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Abstract 

The Poynting vector plays a key role in electrodynamics as it is directly related to the power 

and the momentum carried by an electromagnetic wave. Based on the Lorenz-Mie theory, we 

report on the focusing effect of a spherical particle-lens by properly analysing the Poynting 

vector maps. Conventional two-dimensional (2D) maps showing Poynting vector magnitude 

and direction in a given plane cannot deliver information on three-dimensional (3D) directivity 

and vectorisation in key regions of singularities, such as vortexes and saddle points, due to poor 

expressiveness. In this article, an analytical 3D mapping technology is utilised to track the field-

features passing through the singularities of the distribution of the Poynting vector in a 

spherically dielectric mesoscale particle-lens. We discovered that the spheres with the certain 

size parameters can stimulate extremely large field-intensity at singularities and then form two 

circular hotspots around the sphere poles. An astonishing large ‘heart-shape’ 3D Poynting 

vector circulation, which cannot be predicted by conventional 2D mapping analysis, is found 

to provide a great angular variation within an enormous range in these spheres. We anticipate 

that this effect will contribute to the field-enhancement phenomena, such as surface enhances 

Raman scattering, surface enhances absorption, super-resolution imaging and others.   

 

Introduction 

The energy stored in the electric and magnetic fields is transmitted at a certain energy flow rate 

which can be calculated based on the Poynting theorem derived back in 18841. To represent the 

directional energy flux of an electromagnetic field2,3, it is acceptable to use the Poynting vector 

which is given by a cross product of the electric and magnetic fields (measured in V/m and A/m, 

respectively). Therefore, Poynting vector is a dimensional vector quantity and it is expressed 

as VA/m2 or W/m2, because electric and magnetic fields are both vectors. Computer-aided 2D 

mapping is a common plot method to characterise the Poynting vector in a certain 

electromagnetic field. Contour, colour, and field-line with arrows are normally used to denote 

magnitude and direction of the Poynting vector. However, in fact, a 2D mapping cannot 

accurately reflect the behaviour of Poynting vector at singularities because the conventional 

representations of Poynting vector are misleading over there. The singularities in a 2D plot 

representation of the Poynting vector, such as saddle point or vortex, may indicate a complex 

coupling behaviour. This behaviour is the result of the Poynting vector flow through 

singularities along the spiral trajectories4,5. In this case, a 2D colour map can only determine 

positions of the singularities of Poynting vector, but destinations of the field-lines through these 

mailto:l.yue@bangor.ac.uk
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points are still unknown. The corresponding limitation of 2D colour mapping in Poynting vector 

representation was also found by the other researchers. Soukoulis et al. pointed out that 2D 

Poynting vector plot cannot perfectly reflect the real situation in the experiment of negative 

refraction for a 3D photonic metamaterial due to a poor interpretation of multiple singularities 

in it6. The similar circumstances of multiple Poynting vector singularities have been repeatedly 

discovered in laser devices, metamaterials, and super-resolution lenses7-9, which indicates that 

there is a strong demand to develop a spatial 3D tracking algorithm for the Poynting vector plot 

in photonics research.   

Lorenz-Mie theory fully describes the optical absorption and scattering of light by a 

homogeneous sphere, which verifies that a jet-like near-field focus situates near the shadow 

surface of the sphere in the certain range of a/λ (a, particle radius, and λ, light wavelength)10. 

Such kind of focusing effect is named as ‘photonic jet’ and has been attracted much attention 

since 200011-13. It is known that photonic jet can deliver a strong field-intensity enhancement 

with a long-distance propagation (for several wavelengths) and possibly constitute a near-field 

super-resolution optical system13. Many approaches to sphere transformation, e.g. metalens, 

assembly of nano-fibres, and addition of a pupil-mask, were carried out to further reduce the 

transverse dimension and enhance field-intensity for photonic jet14-17. It is widely accepted that 

singularities of Poynting vector should be related to the above approaches, nevertheless, there 

is no mature mapping technology that can perfectly visualise the corresponding dependence 

due to the meaningless interpretation of Poynting vector presented as a 3D map. For that, Wang 

et al. systematically characterised features of Poynting vector in a small particle and its focus 

and claimed that the higher orders of optical resonance should be taken into account18. Fu et al. 

and Mundy et al. formulated the analytic expressions for single-scattering properties of a 

spherical sphere in an absorbing medium using a Poynting vector plot. However, these 

expressions were failing to graphically quantify the influence of singularities at the specific 

locations 19,20. So far, there is no established theory to relate the elements of particle size, field-

intensity enhancement of focus, and Poynting vector distribution. As an isolated physical 

phenomenon, giant field-intensity enhancement in spheres with particular sizes, was 

occasionally observed in the form of explosion of few spheres in the initial research of laser 

cleaning of micro/nano-particles with random sizes. However, there was no comprehensive 

model that could explain this phenomenon back then21,22.    

Teflon is a widely-used material for terahertz (THz) sensing and imaging nowadays due to 

its outstanding low-loss properties and low cost23,24. Compared with super-resolution lenses 

made of lossy metals, e.g. gold and silver, a Teflon super-resolution lens or a similar dielectric 

super-resolution lens is not limited by the intrinsic loss relying on an extremely small extinction 

coefficient, k, (nearly 0) of the material in the THz band. Minin et al. generated a photonic jet 

(terajet) in the THz band by using a dielectric non-resonant Teflon cuboid particle25-30. They 

showed the super resolution effect by using lens made of Teflon and PMMA spherical 

particles31. However, these studies did not involve any investigation about the size screening 

for particles. In this paper, we use for the first time a 3D mapping technology to track field-

lines passing thought the singularities and hotspots (critical points) in a Poynting vector 

distribution map of a spherical Teflon particle-lens (refractive index n = 1.4332). Maximal 

electric field-intensity (|E|2) enhancement was analytically calculated varying the size 

parameter, q between π and 20π. The critical points of Poynting vector found in the sphere were 

set to the initial positions of 3D field-line to study the giant field-intensity enhancement in 

spheres.  

 

Results and discussions 

Fig. 1(a) summarises peak |E|2 field-intensities along the central axis as a function of size 

parameter, q, for all Teflon spheres in this study. An increasing tendency is manifested with the 

regular oscillations for this curve. Two well-defined peaks associated with the giant 
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enhancement reach values of 438 and 514 at q = 22.24159 and q = 28.64159, respectively. 

These values are far larger than those for the Teflon spheres with the neighbouring size 

parameters. We select the sphere of q = 22.24159 to plot the distributions of |E|2 field-intensity 

and Poynting vector to track the 3D field-lines passing through the critical points to analyse this 

giant enhancement effect. Fig. 1(b) i and ii show the distributions of |E|2 field-intensity in the 

xz and yz planes, respectively. We note that the photonic jet (the light-blue-colour area below 

the sphere) is not of the largest magnitude. The areas possessing maximum |E|2 field-intensity 

symmetrically form two circular hotspots at the sphere poles in the xz place, as shown in Fig.  

1(b) i, otherwise three smaller hotspots (the central one is larger) can be found in the same 

regions with the Whispering-Gallery mode effect shown in Fig. 1(b) ii for the yz place. 

Since the layout of double polar hotspots in a sphere was overlooked in Lorenz-Mie theory 

and photonic jet effect so far, here we study the formation of these two hotspots. A logarithmic 

2D plot of Poynting vector in the xz plane is shown in Fig. 2(a) for identification of the positions 

of the critical points (The distribution in the xz plane is less complex for analysis compared with 

that in the yz plane). We show that two Poynting vector hotspots (PVH) are marked as the green 

circles 1 and 2 near the upper pole, and a saddle point and a PVH are marked as the pink circle 

and the light blue circle near the bottom pole in Fig. 2(a), respectively. All these critical points 

are embraced by the polar hotspots of |E|2 field-intensity presented in Fig. 1(b) i. Also, the 

vortexes of Poynting vector appear at both flanks in the lower part of the sphere with the blue 

contours representing the small magnitude of Poynting vector. The largest magnitude of the 

Poynting vector is found in the jet area in Fig. 2(a), which is different from the |E|2 field-

intensity shown in Fig. 1(b) i. The spatial tracking of Poynting vector field-lines takes place at 

the critical points – this is based on the information provided in Fig. 2(a), and the corresponding 

3D plot is exhibited in Fig. 2(b). 

We illustrate the Teflon sphere as a transparent grey circle shown in Fig. 2(b). The 2D plot 

of Poynting vector along the xz plane also crosses the sphere. The spaces of two polar hotspots 

of |E|2 field-intensity are illustrated as two small transparent green-colour spheres with the 

radius of 0.1a to indicate the positions of 3D field-line tracking in Fig. 2(b). The 3D field-lines 

originating from the different critical points are distinct by multiple colours, such as the red line 

for the PVH upper 1, the purple line for the PVH upper 2, the blue line for the PVH bottom, 

and the green line for the saddle point. Due to the high density of Poynting vector field-lines, 

we do not show the arrows on each of them by intention (Fig. 2(b)), but all directions of arrows 

are from top to down in this case. We note, that these field-lines form a large ‘heart-shape’ 

circulation in the sphere to relate two polar hotspots before convergence to a jet below the 

Teflon sphere. In addition, the field-lines of the PVH upper 1 (red-colour lines in Fig. 2(b)) 

shape into a small circulation around the upper pole which has a ‘bottleneck’ area at the position 

of the PVH upper 2.   

The Fig. 3 shows the zoomed pictures of two circulations of the Poynting vector field-lines 

at different angles. The Fig. 3(a) and (b) show that the bottom hotspot of |E|2 field-intensity (the 

green-colour transparent sphere in Fig. 3(a) and (b)) is ‘wrapped’ inside the large ‘heart-shape’ 

circulation of Poynting vector field-lines, and its location coincides with that for the PVH 

bottom as all blue-colour field-lines are originally launched at the centre of the green-colour 

transparent sphere. It is interesting that the green-colour field-lines from the saddle point 

simultaneously grow to both directions against the xz plane, which means that the saddle point 

shown in Fig. 2 and 3 is an intersection of Poynting vector where the power flow consisting in 

the central plane escapes to the other locations in the Teflon sphere. The pattern of the upper 

small circulation is different from that of the large ‘heart-shape’ pattern. The PVH upper 1 and 

2 are situated in the upper hotspot of E2 field-intensity, as shown in Fig. 3(c) and Fig. 3(d). 

The field-lines around the PVH upper 1 are dense in terms of arrows, indicating significant 

direction changes of Poynting vectors in that area. These arrows configure three streams to 

whirl inward in the xz plane, as shown in Fig. 3(d), and then merge with the field-lines of PVH 
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upper 2 (purple-colour) to form the circulation and flow down together, as shown in Fig. 3(c). 

The relative positions of 3D Poynting vector field-lines to the critical points and the PVHs are 

shown in Fig. 3(e) and (f) for the bottom and upper circulations, respectively. The multi-time 

lateral movement of the Poynting vector along the y-axis direction would cause the high 

magnitude for the PVHs at the saddle point and the centre of the bottom hotspot of |E|2 field-

intensity, as shown in Fig. 3(e). However, the formation of the PVH upper 1 and 2 is due to the 

repeatedly longitudinal movement of Poynting vector at the positions of the whirl and 

bottleneck of the small circulation, as shown in Fig. 3(f). Therefore, two multi-time circulations 

of Poynting vector happen simultaneously in the sphere, and the heart-like pattern provides an 

enormous angular variation within an enormous circulation range. This could result in the giant 

|E|2 field-intensity enhancement at the poles for the specifically sized sphere, as shown in Fig. 

1. 

Meanwhile, it is noted that the aforementioned giant enhancement of |E|2 field-intensity and 

large ‘heart-shape’ circulation of the Poynting vector cannot be found in the Teflon spheres 

with the neighbouring size parameters. The distributions of |E|2 field-intensity and Poynting 

vectors for the sphere with the size parameter of q = 22.14159 are plotted as an example to 

demonstrate this contrast in Fig. 4(a) and (b), respectively. It is demonstrated that a typical 

photonic jet instead of two polar hotspots appears in the distributions of |E|2 field-intensity in 

the xz and yz planes for the sphere of q = 22.14159, as shown in Fig. 4(a) i and ii. Also, three 

critical points (one vortex and two saddle points) are indicated in Fig. 4(a) iii to perform 3D 

field-line tracking, however, there is only a single small circulation found in the lower part of 

the sphere, as shown in Fig. 4(b) and its insets. The corresponding angular variation and 

circulation range are much smaller compared to those for the sphere of q = 22.24159 with the 

giant field-intensity enhancement which are shown in Fig. 2 and Fig. 3. In addition, a model of 

high-index silicon sphere (n = 3.55 in the band of near-infrared33) was created using the same 

algorithm (the results are shown in Fig. S1 and S2 in the supplement of the paper). The similar 

field-intensity enhancement and large ‘heart-shape’ circulation of the Poynting vector are also 

found in the specifically sized spheres.         

 

Conclusion 

To conclude, we proposed a 3D mapping technology innovatively used to track field-lines 

passing the critical points of Poynting vector distribution for investigation of a significant field-

intensity enhancement existing around the poles of dielectric spheres. We discovered an 

astonishing large ‘heart-like’ multi-time circulation of Poynting vector 3D field-lines, which 

cannot be characterised by conventional 2D mapping analysis. Giant angular variation and 

circulation range are considered to be the primary causes of this phenomenon. Our findings are 

expected to deepen the knowledge in formation of fascinating effects such as photonic jet and 

hotspots. We stress that the corresponding giant field-intensity enhancement can be 

intentionally triggered in the multiple spectral ranges by tuning the wavelength of an incident 

plane wave illuminating the spherical particle under the specific parameters of refractive index 

and size. We anticipate that this effect and the technique of 3D Poynting vector track will 

contribute to the researches in field-enhancement phenomena, suppression of scattering, Fano 

resonance, and chiral material.   

 

Methods 

In this study, we implement the complete Lorenz-Mie formulas in FORTRAN and MATLAB 

scripts to automatically sweep q values and study the evolution of peak |E|2 field-intensity 

enhancement within π and 20π (3.14159 to 62.8318) with a resolution of 0.1. A plane wave 

polarized in x-axis direction illuminates the Teflon sphere along the z-axis as shown in Fig. 1(a). 

The size parameter of the Lorenz-Mie theory, q, can be expressed as34, 
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                                                               𝑞 =
2𝜋𝑎

𝜆
,                                                                (1) 

where a is Teflon sphere radius, λ is the wavelength of the incident plane wave. Due to a 

relatively constant relative permittivity, ε, of Teflon in the THz band (ε = n + ki), and simplify 

the calculation, values of n and k of Teflon are considered as constants in our algorithms.  We 

consider the background medium as an air with index of n = 1. Here n of Teflon is defined as 

1.4332, and k is 0 for a case of lossless sphere. In our algorithm, we spatially scan across the 

sphere centre from -5a to 5a along the incident direction of the plane wave to find the highest 

|E|2 field-intensity and its position in the sphere. Values of 500 points are collected per a in the 

sphere and its vicinity. Therefore, the total 5000 points are sampled per q. In addition, we plot 

the Poynting vector distribution along the cross-section of the sphere. All field-lines passing 

through the critical points in the high |E|2 field-intensity areas are automatically tracked by the 

algorithm. The |E|2 field-intensity enhancement in the sphere is induced by the scattered plane 

wave and composed of contributions from multiple resonant order modes. Its strength is 

quantified and determined by the absolute values of the complex scattering wave coefficients, 

𝐵𝑙
𝑒 for electric field and  𝐵𝑙

𝑚 for magnetic field35. These coefficients are expressed in the form:  

                                         𝐵𝑙
𝑒 = 𝑖𝑙+1 2𝑙+1

𝑙(𝑙+1)

�̂�𝜓𝑙
′(𝑞)𝜓𝑙(�̂�𝑞)−𝜓𝑙(𝑞)𝜓𝑙

′(�̂�𝑞)

�̂�𝜁𝑙
(𝑙)′

(𝑞)𝜓𝑙(�̂�𝑞)−𝜁𝑙
(𝑙)

(𝑞)𝜓𝑙
′(�̂�𝑞)

,                                     (2) 

                                         𝐵𝑙
𝑚 = 𝑖𝑙+1 2𝑙+1

𝑙(𝑙+1)

�̂�𝜓𝑙(𝑞)𝜓𝑙
′(�̂�𝑞)−𝜓𝑙

′(𝑞)𝜓𝑙(�̂�𝑞)

�̂�𝜁𝑙
(𝑙)

(𝑞)𝜓𝑙
′(�̂�𝑞)−𝜁𝑙

(𝑙)′
(𝑞)𝜓𝑙(�̂�𝑞)

,                                    (3)  

where l is the order of mode, �̂� is the complex refractive index of the sphere relative to the 

surrounding medium, and 𝜓𝑙(𝑞) and 𝜁𝑙
(𝑙)

(𝑞) are defined by35, 

                                                         𝜓𝑙(𝑞) = √
𝜋𝑞

2
𝐽

𝑙+
1

2

(𝑞),                                                      (4)       

                                           𝜁𝑙
(𝑙)(𝑞) = 𝜓𝑙(𝑞) − 𝑖𝜒𝑙(𝑞) = √

𝜋𝑞

2
𝐻

𝑙+
1

2

(1)
(𝑞),                                   (5) 

                                                        𝜒𝑙(𝑞) = −√
𝜋𝑞

2
𝑁

𝑙+
1

2

(𝑞),                                                  (6) 

where 𝐽
𝑙+

1

2

(𝑞), 𝐻
𝑙+

1

2

(1)
(𝑞), and 𝑁

𝑙+
1

2

(𝑞) are the Bessel functions, the Hankel functions, and the 

Neumann functions, respectively [35]. Multiple order modes of resonance are stimulated in the 

sphere at the same time, and their collective contribution on |E|2 field-intensity enhancement is 

shown in Fig.  1 (a). Also, amplitude of individual mode would finally approach 0 at a certain 

order. An empirical formula identifying this nearly 0 contribution order of mode, l0, is given 

by5, 

                                                             𝑙0 ≈ 𝑞 + 4.3𝑞
1

3 + 1,                                                    (7) 

The iterative calculation of collective enhancement is terminated when l0 is reached. 
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Figure 1. (a) Peak |E|2 field-intensities for the Teflon spheres versus size parameter, q. The 

distributions of |E|2 field-intensity in the xz plane (b) i and the yz plane (b) ii when q = 

22.24159 
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Figure 2. (a) The logarithmic 2D plot of Poynting vector of xz plane (b) The 3D plot of Poynting 

vectors initiating at the critical points. 
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Figure 3. The zoomed maps of the field-lines for the bottom circulation (a) and (b) and the upper 

circulation (c) and (d) at the different angles and their relative positions to the critical points (e) and 

(f). 
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Figure 4. The distributions of |E|2 field-intensity and Poynting vector (a) and the 3D plot of Poynting 

vectors initiating at the critical points (b) for the sphere of q = 22.14159. 

 

 


