fig. 4 Grid independency study of heat conduction equation solution for exponential material graduation. The 
temperature distribution using four different grid sizes of 40 30  (a), 60 50  (b), 100 80  (c), and 200 150 (d). 
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a)                                                            b) 

Fig. 5 Solving the heat conduction equation using the finite element analysis solver COMSOL. The grid used (a) 
and the temperature distribution (b). 

 

 

 

 

 

a)                                                            b) 
Fig. 6 The comparison of temperatures obtained from the software COMSOL and our method. The points (20 points are 

used in COMSOL) on the branch cut (a) and the comparison of the temperatures on the branch cut (b). 
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Fig. 7 Exponential graduation of thermal conductivity. 

 

The result of the developed numerical method to solve heat conduction equation with the 
associated boundary conditions given in Table 1 is shown in Fig. 4 and the result from the 
solver COMSOL is depicted in Fig. 5. A comparison of the temperatures of the nodes on the 
branch cut (see Fig. 3) is depicted in Fig. 6. In this comparison the results obtained from the 
software COMSOL (using 20 points on the branch cut) and our code using the grid size of 
200 150  is plotted. The comparison of the results from both numerical methods reveals an 
excellent agreement thereby confirming the correctness of the implementation and the 
accuracy of the proposed method. Moreover, the spatially varying thermal conductivity 
distribution over the body (FGM) is shown in Fig. 7. 

Then the computed temperature distribution 
,M jT  ( 2, , 1j N ) is used as the simulated 

measured temperatures to recover the initially used heat flux and the heat transfer coefficient. 

In other words, the temperature distribution  
,M jT  ( 2, , 1j N ) obtained by solving the 

heat conduction equation using the numerical values specified in Table 1 is used to recover 

2

W
1000( )

m
q  and 

2

W
10( )

m . C
h . To facilitate the computation of the sensitivity matrix 

coefficients using the central finite-difference relations, the grid nodes ( ,1)M  and ( , )M N on 

corners of the outer surface o  are excluded from computing the temperature distribution. In 

the inverse analysis, the square of the difference between the temperature distribution of the 

outer surface 
o
 (obtained from the solution the direct problem at each iteration) and the 

simulated measured temperature distribution of the same surface (
o
) is to be minimized. 
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Test case: Using the problem data given in Table 1, the known (desired) values of 

2

W
1000( )

m
dq  and 

2

W
10( )

m . C
dh  are to be recovered by the proposed inverse analysis 

using the following three different initial guesses to demonstrate the robustness of the inverse 
analysis: 

     
1 1initial initial2 2

W W
500( ), 2( )

m m . C
q h   

2 2initial initial2 2

W W
2500( ), 25( )

m m . C
q h  

3 3initial initial2 2

W W
100( ), 30( )

m m . C
q h  

 

 

 

Initial guess 1: 
1 1initial initial2 2

W W
500( ), 2( )

m m . C
q h  

 

a)                                                            b) 
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c) 

Fig. 8 History of heat flux q  (a), heat transfer coefficient h  (b), and objective function for the initial guess 

1 1initial initial2 2

W W
500( ), 2( )

m m . C
q h  (c). 

 

Initial guess 2: 
2 2initial initial2 2

W W
2500( ), 25( )

m m . C
q h  

 

a)                                                            b) 
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c) 

Fig. 9 History of heat flux q  (a), heat transfer coefficient h  (b), and objective function for the initial guess 

2 2initial initial2 2

W W
2500( ), 25( )

m m . C
q h  (c). 

 

 

Initial guess 3: 
3 3initial initial2 2

W W
100( ), 30( )

m m . C
q h  

 

a)                                                            b) 
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c) 

Fig. 10 History of heat flux q  (a), heat transfer coefficient h  (b), and objective function for the initial guess 

3 3initial initial2 2

W W
100( ), 30( )

m m . C
q h  (c). 

 

Initial guess 2 (with measurement error): 
2 2initial initial2 2

W W
2500( ), 25( )

m m . C
q h  

In this study, the measured temperature containing random errors, meas
,M jT  ( 2, , 1)j N , is 

generated by adding an error term  to the exact temperature exact
,M jT  to give 

 meas exact
, ,M j M jT T   (53) 

where  is a random variable with normal distribution, zero mean, and unitary standard 
deviation. Assuming 99% confidence for the measured temperature,  lies in  the range 
2.576  2.576  and it is randomly generated by using MATLAB.  is the standard 

deviation of the measurement errors. In this study, 0.5 . The second initial guess, 

2 2initial initial2 2

W W
2500( ), 25( )

m m . C
q h  is considered to initiate the optimization process. 
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a)                                                            b) 

 

 

c) 

Fig. 11 History of heat flux q  (a), heat transfer coefficient h  (b), and objective function for the initial guess 

2 2initial initial2 2

W W
2500( ), 25( )

m m . C
q h  (c) by considering measurement error ( 0.5 ).   

 

 

Three different initial guesses are used to analyze the inverse analysis presented here. The 
initial guesses are selected so that they can reflect the accuracy, efficiency, and robustness 
of the inverse analysis. The convergence histories of the heat flux and the heat transfer 
coefficient for all three initial guesses are depicted in Fig. 8a,b, Fig. 9a,b, Fig. 10a,b, and Fig. 
11a,b (for the measurement error case), respectively. As shown in Fig. 8c, Fig. 9c, and Fig. 
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10c, a 100% reduction in the objective function and complete recovering of the values for q  

and h  (the heat flux and the heat transfer coefficient, respectively) are achieved by starting 
the optimization process from the initial guesses which are numerically far from the desired 
ones thereby confirming the robustness of the developed numerical procedure. Despite the 
large number of iterations for recovering the unknown variables, short computation time 
reveals the efficiency of the developed method. The details of the results, including the initial 
and final values for q  and h , the initial and final values of the objective function, the 

computation time, the number of iterations, and the percentage of the decrease in the 
objective function, are given in Table 2 (for both cases of no measurement error and a 
measurement error). In case of the measurement error ( 0.5 ), there is also a significant 
reduction (82.7%) in the objective function value (Fig. 11c). As shown in Table 2, for 0.5  
the errors in recovering the parameters h  and q  are 12% and 11.9%, respectively. The 

results are obtained by a FORTRAN compiler and computations are run on a PC with Intel 

Core i5 and 6G RAM. A tolerance of 710  is used in iterative loops to increase the accuracy 
of results. 

 

Table 2 A summary of results for the simultaneous determination of the heat flux q  and the heat transfer 

coefficient h .  

Grid 
size 

Desired 
value 

Initial 
(guess) 
value 

Final 
value 

Temperature  
measurement  

error 

Initial  

value of J  

Minimum  
value of 

J  

Reduction 
in objective 
function & 

computation 
time 

 
50 40  

2

2

W
1000.0( )

m
W

10.0( )
m . C

q

h
 

2

2

W
500.0( )

m
W

2.0( )
m . C

q

h
 

2

2

W
1000.0( )

m
W

10.0( )
m . C

q

h
 

0  5249371.48

( 100)C  

79.98 10

( 100)C  

100%  

(31m:04s)

(2360 iterations)  

 
50 40  

2

2

W
1000.0( )

m
W

10.0( )
m . C

q

h
 2

2

W
2500.0( )

m
W

25.0( )
m . C

q

h
 2

2

W
1000.0( )

m
W

10.0( )
m . C

q

h
 

0  5226.19  
( 100)C  

79.99 10  
( 100)C  

100%  

(47m:02s)

(2956 iterations)  

 
50 40  

2

2

W
1000.0( )

m
W

10.0( )
m . C

q

h
 2

2

W
100.0( )

m
W

30.0( )
m . C

q

h
 2

2

W
1000.0( )

m
W

10.0( )
m . C

q

h
 

0  22463354.18
( 1000)C  

69.99 10
( 1000)C  

100%  
(111m)

(22829 iterations)  

 
50 40  

2

2

W
1000.0( )

m
W

10.0( )
m . C

q

h
 2

2

W
2500.0( )

m
W

25.0( )
m . C

q

h
 2

2

W
1118.9( )

m
(error 11.89%)

W
11.2( )

m . C
(error 12%)

q

h

 

0.5  4939.79

( 100)C  

853.99
( 100)C  

82.7%  
(1714 iterations)  

 

 

5. Conclusion 
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By developing an efficient, accurate, robust, and easy to implement explicit sensitivity 
analysis scheme, we presented in this study an inverse analysis to simultaneously determine 
boundary conditions in a steady-state heat conduction problem in a functionally graded 
eccentric hollow cylinder. The boundary conditions of interest here, namely, the heat flux and 
the heat transfer coefficient, were imposed on two different parts of the cylinder boundary. 
The heat flux was applied on the inner surface of the cylinder and the heat transfer coefficient 
was imposed at the outer surface. The cylinder was made from a functionally graded material 
in which the thermal conductivity was exponentially a function of position in the cylinder. 
Although the proposed numerical inverse analysis is applicable to general irregular heat 
conducting bodies, the hollow cylinder was chosen to analyze due to the importance of such 
a geometry in heat transfer analysis. In order to solve the steady-state heat conduction 
equation, the two-dimensional irregular heat-conducting body (eccentric hollow cylinder) was 
transformed into a regular computational domain to perform all computations related to the 
direct and inverse heat conduction solution. The discretization of the physical domain was 
performed by the elliptic grid generation and the approximation of the derivatives of the field 
variable (temperature) at the grid nodes by algebraic ones was performed by using the finite-
difference method, a method chosen for the simplicity and the ease of implementation. The 
novelty of the inverse analysis lies in proposing an accurate and efficient explicit sensitivity 
analysis scheme with an advantage that it is not involved with an adjoint equation and 
additional solution of direct problem if the finite-difference method is used to calculate the 
sensitivity coefficients, and all the sensitivity coefficients can be computed efficiently in only 
one direct problem solution, without the need for the solution of the adjoint equation (to 
compute the gradient of the objective function with respect to the variables). As the heat flux 
was applied at the inner surface of the hollow cylinder and the temperature measurements 
were taken on a different surface, the chain rule using the  variable thermal conductivity 
components was used to obtain an explicit relation between the temperature on the outer 
surface and the heat flux applied on the inner surface. The conjugate gradient method was 
used to minimize the objective function and recover the desired parameters accurately. The 
accuracy, efficiency, and robustness of the proposed numerical procedure were 
demonstrated through presenting a test case with three different initial guesses. Moreover, 
the results revealed that the retrieved parameters were not too much affected by introduction 
of a significant measurement error. 
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