
1 Introduction 1 

Mercury (Hg) is a heavy metal with high biotoxicity. The toxicity of Hg depends 2 

on its chemical form (Clarkson 1998, Li et al. 2017). Organic Hg is more toxic than 3 

inorganic Hg. One of the most important forms of organic Hg is methylmercury 4 

(MeHg), which is a neurotoxin that bioaccumulates in aquatic and terrestrial food 5 

chains and can have extreme impacts on wildlife and human health (Mahaffey et al. 6 

2011) (Scheulhammer et al. 2007, Silver 1996). Elemental mercury (Hg0) is highly 7 

volatile and chemically stable and consequently can be dispersed via atmospheric 8 

circulation to areas far away from its source, with evidence of its deposition in 9 

non-populated regions such as the Qinghai-Tibet Plateau, high-altitude glaciers, the 10 

Antarctic and Arctic (Kang et al. 2016). Due to a "cold capture" effect, these specific 11 

locations may be global sinks for the accumulation of Hg and consequently important 12 

reservoirs in the global Hg cycle (Paudyal et al. 2017). Since the industrial revolution, 13 

the amount of Hg deposited in glaciers has increased sharply in line with increasing 14 

human activities (Kang et al. 2015, 2016). A study found that the total Hg content in 15 

high-altitude glaciers on the Tibetan Plateau increases with altitude, indicating that Hg 16 

deposited from the atmosphere may become trapped in glaciers, with the effect 17 

diminishing with increasing temperatures and decreasing altitudes (Huang et al. 2012). 18 

During glacier ablation, the proportion of Hg emitted into the atmosphere is very low, 19 

with the vast majority of Hg that is stored in snow and ice subsequently found in 20 

melt-waters that feed streams, rivers and lakes (Paudyal, et al. 2017; Kang et al., 21 

2019). Indeed, many studies have shown that the Hg in many fish has exceeded or 22 

approached a critical value in the lakes fed by glacial meltwater. Zhang (2014) found 23 

that among 166 wild fish sampled from 13 lakes or rivers in the Qinghai-Tibet Plateau, 24 

MeHg in 5 samples exceeded the Chinese National Standard Limit (500 ng g-1, 25 

GB2762-2005), and the MeHg concentration of Pseudecheneis sulcatus reached 1196 26 

ng g-1.  27 

Most MeHg in the environment is formed by microbial catalyzed methylation of 28 

inorganic Hg (Hsu-Kim et al. 2013). The main Hg methylation microorganisms are 29 

Sulfate-Reducing Bacteria (SRB), followed by Iron-Reducing Bacteria (FeRB) and 30 

Methanogens (Gilmour et al. 2013). The genes responsible for the process are hgcA, 31 

encoding a corrinoid protein, and hgcB, encoding a ferredoxin. The process of Hg 32 
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methylation is achieved by transfer of a methyl group by the corrinoid protein and 33 

reduction of the corrinoid cofactor by the ferredoxin (Parks et al. 2013). The presence 34 

of hgcAB orthologues reflects the ability of microorganisms to methylate Hg 35 

(Gilmour et al. 2013). Consequently, identification of these genes is valuable for 36 

studying the process of microbial Hg methylation in the environment (Du et al. 2017, 37 

Liu et al. 2014). There are two methods for analyzing the hgcAB gene in the 38 

environment in published research. One is based on PCR technology. The hgcAB gene 39 

sequence and abundance in the sample were obtained using hgcAB specific primers 40 

(Bae et al. 2014, Bravo et al. 2018, Du et al. 2017, Liu et al. 2014, Schaefer et al. 41 

2014, Xu et al. 2019 ). Another method is to screen out hgcAB homologous sequences 42 

in the metagenomic data of the sample by a BLAST-like method (Gionfriddo et al. 43 

2016, Liu et al. 2018, Podar et al. 2015). A significant positive correlation was 44 

observed between hgcA abundance and MeHg concentrations in soils (Bae et al. 2014, 45 

Du et al. 2017, Liu et al. 2018, Liu et al. 2014, Xu et al. 2019). hgcAB diversity and 46 

distribution was studied in >3500 microbial metagenomes, encompassing a broad 47 

range of environments, indicating that they have a high abundance and diversity in 48 

dissolved permafrost, lake and river sediments, and are derived from many unknown 49 

bacterial species in these environments (Podar et al. 2015). In the Antarctic, the 50 

marine microaerophilic bacterium Nitrospina was identified as a potential mercury 51 

methylator within sea ice and a source of MeHg in the Antarctic marine ecosystem 52 

(Gionfriddo et al. 2016). While this study indicated that a cold environment is 53 

important for microbial Hg methylation, the presence of microbial Hg methylation on 54 

glaciers that feed freshwater systems has not been reported. 55 

The glaciers of the Tibetan Plateau are the water reservoir for billions of people 56 

living downstream in China, India and many other Asian countries (Immerzeel et al. 57 

2010). Millions of people living downstream are dependent on melt water from these 58 

glaciers as the most important sources of fresh water. The accumulated Hg in the 59 

glacier can be released and subsequently pollute downstream ecosystems, causing 60 

potential risks to human and the ecosystem health (Zhang et al. 2014). The rapid 61 

economic development of Asian countries has enhanced the emission of 62 

anthropogenic Hg to the environment (Chakraborty et al. 2013, Streets et al. 2011). 63 

The Laohugou No.12 glacier is located in the western part of the Qilian Mountains in 64 

the northeast of the Qinghai-Tibet Plateau, accounting for 53.6% of the total area of 65 



the Laohugou glacier. Its glacial meltwater is an important source of the Changma 66 

River. To identify potential microbially mediated Hg transformations within the ice, 67 

we combined Hg speciation measurements and metagenomic analysis of microbial 68 

community DNA extracted from glacial samples, focusing on the hgcA and hgcB 69 

genes. This study indicates the potential importance of microbial Hg methylation in 70 

glaciers. The objectives of the study were to: 1) Determine whether Hg methylation 71 

microorganisms are present on the glacier; and 2) Assess where microbial-mediated 72 

mercury methylation is more likely to occur.  73 

2 Material and methods 74 

2.1 Site description and Sampling 75 

The Qilian Mts. are located in the northeastern edge of the Tibetan Plateau. 76 

Laohugou Glacier No. 12 is the largest glacier in the Laohugou Valley which is 77 

located in the northern slope of the western section of the Qilian Mountains (96°31′E, 78 

39°30′N). The area of the glacier is approximately 20.49 km2 and the length is about 79 

10.1 km. The annual average temperature is -5.90 °C and the mean annual 80 

precipitation is 358.6 mm (Zhang et al. 2016). 81 

The samples were collected at the downstream ablation area (altitude 4250 m) of 82 

Laohugou Glacier No. 12 in October 22th 2017. Six sample types were collected: 83 

fresh snow (FS), supraglacial ice (SI), supraglacial cryoconite (SC, the area with dark 84 

debris on the surface of the glacier), dusty layers (DL, the internal area with dark 85 

debris), clean layers (CL, the internal area with little or no dark debris) and glacial 86 

meltwater (GM). Ice and snow samples were collected with high density polyethylene 87 

spatulas. The spatulas were soaked in 20% HNO3 for 24 h and washed three times 88 

with sterile ultrapure water before use. The glacial meltwater was collected, avoiding 89 

contamination by measures such as wearing sterile polyethylene gloves. Five samples 90 

of each type were collected with sample sites more than 1 meter apart. Fresh snow 91 

samples were collected from the surface of the glacier; it had snowed the day before 92 

sample collection. The samples of dusty layers ice and clean layers ice were collected 93 

from glacier transects resulting from glacier ablation. Ten cm of glacier transect was 94 

removed before sampling. One litre per sample was collected. The samples were 95 

placed into sterile Nasco Whirl-Pak sample bags. Samples were kept below zero 96 



during shipment and then were stored at −20 °C until the analyses were performed. 97 

Samples used for total mercury (THg), methylmercury (MeHg) analysis were stored 98 

in 50 mL polypropylene BD Falcon® centrifuge tubes with 250 μL BV-III grade 99 

(CMOS) HCl (Beihua Chemical, China) added immediately (the ice and snow 100 

samples were added after melting).  101 

2.2 Measurement of sample chemical characteristics 102 

The snow and ice samples were melted at room temperature in a laminar flow 103 

hood before analysis. Chemical analyses of all samples include THg, MeHg, 104 

dissolved organic carbon (DOC), total nitrogen (TN), pH and major soluble ions (Ca2+, 105 

Mg2+, K+, Na+, NH4
+, Li+, SO4

2-, NO3
-, NO2

-, Cl- and F-). We followed the US EPA 106 

Method 1631 (version E; US EPA, 2002) for THg analysis in melted snow/ice 107 

samples. Analysis for Hg was performed by using a Tekran 2600 mercury analyzer in 108 

a Class 1000 metal-free laboratory cleanroom at the State Key Laboratory of 109 

Cryospheric Sciences, Chinese Academy of Sciences, Lanzhou, China. Analysis of 110 

MeHg was determined using the EPA Method 1630, which involves distillation, water 111 

ethylation, purging, trapping and cold atomic fluorescence (EPA, 1998). Total MeHg 112 

was determined using a Tekran 2700 fully automated methylmercury analyzer. The 113 

instrument method detection limit is 0.002 ng·L−1 (Sun et al. 2018). Quality assurance 114 

and quality control for THg and MeHg determination were performed as Sun et al. 115 

(2018). The range of recovery rate for THg standard solution (5.00 ng·L−1) was from 116 

93%-105%. The THg concentrations of field blanks and sampling container blanks 117 

were <0.10 ng·L−1. The range of recovery rate for MeHg standard solution (0.05 118 

ng·L−1) was from 82%-121%. The MeHg concentrations of field blanks and sampling 119 

container blanks were <0.0.002 ng·L−1. The DOC and TN contents were quantified 120 

with a TOC-VCPH carbon analyzer (Shimadzu Corp., Japan). The pH values were 121 

analyzed with a pH meter (PT-10, Sartorius, Göttingen, Germany). Analysis of 122 

soluble cations was perfomed by ion chromatography DX320 (Dionex Corp., USA), 123 

and of soluble anions by ion chromatography ICS-500 (Dionex Corp., USA) 124 

2.3 DNA extraction and sequencing 125 

The melted water samples were filtered through a 0.22 μm filter, discarding the 126 

large stones at the bottom. The fine sediment and the filter members were combined, 127 

and the DNA was extracted using a DNeasy PowerMax Soil Kit (QIAGEN, Corp., 128 



Germany), following the manufacturer’s instructions. Since the DNA concentration of 129 

a single sample did not meet the minimum standards for metagenomic sequencing, we 130 

combined samples of the same type for sequencing. Sequencing was performed using 131 

an Illumina HiSeq 2500 PE150 (Illumina Corp., USA). 132 

2.4 Metagenome analyses 133 

We used software cutadapt (v1.9.1) to remove the linker and low-quality reads 134 

from the raw reads (150 bp in length) to obtain clean data for subsequent information 135 

analysis (Table S1). Based on the optimized clean data, SOAPdenovo (v2) software 136 

was used for assembly analysis. For each sample, different K-mers (49, 55, 61) were 137 

assembled, and the N50 maximum scaffolds result was selected as the result of the 138 

assembly. Coding genes were predicted using MetaGeneMark (v3.26) software. The 139 

predicted gene sequences were further deduplicated using the sequence clustering 140 

software CD-HIT (v4.5.6). Using BWA (version 0.7.12) comparison software, the 141 

pre-processed reads were aligned to the constructed non-redundant gene set unigene 142 

sequence, and then based on the number of reads and gene length on each unigene 143 

alignment, unigene abundances were obtained for each sample. The unigene 144 

sequences were blasted against the NR database using MEGAN (v6.4.4) software to 145 

obtain the community composition of all samples. The metagenomic sequences have 146 

been deposited with the NCBI under accession number PRJNA560154. 147 

Homologous sequences for hgcA, hgcB, merA, merB, merR and merP were 148 

screened from metagenomic raw read set with HMMER 3.2.1 149 

(http://www.hmmer.org/). The HMM using Profile hidden Markov models (HMMs) 150 

is more sensitive and accurate in identifying homologs compared with BLAST or 151 

other similar methods. First, the HMM profile was constructed with the known 152 

complete sequences of the genes hgcA, hgcB, merA, merB, merR and merP. The 153 

sequences of hgcA and hgcB were from Liu et al. (2018). The merA, merB, merR and 154 

merP were from Boyd and Barkay (2012). Using the EMBOSS toolset (Madeira et al. 155 

2019), the reads were translated using the bacterial translation table into amino acid 156 

sequences for each possible ORF. This amino acid sequence set was searched using 157 

HMMsearch, and reads below a threshold e-value of 0.01 were removed to obtain the 158 

homologous gene sequence set. False positive sequences in HMMsearch results based 159 

on hgcA HMM profiles were determined by aligning the conserved domain (cap helix 160 



and transmembrane regions) of the hgcA gene. The resulting hgcA homolog sequences 161 

were further validated by BLAST searches. The closest taxon distribution of hgcA 162 

homology sequences were annotated by BLAST with the NCBI NR database and 163 

known Hg methyl microbial sequences. In order to compare the abundance of hgcA, 164 

hgcB, merA, merB, merR and merP between samples, we normalized them to 165 

metagenome size (Gbp). 166 

2.5 Statistical analyses 167 

The statistical analyses were performed with SPSS 19.0. Comparisons of THg 168 

and MeHg concentrations among the 6 kinds of sample were performed using 169 

two-way analysis of variation (ANOVA) followed by Tukey’s multiple comparison 170 

tests. The relationship between chemical characteristics, or chemical characteristics 171 

with the relative abundance of hgcA, hgcB, merA, merB, merR and merP or THg, 172 

MeHg with microbial community or KEGG pathway were performed using 173 

Spearman’s correlation. Spearman correlation coefficients were corrected using the 174 

False Discovery Rate (FDR). 175 

3 Results 176 

3.1 Concentration levels of THg and MeHg in the glacier terminus and their 177 

relationship with other ions 178 

In the six types of samples at the glacier terminus, the concentration of THg 179 

ranged from 22.4 ng/L to 172.1 ng/L. The concentration of THg in SC and DL were 180 

significantly higher than FS, SI, CL and GM (Figure 1). The mean values of THg in 181 

SC (149.1 ng/L) and DL (141.8 ng/L) were two times greater than in other sample 182 

types. The site with the lowest THg concentration was GM3, and the site with the 183 

highest value was SC3 (Table S2). The concentration of MeHg ranged between 0.005 184 

ng/L to 0.465 ng/L. There was no significant difference in MeHg concentrations in 185 

the six environments. However, in SC and DL, the MeHg concentrations exhibited the 186 

greatest variation. In SC, the MeHg concentration of SC1 is 2.2 times the average 187 

value, and in DL, for DL2 it is 2.6 times the average value (Figure 1, Table S2). 188 

Therefore, the ratio of MeHg to THg changed drastically (Table S2). The mean ratio 189 

of MeHg to THg was FS>SI>GM>CL>SC>DL. Compared with glacier meltwater, 190 

runoff and wetland in the Zhadang-Qugaqie Basin, which is located in the 191 



south-central Tibetan Plateau, the concentration of THg in this study was higher, the 192 

MeHg concentration were lower, and ratio of MeHg to THg was lower (Sun et al. 193 

2018). Compared with snow samples from the Xiao Dongkemadi Glacier in the 194 

central Tibetan Plateau, the THg concentration in this study was lower than in snow 195 

from August, but higher than in snow from May, June, July, September and October 196 

(Paudyal et al. 2017). 197 

Through Spearman correlation analysis, we found the concentrations of THg in 198 

the samples from the glacier terminus were positively correlated with K+ 199 

concentrations, in particular, and less so with Ca2+ and Mg2+ concentrations (Figure S1, 200 

Table S3). 201 

3.2 The microbial communities of the glacier terminus and their relationship with 202 

THg and MeHg 203 

At the terminus of the Laohugou glacier, the proportion of unclassified 204 

sequences was very high, with a mean relative abundance of 52.6% in the 6 kinds of 205 

sample type, and as high as 65% in the SC samples. Other sequences belonged to 66 206 

bacterial phyla, 22 eukaryotic phyla and 2 archaeal phyla. The most abundant phylum 207 

was Proteobacteria with a mean relative abundance of 41.2%. The following is 208 

Bacteroidetes, and its mean relative abundance was 3.1%. The most abundant 209 

eukaryota were Chordata and Arthropoda, with mean relative abundances were 0.91% 210 

and 0.03%, respectively (Figure 2). 211 

The composition of the microbial community in FS was the lowest microbial 212 

diversity. The Proteobacteria phylum accounted for 81.8% of all, and unclassified 213 

sequences accounted for 17.1% (Figure 2). Hierarchical cluster analysis shows that 214 

microbes in FS are significantly different from other environmental types (Figure 3). 215 

The relative abundance of Cyanobacteria in SC is the highest, at 4.4%. The Chordata 216 

phylum was highest in DL, with a relative abundance of 3.7%. The number of 217 

microbial phyla in GM was 75, higher than in any other sample type. Through 218 

Spearman correlation analysis, we only found a significant correlation between the 219 

Stenotrophomonas genus with THg concentration (p=0.971, FDR=0.036). 220 

3.3 Diversity and distribution of hgcA and hgcB genes at the glacier terminus 221 



Microbial Hg methylation hgcA homolog fragments were detected in FS, SC, DL, 222 

CL and GM samples from the Laohugou glacier terminus, but were absent in SI 223 

samples. In these six kinds of environment, the relative abundance of hgcA was 224 

highest in DL. Next highest were SC, CL, GM and FS, respectively (Figure 4). 225 

Overall, hgcA abundance was highest in sediment-bearing samples. hgcB homolog 226 

fragments were found in all samples with a much higher relative abundance than for 227 

hgcA. The abundance of hgcB was highest in CL, followed by GM, DL, SC, SI and 228 

FS (Figure S2).  229 

The hgcA gene sequences from all samples were derived from 8 phyla 230 

(Firmicutes, Chloroflexi, Proteobacteria, Elusimicrobia, Euryarchaeota, Nitrospirae, 231 

Spirochaetes and Bacteroidetes) and several unclassified bacterial species with 232 

potential for Hg methylation at the terminus of the Laohugou glacier (Figure 5). 233 

Overall, sequences from the Firmicutes and Proteobacteria had the highest diversity. 234 

In DL, the main taxon from which hgcA sequences were derived was Clostridium. In 235 

SC samples, hgcA sequences were derived from unclassified species belonging to 236 

Proteobacteria, Bacteroidetes and other unclassified bacteria. In CL, the main 237 

representative taxa were Acetonema and Geobacter, whereas in GM, they were 238 

Geobacter and Methanomassiliicoccus. In FS, only hgcA sequences from the genus 239 

Clostridium were found. 240 

3.4 The relative abundance of merA, merB, merP and merR genes 241 

The merA, merB, merP and merR resistance and transport genes were detected in 242 

all samples. The variation in their relative abundance (in the raw data per GB) is 243 

indicated in Figure 6. The abundance of merA is significantly higher than for the other 244 

genes. Its relative abundance in the six environments was FS>CL>SI>GM>SC>DL. 245 

The relative abundance of merB in FS was significantly higher than in others sample 246 

types. The relative abundance of merP in the six environments was 247 

FS>GM>CL>SI>DL>SC. The relative abundance of merR was 248 

FS>SI>CL>GM>DL>SC. Overall, all four genes were most abundant in FS, 249 

contrasting with the lowest abundance of hgcA sequences in this sample type. 250 

4 Discussion  251 



Our analysis of the terminus of Laohugou Glacier No. 12 indicated that THg was 252 

most abundant in particulate layers (DL and SC). A positive correlation between 253 

concentrations of THg and other cations typically associated with particulate 254 

depositions indicated that the accumulation of Hg in this glacier could be due to 255 

anthropogenic generation, atmospheric dispersal and subsequent deposition of 256 

Hg-particulates.  A previous study into the origins of cryoconite deposited at 257 

Laohugou Glacier No. 12 indicated an influence by regional industrial emissions 258 

reflected in a the high black carbon content, as the glacier is near the Hexi Corridor in 259 

Gansu province with many large cities and many petroleum, iron and steel industries, 260 

(Dong et al, 2016). Hg is mainly in the gas phase in warm environments with low 261 

aerosols, but in the particle phase in cold environments with high aerosols (Zhou et al. 262 

2018). Our results are also consistent with another study into the spatial distribution of 263 

mercury in glaciers in the Tibetan plateau, which confirm the primary association 264 

with particulate matter (Huang et al. 2012). This study also reported increases of THg 265 

with increasing altitude, indicating that these glaciers act as a sink for global Hg 266 

cycling. Furthermore, whereas dissolved Hg in snow is preferentially released due to 267 

snowmelt, particulate-bound Hg is more likely to be retained (Sun et al. 2018), 268 

contributing to the sink effect.  269 

The sediment in these particulate layers is typically composed by mineral (85–270 

95% of total mass) and organic matter (Baccolo et al. 2017, Cook et al. 2016). It is a 271 

vital material for supporting growth of microbial organisms (Takeuchi et al. 2001, 272 

Takeuchi et al. 2010). A previous study of Tibetan glaciers, including the Laohugou 273 

Glacier, identified that these layers are dominated by Cyanobacteria, Chloroflexi, 274 

Betaproteobacteria, Bacteroidetes and Actinobacteria (Liu et al. 2017), but 275 

communities varied significantly between different geographical locations. With the 276 

exception of Actinobacteria, these phyla were also well represented in our study.  277 

But, our study highlights the abundance of unclassified species, representing over 278 

50% of species in all glacier samples except the relatively simple community in fresh 279 

snow. 280 

Confirming conclusions of other studies assessing the distribution of hgcAB 281 

genes (Gionfriddo, et al. 2016, Liu, et al. 2018, Podar, et al. 2015), we found that the 282 

presence of hgcB –like sequences in metagenomes was an unreliable predictor of the 283 



presence of mercury methylating bacteria in glacier samples. This can be attributed to 284 

the conserved [4Fe-4S] binding motif in HgcB which is shared with many other 285 

ferredoxins. In contrast, hgcA sequences were most abundant in the particulate layers 286 

in which THg is at highest concentration, but also in quite high abundance in clean 287 

layers and glacial meltwater. However, these sequences were derived from different 288 

profiles of bacterial phyla and genera in the different sample types. In cryoconite 289 

samples, the majority of sequences were from unclassified Bacteroidetes, 290 

Proteobacteria or unclassified bacteria. In dusty layer samples, the majority were from 291 

various Proteobacteria and Firmicutes. Whereas species of Geobacter were 292 

represented in all these different sample types, and have previously been associated 293 

with Hg methylation in paddy field soils (Liu et al. 2018), species of Nitrospirae were 294 

specific to meltwater. Comparative genomics indicates a strong evolutionary link 295 

between nitrite-oxidising Nitrospira and Nitrospina (Lücker et al. 2013), the latter 296 

being associated with Hg methylation in Antarctic sea ice (Gionfriddo, et al. 2016). 297 

The genes of the microbial mer operon confer Hg resistance and are involved in 298 

Hg transport and volatilization (Boyd and Barkay 2012). The abundance of these 299 

genes was highest in fresh snow samples; indeed, if the presence of merB sequences is 300 

a reliable indicator, mercury-resistant bacteria are clearly a lot more abundant in fresh 301 

snow compared to other sample types. This is consistent with another study indicating 302 

that Hg-resistant bacteria accounted for up to 31% of the culturable bacteria in snow, 303 

but only 2% in freshwater and brine (Moller et al. 2011). These bacteria are most 304 

likely to come from snowfall but could contribute to the volatilization of dissolved Hg 305 

in this layer. Although bacteria with the mer operon cannot convert inorganic mercury 306 

to methylmercury directly, they can also play an important role in transformation of 307 

mercury speciation. merA encode a mercuric reductase which can catalyze Hg(II) to 308 

be Hg(0). merB encode an organomercury lyase. There are also genes that allow 309 

bacteria to transport extracellular mercury into cells (Boyd and Barkay 2012). 310 

Therefore, microbes with a mer operon can influence the form and distribution of Hg 311 

in glaciers. Changes in the concentration of Hg(II) in local areas can affect mercury 312 

methylation by microorganisms. It may be more likely to occur in particulate layers 313 

with higher mercury and nutrient. 314 



Mercury methylation bacteria in particulate layers likely contributes to the 315 

mobilization of glacier-sequestered particulate-bound mercury. The particulate layers 316 

and microbial activity therein reduce the glacier surface albedo and accelerate melting 317 

of glacier ice (Anesio and Laybourn-Parry 2012, Cook et al. 2015, Musilova et al. 318 

2016, Takeuchi et al. 2014). MeHg has higher water solubility and migration capacity 319 

than particulate-bound mercury. In these conditions, we postulate that metabolically 320 

active bacteria identified in this study can methylate Hg, effectively mobilizing it to 321 

run off in the melt water. As a consequence, we found no direct correlation between 322 

MeHg concentrations and Hg-methylating bacteria in particulate glacier samples. A 323 

prediction is that, with climate change, this process will be accelerated, with 324 

consequent negative impact on downstream freshwater ecosystems and human health. 325 

The gravity of this scenario warrants further investigation into the role of 326 

Hg-methylating bacteria as glaciers retreat.  327 

Conclusions 328 

This is the first study of microbial Hg methylation in a high altitude mountain 329 

glacier. In the terminus of LHG glacier, the Hg concentrations in SC and DL samples 330 

which contain considerable debris and dust is higher than in FS, SI, CL and GM. In 331 

addition, MeHg concentrations were highest in some of these SC and DL samples. 332 

Bacterial hgcA Hg methylation genes were present in all samples except supraglacial 333 

ice but were of highest abundance in SC and DL. This suggested that microbial Hg 334 

methylation is most likely to occur in SC and DL. There were 8 phyla (Firmicutes, 335 

Chloroflexi, Proteobacteria, Elusimicrobia, Euryarchaeota, Nitrospirae, Spirochaetes 336 

and Bacteroidetes) and some unclassified of potential Hg methylation microorganism. 337 

37% of the sequences cannot be classified into any known genus. Most of the hgcA 338 

sequences were closely related to sequences from previously reported Hg methylating 339 

genera within the Deltaproteobacteria and Firmicutes, and the common 340 

Methanomicrobia was absent in glacial samples. The relative of merA, merB, merP 341 

and merR genes in fresh snow are higher than that in other samples. This indicates 342 

that such microorganisms in glaciers are most likely to come from snowfall. 343 
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Figure 1 Boxplot showing the concentration of THg and MeHg in the ablation area of the 490 
LHG glacier 491 

Figure 2 Analysis of community composition at the phylum level in in the ablation area of the 492 
LHG glacier 493 

Figure 3 Comparison of microbiology community composition at the genus level in the 494 
ablation area of the LHG glacier 495 

Figure 4 Relative abundance of hgcA genes (from shotgun metagenomic sequencing) 496 
normalized to metagenome size 497 

Figure 5 Closest phylum and genera assignments for hgcA gene/fragments for metagenomic 498 
data sets containing hgcA. Circle sizes represent the relative abundance of hgcA sequences 499 
assigned to a specific genus in each sample. 500 

Figure 6 Relative abundance of merA, merB, merP, and merR genes (from shotgun 501 
metagenomic sequencing) normalized to metagenome size. 502 
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