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Abstract

We study nonparametric methods for the setting where multiple distinct networks are
observed on the same set of nodes. Such samples may arise in the form of replicated networks
drawn from a common distribution, or in the form of heterogeneous networks, with the network
generating process varying from one network to another, e.g. dynamic and cross-sectional
networks. Nonparametric methods for undirected networks have focused on estimation of
the graphon model. While the graphon model accounts for nodal heterogeneity, it does not
account for network heterogeneity, a feature specific to applications where multiple networks
are observed. To address this setting of multiple networks, we propose a multi-graphon model
which allows node-level as well as network-level heterogeneity. We show how information from
multiple networks can be leveraged to enable estimation of the multi-graphon via standard
nonparametric regression techniques, e.g. kernel regression, orthogonal series estimation. We
study theoretical properties of the proposed estimator establishing recovery of the latent nodal
positions up to negligible error, and convergence of the multi-graphon estimator to the normal
distribution. Finite sample performance are investigated in a simulation study and application
to two real-world networks—a dynamic contact network of ants and a collection of structural
brain networks from different subjects—illustrate the utility of our approach.

Keywords: graphon, dynamic networks, cross-sectional networks, longitudinal networks, nonpara-
metric regression, generalized linear model

1 Introduction

Network data is commonly observed in a variety of real-world applications ranging from social
networks observing interactions between pairs of individuals to biological networks such as protein-
protein interactions. This has led to a growing interest on probabilistic models for network data
which not only offer a generative mechanism capturing empirically observed network effects, but
are also easily estimable using existing statistical approaches. We study the setting where multiple
distinct networks on the same set of nodes are observed. These may correspond to a collection of
networks over an ordered set such as time (e.g., dynamic networks), or an unordered set such as
networks from different subjects observed at a fixed point in time (cross-sectional networks). Given
such datasets it is natural to ask: how does the structure in networks change or evolve within the
collection?

A nonparametric approach to modeling undirected network data is achieved by the graphon
model [2, 10, 11, 18, 33], estimation of which has received a lot of attention (e.g. [13, 30, 31, 38–
40, 48, 51, 55]). However, this has mostly focused on estimation in the setting where only a
single network is observed. Nonparametric modeling and estimation for multiple networks, in
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general assumed to be non-identically distributed, has largely been ignored. In many applications
observing multiple networks, estimation under the general assumption of non-identically distributed
networks seems natural. For example, consider a network of individuals with edges determined by
similarity in political views, observed at multiple time points. Then in addition to a baseline model
where political views are determined by a signature specific to each individual, a second source of
variability arises from change in opinions over time as new information becomes available. Without
incorporating the second source of time-specific variability, we would average out important features
which possibly characterise and differentiate interaction behavior at different time points. With
this view, we propose a natural extension of the standard graphon model to incorporate network
heterogeneity in addition to nodal heterogeneity via a multi-graphon function. Further, we show
how information from multiple networks on the same set of nodes can be leveraged to enable
estimation via standard nonparametric regression techniques for both replicated (i.i.d networks)
and heterogeneous (independent but non-identically distributed) collection of networks.

The data consists of a collection of m distinct undirected networks without self-loops, on the
same set of n nodes, represented using adjacency matrices A1, . . . , Am. These networks may be
binary with each Al ∈ {0, 1}

n×n, and Aijl = 1 = Ajil, i 6= j indicating the presence of an edge
between nodes i and j in the lth network; or weighted with Aijl = Ajil recording the count of
interactions between nodes i and j in the lth network. Given a single undirected binary network
G, it is standard to assume that for i ≤ j, Gij are independent Bernoulli(Pij) trials, where Pij are
edge probabilities determined by an underlying two dimensional function f , known as the graphon,
e.g. [56]. For a non-identically distributed collection of networks, A1, . . . , Am, we consider a natural
extension of this model where Aijl, i ≤ j are independent Bernoulli(Pijl) trials, with Pijl denoting
edge-probability for node pair (i, j) in the lth network. We achieve this via a three-dimensional
bounded measurable function f : [0, 1]3 → [0, 1], we called multi-graphon, where the third dimension
allows for network-specific effects via network positions z1, . . . , zm and thus different interaction
probabilities in different networks. Further, the multi-graphon function by design is such that
averaging over network-specific effects brings us back to the standard graphon model for replicated
networks i.e., Aijl as independent Bernoulli(Pij) trials where Pij is now determined by the flattened
multi-graphon f̄ where f̄(x, y) =

∫
[0,1]

f(x, y; z)dz. Change in interactions over distinct networks

may arise as a result of a series of small changes occurring between consecutively observed networks
or as a result of ‘jumps’ (for example with f as a stepfunction in z). In this paper, we focus on
estimation of the multi-graphon array [fijl, (i, j, l) ∈ [n] × [n] × [m]] for heterogeneous networks
assumed to be generated from smooth kernels f and hence of a ‘slowly-varying’ type.

A key challenge in graphon estimation using standard nonparametric regression is the latency
of nodal positions corresponding to the observed response of pairwise interactions. This has led
to a variety of contributions focusing on histogram approximations to the graphon function, and
more specifically, graphon matrix estimation (e.g. [1, 13, 15, 31, 38–40, 48, 51, 55, 56]). One of the
main objectives in these methods is suitable identification of neighborhoods, either combinatorially
(e.g. [38, 51]); through assumptions like strict monotonicity of the degree sequence [15]; or through a
construction of distances between node pairs ([1, 39, 56]), each approach allowing a locally-averaged
estimator. The method of [56] is particularly attractive as it allows neighbors to vary from node
to node resulting in a local moving average estimator. Given the adaptive neighborhood choice, it
is closer to a Nadaraya-Watson type estimator with uniform weighting in each neighborhood, than
a standard histogram with fixed neighborhoods. While this offers a significant improvement over
local-constant or histogram estimators, in general, it lacks the flexibility and advantages offered
by the vast literature on standard nonparametric methods [20, 45, 50] (with different smoothing
techniques : local vs global, automatic smoothing parameter selection, direct implementation, to
name a few). Further, with the exception of [1], these methods are designed for graphon estimation
from a single network. The method of [1] provides a blockmodel approximation to graphon function
using multiple i.i.d. networks and thus corresponds to the special case of replicated networks.

We propose a two step multi-graphon estimator where the first step uses the similarity of
interactions between node pairs to construct an embedding of nodes in the Euclidean space, and
the second step achieves estimation via nonparametric regression using estimated nodal positions
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from the first step as design points. Intuitively, embedding of nodes in the first step is based on the
idea that for a smooth collection of networks, nodes ‘closer’ to each other, must connect ‘similarly’.
This leads to a concept of distances between pairs of nodes, first studied in [1] to cluster nodes
into a fixed number of blocks, leading to a histogram approximation to graphon. Similar distance-
based approaches have subsequently been used for adaptive neighborhood selection [56], and more
recently by [39] to allow estimation via fused lasso. Unlike these existing approaches, we study the
use of pairwise distance comparisons of the form dist(i, j) < dist(p, q),∀{i, j, p, q} ∈ {1, . . . , n} to
identify nodal positions x̂1, x̂2, . . . , x̂n ∈ (0, 1) via the ordinal embedding approach of [46]. Using
classical Fréchet bounds, we show that our pairwise nodal distance estimates concentrate jointly
at exponential rates. Further using results related to the “broken stick” theorem, we prove that
our maximal error in latent position estimate is O(log n/n). Leveraging this result, we find that
our proposed method achieves, in a range of data sampling regimes — this in terms of number of
network observations, number of nodes they contain, and average network density — the optimal
convergence rate of an oracle estimator that observes the true latent positions.

In the special case of replicated networks arising from a common distribution, we are concerned
with estimation of the standard two-dimensional graphon model and hence nonparametric regression
is achieved easily using the estimated nodal positions. In the case of heterogeneous networks
observed over time, it is assumed that network positions correspond to equi-spaced time points i.e.,
zl = tl, where tl = l/m, l ∈ [m], and our model reduces to the dynamic graphon model of [40]. For
heterogeneous cross-sectional networks, estimation of multi-graphon relies on the availability of
network-level covariates which are modeled as noisy measurements of unobserved network positions.
Intuitively, this is motivated from the empirical observation that networks with similar traits (such
as age or creativity scores of subjects in brain networks) often interact in ways similar to each
other [5, 49], and following related work such as [21] modeling dependence between node covariates
and unobserved node positions; covariates to explain link homophily [54].

Finite sample performance studied via Monte Carlo simulations demonstrate that our method is
comparable to existing methods for the case of replicated networks but performs significantly better
when heterogeneous collection of networks are observed. Useful insights on the performance of our
two-step approach are offered by comparisons with oracle versions of our estimator obtained using
knowledge of the true node and network positions. This offers a benchmark for comparison under
a fixed choice of smoothing technique. Further, we find that even with moderately informative
network-level covariates (signal-to-noise ratio of one), the proposed estimator leads to significant
improvements over existing methods in most cases.

We illustrate the usefulness of our approach using two real-world data sets: a contact network
of ants observed over a period of 41 days [36], and human connectome networks from multiple
subjects [29, 42]. Our results reveal interesting insights on the division of labor among ant workers
over time and on the link between brain region interactions and creativity levels. The multi-
graphon model leads to newer insights which are lost when estimation is performed under the
simplified assumption of replicated networks. Our multi-graphon estimates for the dynamic ant
contact network suggest that changes in intensity of interaction between ant workers over time
is possibly linked to changes in occupation of ant workers as they age (e.g., with younger nurse
ants becoming cleaners over time). Multi-graphon estimates for the connectome networks revealed
that intensities of interactions between certain brain region pairs may significantly increase and
subsequently decrease (or vice versa) with increase in creativity scores, suggesting that high level
analyses achieved via clustering of brain networks into low and high creativity groups (e.g. [19]),
must be fine tuned to achieve a more accurate account of changes in brain region interactions with
increase in creativity levels. An application of the estimated multi-graphon model to resampling
brain networks shows that our estimated model captures the well-known small-world behavior of
high creativity brains.
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2 Model Elicitation

A probabilistic generative mechanism for a collection of m heterogenous undirected networks, each
on n nodes, represented via adjacencies A1, . . . , Am, where each Al ∈ {0, 1}

n×n, l = 1, . . . ,m is
elicited via a multi-graphon defined below.

Definition 1 (Multi-graphon). We call multi-graphon a function f : [0, 1]3 → [0, 1], such that
for any given z ∈ [0, 1], f(x, y; z) is a graphon in the conventional sense, i.e., integrable and
f(x, y; z) = f(y, x; z).

Definition 2 (Generalized random graph model G(n,m, ρnf)). Let (x1, . . . , xn) be a random
vector sampled from a distribution Px supported on [0, 1]n. Further, let (z1, . . . , zm) denote a
random vector sampled from a distribution Pz supported on [0, 1]m. Given a multi-graphon f ,
conditional on the sampled positions xi, xj , zl, we model Aijl ∈ {0, 1} for all {i, j} ⊂ [n] × [n],
l ∈ [m], as independent Bernoulli trials with

Aijl |xi, xj , zl ∼ Bernoulli
(
Pijl

)
,

where Pijl = ρnf(xi, xj ; zl), and ρn ∈ (0, 1), a decreasing function of n, determines the global
sparsity of networks (e.g. [8, 9, 38]).

For identifiability of ρn, it is assumed that
∫
[0,1]

2 f(u, v; z)dudv = 1 for any z ∈ [0, 1]. Then,

clearly, for a binary network E(Aijl) = P (Aijl = 1) = ρn, and ρn may be estimated as the average
proportion of non-zero edges in each network, i.e.,

ρ̂n =

∑m
l=1

∑
i≤j Aijl

m
(
n
2

) .

A significant proportion of the literature on dynamic (or multi-graph) network models are
extensions of single network models augmented with a Markovian assumption to describe network
evolution over time [32, 34]. Other related work includes latent space approaches modeling node
and network dynamics through a single latent variable [22, 43, 44, 53]. On the other hand, our
model assumes a common latent nodal space and a separate network-specific latent variable which
allows varying interaction probabilities across network samples for any given pair of nodes. This
feature allows a simple but flexible approach to capturing network-specific effects in a collection
of slowly-varying networks, and has been studied in the context of multi-graph SBM [25, 27] and
more recently [4].

Remark 1. Following the Bernoulli model for Aijl given above, weighted edges between nodes i
and j in the lth network are conditionally independent Binomial random variables with success
probabilities Pijl.

Definition 3 (Flattened f). For a multi-graphon f , the flattened multi-graphon denoted as f̄ , is
such that f̄(u, v) 7→

∫
[0,1]

f(u, v; z)dz.

Note that the flattened multi-graphon f̄ is a graphon function. Following the literature on
graphons and graphon estimation (e.g. [30, 38]), we assume Px and Pz to be i.i.d. uniform denoted
as U [0, 1].

3 Latent position estimation via embedding

The main goal of this section is to show how latent nodal positions can be inferred consistently
using a pairwise distance measure together with the ordinal embedding approach of [46]. We
begin with the construction of a distance between pairs of nodes under the generalized random
graph model with a smooth multi-graphon f . Subsequently, in Proposition 1 we show that this
distance can be estimated consistently from adjacencies A1, . . . , Am ∼ G(n,m, ρnf). Further, we
note that this distance, a semi-metric, corresponds to a metric on the purified graphon space. An
important consequence of this fact is that nodal positions (or neighborhoods, e.g. [1]) obtained via
this distance correspond to positions of nodes in the purified graphon space.
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3.1 Distance between node pairs

The concept of a distance between nodes of a network follows naturally for smooth multi-graphons:
for node pairs (i, j) closer to each other i.e., if xi is close to xj , then for most v and z, f(xi, v, z)
and f(xj , v, z) should also be close (e.g. [1]). With this idea, the l2 distance between multi-graphon
planes at xi and xj may be used to quantify distance between nodes i and j as

distij(f) =

∫
[0,1]

2

(
f(xi, v; z)− f(xj , v; z)

)2
dvdz. (3.1)

However, as we want to focus on the distance between vertices, which under the generalized random
graph model (see Definition 2) can be recovered through the flattened graphon f̄ , it is sufficient
to consider the distance based on the flattened graphon f̄ , i.e.,

distij(f̄) =

∫
[0,1]

(
f̄(xi, v)− f̄(xj , v)

)2
dv. (3.2)

This distance can be estimated exactly using the adjacencies A1, . . . , Am alone via Algorithm 1
given below, which is a generalization of the algorithm in [1] (see Section 3.1.1), to allow robust
estimation for networks, which may not necessarily be dense.

Algorithm 1: Matrix distance estimator.

Input: A collection of n× n adjacencies A1, . . . , Am
Output: An n× n matrix [d̂istij(A)]i,j measuring distances between node pairs

1 With S any (bm/2c)-subset of [m], set r̂ ∈ Rn×n such that ∀i, j ∈ [n],

r̂ij = 1
n−2

∑
k∈[n]\{i,j}

(
1
|S|
∑
l∈S Aikl

)(
1

m−|S|
∑
l∈[m]\S Akjl

)
;

2 Set d̂istij(A) = (r̂ii + r̂jj − r̂ij − r̂ji)+/ρ̂
2
n ∀i, j ∈ [n];

Proposition 1 (Consistency). For {i, j} ⊂ [n], if (A, ·) ∼ G(n,m, ρnf) |xi, xj and ε := (ρ2nm
2n)−1 =

o(1), then using Algorithm 1, and asymptotically in n and m,

d̂istij(A) = distij(f̄) + ιij ,

where E ιij = 0 and ιij = Op(
√
ε).

3.1.1 Sparsity

From Proposition 1 it is evident that we must have ρ2nm
2n→∞ for d̂ist(A) to be consistent. For

m slowly increasing, this requires nρn = ω(
√
n); i.e., the average degree growing at least as fast

as
√
n. Put another way, it requires the number of paths of length two between any two nodes to

behave like a Poisson(ρ2nm
2n), and we need the mean ρ2nm

2n to be large enough to carry a Normal
approximation. It follows that we are assuming that the total number of paths of length two
between any pair of nodes across network replicates is in general larger than 20. This assumption
could be unrealistic for some sparse networks . In case the assumption cannot be met we suggest
the following modification to Algorithm 1: instead of counting paths of length 2 between nodes i
and j to define r̂ in Step 1., use paths of length 2e, for integer e > 1; i.e., set

r̂
(e)
ij =

1

n− 2

∑
k∈[n]\{i,j}

(
1

|S|
∑
l∈S

Aeikl

) 1

m− |S|
∑

l∈[m]\S

Aekjl

.
Then, it is possible to first show with a direct walk counting argument that, (see e.g. [7])

Aeikl = #{paths of length e between i and k in A··l}+Op
(
(nρn)−1

)
.
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Then, by the exact same steps as in the proof of Proposition 1, we obtain that with f̄ (e)(u, v) =∫
[0,1]

e f(u, y1; z)f(y1, y2; z) · · · f(ye−1, v; z)dy1dy2 · · · dye−1dz,

d̂ist
(e)

ij (A) =

∫
[0,1]

(
f̄ (e)(xi, z)− f̄

(e)(xj , z)
)2
dz +Op

(
(nρn)−1 + (m2ρ2ln n

2e−1)−1
)
.

This reduces the density requirement to, nρn = ω( 2e
√
n), for m finite, at the cost of a coarser

distance. There is also a computational cost. Indeed, while both the space and computational
complexity of Algorithm 1 are O(n2m), the modified version above has the same space complexity,
but computation are O(nςm) (with ς the complexity of the matrix product.)

3.1.2 Pure graphons

A characterization of the distance given by 3.2 follows through its association with a metric induced
by f̄ . With D a distribution of latent nodal positions on [0, 1] and f a graphon, let

dist
(
(f̄ , D);xi, xj

)
:= Eu∼D

[(
f̄(xi, u)− f̄(u, xj)

)2]
,

Then, dist((f̄ , D); ·, ·) is a semi-metric on (0, 1) [33, Section 13]. For example, in our case, noting
that f̄ : (0, 1)2 → (0, 1) is a positive symmetric operator, and assuming f̄ to be of finite rank r > 0,
we may write f̄(u, v) =

∑
p≤r λpϕp(u)ϕp(v) where the ϕp form an orthogonal basis; i.e., for all

p, q,
∫
ϕp(u)ϕq(u)du = 1{p = q}. Then, writing ϕ(u) =

(√
λpϕp(u)

)
p∈[r], and setting D = U[0, 1]

the uniform distribution on [0, 1], we observe that

dist
(
(f̄ , D);u, v

)
= ‖ϕ(u)− ϕ(v)‖22,

thereby proving that dist((f̄ ,U);u, v) is the Euclidean distance between the images of u and v
projected by ϕ. However, by [33, Subsection 13.3], dist((f̄ , D); ·, ·) can be transformed into a
metric via purification of f̄ . Specifically, for a graphon f̄ , there exist maps ψ : [0, 1] → J and
f̄∗ : J2 → [0, 1] such that:

1. f̄∗(ψ(u), ψ(v)) = f̄(u, v) almost everywhere for i.i.d. u, v ∼ D, and

2. dist
(
(f̄∗, ψ(D)); ·, ·

)
is a metric on J ,

and f̄∗ is referred to as the purified graphon corresponding to f̄ . In [33, Section 13], arguments
are presented motivating the assumption that graphons, except some pathological cases, can be
purified in such a way that J is of dimension one.

3.2 Node embedding

As discussed above, our goal is to obtain nodal positions satisfying distance comparisons implied

by d̂ist(A). While we could, for instance use the Gram operator, the quality of the estimate would
only scale, at best, with

√
ε, as seen in Proposition 1. We note that this rate can be significantly

improved through ordinal embedding [3, 46]. To justify the use of ordinal embedding we must first
show that our distance estimator will order the distances appropriately with high probability. This
is the case in our setting, as shown below in Proposition 2. We establish consistency of our nodal
position estimator (up to a similarity transformation) in Theorem 1.

Proposition 2. For {i, j, p, q} ⊂ [n], if (A, ·) ∼ G(n,m, ρf) |xi, xj , xp, xq and ε := ((ρ2nm
2n)−1 =

o(1/ log n), then using Algorithm 1 there exists c > 0 such that for n and m large enough

P

 d̂istij(A)− d̂istpq(A)

E
[
d̂istij(A)− d̂istpq(A)

] > 0

 ≥ 1− e−c/ε.
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Then, by the Fréchet inequality, asymptotically in n and m,

P

∀{i, j, p, q} ⊂ [n],
d̂istij(A)− d̂istpq(A)

E
[
d̂istij(A)− d̂istpq(A)

] > 0

 ≥ 1− n4e−c/ε → 1.

From the characterization of distance via the purified graphon, it follows that using ordinal

embedding on d̂ist(A) will yield an estimate of the the latent positions under the purified graphon
(the ψ(xi)s). Theorem 1 shows that this estimate is consistent, up to similarity transform, with
an error bounded by log n/n.

Theorem 1. Ordinal embedding with d̂ist(A) produces consistent (up to similarity transform)
estimators of the latent vertex location under the purified graphon, with a maximal error of order
log n/n.

Indeed, ordinal embedding positions converge at the same rate that the latent positions cover
the latent space [3, Theorem. 3]. Since the latent space is (0, 1) and the latent positions are i.i.d.
U(0, 1), we achieve a rate of log n/n by the broken stick theorem (see details in Appendix A).

4 Multi-graphon estimation

The algorithm for multi-graphon estimation based on embedding nodal positions is included below.
Theorem 2 shows that the resulting multi-graphon estimator is consistent for a family of piecewise
Lipschitz graphon functions. Further, our estimator achieves the optimal rate of

√
n+m, as if

the latent positions were observed. Given an n× n matrix G, let vec{G} denote vectorization of
G into an n2 length column vector obtained by stacking the transposed rows of G, on top of one
another.

Algorithm 2: Multi-graphon estimator.

Input: Adjacency matrices A1, . . . , Am, each n× n, observed at time points t1, . . . , tm
(dynamic networks), or with network-level covariates ž1, . . . , žm, each žl ∈ [0, 1]
(for cross-sectional networks)

Output: {f̂ijl; (i, j, l) ∈ [n]× [n]× [m]}
1 Use Algorithm 1. to construct d̂ist(A) ∈ Rn×n;

2 Use d̂ist(A) to obtain nodal position estimates x̂1, . . . , x̂n via ordinal embedding [46];
3 Perform smoothing via standard approaches such as kernel regression, regression splines,

to estimate P̂ijl = g(E(y|x̂i, x̂j , z̃l)) with y = [vec{Aijl}](i,j,l) as the n2m length response
vector corresponding to node-network positions [x̂i, x̂j , z̃l]i,j,l, (i, j, l) ∈ [n]× [n]× [m],
where z̃l = tl for dynamic networks and z̃l = žl for cross-sectional networks, and g
denotes a link function (e.g. logit for binary networks);

4 Set f̂ijl = ρ̂−1n P̂ijl, i, j ∈ [n], l ∈ [m] ;

Theorem 2. Fix a smooth multi-graphon function f . Assume that we observe žl, noisy measure-
ments of the true network positions zl, such that žl − zl has finite second moments. Call D the
joint distribution of a pair of latent xi’s and žk. Set h : [0, 1]4 → R such that h is symmetric in
its first two arguments, linear in the fourth, and that h and its first derivatives are finite almost
everywhere. Then, if ε := (ρ2nm

2n)−1 = o(1/ log n) and m = o
(
(n/ log n)2

)
, asymptotically in n

and m,

√
n+m

(
1

n2m

∑
i,j,l

h
(
x̂i, x̂j , žl, Aijl

)
− E(u,v,s)∼D h

(
u, v, s, f(u, v; s)

))
→ Normal

(
0,Σ

)
. (4.1)
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Theorem 2 shows that in the setting we consider (in effect, independent observations from a

smooth multi-graphon with (ρ2nn)−1/2 � m� n2), estimation of the latent nodal positions comes
at negligible accuracy cost. Indeed, the rate of convergence we obtain is

√
n+m, which is the same

rate as the optimal rate we could obtain if the latent position were observed [23]. This naturally
raises the question of what concretely this regime encompasses, and its limits.

The first case to consider is when m remains small, which corresponds most closely to the
setting where only a single adjacency matrix is observed. Then, our assumption translates into an
assumption on the density of the network — specifically ρn � 1/

√
n — which will be unrealistic

in some settings; e.g., social network observations tend to be much sparser in practice, with ρn
in the range of 1/n to log n/n [6]. However, other applications, such as connectome networks
could accommodate such a density regime [35]. This point puts into perspective Section 3.1.1,
which allows to relax the assumption for Theorem 2 in this setting to ρn � 1/ k

√
n for any k, at a

computational and bias cost.
Next, consider the case where network density ρn is in the range of 1/n to log n/n, as has been

observed in many settings [6]. Then our assumption translates to m � n, which is demanding,
especially when n is large. Here we note that while m � n is indeed demanding, it is not
unreasonable in the sense that Theorem 2 provides local graph statistics, specifically point-wise
estimate of all edges probabilities, and it could easily incorporate node specific covariates. If the
goal of estimation was instead to evaluate global estimates, say averaged across nodes or edges
such as motif counts [35], then the assumption could be relaxed.

Based on the results and remarks included above, we provide the recommended estimation
approach when (n,m, ρn) lie outside the regime of Theorem 2:

1. If m� n2, then one should perform n2 regressions, one for each pair of vertices, where the
response variable are the observed edges between the selected vertices. Thus, for each fixed
node pair (p, q) ∈ [n]×[n], ypq = [vec{Apql}]l as the lengthm response vector corresponding to
[z̃l]l, l ∈ [m]. The achieved rate will match ours in that regime, namely

√
m, but will be much

lighter computationally, and fully parallelizable. Intuitively, the idea is to borrow information
from ‘neighboring’ networks (in time or with similar traits) rather than neighboring nodes
due to m being much larger than n2.

2. If m� (nρ2n)−1/2, then one should estimate a graphon f̂ for each observed network separately
(using an existing approach for single networks, e.g. [38, 56]), and subsequently perform n2

local regressions, one for each pair of vertices with the estimated edge intensities as response
i.e., ypq = [vec{f̂pql}]l and network level covariates [z̃l]l, l ∈ [m] as regressors.

This follows from Section 3.1.1, and the achieved rate will depend on the smoothness of the
multi-graphon, but the said rate will be affected by the sparsity ρn; e.g., a graphon estimate
with

√
n blocks (a standard choice for number of blocks [38]), will converge at most at rate√

nρ2n [51], much slower than the rate under the (n,m, ρn) regime of Theorem 2. Note

that Section 3.1.1 allows for Theorem 2 to apply to cases where m� nkρk+1
n for some k.

Therefore, we conclude that Theorem 2 yields optimal rates for local graph statistics in the regimes
it applies to.

Remark 2. In the special case of replicated or i.i.d networks, we are concerned with estimation of
a common network generating process or the standard two-dimensional graphon [f̄(xi, xj); (i, j) ∈
[n] × [n]]. Using the aggregated adjacency Ā =

∑m
l=1A.../m and the estimated nodal positions

as above, we arrive at a special case of Theorem 2 given by Theorem 3 in Appendix A, which
shows that local regression with y = [vec{Āij}]i,j as the length n2 response vector with estimated
nodal positions [x̂i, x̂j ]i,j as the regressors, leads to a graphon estimator which enjoys the same
properties as the multi-graphon estimator.

Further, our algorithm for multi-graphon estimation with kernel regression using a uniform
kernel in Step 3. may be viewed as an extension to the neighborhood smoothing approach of [56]
(designed for single networks) to the setting of multiple networks, with neighborhood identification
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based on ordinal embedding. In general, our approach has the key advantage of enabling standard
nonparametric regression techniques due to the availability of nodal position estimates.

5 Finite sample performance

We conducted simulations to study finite sample performance of the proposed two-step multi-
graphon estimator for a synthetic collection of m networks, each on n nodes, generated using
functions f with different degrees of smoothness and in general, with network-specific variability.
Consider the following three multi-graphon functions:

1. f1(x, y; z) = (xy + βz2)/(0.25 + βz2)

2. f2(x, y; z) = (exp(−|x− y|/2) + βz)/(0.8522 + βz)

3. f3(x, y; z) = razIa=b + rabzIa 6=b, where a = dkxe and b = dkye, k = 2 (number of blocks),
and raz = 0.7− 0.0938βz, rabz = 0.3 + βxyz,

where in each example, setting β > 0 allows for heterogeneity across network samples A1, . . . , Am
through the network specific positions z1, . . . , zm, whereas β = 0 implies a replicated network sample
where Al, for each l ∈ [m] arises from a common distribution specified by f(x, y). Given fj , j =
1, 2, 3, heterogeneous networks were generated using β = 0.35, 0.5, 0.6, respectively. Intuitively, our
choice of β’s is such that it prevents the extremely smooth product kernel (f1) from approaching a
constant with increasing z, and on the other hand, allows the discrete-blockmodel (f3) to gain some
smoothness across blocks with increasing z. The structures implied by multi-graphons f1, f2, f3
with increasing network positions, precisely, (a) z = 0.05, (b) z = 0.5, and (c) z = 0.95, are
displayed in Fig. 1.

The first multi-graphon f1 determines links between pairs of nodes based on the product of
node-specific factors (x, y) and with additive network-specific effects via z, implying a smooth
surface. The smooth structure of f1 appears ideal for nonparametric regression, however, this may
also lead to a high variance in nodal position estimates due to similar distances between subsets
of nodes. This example is designed to understand the trade-off between these two aspects. The
second graphon f2 has a Robinsonian form (e.g., Hubert et al. (1998)) with a peak on the diagonal
and decreasing intensity as one moves away from the diagonal on either side. The third graphon f3
is a simple stochastic blockmodel with k = 2 blocks in the case of replicated networks i.e., β = 0.
Clearly, the probability of interaction between nodes across blocks is determined via rabz with
the network-specific factor z interacting with node-specific positions (x, y). Thus, across-block
probabilities increase non-uniformly across nodes, whereas, within-block probabilities determined
via raz (no interaction term) decrease uniformly across all nodes within the two blocks.

Given (n,m, ρnf), a generalized random graph sample comprising adjacencies A1, . . . , Am is
simulated via independent Bernoulli trials following Definition 2. We use uniformly distributed

latent nodal and network positions i.e., x1, . . . , xn
i.i.d∼ U(0, 1), and z1, . . . , zm

i.i.d∼ U(0, 1). Further,
network-level covariates žl, l ∈ [m] are sampled as noisy measurements of the corresponding
unobserved network-specific positions zl, l ∈ [m], i.e.,

žl = zl + εl, where εl ∼ N(0, σ2). (5.1)

Clearly, the quality of network-specific covariates ž as measurements of the unobserved latent
positions z is a function of the noise variance σ2. Since z ∼ U(0, 1) in our simulation set-up, we
chose σ = 0.28 implying a signal-to-noise ratio (SNR) of ≈ 1. An SNR of unity implies that the
‘signal’ (covariate) is only as strong as noise and thus allows us to examine the performance and
robustness of our method in settings where the observed covariates may not be ideal measurements
of the true latent network-specific positions.

We compare the performance of our two step multi-graphon estimator with competing methods
of SBA [1], SAS [15], USVT [16] and NBS [56]. The algorithm of SBA achieves graphon estimation
from a sample of multiple i.i.d. networks and hence corresponds to our case of replicated networks
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Figure 1: Synthetic multi-graphon functions f1 (top row), f2 (middle row), and f3 (bottom row),
with increasing network positions z across columns: (a) f(., .; z = 0.05), (b) f(., .; z = 0.5), and (c)
f(., .; z = 0.95). Here n = 150, m = 100.

(β = 0). In order to compare with SAS, USVT and NBS, designed to work with a single adjacency
matrix, we report results obtained using the aggregated adjacency Ā =

∑m
l=1A..l/m. As far as

we are aware, no competing methods exist for nonparametric estimation of the heterogeneous
network generating process given a collection of independent, non-identically distributed networks.
Noting this, we report comparisons of estimates obtained with our approach under oracle settings
described below.

The simulations are conducted with a view to understand the performance of our approach
for a given choice of nonparametric regression in Step 3. of Algorithm 2. This may not always
lead to the smallest possible MSE using our method but shall give us a view of the general finite
sample performance. We report results obtained with orthogonal series estimation with thin plate
regression splines as basis functions [52]. This was implemented in R using bam in package gam.
In general, our approach can be easily implemented in R using other smoothing techniques e.g.,
the Nadaraya Watson estimator which may be implemented using kernreg in package gplm.

5.1 Replicated networks (β = 0)

A comparison of our approach with existing methods based on MSE averaged over 50 replications
are reported in Table 1; visual comparisons from a single run are displayed in Fig. 2. To interpret
performance of our two-step estimator, we consider an oracle setting where the oracle informs order-
statistics of the true latent node-specific positions (rather than the exact nodal positions). This
information is used to directly construct oracle nodal position estimates denoted as x̂∗(i) = i/(n+
1) [17, 38], using which nonparametric regression is performed following Step 3. of Algorithm 2.
We refer to this as the oracle graphon estimator. Note that our oracle set-up does not assume the
nodal positions to be known and is designed to be closer to the actual set-up involving unobserved
design points.

First, comparing MSEs for estimates from the proposed method under the non-oracle setting
(‘Proposed’) with the oracle setting (‘Proposed∗’), we note significant differences between the two
for f1, and negligible difference for f3, across all sample sizes (n,m), n > 50. This indicates that
the first step of latent position estimation performs poorly for f1 and extremely well for f3. This is
what we expect due to the smooth structure of f1 leading to subsets of nodes with similar distances
and hence resulting in latent position estimates with high variance. The discrete structure of f3, on
the other hand, allows clearer separation between node pairs corresponding to the two blocks due
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Table 1: Mean squared error (± std. dev.) comparisons of graphon estimates, all multiplied by
103, averaged over 50 replications. Proposed∗ (proposed under oracle), SBA of [1], SAS of [15],
USVT of [16] and NBS of [56].

Graphon n m Proposed∗ Proposed SBA SAS USVT NBS

f1

50 150 26.80(23.60) 92.00(82.10) 339.40(185.10) 83.60(60.80) 48.10(55.20) 54.50(53.20)
100 150 11.00(9.70) 17.20(18.60) 240.50(118.20) 63.30(43.60) 21.40(28.70) 26.00(27.30)
150 150 8.70(7.60) 14.30(16.80) 272.80(215.20) 26.00(22.90) 14.70(20.30) 15.60(17.60)
150 50 10.10(12.70) 17.60(30.30) 181.90(214.80) 40.40(46.40) 21.70(34.80) 24.50(35.00)
150 100 6.20(4.60) 11.30(13.70) 186.10(199.80) 24.40(17.80) 10.90(12.20) 12.50(10.60)
150 150 8.70(7.60) 14.30(16.80) 272.80(215.20) 26.00(22.90) 14.70(20.30) 15.60(17.60)

f2

50 150 2.00(0.58) 4.70(3.90) 7.90(2.80) 11.50(1.50) 10.50(1.60) 6.70(0.83)
100 150 0.72(0.23) 1.60(2.90) 5.40(3.00) 11.10(1.20) 10.90(1.30) 2.70(0.74)
150 150 0.43(0.14) 0.96(2.20) 6.00(4.50) 10.40(0.87) 10.00(2.40) 1.40(0.44)
150 50 0.44(0.16) 1.00(1.60) 4.20(3.20) 10.20(0.72) 10.20(1.50) 1.60(0.38)
150 100 0.45(0.13) 0.79(1.30) 3.00(3.10) 10.40(1.00) 9.70(2.70) 1.50(0.53)
150 150 0.43(0.14) 0.96(2.20) 6.00(4.50) 10.40(0.87) 10.00(2.40) 1.40(0.44)

f3

50 150 9.70(5.80) 10.90(7.50) 2.70(7.20) 14.70(13.80) 0.86 (2.60) 0.75(0.08)
100 150 8.00(4.60) 8.30(5.30) 0.25(0.05) 10.60(10.70) 0.15(0.01) 0.27(0.01)
150 150 8.00(3.10) 7.80(3.06) 0.09(0.02) 9.70(12.20) 0.08(0.005) 0.02(0.006)
150 50 7.60(2.80) 7.90(3.30) 0.15(0.009) 13.20(13.20) 0.15(0.01) 0.24(0.01)
150 100 8.00(3.60) 7.80(3.20) 0.16(0.04) 11.40(12.50) 0.10(0.01) 0.17(0.01)
150 150 8.00(3.10) 7.80(3.06) 0.09(0.02) 9.70(12.20) 0.08(0.005) 0.02(0.006)

to significantly different distances, implying robust latent position estimates (as far as blockmodel
estimation is concerned). Similarly, comparing oracle and non-oracle MSEs for f2 indicate that
latent position estimation works reasonably well for these networks.

In comparison to existing approaches, our actual proposed estimator (non-oracle) leads to the
smallest MSE for f1 in all cases except when n = 50. A significant reduction in the MSE of f1 is
observed as n is increased from n = 50 to n = 100, suggesting that n = 50 nodes are insufficient
to perform reliable estimation for f1. For f2, our approach consistently leads to the smallest MSE
with NBS leading to the second best performance. The relatively higher variance of estimates from
our approach is due to high variance in nodal position estimation across replications. As discussed
earlier, this is due to the smooth structure of f2 (interestingly, heterogeneity across networks
reduces the variance in nodal position estimates significantly for f1 and f2: see results reported
in Section 5.2). In practice, we recommend re-running the first ordinal embedding step a few times
and subsequently selecting the nodal embedding with the lowest stress [46], as this resulted in a
reduced overall variance of estimates from the proposed method. For f3, SBA, USVT and NBS
lead to the best results with SAS leading to the highest MSE. The relatively higher MSEs from
our approach for f3 is due to the choice of nonparametric regression, precisely splines as basis
functions which are clearly not ideal for estimation of a discrete blockmodel. This is evident from
MSEs under the oracle setting, which are also high and comparable to MSEs under the actual
non-oracle setting.

We observe that MSEs decrease with increase in n for fixed m = 150 in all cases, however, this
is not necessarily the case with increase in m and n = 150 fixed, for f1 and f2. This appears to
be an artefact of estimation being performed with a different number of adjacencies (precisely m)
aggregated in each case, generated from functions with high degree of smoothness (f1 and f2).

5.2 Heterogeneous networks (β > 0)

We report simulation results for the general setting of cross-sectional networks observed with
network-level covariates ž1, . . . , žm. Two oracle settings are considered: (i) oracle 1′ informing
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Figure 2: A comparison of estimated graphon matrices for f1, f2, f3 with β = 0 (replicated
networks), in rows 1, 2, 3, respectively, where (a) true graphon f , (b) proposed methodology, (c)
SBA of [1] and (d) NBS of [56]. Here n = 150 and m = 100.

order statistics (i) of the true node-specific positions i, i.e., such that x(1) ≤ x(2) . . . ≤ x(n), and the

true network-specific positions z1, . . . , zm, and (ii) oracle 2′ which again informs order statistics of
the true node-specific positions exactly as oracle 1′, however, gives no information on the network
specific positions. Under both oracles x̂∗(i) = i/(n+ 1),∀i ∈ [n] provide oracle estimates of nodal
positions, and our algorithm for multi-graphon estimation reduces to nonparametric regression
using x̂∗(1), . . . , x̂

∗
(n), and with the exact network positions z1, . . . , zm under oracle 1′, whereas with

network-level covariate measurements ž1, . . . , žm under oracle 2′. Thus, oracle 1′ indicates the
best case performance which could be achieved for finite samples if the true set of neighboring
nodes were observed, however with imperfect nodal locations x̂∗(i). Oracle 2′ indicates the increase

in error (over oracle 1′) resulting from the use of network-level covariates žl instead of the true
network positions zl.

A comparison of our multi-graphon estimates with existing methods using MSE averaged over
50 replications is displayed in Table 2; visual comparisons of estimates from the proposed method,
SBA and NBS are displayed in Fig. 3. Unlike f3, for f1 and f2, the estimated nodal positions
implied the same structure as of the true [f(x(i), x(j); zl)]i,j,l suggesting that the purified flattened

graphon f̄∗ in these cases is identical to the actual flattened graphon f̄ . Intuitively, this is what we
expect given the smooth structure of f1, f2, and the mixed structure of f3. To allow comparisons
for f3, we plot our proposed estimate of f3 with rows and columns permuted to match the true
node ordering, i.e. [f3(x(i), x(j); zl)]i,j,l.

Table 2 reports MSEs of the multi-graphon array averaged separately for networks generated
with weak and strong network-specific effects, precisely, {l ∈ [m] : zl < 0.8} and {l ∈ [m] : zl ≥ 0.8},
respectively. From this table, we note the relatively higher MSEs of estimates under oracle 2′ in
comparison to oracle 1′. This increase in MSE results from the use of covariates employed as noisy
measurements for unobserved network positions, as expected. Further, comparing MSEs of oracle
2′ estimates with actual non-oracle estimates across f1, f2 and f3, it is apparent that f1 suffers the
most due to relatively poor estimation of latent nodal positions. As discussed earlier, this is due to
it’s extremely smooth structure. Further, we see that our method leads to notably lower MSE for
f1 in all cases except when n = 50. Due the smooth structure of f1, n = 50 nodes prove insufficient
for nodal position estimation resulting in a higher MSE. For f2, our method consistently leads
to the smallest MSE, with SBA and NBS leading to the second best performance. For f3, our
proposed estimator is comparable to the best performing approaches of USVT, NBS and SBA
for networks with stronger network-specific effects (higher values of z) but has a relatively higher
MSE otherwise. This is due to the fact that f3 is simply a discrete block model for smaller values
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Figure 3: Estimated multi-graphon matrices for f1 (row 1), f2 (row 2), and f3 (row 3) with
β > 0 (heterogeneous networks) at a fixed network position z = c, where (a) true multi-graphon
f(., .; z = c), (b) proposed methodology, (c) SBA of [1] and (d) NBS of [56]. Here n = 150 and
m = 100.

of z and thus estimation with splines as basis functions even with the true nodal locations does
not lead to improved estimation. This is apparent from the MSEs corresponding to the oracle
settings of the proposed method which also have higher MSEs for smaller values of z. Noting the
good performance of NBS for f3, we recommend using our approach with kernel regression (e.g.
with a uniform kernel) rather than splines, for multi-graphon estimation of networks with discrete
structure.

6 Two data examples

We illustrate the performance of the proposed multi-graphon estimator using two publicly available
data sets: (i) a dynamic contact network of ants [36], and (ii) a human connectome dataset named
Templeton-114 [29, 42].

6.1 Dynamic contact network of ants

With a view to understand division of labor among ant workers, movements in six colonies of the
ant Camponotus fellah were tracked over a period of 41 days with network interactions between any
two ant workers (nodes) determined by their physical proximity (see SI [36] for more details). We
illustrate our methodology using data from colony 3 which has the maximum number of overlapping
ant workers (precisely n = 96) over the duration of m = 41 days. This leads to 41 adjacency
matrices, each of size 96× 96, i.e., {Aijt, i, j ∈ [n]× [n], t ∈ [m]} with Aijt denoting the count of
interactions between ants i and j on day t. Using behavioral signatures of ant workers such as
visits to the brood, foraging trips and visits to the rubbish pile, each ant worker is also recorded to
be a nurse (N), or a forager (F) or a cleaner (C), respectively, across four consecutive time periods,
each of approximately 10 days [36].

Fig. 4 displays a rearrangement of the ant workers (nodes) sorted by increasing nodal positions
(x-axis) estimated following the proposed Algorithm 2, against their original ant indices as recorded
in the data set. Ant worker attributes such as their majority occupation (over the four time periods)
and age group are also displayed (see legend in Fig. 4). The dotted line in the middle, plotted
for reference, divides the set of nodes into two equal groups on each side. We note a clear spatial
segregation with the forager ants (‘∗’) always positioned to the left of the dotted line and a majority
of the nurse ants (‘4’) positioned to the right of the dotted line; cleaner ants (‘�’) are clearly
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Table 2: Mean squared error (± std. dev.) comparisons of (multi-)graphon estimates of f1, f2, f3
with β > 0, all multiplied by 103, averaged over 50 replications. Proposed∗ (proposed under oracles
1′ and 2′ ), SBA of [1], SAS of [15], USVT of [16] and NBS of [56]. MSE for multi-graphon
estimates from the proposed method are averaged for {f..l, zl < 0.8} and {f..l, zl ≥ 0.8}.

Proposed∗1′ Proposed∗2′ Proposed SBA SAS USVT NBS
f n m z < 0.8 z ≥ 0.8 z < 0.8 z ≥ 0.8 z < 0.8 z ≥ 0.8

f1

50 150 10.00(3.50) 7.50(1.60) 12.10(4.40) 9.30(2.60) 160.40(64.10) 83.80(23.40) 248.50(178.80) 75.80(45.40) 50.10(23.40) 55.10(28.80)
100 150 6.30(2.40) 3.90(0.63) 7.90(3.10) 5.90(1.70) 14.50(5.30) 10.20(2.00) 159.80(164.10) 58.40(38.80) 37.90(30.0) 37.40(27.20)
150 150 4.40(1.70) 2.60(0.38) 5.80(2.70) 3.80(1.70) 12.80(5.80) 7.30(2.10) 157.30(151.10) 38.90(22.70) 32.40(23.90) 30.80(20.10)
150 50 3.80(1.80) 2.40(0.48) 6.50(4.10) 5.40(1.60) 17.30(7.20) 11.50(2.20) 91.70(88.60) 40.40(22.40) 34.50(26.00) 33.40(21.30)
150 100 4.20(1.70) 2.40(0.27) 6.00(3.30) 4.00(1.40) 15.00(6.30) 9.10(2.10) 130(132.70) 40.30(22.70) 34.00(25.20) 32.10(21.10)
150 150 4.40(1.70) 2.60(0.38) 5.80(2.70) 3.80(1.70) 12.80(5.80) 7.30(2.10) 157.30(151.10) 38.90(22.70) 32.40(23.90) 30.80(20.10)

f2

50 150 1.70(0.15) 1.60(0.10) 1.90(0.31) 1.80(0.20) 3.60(0.60) 3.00(0.33) 4.80(1.70) 6.70(1.70) 5.80(1.40) 4.90(1.40)
100 150 0.36(0.08) 0.30(0.02) 0.41(0.15) 0.35(0.04) 0.46(0.16) 0.38(0.04) 2.90(1.80) 6.30(1.70) 5.90(1.50) 2.50(1.00)
150 150 0.35(0.08) 0.28(0.02) 0.40(0.14) 0.35(0.04) 0.41(0.14) 0.36(0.04) 3.00(1.90) 5.60(1.50) 5.50(1.40) 1.50(0.74)
150 50 0.36(0.08) 0.30(0.03) 0.40(0.14) 0.31(0.03) 0.42(0.14) 0.33(0.04) 2.40(1.30) 5.60(1.50) 5.50(1.30) 1.60(0.78)
150 100 0.36(0.08) 0.30(0.02) 0.41(0.15) 0.33(0.03) 0.46(0.16) 0.38(0.04) 1.80(1.30) 5.60(1.50) 5.50(1.30) 1.70(0.85)
150 150 0.35(0.08) 0.28(0.02) 0.40(0.14) 0.35(0.04) 0.41(0.14) 0.36(0.04) 3.00(1.90) 5.60(1.50) 5.50(1.40) 1.50(0.74)

f3

50 150 6.40(3.30) 2.70(0.55) 6.70(3.40) 2.90(0.13) 7.80(4.00) 3.30(0.70) 2.90(2.00) 13.40(9.50) 2.40(4.40) 2.20(1.80)
100 150 4.70(2.60) 2.10(0.55) 4.90(2.70) 2.30(0.18) 5.80(3.40) 2.50(0.63) 51.30(6.50) 53.60(5.90) 50.70(6.50) 51.00(6.50)
150 150 4.00(2.10) 1.80(0.44) 4.10(2.40) 1.90(0.46) 4.90(2.90) 2.10(0.47) 2.40(1.70) 13.90(9.00) 2.20(1.60) 2.20(1.59)
150 50 4.20(2.20) 1.90(0.45) 4.40(2.30) 2.10(0.27) 6.20(3.20) 3.00(0.64) 2.40(1.70) 15.80(9.90) 2.10(1.70) 2.20(1.70)
150 100 4.00(2.10) 1.80(0.39) 4.20(2.30) 2.00(0.41) 5.40(3.00) 2.50(0.45) 2.30(1.90) 13.80(8.70) 1.90(1.60) 2.00(1.60)
150 150 4.00(2.10) 1.80(0.44) 4.10(2.40) 1.90(0.46) 4.90(2.90) 2.10(0.47) 2.40(1.70) 13.90(9.00) 2.20(1.60) 2.20(1.59)

positioned in between these two larger occupational groups. This suggests that ant workers with
the same occupation were estimated to be closer to each other than ants with different occupations
via the distance estimation approach. Such a spatial segregation is clearly not implied by the age
attribute, as ants from the same age group are not always positioned closer to each other. Further,
we note that the queen ant (‘�’) is estimated to be spatially closer to the group of nurses (‘4’)
and is positioned far from cleaner and forager groups. This is in agreement with the well-known
behavior of queen ants who are solely responsible for reproduction.

We first study comparisons for graphon estimates obtained under the assumption of an i.i.d
(or replicated) collection of networks over time. The result from our approach and comparisons
with existing techniques applied to the aggregated adjacency Ā are displayed in Fig. 5, where for
convenience of comparisons, rearranged matrix estimates of SBA, SAS and NBS, with nodes sorted
by increasing nodal positions estimated from our approach, are shown. We see a good agreement
between the proposed estimator and all other methods except SAS, with high intensity regions
at the edges of the main diagonal (corresponding to subgroups of forager and nurse nodes); and
relatively low intensity of connection along the off-diagonal.

Existing studies on organizational behavior of ants such as [36, 37] and references therein,
suggest that the assumption of identically distributed networks over time is unrealistic for such ant
interaction data. Our multi-graphon estimates displayed in Fig. 6 indicate that this is indeed the
case as newer structural features become apparent when estimation is performed without assuming
identically distributed networks over time. Fig. 6 shows how the network structure changes over
the duration of 41 days with a significant decrease in intensity of interactions towards the end
of the period, particularly, beyond day 37. More precisely, notably high intensity of interactions
are observed until day 33 of the experiment for a small proportion of nurse ant workers (top right
corner of multi-graphon estimates), and forager ant workers (bottom left corner of multi-graphon
estimates), beyond which intensity of interactions in these regions begins to decrease. In fact,
the highest intensity of interaction by the end of the experiment is between cleaners and a small
subset of forager and nurse ants: precisely the set of ant workers positioned within the dashed
lines displayed in Fig. 4.

Estimates of pairwise intensity of interactions for four pairs of ants and the corresponding
95% confidence intervals over time, obtained via subsampling bootstrap are displayed in Fig. 7.
Significant differences in interaction behavior over time periods are easily identified for all pairs
of ants except the forager-cleaner (F-C) ant pair (560, 52) (or (15, 44) in the estimated ordering),
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Figure 5: Graphon estimates f̂1/4 for contact network of ants, assuming i.i.d networks over time,
where: (a) the proposed methodology, (b) SBA of [1], (c) network histogram of [38], (d) SAS of [15],
and (e) NBS of [56]. For comparison, estimates from SBA, SAS, and NBS were re-arranged to
correspond to increasing nodal position estimates from our algorithm. The power root stabilizes the
variance of the intensity displayed using the color spectrum and is solely for ease of visualization.

where confidence bars overlap across all days. For example, for the forager-forager (F-F) ant pair
(48, 560) displayed in the second subplot, the estimated intensity of interaction over the first 10 days
is significantly lower in comparison with intensity over days 20− 30, decreasing again beyond day
36. It is interesting to note that the intensity of interaction between the nurse-cleaner (N-C) pair
(159, 52) over days 36− 41 is significantly higher than the intensity over days 25− 31, suggesting a
change in behavior somewhere between these two time periods. Noting the occupation of the nurse
ant worker 159, we find that it is recorded to be a nurse in the first three periods of data collection
(precisely, days 1− 31) and a cleaner for the last period spanning days 32− 41. This could be a
possible explanation for the significant increase in intensity between the N-C pair (159, 52) with
days 32 − 35 corresponding to a transition period for a change in occupation from a nurse to a
cleaner.

6.2 Human connectome data

This data set comprises of structural brain networks on n = 116 brain regions, known as regions
of interest (ROIs), observed for m = 256 subjects. For each subject l ∈ [m], the existence of an
edge between brain regions i ∈ [n] and j ∈ [n] is determined from multimodal magnetic resonance
imaging data [29], and corresponds to the presence of atleast one white matter fiber connecting
the two regions, (see [24, 42] for details). The brain regions considered in this data set are given
by the Automated Anatomical Labeling (AAL 116) cortical atlas [47]. This data set also includes
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Figure 7: 95% confidence intervals for estimated intensity of pairwise interactions between ant
pairs over time with original ant tag ids and occupations given by: first row, left: (159, 20), N-N;
first row, right: (48, 560), F-F; second row, left: (560, 52), F-C; second row, right (159, 52), N-C.

a creativity score for each subject, measured via the composite creativity index (CCI) of [28].
The CCI scores are informed by ranks assigned to the creative products of each subject by three
independent judges.

Fig. 8 displays brain regions sorted by increasing nodal embedding position estimates (x-axis)
from our proposed algorithm against their actual AAL116 indices (y-axis). The membership of
each brain region in one of the two hemispheres–left or right, and one of the eight lobes– Frontal,
Insular, Limbic, Occipital, Parietal, SCGM, Temporal, Cerebellum, is also displayed (see legend).
The dotted line in the middle, plotted for reference, divides the set of nodes into two equal groups
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the estimated nodal positions. The dotted line in the middle is plotted for reference (see text).

on each side. Noting the hemisphere (and lobe) membership of nodes on the left and right side of
the dotted line in Fig. 8, we observe that ROIs belonging to the left and right hemispheres, lie to
the left and right of the dotted line respectively, for members of all lobes except Limbic (�) and
Cerebellum (∗). Since ROIs belonging to the left and right hemispheres, lie to the left of the origin
(negative x-axis) and right of the origin (positive x-axis) in the standard MNI space, respectively,
it suggests that nodal positions estimated via our algorithm, for a majority of brain regions are
coarsely aligned with their actual spatial coordinates along the first dimension (or x-coordinates).
Further we see that nodes from the Limbic lobe are embedded such that its members from the
left (right) hemisphere are positioned to the right (left) of the dotted line (centre), whereas for
nodes from the Cerebellum lobe, left and right hemisphere members are mixed on either side of
the dotted line.

A comparison of our graphon estimate under the replicated network assumption with estimates
from SBA of [1], network histogram of [38], SAS of [15], USVT of [16], and NBS of [56], is displayed
in Fig. 9. Clearly, network structure is only apparent from the proposed estimate and network
histogram of [38], a graphon function estimator. The lack of structural visibility in estimates from
all other methods is due to the absence of a meaningful ordering on the set of nodes, typically
achieved using node-specific covariates which are not observed in this dataset. To allow comparison,
re-arranged matrix estimates of SBA, SAS, USVT, and NBS with nodes sorted by increasing nodal
position estimates from our algorithm, are displayed in Fig. 10. Overall, at a coarse level we see a
good agreement between estimates from all methods except SAS. Our estimator clearly indicates
assortative community-like behavior for nodes positioned at the two extremes, precisely, nodes
with estimated indices 1 − 35 and 81 − 116 (x-axis of Fig. 8). We see a very high intensity of
interaction for nodes within these two groups and very low intensity of interaction across the two
groups, and clearly, a relatively weaker community structure for nodes positioned in the middle
(node indices 48− 74).

Assuming the collection of networks from subjects to be non-identically distributed Fig. 11
displays multi-graphon estimates obtained with network-level covariates žl as the normalized
(max norm) CCI score of subject l ∈ [m]. From these plots it is evident that network structure
changes as we go from subjects expressing low creativity to high creativity, e.g., with significantly
different intensities of interactions along the main diagonal with increasing CCI. For a closer
inspection Fig. 12 displays 95% confidence intervals and estimates of pairwise intensity of interaction
for four different ROI pairs, as a function of CCI scores. An immediate observation is that we may
not always observe (a significant) increase in intensity of interaction with increase in creativity
levels measured via CCI. This is visible from Fig. 12 where red bars indicate similar intensities
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with increase in CCI in subplots (a), (b), (d) and a significant decrease in intensity with increase
in CCI in subplot (c). Secondly, these plots suggest that the CCI score threshold for partitioning
network samples into ‘low’ and ‘high’ creativity groups (e.g. [19]) may vary depending on the ROI
pairs of interest. Based on these findings, in practice, we recommend fixing the set of ROIs of
interest to the practitioner, to infer a meaningful grouping of network samples before performing
tasks such as identifying a subset of edges which provide evidence of change across low and high
creativity groups or classification into categories constructed artificially from continuous-valued
information, for example as considered in [19]. This is crucial as otherwise aggregated behavior
of each partition may not be representative of the actual behavior due to significant differences
within the chosen subset of network samples, resulting in misleading conclusions.

Proposed

(a)

0 0.5 1

0.5

1
SBA

(b)

0 0.5 1

0.5

1
Histogram

(c)

0 0.5 1

0.5

1
SAS

(d)

0 0.5 1

0.5

1
USVT

(e)

0 0.5 1

0.5

1
NBS

(f)

0 0.5 1

0.5

1

0

1

2

3

4

Figure 9: Graphon matrix estimates f̂1/2 for connectome data, assuming i.i.d networks over
subjects, where: (a) the proposed methodology, (b) SBA of [1], (c) network histogram of [38], (d)
SAS of [15], (e) USVT of [16] and (f) NBS of [56].
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Figure 10: Re-arranged graphon matrix estimates (from above) (b) SBA (d) SAS (e) USVT and
(f) NBS, with nodes sorted by increasing nodal positions estimated from our algorithm.

6.2.1 Application to resampling networks

Network summary statistics such as triangle frequency, average path length, transitivity, network
edge density are of great practical interest and have been studied in the context of brain network
organisation and creativity, for example as in [12, 19, 35]. According to [12], structural brain
networks of highly creative individuals are found to exhibit small-world phenomenon with high
triangle frequency, low average path length, high edge density, and high transitivity. To check if
the small-world behavior for high creativity individuals suggested by previous studies, is a feature
implied by our multi-graphon estimate, we study network summaries for samples A generated using
the estimated multi-graphon f̂ . For a given normalized creativity score ž ∈ (0, 1), we generated
B networks A1(ž), . . . , AB(ž), each of size n× n (n = 116), as independent Bernoulli trials where,

Aij(ž) ∼ Bernoulli(ρ̂nf̂(x̂i, x̂j ; ž)), for (i, j) ∈ [n]× [n]. Subsequently, the four network statistics
–triangle frequency, average path length, transitivity, and network edge density were computed for
each A1(ž), . . . , AB(ž). Fig. 13 displays the corresponding 95% confidence intervals for these four
network statistics with increasing creativity scores, obtained using B = 10000 networks. From
these plots, differences in network statistics across creativity levels are apparent. Further, we see
that triangle frequency, edge density, and transitivity are significantly higher, whereas average
path length, is significantly lower for subjects with high creativity in comparison to those with low
creativity, confirming the small-world phenomenon for high creativity brains [12].
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Figure 11: Multi-graphon matrix estimates f̂1/2(:, :, zl) using the proposed method for increasing
CCI scores shown along the x-axis. The power root stabilizes the variance of the intensity displayed
using the color spectrum and is solely for ease of visualization.
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Figure 12: Multi-graphon estimates f̂1/2 and 95% confidence intervals for node pairs (indices
correspond to AAL116 atlas) with increasing CCI scores. First row, left: (8, 109) ≡ ( Frontal
Mid.(R), Vermis12), first row, right: (58, 67) ≡ (Postcentral(R), Precuneus(L)), second row,
left: (7, 8) ≡ (Frontal Mid(L) , Frontal Mid(R)) and second row, right: (31, 84) ≡ (Cingulum
Ant.(L),Temporal Pole Sup(R)). The red bars are used to visualize changes (or no change) in
intensity with increasing CCI (see text for details).

7 Conclusion

By establishing regimes under which ordinal embedding allows consistent estimation of latent
nodal positions in the purified graphon space, we have shown how standard smoothing techniques
(kernel methods, regression splines and others) can be employed for estimation of the network
generating process. We achieved this for a collection of networks on the same set of nodes, which
are commonly observed in many applications. With these results, estimation of the multi-graphon
model from a set of networks observed over time simply reduced to nonparametric regression with
estimated nodal positions and equi-spaced time points. For cross-sectional networks, the same
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Figure 13: 95% bootstrap confidence intervals for different network summary statistics (y-axis)
as a function of CCI scores. These were obtained via networks resampled using our estimated
multi-graphon with B = 10000 bootstrap replications for each CCI score.

was achieved using network-level covariates as measurements for unobserved network-positions. In
applications where repeated measurements on each of the m networks are available, one may follow
the approach outlined in this paper to likewise define pairwise distance between networks to allow
estimation of latent network-positions.

Further, our approach may be used as a building block to study richer models describing network
effects through the multi-graphon function. For example, with the multi-graphon function modeled
as the sum of a standard two-dimensional graphon function and with either p scalar functions
of p covariates as in an additive model [26] or with a simple linear combination of p covariates
implying a partially linear model [14]. These models shall allow one to integrate more than a single
network-level covariate to explain variability across networks without having to deal with the curse
of dimensionality via the multi-graphon function. Modeling and estimation techniques developed
in this paper may be extended to longitudinal networks to simultaneously estimate structural
variability across both the subject and time axes, as we intend to do in future work.
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A Proofs

To prove the main results in Theorems 1 and 2 we first consider the following result on consistency
of pairwise distance estimates. We show that under the null of Definition 2 the estimator produced
by Algorithm 1 is a consistent estimator of dist(f̄) given by Equation (3.2).

Proof of Proposition 1. Set U ∼ U[0, 1]. The proof proceeds by computing the variances. Note here
that while we could have proceed like [1, Theorem 1.] (i.e., via Bernstein’s inequality) we found that
inefficient when aiming to account for sparsity and varied speed for the growth ofm relative to n. To
do so, we first consider the ŝik =

∑
l∈S Aikl/|S|, for fixed i, k. There, we see that conditionally on

xi, xk, (Aikl)l is i.i.d. Bernoulli
(
ρnf(xi, xk;U)

)
, so that ŝik ∼ Binomial(|S|, ρn EU f(xi, xk;U))/|S|

with U the uniform distribution on [0, 1]. Therefore, we have that conditionally on xi, xk′ , xk

E ŝik = ρn EU f(xi, xk;U) = ρnf̄(xi, xk)

20



Var ŝik = ρnf̄(xi, xk)(1− ρnf̄(xi, xk))/|S| = Θ
(ρn
m

)
Cov(ŝik, ŝik′) = E(ŝikŝik′)− E ŝik E ŝik′

=
1

|S|2
∑
l,l

′∈S

EAiklAik′l′ − ρ
2
nf̄(xi, xk)f̄(xi, x

′
k)

=
1

|S|2

 ∑
l 6=l′∈S

EAikl EAik′l′ +
∑
l∈S

EAiklAik′l

− ρ2nf̄(xi, xk)f̄(xi, x
′
k)

=
|S|(|S| − 1)ρ2nf̄(xi, xk)f̄(xi, x

′
k) + |S|ρ2n EUf(xi, xk;U)f(xi, xk′ ;U)

|S|2
− ρ2nf̄(xi, xk)f̄(xi, x

′
k)

= Θ

(
ρ2n
m

)

Then, as r̂ij ∼ (
∑
k∈[n]\{i,j} ŝikŝ

′
jk)/(n − 2), with s′jk an independent copy of sjk, for any k ∈

[n] \ {i, j} and conditionally on xi, xj , using the law of total variance:

E r̂ij = ρ2n

∫
[0,1]

f̄(xi, t)f̄(xj , t)dt,

Var r̂ij =
(

Var(ŝikŝ
′
jk) + (n− 2) Cov(ŝikŝ

′
jk, ŝik′ ŝ

′
jk

′)
)
/(n− 2)

=
(
EVar(ŝikŝ

′
jk |xk) + Var(ρ2nf̄(xi, xk)f̄(xj , xk))

)
/(n− 2) +O(ρ4n/m

2)

=
(
E[Var(ŝik |xk) Var(ŝ′jk |xk)] + ρ4n Var(f̄(xi, xk)f̄(xj , xk))

)
/(n− 2) +O(ρ4n/m

2)

=
(
O(ρ2n/m

2) +O(ρ4n)
)
/(n− 2) +O(ρ4n/m

2) = O
(
ρ4n(n−1 +m−2 + (ρ2nm

2n)−1)
)
.

Similar computation lead to ρ̂n/ρn = 1 + Op
(
(nm)−1/2

)
. Then, as all variables are positive, we

may call upon Markov’s inequality, to obtain,

r̂ij/ρ̂
2
n =

∫
[0,1]

f̄(xi, t)f̄(xj , t)dt+ ι′ij ,

where E ι′ij = 0 amd ι′ij = Op(
√
ε). Therefore,

(r̂ii + r̂jj − r̂ij − r̂ji)/ρ̂
2
n =

∫
[0,1]

f̄(xi, t)
2dt+

∫
[0,1]

f̄(xj , t)
2dt

− 2

∫
[0,1]

f̄(xi, t)f̄(xj , t)dt+ (ι′ii + ι′jj − ι
′
ij − ι

′
ji)

=

∫
[0,1]

(
f̄(xi, t)− f̄(xj , t)

)2
dt+ ιij ,

where E ιij = 0 and ιij = Op(
√
ε), which is the sought after result.

Proof of Proposition 2. First we note that

d̂istij(A)− d̂istpq(A)

E
[
d̂istij(A)− d̂istpq(A)

] = 1 +
ιij − ιpq

E
[
d̂istij(A)− d̂istpq(A)

] .
Thus, upper bounding P

[
− (ιij − ιpq) > E[d̂istij(A)− d̂istpq(A)]

]
will yield the result. To produce

this upper bound we will use Bernstein’s equality. First, recalling the notation of the proof
of Proposition 1, we have that

ιij − ιpq =
1 +O(1/n)

n− 2

∑
k∈[n]\{i,j,p,q}

(
ŝikŝ

′
jk − ŝpkŝ

′
qk − E[ŝikŝ

′
jk − ŝpkŝ

′
qk]
)
/ρ̂2n,
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where the O(1/n) contains the terms in ιij that implicate p and q, and conversely, the terms ιpq
that implicate i and j. Then, as the (ŝikŝ

′
jk + ŝpkŝ

′
qk)k are i.i.d. and upper bounded by 2, and

since from the proof of Proposition 1, (n− 2)−1
∑
k Var

(
ŝikŝ

′
jk/ρ̂

2
n

)
= O(ε), we can directly call

upon Bernstein’s equality to obtain for any ν > 0

P
[
− (ιij + ιpq) > ν

]
≤ exp

(
− (1 +O(1/n))ν2/2

4
3(n−2)ν(1 +O(1/n)) +O(ε)

)
and therefore the result.

Proof of Theorem 1. Call f̄∗ the purified graphon [33] corresponding to f̄ , and J it’s support.
We assume that J ⊂ [0, 1], and write J as the disjoints union of singletons and intervals in the
formJ = ∪sJs. Then, since by [33, Theorem 13.27], dist

(
(f̄∗, ψ(U)); ·, ·

)
is the metric induced by

f̄∗, embedding through d̂ist(A) will lead to an embedding in J .
Conditionally on all the estimated distances being properly ordered, which will happen eventu-

ally in n by Proposition 2, we observe that dist
(
(f̄∗, ψ(U)); ·, ·

)
first separates vertices in the Js.

Call S the set of vertices selected to be in Js. Then, still within each Js, we obtain consistency
up to similarity transform and error of order ηn := supy∈Js infi∈S |y − φ(xi)| using [3, Theorem 3].
Then, from [41], and since the xi’s are i.i.d. over a bounded set, we have that ηn = Op(log n/n),
which yields the result.

Proof of Theorem 2. First, we observe that from Theorem 1 and continuity of h, that

h(x̂i, x̂j ,žl, Aijl)

= h(xi, xj , žl, Aijl) +
(
h(x̂i, x̂j , žl, Aijl)− h(xi, xj , žl, Aijl)

)
= h(xi, xj , žl, Aijl) +O(log n/n).

Since m = o
(
(n/ log n)2

)
, we may replace the x̂ by x in (4.1) and ignore the resulting error.

Then, we proceed as as [7, Theorem 1], and observe that

h(xi, xj , žl, Aijl) = h(xi, xj , žl, f(xi, xj , zl))

+
(
h(xi, xj , žl, Aijl)− h(xi, xj , žl, f(xi, xj , žl)).

There, the second term is mean 0, because h is linear in its fourth argument, and by the law of
total variance (conditioning by x and ž) and the standard CLT, is of variance O(1/nm), we may
ignore the error it induces in (4.1).

Finally, remains to prove that

1

n2m

∑
i,j,l

h(xi, xj , žl, f(xi, xj , žl))

is asymptotically normal, which is directly obtained via the CLT from two-sample U-statistics [23]
which applies under our assumptions on h.

We here present and prove a slight modification fo the above to account for replicated networks.

Theorem 3. Fix a smooth graphon function f . Set h : [0, 1]3 → R such that h is symmetric
in its first two arguments, linear in the third, and that h and its first derivates are finite almost
everywhere. Then, if ε := n−1 + (ρ2nmn)−1 = o(1/ log n) and m = o

(
(n/ log n)2

)
,

√
n+m

(
1

n2m

∑
i,j

h
(
x̂i, x̂j , Āij

)
− Eu,v∼U[0,1] h

(
u, v, f̄(u, v)

))
→ Normal

(
0, Σ̄

)
. (A.1)
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Proof of Theorem 3. Proceeding exactly as in the proof of Theorem 2, from Theorem 1 and conti-
nuity of h, it follows that

h(x̂i, x̂j , Āij) = h(xi, xj , Āij) +
(
h(x̂i, x̂j , Āij)− h(xi, xj , Āij)

)
= h(xi, xj , Āij) +O(log n/n).

Since m = o
(
(n/ log n)2

)
, we may replace the x̂ by x in (4.1) and ignore the resulting error.

Then, we proceed as as [7, Theorem 1], and observe that

h(xi, xj , Āij) = h(xi, xj , f̄(u, v)) +
(
h(xi, xj , Āij)− h(xi, xj , f̄(u, v))

)
.

There, the second term is mean 0, as h is linear in its third argument, and by the law of total
variance (conditioning on x) and the standard CLT, is of variance O(1/n), we may ignore the error
it induces in (4.1).

Finally, remains to prove that:

1

n2m

∑
i,j

h(xi, xj , f̄(u, v))

is asymptotically normal, which is directly obtained via the CLT from two-sample U-statistics [23]
which applies under our assumptions on h.
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