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Abstract: By combining the flapping and rotary motion, a bio-inspired flapping wing rotor (FWR) is
a unique kinematics of motion. It can produce a significantly greater aerodynamic lift and efficiency
than mimicking the insect wings in a vertical take-off and landing (VTOL). To produce the same
lift, the FWR’s flapping frequency, twist angle, and self-propelling rotational speed is significantly
smaller than the insect-like flapping wings and rotors. Like its opponents, however, the effect of
variant flapping frequency (VFF) of a FWR, during a flapping cycle on its aerodynamic characteristics
and efficiency, remains to be evaluated. A FWR model is built to carry out experimental work. To be
able to vary the flapping frequency rapidly during a stroke, an ultrasonic motor (USM) is used to
drive the FWR. Experiment and numerical simulation using computational fluid dynamics (CFD) are
performed in a VFF range versus the usual constant flapping frequency (CFF) cases. The measured
lifting forces agree very well with the CFD results. Flapping frequency in an up-stroke is smaller
than a down-stroke, and the negative lift and inertia forces can be reduced significantly. The average
lift of the FWR where the motion in VFF is greater than the CFF, in the same input motor power
or equivalent flapping frequency. In other words, the required power for a VFF case to produce
a specified lift is less than a CFF case. For this FWR model, the optimal installation angle of the wings
for high lift and efficiency is found to be 30◦ and the Strouhal number of the VFF cases is between
0.3–0.36.
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1. Introduction

Since the research initiation of the micro aerial vehicle (MAV) from the defense advanced research
projects agency (DARPA) program [1], increasing attention has been paid to the design of bio-inspired
flapping wing MAV, and in particular, the study of aerodynamics [2–4]. Phan et al. [5] designed a stable
21 g insect-like tailless flapping wing micro air vehicle (FWMAV) with proportion-differentiation (PD)
feedback control. By undertaking several flight tests, they demonstrated that the tailless FWMAV could
perform a vertical climb, then hover and loiter, within a 0.3 m ground radius, with small variations in
pitch and roll body angles. Hsiao et al. [6] developed an ultra-light FWMAV named Golden Snitch with
only 8 g weight and 20 cm wingspan. By mounting a commercial infrared (IR) transmission module on
the vehicle, they realized that altitude control of the FWMAV by a modified proportional feedback
algorithm. The validity of their approach is demonstrated in both numerical simulations and flight tests.
Arabagi et al. [7] designed a scalable, controllable, miniature flapping wing robot. They manufactured
a working prototype and conducted FEM analysis for their airframe design to ensure its strength.
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A scaling law, based on momentum theory, was proposed to predict the lift/weight ratio versus the
flapping wing robot’s size. Ansari et al. [8] proposed a nonlinear unsteady aerodynamic model for
insect-like flapping wings, based on potential flow theory, and validated their model against existing
experimental data. Very good agreement is found in flow field representation and force prediction
in the experiments. Ansari et al. [9] also conducted experimental measurements for a flapping wing
flight, ranging from Re = 500 to 15,000. They studied the behaviour of the leading-edge vortex based
on these Reynolds numbers and verified the presence of Kelvin-Helmholtz instability, observed at
a higher Reynolds number in computational fluid dynamics calculations.

Regarding the MAV power, the electric motor is the most commonly used actuation source for
bio-inspired flapping-wing MAV (FWMAVs). However, constrained by the rotational inertial force,
the change rate of the electric motor’s rotation speed is limited and power-consuming. Guo and Huang
developed a piezoelectric actuator and multi-bar of flexure hinges to drive flapping-wing and a novel
flapping wing rotor (FWR) [10–12]. Sreetharan and Wood [13] designed an insect-type flapping wing
MAV which utilizes piezoelectric transmission wings with flexure hinges to replace the motorized
transmission. Mateti improved the piezoelectric transmission wings by designing and developing
a flapping wing MAV, known as LionFly [14,15]. Ma et al. [16] designed and fabricated an 80-milligram,
insect-scale, flapping-wing robot, which used a four-bar linkage to amplify the piezoelectric flight
muscle’s displacement and generate the wing-flapping motion. The common advantages of these
piezoelectric transmissions are that they are small, light mass, simple structure, have superb accuracy,
no gears, and low inertial effects. These advantages make piezoelectric transmission suited for nano-
to pico-scale unmanned aerial vehicles (UAVs).

Different from mimicking the insect-like wings, a novel flapping wing rotor, with combined
rotary and flapping motion, was proposed by the author [17]. The FWR has the advantages of
significant higher aerodynamic efficiency and lift coefficient than insect-like wings, in the range
of Reynolds number from 2600 to 5000, and ideal Strouhal number around 0.3 [18,19]. In order
to evaluate the FWR aerodynamic performance, numerical and experimental studies have been
conducted [12,17]. Guo et al. [10] designed a piezoelectric actuated flapping wing rotor model and
analyzed the aerodynamic performance of the model with two-dimensional (2-D) CFD numerical
simulation. Very good agreement is shown by comparing the experimental and simulation results.
Zhou [20] studied the effects of kinematic parameters on average lift force experimentally and found
that a proper combination of wing structure, installation angle of the wing, and power input can be
beneficial for higher averaged lift force. Chen et al. [21] developed a boring-hole designed flapping
wing rotor model. Through the experimental data, they found that there exists a critical angle of attack
for a perforated wing to increase its maximize mean lift by 35%.

In order to further understand the FWR flow mechanism of coupled flapping motion and rotary
motion, numerical simulations by CFD were performed. Wu et al. [22] analyzed the unsteady
aerodynamic behaviour of a FWR by CFD, at a low Reynolds number, and proposed that the lift
and rotational moment will increase with the increase in pitching amplitude and Reynolds number.
Wang et al. [23] studied a FWR of aspect ratios of five by CFD method and proposed that a higher
Reynolds number and mean pitching angle can strength the leading edge vortex and provide a higher
lift and thrust. Yang et al. [24] used a charge coupled device (CCD) camera and the SURFER software to
capture and fit the three-dimensional (3D) flapping motion of the wing surface. The 3D flapping motion
is then sliced into the flapping motion on 2D cross sections before calculating the flapping wing’s
lift and drag through 2D quasi-steady CFD. The calculated results show a similar trend with their
experiments, which validates their methods. Yang et al. [25] also investigated the three-dimensional
(3D) flow fields around a flapping wing with a span of 20 cm through both, COMSOL fluid-structure
interaction (FSI) simulation and 3D stereo photography. They obtained similar trends for the numerical
and experimental lift force data, and found the simulated stream lines, flowing over the 3D wing,
agree well with the experimental smoke traces. Li et al. [26] employed a quasi-steady method to
compare the efficiency and lift of the flapping wing, rotary wing, and flapping wing rotor. The rotary
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wing showed the greatest efficiency, while the flapping wing rotor can obtain both relative high lift
and relative high efficiency at the same time.

In the current study, a FWR, driven by an ultrasonic motor, has been designed and manufactured to
investigate the effect of flapping frequency variation in down-stroke and up-stroke on the aerodynamic
forces. Subsequently, the kinematics of the flapping wing motion is decomposed into the variation
of rotary, stroking, and twisting angle, where the elastic deformation of the wing is neglected in
the CFD numerical model. The CFD model, which used Fluent software to calculate the lift curves
of the FWR, was built and subsequently validated by comparing with previous research results by
Wang et al. [23]. The study then focused on the effect of different flapping frequency of the FWR,
in down-stroke and up-stroke on the lift, by experiment and CFD simulation. The usual motion of
constant flapping frequency (CFF) in a flapping cycle provides a baseline reference for evaluating
the effect of variant flapping frequency (VFF) in up-stroke and down-stroke on FWR performance.
In addition, the influence of the installation angle of the FWR on the rotational speed and lift is studied.

2. Structure Design and Numerical Method

2.1. Flapping Wing Rotor Model

In this investigation, a FWR model of 50 g weight was designed and built in the
configuration illustrated in Figure 1. An ultrasonic motor normally provides higher power density
(power-to-volume ratio) and quicker actuation response [27] than an ordinary DC motor/servo motor.
Therefore, an in-house ultrasonic motor (USR30) is used to drive the FWR model. The motor mass
is 28 g, while the maximum continuous power and torque of the motor is 1.8 W, and 0.1 N·m,
respectively. It is capable of changing the flapping frequency in several milliseconds to study the effect
of variant flapping frequency on the FWR’s motion and lift. The components of the FWR model (in
green), shown in Figure 1a, was manufactured by 3D printing, and the rod was made of carbon/epoxy
composite. The aerodynamic forces, the rotary angle (ψ), twisting angle (θ), and stroking angle (ϕ)
are indicated using arrows. Among the above motions in three degrees of freedom (3-DoF), only the
stroking motion is driven by the ultrasonic motor. The twisting is caused by the deformation of the
flexible wing spars and the skin made from the 20 µm polyimide film. The flapping wing produces lift
and thrust from both wings in axial symmetric configuration. The thrust forms a torque to drive the
wings rotation around the shaft. Associated with the rotation, the wings also produce drag that equal
the thrust at a specific rotational speed. Two optical sensors, shown in Figure 1b, are mounted on the
FWR, in order to measure the flapping frequency for feedback and control of the motor speed during
up-stroke and down-stroke.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 18 

In the current study, a FWR, driven by an ultrasonic motor, has been designed and 
manufactured to investigate the effect of flapping frequency variation in down-stroke and up-stroke 
on the aerodynamic forces. Subsequently, the kinematics of the flapping wing motion is decomposed 
into the variation of rotary, stroking, and twisting angle, where the elastic deformation of the wing is 
neglected in the CFD numerical model. The CFD model, which used Fluent software to calculate the 
lift curves of the FWR, was built and subsequently validated by comparing with previous research 
results by Wang et al. [23]. The study then focused on the effect of different flapping frequency of the 
FWR, in down-stroke and up-stroke on the lift, by experiment and CFD simulation. The usual motion 
of constant flapping frequency (CFF) in a flapping cycle provides a baseline reference for evaluating 
the effect of variant flapping frequency (VFF) in up-stroke and down-stroke on FWR performance. In 
addition, the influence of the installation angle of the FWR on the rotational speed and lift is studied. 

2. Structure Design and Numerical Method 

2.1. Flapping Wing Rotor Model 

In this investigation, a FWR model of 50 g weight was designed and built in the configuration 
illustrated in Figure 1. An ultrasonic motor normally provides higher power density (power-to-
volume ratio) and quicker actuation response [27] than an ordinary DC motor/servo motor. 
Therefore, an in-house ultrasonic motor (USR30) is used to drive the FWR model. The motor mass is 
28 g, while the maximum continuous power and torque of the motor is 1.8 W, and 0.1 N∙m, 
respectively. It is capable of changing the flapping frequency in several milliseconds to study the 
effect of variant flapping frequency on the FWR’s motion and lift. The components of the FWR model 
(in green), shown in Figure 1a, was manufactured by 3D printing, and the rod was made of 
carbon/epoxy composite. The aerodynamic forces, the rotary angle (𝜓), twisting angle (𝜃 ), and 
stroking angle (𝜑) are indicated using arrows. Among the above motions in three degrees of freedom 
(3-DoF), only the stroking motion is driven by the ultrasonic motor. The twisting is caused by the 
deformation of the flexible wing spars and the skin made from the 20μm  polyimide film. The 
flapping wing produces lift and thrust from both wings in axial symmetric configuration. The thrust 
forms a torque to drive the wings rotation around the shaft. Associated with the rotation, the wings 
also produce drag that equal the thrust at a specific rotational speed. Two optical sensors, shown in 
Figure 1b, are mounted on the FWR, in order to measure the flapping frequency for feedback and 
control of the motor speed during up-stroke and down-stroke.  

 

Figure 1. (a) Working principle; (b) driving mechanism of the flapping wing rotor. 

In order to fulfil the FWR stroking motion, the driving disk was mounted at the centre of the 
shaft of the ultrasonic motor to provide continuous rotational moment. The assembly of the driving 
disk, driving bar, and linear rod forms a slider crank mechanism, as shown in Figure 2a. If the small 
deviation (1 mm), from the mid-bar axis and output shaft axis, is ignored in order to avoid the 

Figure 1. (a) Working principle; (b) driving mechanism of the flapping wing rotor.

In order to fulfil the FWR stroking motion, the driving disk was mounted at the centre of the shaft
of the ultrasonic motor to provide continuous rotational moment. The assembly of the driving disk,
driving bar, and linear rod forms a slider crank mechanism, as shown in Figure 2a. If the small deviation
(1 mm), from the mid-bar axis and output shaft axis, is ignored in order to avoid the occurrence of
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dead-point and the setting of the origin at the top stop point, the stroke position of the mid bar and the
stroke angle (ϕ) could be written as per Equations (1) and (2),

Zmid_bar = r(1− cosα) + 0.25λr[1− cos(2α)] (1)

ϕ =
[
Zmid_bar −Zavg

]
/B1 (2)

where α is the crank angle defined in Figure 2, λ denotes the crank-link rod ratio (r/l) and
Zavg = 0.5·(r + 0.5r·λ+ 0.5r/λ) is defined as average value between the maximum Zmid_bar and the
minimum Zmid_bar. B1 means the distance between A and B or A’ and B’, as shown in Figure 2b. The
lengths of the two connecting rods (r and l) are listed in Table 1.
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Table 1. Geometric parameters for the flapping wing rotor’s mechanism.

Variables r l OA (OA
′

) AB (A
′

B
′

)

Dimensions (mm) 6 35 9 8

The wing of rectangle platform was initially installed at 30◦ on the FWR model through the wing
front spar beam. Two symmetric rotation axes (A and A′) are present for the flapping motion as per
Figures 2 and 3. As shown in Figure 3, the front spar, chord-wise beam and two reinforced oblique
beams of each wing are plotted in black lines. The span-wise and chord-wise length of the wing
membrane skin are 205 mm, and 150 mm, respectively.
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2.2. Kinematics of the Flapping Wing Rotor

The kinematics of the FWR motion can be decomposed into twisting θ, flappingϕ, and rotary angle
ψ. The function of the flapping motion is determined by the geometric parameters of the flapping wing
rotor mechanism, and could be deduced by using Equations (1) and (2), given the flapping frequency.
The rotary motion can be assumed as a rotation with constant speed, as in previous studies [22,23], and
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the flexibility of the wings is not taken into consideration in the CFD model for numerical calculation.
Above all, the kinematic parameters, required for the numerical calculation, are the rotational speed
.
ψ, the flapping frequency during down-stroke ( fd), and up-stroke ( fu). As shown in Figure 4, three
reflective stickers (denoted as white and green dots) are attached on the flapping wing rotor. A laser
velocimeter (DM6230) is applied to measure both, the rotational speed and the flapping frequency. To
generate the variant flapping frequencies, such as fd and fu, it is needed to trigger the upper sensor and
disable the circuits to trigger the lower sensor before making the motor rotate at fd, and vice versus.
After both fd and fu are set, variant flapping frequencies between the up-stroke and the down-stroke
can be achieved if the circuits to trigger lower sensor and upper sensor work.
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Figure 5 illustrates a general set of variation curves of flapping angles, twisting angles, and rotary
angles in three successive periods for numerical calculation of the flapping wing rotor’s lift, where t̂
stands for non-dimensional time normalized by flapping period (0.5/ fu + 0.5/ fd). The definition of t̂d
and t̂u. could be given as below:
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0.5
fd(
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fd

) =
1

fd
(
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fu
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) =
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fu
(
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It is noted that the flapping frequency during the down-stroke ( fd) is larger than that during the
up-stroke ( fu) in Figure 5. The curve of flapping angles follows Equations (1) and (2) during either,
the single up-stroke or down-stroke. Twisting angles remain unchanged throughout the flapping
process, and the slope of the curves for rotary angles over 360 represents the revolutions of rotary
motion during every flapping cycle.

Finally, based on the above assumption, the trace line of the point P at flapping wing rotor’s wing
tip in one rotary cycle could finally be plotted in Figure 6. It only consists of both flapping motion and
rotary motion, while the flexible twisting motion is neglected in the following numerical calculation.
The wings are mounted on the FWR in an installation angle (θ0) and installation angle is defined as the
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angle between the wing chord and the horizontal plane when the flapping angle is zero during mid
down-stroke, as illustrated in Figure 6.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18 

 

Figure 6. Trace line of the flapping wing rotor. 

2.3. CFD Model and Validation 

In order to calculate the flow field of the flapping wing rotor and make a comparison between 
the lift obtained by CFD, a CFD model was built. The CFD solver, used in this paper, is fluent 19.0 
and the mesh is plotted by Hypermesh software, as well as the meshing mode of fluent as given in 
Figure 7. The whole fluid field is defined as a sphere and can be mainly divided into two parts: Inner 
fluid and outer fluid. There is also a region around the wing surface (“wall” boundary condition) in 
which structured mesh is employed. The outer boundary of this region is selected to be a 1 time chord 
from the wing surface. Then, the outer bound radius of inner fluid (dark blue domain) is about 5 
times the wing chord length while the outer bound radius of outer fluid (light blue) accounts for 10 
times the wing chord length, in order to meet the requirements of far field boundary condition. A 
user-defined function is coded in C language to make the mesh in dark blue rotate about the center 
of sphere. These rotation motions can be decomposed into three mutually orthogonal components to 
simulate the flapping, twisting and rotary motion of our FWR model. The overset boundary condition 
is applied to the interface between inner fluid and outer fluid. Since the Reynolds number of this 
single wing is 7000–23,000 when its flapping frequency ranges from 1 Hz to 3 Hz, the 𝑘-𝜔 shear 
stress transfer (SST) model is utilized in this paper as that used in [28]. 

 
Figure 7. Mesh used in the CFD calculation. 

In order to validate the CFD model built-up in this paper, a case comparison is made between 
the lift and moment results in our CFD simulation and the results obtained by Wang et al. [23]. The 
variation function of flapping angle (𝜑), twisting angle (𝜃) and rotary angle (𝜓) as shown in Figure 8 
are set the same as those in the literature. According to Wang, the shape of the wing is simplified as 
a flat plane with 3% relative thickness and the aspect ratio 𝜆 = 5. The reference length (𝐿௥௘௙) and 
reference velocity (𝑈௥௘௙) are defined as wing chord 𝐿௥௘௙ = 𝑐 and the average flapping velocity at the 

Figure 6. Trace line of the flapping wing rotor.

2.3. CFD Model and Validation

In order to calculate the flow field of the flapping wing rotor and make a comparison between
the lift obtained by CFD, a CFD model was built. The CFD solver, used in this paper, is fluent 19.0
and the mesh is plotted by Hypermesh software, as well as the meshing mode of fluent as given in
Figure 7. The whole fluid field is defined as a sphere and can be mainly divided into two parts: Inner
fluid and outer fluid. There is also a region around the wing surface (“wall” boundary condition)
in which structured mesh is employed. The outer boundary of this region is selected to be a 1 time
chord from the wing surface. Then, the outer bound radius of inner fluid (dark blue domain) is about
5 times the wing chord length while the outer bound radius of outer fluid (light blue) accounts for
10 times the wing chord length, in order to meet the requirements of far field boundary condition.
A user-defined function is coded in C language to make the mesh in dark blue rotate about the center
of sphere. These rotation motions can be decomposed into three mutually orthogonal components to
simulate the flapping, twisting and rotary motion of our FWR model. The overset boundary condition
is applied to the interface between inner fluid and outer fluid. Since the Reynolds number of this single
wing is 7000–23,000 when its flapping frequency ranges from 1 Hz to 3 Hz, the k-ω shear stress transfer
(SST) model is utilized in this paper as that used in [28].
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In order to validate the CFD model built-up in this paper, a case comparison is made between the
lift and moment results in our CFD simulation and the results obtained by Wang et al. [23]. The variation
function of flapping angle (ϕ), twisting angle (θ) and rotary angle (ψ) as shown in Figure 8 are set
the same as those in the literature. According to Wang, the shape of the wing is simplified as a flat
plane with 3% relative thickness and the aspect ratio λ = 5. The reference length (Lre f ) and reference
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velocity (Ure f ) are defined as wing chord Lre f = c and the average flapping velocity at the wing tip
Ure f = 4cλ f ∆ϕ. Based on the above definition, the lift and rotational moment coefficients CL and Cm

are calculated as follows,

CL =
2L

ρ
(
Ure f

)2
S

(4)

Cm =
2mrotary

ρ
(
Ure f

)2
Sc

(5)

where L (lift) and mrotary (rotational moment) are the components of the aerodynamic force and moment
in rotary direction. Besides, ρ denotes the air density. After calculation, the simulation results are
shown in Figure 9.
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According to Figure 9, the trend of lift coefficients’ and rotational moment coefficients’ curves by
fluent software in this paper is the same as those by Wang et al. [23]. The average lift coefficients and
rotational moment coefficients are CL = 0.92 and Cm = 0.13 in Wang’s results. Meanwhile, in this paper,
the CL equals to 0.922 and Cm equals to 0.123 which is quite similar to those given by Wang et al. [23].
Overall, the comparisons above show that the CFD model, in this paper, is suitable for the aerodynamic
study of the FWR.

2.4. Assembly of Experimental Devices

Upon manufacturing, a FWR experimental model was built as shown in Figure 10 with the parts
assembled using epoxy resin. Apart from the items plotted in Figure 1, one more part (base 1) was
manufactured for fixing the FWR model onto a load cell (SEEED STUDIO 314990000) to measure
the forces.
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Figure 10. The flapping wing rotor (FWR) experimental model mounted on a load cell.

The experimental set-up for the FWR measurement are shown in Figure 11a. The DC voltage
for signal acquisition card and the USM controller are 8 V, and 12 V, respectively. It will generate a
voltage signal upon a force acting on the load cell, through a signal amplifier of 1k gain. The amplified
signal was transferred to a signal acquisition card (NI USB-6361) before finally being passed to a
computer and processed by software LabVIEW (2014, national instrument, Austin, Texas, and America).
The measured signals were filtered by the second order low-pass Chebyshev algorithm in the LabVIEW
code and the low-pass cutoff frequency was set as five times the flapping frequency of the FWR
model [29,30].

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18 

 
Figure 10. The flapping wing rotor (FWR) experimental model mounted on a load cell. 

The experimental set-up for the FWR measurement are shown in Figure 11a. The DC voltage for 
signal acquisition card and the USM controller are 8 V, and 12 V, respectively. It will generate a 
voltage signal upon a force acting on the load cell, through a signal amplifier of 1k gain. The amplified 
signal was transferred to a signal acquisition card (NI USB-6361) before finally being passed to a 
computer and processed by software LabVIEW (2014, national instrument, Austin, Texas, and 
America). The measured signals were filtered by the second order low-pass Chebyshev algorithm in 
the LabVIEW code and the low-pass cutoff frequency was set as five times the flapping frequency of 
the FWR model [29,30]. 

In order to generate different flapping frequencies in down-stroke (𝑓ௗ) and up-stroke (𝑓௨), and 
limit the response time for switching the frequency between 𝑓ௗ and 𝑓௨ to within milliseconds, two 
optical sensors are mounted on the FWR as shown in Figure 1b. Moreover, a control breadboard is 
needed as shown in Figure 11b. Each time the trigger passing through the higher optical sensors, an 
excitation signal is generated at the position of “sensor 1” plotted in Figure 11b. It would make the 
“output” in Figure 11b only affected by the adjustable resistance 𝑅ହ. By adjust the resistance 𝑅ହ, the 
voltage of “output” (𝑉௢௨௧) in Figure 11b ranges from 1 V to 2.5 V. Then, the controller of the USM can 
control the rotation speed of the USR30 by inputting different  𝑉௢௨௧  and higher 𝑉௢௨௧  usually 
corresponds to higher motor’s rotation speed, namely, higher FWR flapping frequency. 

 

 
Figure 11. (a) Experimental components; (b) measurement circuits for the FWR model.

In order to generate different flapping frequencies in down-stroke ( fd) and up-stroke ( fu), and limit
the response time for switching the frequency between fd and fu to within milliseconds, two optical
sensors are mounted on the FWR as shown in Figure 1b. Moreover, a control breadboard is needed as
shown in Figure 11b. Each time the trigger passing through the higher optical sensors, an excitation
signal is generated at the position of “sensor 1” plotted in Figure 11b. It would make the “output”
in Figure 11b only affected by the adjustable resistance R5. By adjust the resistance R5, the voltage of
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“output” (Vout) in Figure 11b ranges from 1 V to 2.5 V. Then, the controller of the USM can control the
rotation speed of the USR30 by inputting different Vout and higher Vout usually corresponds to higher
motor’s rotation speed, namely, higher FWR flapping frequency.

3. Experiment Results and Discussion

3.1. Parametric Study for the Effect of Flapping Frequency Variation

As described in Sections 2.2 and 2.4, it is possible to vary the flapping frequency in up-stroke
and down-stroke separately by employing the USM. The frequency and corresponding rotational
speed of the FWR were measured by using laser velocimeter, as described in Section 2.2. In this
study, the flapping frequency was altered from 1 Hz to 3 Hz to set a combination of flapping motion
cases including the constant flapping frequency (CFF) mode in case 1, 2, and 3 and variant flapping
frequency (VFF) mode in case 4 and 5, as listed in Table 2. According to Table 2, it can be found that
higher average flapping frequency usually lead to higher rotational speed

.
ψ.

Table 2. Flapping frequency and corresponding rotational angular velocity.

Case No. Flapping Mode fd (Hz) fu (Hz)
.
ψ (Hz)

1 CFF 3 3 2
2 CFF 2 2 1
3 CFF 1 1 0.41
4 VFF 3 1 1
5 VFF 3 2 1.67

3.2. Experimental Results of the VFF Effect on Inertial Force

For the CFF Case 1 (3 Hz) versus the VFF Case 4 (3 & 1 Hz), the total force, including the inertial
and aerodynamic lift forces, are measured and shown in Figure 12. Since the total force measured
by the load cell is a mixture of the inertial and aerodynamic forces, the inertial force was measured
separately with the membrane skin removed from the wing in the same condition of fu = fd = 3 Hz
as in case 1 and fu = 1 Hz, fd = 3 Hz as in case 4. The aerodynamic forces can be obtained from the
difference between the total force and the inertial force of the FWR model. From Figure 12 for the
baseline case 1 (CFF 3 Hz), the average inertial force, in a flapping cycle, is nearly zero, and results
in an average total force (215 mN) almost the same as the average lift force (214 mN). The phase
difference is about 90◦ between the inertial force and lift force, given the maximum vertical acceleration
and minimum velocity occurs at the start of the up-stroke and down-stroke. During the up-stroke,
the phase difference is slightly smaller than 90◦, while the phase difference is slightly larger than 90◦

during the down-stroke.
Unlike case 1, the VFF in case 4 results in a positive average inertial force about 8.3 mN,

which is about 10% of the average lift 80.5 mN. The results indicate that a reduced flapping frequency,
during up-stroke, would be beneficial due to the power efficiency and the lift of the FWR model. It is
worthy to note that this phenomenon is mainly due to the relatively rigid wing with limited twisting
angle of the FWR model, which is different from a flying animal wing that is capable of folding or large
twisting in up-stroke.
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Unlike case 1, the VFF in case 4 results in a positive average inertial force about 8.3 mN, which 
is about 10% of the average lift 80.5 mN. The results indicate that a reduced flapping frequency, 
during up-stroke, would be beneficial due to the power efficiency and the lift of the FWR model. It is 
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angle of the FWR model, which is different from a flying animal wing that is capable of folding or 
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3.3. Experimental and CFD Simulation Comparison

It is apparent that, compared with CFF case, the negative inertial and lift forces will be reduced
by decreasing the flapping frequency in up-stroke. However, the up-stroke time and the period of
a flapping cycle will be longer, means that the average flapping frequency is reduced. The study then
focused on the effect of VFF on the lift by comparing the experimental data with CFD simulation
results, as shown in Figures 13 and 14. It is noted that the elastic deformation of the FWR wing spar
and membrane skin was ignored in the CFD model.

For the CFF case 1 (3 Hz), the lift force results, from experiment and CFD methods, are compared
in Figure 13. For the baseline case 1, a similar trend of the lift curves is found between the CFD
and experiment results, with the average lift 218 mN, and 214 mN in a flapping cycle, respectively.
The maximum negative lift occurs at mid-up-stroke, while the maximum positive lift occurs at
mid-down-stroke by both methods. The peak lift values by experiment is smaller than that by CFD
simulation, mainly because a constant rotational speed (

.
ψ) is taken in the CFD model. While, in fact,

the rotational speed of the FWR experiment is slightly larger during the up-stroke than the average
value (

.
ψ), but smaller during the down-stroke when the maximum lift is produced. Despite the

difference in lift peak values between the CFD and experiment results, their general trend and average
lift values are quite similar. Thus, the assumptions made in the CFD model is valid for evaluating the
effect of variant flapping frequency on the FWR performance in the study (<3 Hz).

For the CFF case 3 (1 Hz), the average lift value 17.8 mN from experiment is much smaller than
the average lift (214 mN) in the CFF case 1 (3 Hz) and the lift (80.5 mN) in the VFF case 4 (3 & 1 Hz),
according to the results shown in Figure 13. A similar average lift from CFD is found for the case 3
(19.9 mN) and case 4 (85.3 mN). It is observed that the lift curves in case 3 are similar to the case 4
during up-stroke at 1 Hz flapping frequency, while the lift during down-stroke is similar to the case 1
at 3 Hz flapping frequency. The average lift in case 4 (3 & 1 Hz) is apparently greater than the lift in
case 3 (1 Hz), but smaller than case 1 (3 Hz), due to smaller input power and rotational speed during
up-stroke motion.
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For the CFF case 2 (2 Hz) and VFF case 5 (3 & 2 Hz), the lift force results are shown as Figure 14 in
comparison with the baseline case 1 (3 Hz). The average lift forces for the case 2 from the experiment
and CFD simulation are 72.8 mN, and 77.3 mN, respectively; for case 5 (3 & 2 Hz) are 151.7 mN,
and 167.5 mN, respectively, which is significantly greater than the lift force 72.8 mN in case 2 (2 Hz)
and the lift 80.5 mN in case 4 (3 & 1 Hz), but smaller than the lift force 214 mN in case 1 (3 Hz).
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3.4. Flow Field Simulation and Analysis by CFD Method

It is understood from a previous study that the evolution of leading edge vortex (LEV) and trailing
edge vortex (TEV) is a decisive factor for generating the lift and thrust of FWR. For case 1 (3 Hz),
the flow pressure and vorticity, produced by the FWR, are plotted in Figure 15 at eight non-dimensional
time step t̂ = 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875 in one flapping cycle. As given in Figure 15,
the flapping cycle starts at the beginning of the up-stroke t̂ = 0. In the plots, only the mid-span section
of the FWR was taken as the typical section for analyzing the LEV and TEV structures [23].
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According to Figure 15, a TEV forms at the lower surface at the end of down-stroke (t̂ = 0),
while a high-pressure region is formed on the upper surface of the FWR, mainly in the region of
chord 0.6 and 1.0. When up-stroke started at t̂ = 0.125, significantly low (negative) pressure and
LEV occurred on the lower surface of the wing section, which exacerbated the generation of negative
lift. From t̂ = 0.25, the LEV started shedding off the section and eventually a weak TEV is formed
on the upper surface of the trailing edge. During the second half of the up-stroke motion, the lift
increases from negative to small positive values, reaching about 20% of the maximum lift in one cycle.
Wake capture (LEV shed from the airfoil during up-stroke) was observed at the lower surface, at the
start of the down-stroke, when t̂ = 0.5. From t̂ = 0.5–0.75, the LEV and TEV continued to accumulate
on the upper surface of the FWR section until shedding off started at t̂ = 0.875. The lift reached a
maximum of 880 mN in the mid position of down-stroke, at about t̂ = 0.75, when the strongest LEV
and TEV were found on the upper surface. In general, the evolution of LEV and TEV determines the
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lift generation and form on the upper surface most of the time in one cycle, which leads to a positive
average lift (218 mN) in a complete flapping cycle.

The evolution of LEV and TEV are quite similar for the CFF case 1, 2, and 3.
However, several differences of the flow field are found between the above CFF cases and VFF
case. Since the difference between fu and fd is larger in the VFF case 4 (3 & 1 Hz), the difference of
fluid field in up-stroke and down-stroke is more apparent as presented in Figure 16. Unlike case 1,
the pressure difference between the lower and upper surfaces and the pressure value is much smaller
over a longer period until t̂ = 0.75 during the up-stroke. Hence, the negative lift keeps in relatively
small value (about 10–15% of maximum positive lift) most of the time in a flapping cycle. It is not until
t̂ = 0.75 that the LEV and TEV started to accumulate on the upper surface of the section, with the peak
lift (650 mN) occurring at t̂ = 0.875, when down-stroke started and the strongest LEV and TEV formed.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 18 

The evolution of LEV and TEV are quite similar for the CFF case 1, 2, and 3. However, several 
differences of the flow field are found between the above CFF cases and VFF case. Since the difference 
between 𝑓௨ and 𝑓ௗ is larger in the VFF case 4 (3 & 1 Hz), the difference of fluid field in up-stroke and 
down-stroke is more apparent as presented in Figure 16. Unlike case 1, the pressure difference 
between the lower and upper surfaces and the pressure value is much smaller over a longer period 
until 𝑡̂ = 0.75 during the up-stroke. Hence, the negative lift keeps in relatively small value (about 10–
15% of maximum positive lift) most of the time in a flapping cycle. It is not until 𝑡̂ = 0.75 that the 
LEV and TEV started to accumulate on the upper surface of the section, with the peak lift (650 mN) 
occurring at 𝑡̂ = 0.875, when down-stroke started and the strongest LEV and TEV formed.  

 
Figure 16. Variation of the pressure and vorticity in a flapping cycle in case 4. 

From the results in Figures 13 and 14, it is found that the lift generated in the VFF case 4 and 5 
is smaller than the CFF case 1, with higher output power from the motor in a flapping cycle. However, 
given the same output power, the lift forces generated by the FWR in the CFF and VFF cases are yet 
to be evaluated and compared. The measured output power against the rotation speed and torque of 
the motor in standard operating conditions is shown in Figure 17a. The results show that the 
maximum output power is 1.8 W with associated torque nearly 0.1Nm. The stalling torque of the 
motor is 0.16 N∙m. From the results in Section 3.2, it was found that the lift reaches maximum value 
of 214 mN when the maximum power output occurs at the motor speed 180 rev/min. The relationship 
between the output power and the average lift of the FWR is shown in Figure 17b where the 
equivalent output power of the motor defined as below, 

where 𝑇௙௨ = 1/𝑓௨  and 𝑇௙ௗ = 1/𝑓ௗ  means the corresponding flapping period of the flapping 
frequency 𝑓௨ and 𝑓ௗ; 𝑃௙ௗ and 𝑃௙௨ stands for the power output of the motor with rotation speed 60 ∙𝑓௨ and 60 ∙ 𝑓ௗ which can be found from Figure 17a. According to Figure 17b, it shows that in the 

𝑃௘௤ = (0.5 ∙ 𝑇௙௨ ∙ 𝑃௙௨ + 0.5 ∙ 𝑇௙ௗ ∙ 𝑃௙ௗ)/(0.5 ∙ 𝑇௙௨ + 0.5 ∙ 𝑇௙ௗ) (6) 

Figure 16. Variation of the pressure and vorticity in a flapping cycle in case 4.

From the results in Figures 13 and 14, it is found that the lift generated in the VFF case 4 and
5 is smaller than the CFF case 1, with higher output power from the motor in a flapping cycle.
However, given the same output power, the lift forces generated by the FWR in the CFF and VFF cases
are yet to be evaluated and compared. The measured output power against the rotation speed and
torque of the motor in standard operating conditions is shown in Figure 17a. The results show that
the maximum output power is 1.8 W with associated torque nearly 0.1Nm. The stalling torque of the
motor is 0.16 N·m. From the results in Section 3.2, it was found that the lift reaches maximum value of
214 mN when the maximum power output occurs at the motor speed 180 rev/min. The relationship
between the output power and the average lift of the FWR is shown in Figure 17b where the equivalent
output power of the motor defined as below,

Peq = (0.5·T f u·P f u + 0.5·T f d·P f d)/
(
0.5·T f u + 0.5·T f d

)
(6)
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where T f u = 1/ fu and T f d = 1/ fd means the corresponding flapping period of the flapping frequency
fu and fd; P f d and P f u stands for the power output of the motor with rotation speed 60· fu and 60· fd
which can be found from Figure 17a. According to Figure 17b, it shows that in the same power,
the average lift force produced by the FWR in the VFF cases is greater than that in the CFF cases.
Moreover, larger lift difference between the CFF and VFF cases with larger

∣∣∣ fd − fu
∣∣∣ is found, and in

particular, the lift more than doubled in the VFF case 4 (3 & 1 Hz) compared with that in the CFF cases
(1.3 Hz) of the same power output.
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From the above results, it is found that the motor provides adequate torque for the FWR to obtain
VFF for the investigation although the flapping frequency (3 Hz) is relatively low due to the limited
motor power. Consequently, the maximum lift produced by the FWR is only 43% of the FWR model
weight (50 g), and even smaller than the motor mass 28 g. Obviously, it is impractical for this model to
achieve hovering flight unless the model weight can be reduced significantly. Although it is feasible to
reduce the component weight, understanding how to improve the power to weight ratio (efficiency) of
the ultrasonic motor is beyond the scope of the current study.

3.5. The Effect of Different Installation Angles on the Lift Generation and Rotational Speed Generation

In the above cases and results, the FWR installation angle is θ0 = 30◦. In order to evaluate the effect
of the installation angle on the lift, the FWR model, with alternative installation angles, including θ0 =

15◦, 45◦ and 60◦ and have also been tested with the results presented in Figure 18.
According to the test results shown in Figure 18a, the FWR rotational speed decreases when the

installation angle θ0 increases due to the increased drag force. In general, the larger the flapping
frequency and power input, the larger the rotational speed. Furthermore, the rotational speed for
CFF case 1 remains almost constant when θ0 < 30◦ before decrease afterwards, while the rotational
speed for the other cases of smaller power input is decreased in the whole range of θ0, and even close
to zero when θ0 reaches 45◦. The maximum average lift force, generated by the FWR, is shown in
Figure 18b. It is also observed that the lift force increases with the installation angle until it reaches the
maximum at θ0 = 30◦ and then decreases when θ0 > 30◦ for all the cases. The results indicate that
there is an optimal installation angle to achieve the largest lift for different power, flapping frequency,
and rotational speed. In terms of lift-to-power ratio, the higher value is generally associated with
higher flapping frequency or input power, as shown in Figure 18c. However the lift-to-power ratio of
the FWR at 3Hz reduces dramatically when θ0 > 30◦ and becomes smaller than the VFF case (3 Hz &
1 Hz) when θ0 = 43◦–53◦, and the 1.3 Hz case, which has much smaller input power.
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Figure 18. The (a) rotational speeds; (b) lift forces; (c) the ratio between lift and power produced by the
FWR in different installation angles.

Furthermore, the lift efficiency in terms of Strouhal number (St number) and lift efficiency P f
used in previous studies [19,31,32] are employed to obtain the insight with a quantified analysis of
the results:

St =
f Φ

.
ψ f wd

(7)

P f =
CL

1.5

Cp
. (8)

where,

CL =
L

0.5ρUr f
2Stw

, Cp =
P

0.5ρUr f
3Stw

, Ur f = 2Φ f r2 (9)

where f stands for the flapping frequency (for VFF cases, it is a value equivalent to the CFF with the
same output power), Φ is the stroke angle amplitude,

.
ψ f wd is taken to be rotational angular speed of

the wing, P and L is the motor’s power and average lift of the FWR, Stw is the total area of two wings,
r2 stands for the radius of the second moment of wing area, as defined in Ellington’s book [32], ρ is the
air density, P f stands for the lift efficiency. Since the P is defined as the motor output power instead of
mean aerodynamic power in a flapping cycle, the resulting P f in the current study cases is generally
smaller than the case in previous study [19].

For the installation angles θ0 ≥ 45◦ in all cases of different flapping frequencies, it is found that the
resulting 0.1 > St > 0.6 is far beyond the high propulsion efficiency around St = 0.3 of flying animals
and the associated lift efficiency P f < 0.02 is very low. For the cases with installation angles 15◦–30◦,
the St values fall in the range of 0.25–0.6 with most of the associated P f > 0.05 as shown in Figure 19.
In particular the P f reaches a value 0.28 associated with St = 0.36 for the CFF case 1 (3 Hz), which is
similar to an optimal result in previous study [19]. Comparing all the CFF cases, the St number for
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all the VFF cases of equivalent power output falls in the range of 0.3–0.36 with slightly higher P f
values. For example, the VFF case 4 (3 & 1 Hz) results in St = 0.31 and P f = 0.11 while the CFF case of
equivalent frequency (1.3 Hz) and power (1.09 W) results in St = 0.53 and significant smaller P f = 0.02.
It is clear that the VFF cases with an installation angle θ0 = 30◦ result in higher P f and optimal St

number comparing with the other cases and installation angles.
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4. Conclusions

An investigation is conducted into the effect of variant flapping frequency during a flapping cycle
on the aerodynamic force generation of a flapping wing rotor driven by an ultrasonic motor (USR30)
through experiment and CFD simulation. In the experiment, a couple of optical sensors and a laser
velocimeter are used to measure the FWR motion including flapping frequencies in up-stroke fu and
down-stroke fd and rotational speed

.
ψ. The lift force generated by the FWR is obtained from the

difference of the total force and inertia force measured by a load cell. A CFD model is created for the
FWR with the spar beam twist but without the wing skin deformation taken into account. The CFD
model is validated before used for FWR aerodynamic simulation.

As described in Sections 2.2 and 2.4, it is possible to vary the flapping frequency in up-stroke
and down-stroke separately by employing the USM. The frequency and corresponding rotational
speed of the FWR were measured by using laser velocimeter as described in Section 2.2. In this study,
the flapping frequency was altered from 1 Hz to 3 Hz to set a combination of flapping motion cases
including the constant flapping frequency mode in case 1, 2 and 3 and variant flapping frequency
mode in case 4 and 5 as listed in Table 2. According to Table 2, it can be found that higher average
flapping frequency usually lead to higher rotational speed

.
ψ.

However, given a specified power output, the lift generated by the FWR in VFF cases is significantly
larger than the usual CFF cases. This is due to the reduced negative lift of the FWR during the slower
up-stroke motion in the VFF cases. In the VFF case 4 (3 & 1 Hz), the lift is more than doubled
comparing with that the CFF case having equivalent flapping frequency (1.3 Hz) and power. Due to
slower up-stroke motion, a positive inertia force about 10% of the average lift is produced by the
FWR in a flapping cycle although it does not contribute to lifting the model during flight. The CFD
simulation reveals the aerodynamic mechanism and provides insight of the evolution and different
flow characteristics of the LEV and TEV in the CFF and VFF cases. From the flow pressure and velocity
results, it is found that the LEV and TEV growth on the FWR upper surface is much slower during
up-stroke (takes over 60% of flapping period) in the VFF case 4 (3 & 1 Hz) hence a smaller negative lift
(about 10–15% peak positive lift) than the CFF case 1 (3 Hz). Therefore, a kinematics of motion with
an optimal VFF is superior comparing with the usual CFF subject to the same power.

The installation angle θ0 of the wings is a key factor that influences the FWR performance and lift.
From the parametric study for a range of installation angles θ0 = 15◦–60◦, it is found that the larger the
installation angle, the greater the lift force at a rotational speed. In practice however, a large installation
angle results in a large drag and reduced rotational speed. When θ0 ≥ 45◦, the rotational speed is
decreased to nearly zero. Without rotary motion, the FWR works like a conventional flapping wing
with the lift reduced dramatically as shown in Figure 18. For this FWR model, an optimal θ0 is found
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around 30◦ for both CFF and VFF cases while the VFF normally results in a higher power efficiency
and propulsion efficiency. With the optimal installation angle θ0 = 30◦, the Strouhal number for the
VFF cases is in the range of high propulsion efficiency 0.3–0.36 and higher P f values than the CFF
cases of the same power and equivalent flapping frequency. The ultrasonic motor provides a feasible
solution for the FWR to obtain VFF and generate higher lift under a specified input power.
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