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ABSTRACT 

 

Mature gas turbine performance simulation technology has been developed in the past decades and therefore gas 

turbine performance at different ambient and operating conditions can be well predicted if good thermodynamic 

performance software and necessary engine performance information are available. However, the performance of 

gas turbine engines of the same fleet may be slightly different from engine to engine due to manufacturing and 

assembly tolerance and may change over time due to engine degradation. Therefore, it is necessary to monitor and 

track important performance parameters of gas turbine engines, particularly those that cannot be directly 

measured, to ensure safe operation of the engines. 

For that reason, a novel gas turbine performance estimation method using engine gas path measurements has 

been developed to predict and track engine performance parameters at different ambient, flight, degraded and part-

load operating conditions. The method is based on the Influence Coefficient Matrix (ICM) of thermodynamic 

performance parameters of gas turbine engines and the Newton Raphson mathematical algorithm. Contrary to the 

conventional gas turbine off-design performance predictions where component characteristic maps are essential, it 

has the advantage that no component characteristic maps are required for the predictions and therefore it is 

relatively simple thermodynamically, fast in calculation and desirable in engineering applications. It is able to 

make important invisible performance parameters visible to gas turbine users, which is a useful complement to 

current engine condition monitoring techniques. The developed method was applied to the performance prediction 

of a model gas turbine engine similar to EJ200 low bypass turbofan engine running at different altitudes, Mach 

numbers and part-load, with and without degradation by using simulated gas path measurements to test the 

effectiveness of the method. The results show that the method is able to predict the engine performance with good 

accuracy without the consideration of measurement noise and with slightly lower accuracy when measurement 

noise is included. It takes about 30 seconds for a typical prediction point, which is suitable for off-line 
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performance tracking and condition monitoring. Theoretically, the method can be applied to the performance 

estimation of any types of gas turbine engines.  

 

NOMENCLATURE 

 

ACM Adaptation Coefficient Matrix 

BPR Bypass ratio 

ETA Isentropic efficiency 

FC Flow capacity (kg/s) 

H Influence Co-efficient Matrix (ICM) / Altitude (m) 

HOT Higher order terms 

HPC High pressure compressor 

HPT High pressure turbine 

ICM Influence Coefficient Matrix 

K Number of induced performance parameters 

LPT Low pressure turbine 

M Number of performance parameters 

ma Air mass flow rate (kg/s) 

mf Fuel flow rate (kg/s) 

N Number of measurement parameters 

NT Net thrust (N) 

P Total Pressure (atm) 

PR Compressor pressure Ratio 

RMS Root Mean Square 

SFC Specific Fuel Consumption (mg/N.s) 

T  Total Temperature (K) 

TET Turbine Entry Temperature (K) 

w
v

 Induced performance parameter vector 

x
v

 Performance parameter vector 

z
v

 Measurement parameter vector 



3 

 

Greek Letters 

  Convergence threshold 

 /  Prediction error/Average prediction error 

Δ Deviation 

 

Subscripts 

24 Fan exit 

3 HPC exit 

44 HPT exit 

5 LPT exit 

c1, c2 Fan and HPC, respectively 

t1, t2 HPT and LPT, respectively 

 

Superscripts 

# Pseudo-inverse 

T Transpose 

-1 Inverse 

 

 

I. INTRODUCTION 

 

Aero gas turbine engine performance is normally assessed by its performance parameters, such as thrust, specific 

fuel consumption (SFC), compressor pressure ratios, compressor and turbine isentropic efficiencies, turbine entry 

temperature, engine air flow rate, etc. Some of such information is OEM’s exclusive property and may only be 

partially available to gas turbine users. In addition, some of them cannot be directly or easily measured due to 

technical difficulties. They may also be slightly different from engine to engine even in the same fleet due to 

manufacturing and assembly tolerance and engine degradation.  Therefore, estimation of these performance 
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parameters at different ambient, flight, degraded and part-load conditions can be very useful for engine condition 

monitoring and engine control.   

Conventional design point and off-design performance simulation techniques, such as those published in [1-

3], are based on fundamental thermodynamics and empirical engine information such as component characteristic 

maps. Customer decks for production engines provided by OEMs are good examples of such technology in 

helping gas turbine users understand engine performance during operation. These techniques are very useful in 

predicting gas turbine engine performance when ambient, flight, health and engine operating conditions are 

available and can be very accurate for individual engines when the empirical engine information are accurate. 

However, a performance model  for an engine fleet may have noticeable prediction errors for individual engines 

due to manufacturing and assembly tolerance. In addition, actual performance of gas turbines is changing over 

time due to gradual performance degradation, which will result in increasing prediction errors of the model. 

Therefore, a performance model generated for fleet engines may not be good enough for the purpose of condition 

monitoring.  

Gas turbine performance adaptation is a type of techniques of adapting engine performance models to real 

engine performance in order to have accurate engine performance prediction at both design and off-design 

operating conditions. Different adaptation techniques have been developed in the past. For example in 1990 

Stamatis et al. [4] introduced a performance adaptation method to improve performance model accuracy by 

modifying component maps using introduced modification factors and a non-linear generalised minimum residual 

method. Stamatis et al. [5] introduced a sensitivity analysis and a fast selection procedure to optimize the 

modification factors in 1992. Lambiris et al. [6] further improve the method in 1994 by introducing a weighted 

error function and a polytope algorithm to optimise modification factors. Roth et al. [7] introduced an optimization 

concept for engine cycle model matching and a minimum variance estimator algorithm [8] for performance 

matching of a turbofan engine.  Kong et al. proposed map scaling methods using Genetic Algorithms to improve 

the accuracy of performance models [9-10]. Li et al. developed an Influence Coefficient Matrix based adaptation 

method for gas turbine design point performance adaptation [11] and different non-linear adaptation methods 

using Genetic Algorithm to improve the accuracy of off-design performance modelling [12-14]. More recent 

development of off-design performance adaptation has been published by Tsoutsanis et al. [15-17].  

In this research, a design point performance adaptation method is further developed and used in the 

prediction of real gas turbine engine performance based on engine gas path measurements. The developed method 
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was tested by applying the method to the performance prediction of a model aero low bypass ratio turbofan engine 

similar to EJ200 by using simulated gas path measurements of the model engine running at different flight, 

degraded and part-load operating conditions. The results of the prediction are demonstrated and relevant 

discussions and conclusions are provided accordingly.  

 

II. METHODOLOGY 

 

Traditionally in gas turbine performance simulation, an engine thermodynamic performance model may be set up 

first at a chosen “design point” where the performance information, such as compressor pressure ratios, 

compressor isentropic efficiencies, turbine entry temperature, turbine isentropic efficiencies, air flow rate, etc. of 

the engine at this specific operating point are given and the engine design point performance is calculated. The 

performance of the engine at off-design conditions, i.e. at different ambient, flight and health conditions and/or at 

different power levels, can be predicted by using thermodynamics, empirical component maps and mathematical 

algorithms to achieve a new engine thermodynamic equilibrium condition where the continuity of mass, 

momentum and energy are satisfied. With the development of advanced gas turbine thermodynamic performance 

modelling techniques, such off-design performance simulation has been very successful as long as the engine 

component characteristic maps are accurate and kept unchanged during engine operation. However, prediction 

errors for individual engines may appear even for the same fleet engines due to manufacturing and assembly 

tolerance and even for the same engines when their performance degrade during their operation. This is because of 

the difference between the component characteristic maps used in the performance models and those of real 

engines.  

The idea of the introduced performance estimation method is based on an assumption that each off-design 

operating point can be regarded as an “artificial design point” of the engine. In other words, when a gas turbine 

engine thermodynamically reaches its equilibrium condition at an off-design point, the actual performance status 

of the engine represented by key performance parameters, such as compressor pressure ratios and isentropic 

efficiencies, turbine entry temperature, turbine isentropic efficiencies, engine air flow rate, etc., may be estimated 

with a design point performance adaptation method by matching all predicted gas path parameters to the 

corresponding available gas path measurements.  
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The estimation of off-design performance of an engine is an inverse mathematical problem. In other words, 

the information of the independent variables of an engine thermodynamic system is estimated by using the 

information of the dependent variables of the system available in engine gas path measurement. The idea and the 

mathematical representation of the performance estimation approach are described as follows. 

In the introduced performance estimation method, it is assumed that each off-design operating point is 

regarded as an “artificial design point” so that design point performance calculation methods can be applied. Such 

assumption brings an advantage that no component characteristic maps are required and the thermodynamic 

performance calculations of gas turbine engines at off-design conditions become simpler and faster than that of the 

conventional off-design performance calculations. In such performance estimation method, three types of 

parameters are defined as follows: 

 

1. Engine performance parameters x
v

 representing and determine the performance of gas turbine engines. 

These parameters are independent parameters of engine thermodynamic systems and in most cases cannot 

be easily measured directly. Examples of such parameters are engine air flow rate, compressor pressure 

ratios and isentropic efficiencies, turbine entry temperature, turbine isentropic efficiencies, cooling flows, 

etc.  

2. Engine gas path measurement parameters z
v

.  They are dependent parameters of the engine 

thermodynamic systems and can be measured satisfactorily in practice. Examples of these parameters are 

gas path pressures and temperatures, fuel flow rate, etc. 

3. Induced performance parameters w
v

. They are dependent parameters of the engine thermodynamic 

systems and indicate important engine performance. They may not be easily measured during engine 

operation but can be predicted satisfactorily once the engine performance models are established. 

Examples of these parameters are thrust and SFC. 

 

The thermodynamic relationship between engine performance parameters, induced performance parameters 

and engine gas path measurement parameters can be represented by Equations (1) and (2) 

 xhz
vv

        (1) 

 xgw
vv

        (2) 
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where 
NRz

v
 is the gas path measurement parameter vector and N the number of the parameters, 

MRx
v

 is 

the engine performance parameter vector and M the number of the parameters, 
KRw

v
 is the induced 

performance parameter vector and K the number of the parameters, and  h  and  g  are  vector-valued 

functions representing the relevant thermodynamic relationship.  

A design point thermodynamic performance model for an engine at a specified flight, health and operating 

condition, i.e. at an “artificial design point”, may initially be built up with assumed values of the performance 

parameters x
v

 and such a model can be used as a baseline model, which is denoted by subscript 0. Therefore, 

Equation (1) can be expanded in a Taylor series around the baseline condition and becomes Equation (3). 

    HOT0

0

0 



 xx

x

xh
zz

vv
v

v
vv       (3) 

where HOT represents higher order terms of the expansion and can be neglected. Correspondingly, a linearized 

relationship between the deviation of the performance parameters and the deviation of the gas path measurement 

parameters of a gas turbine engine around the baseline point can be expressed by Equation (4). 

xHz
vv

        (4) 

where H is called Influence Coefficient Matrix (ICM). The deviation z
v

 may be regarded as the difference 

between the actual and the predicted values of the gas path measurement parameters while the deviation x
v

  may 

be regarded as the difference between the true and the initial values of the performance parameters. The objective 

of the performance estimation is to search for the values of x
v

 in order to minimize the values of z
v

  in order to 

find the estimation of the true values of x
v

that represents the real performance status of the engine at a specified 

flight, health and operating condition.  

Mathematically, x
v

 can be predicted by inverting the ICM H to an Adaptation Co-efficient Matrix (ACM) 

1H  leading to Equation (5) when H is a square matrix and invertible.  

zHx
vv

  1
      (5) 

If the number of performance parameters is not the same as that of the measurement parameters, H is not a square 

matrix and its inverse matrix may be replaced by a pseudo-inverse matrix. In other words, If N>M Equation (4) is 

under-determined and a pseudo-inverse matrix defined by Equation (6) to replace 1H in Equation (5) is the best in 

a least-squares sense. 
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     1# 
 TT HHHH       (6) 

Similarly if N<M, Equation (4) is over-determined and a pseudo-inverse matrix defined by Equation (7) to replace 

1H in Equation (5) is also the best in a least-squares sense.  

     TT HHHH
1# 

       (7) 

xxx
vvv

 0  represents the estimated real performance status of an engine at the specified flight, health and 

operating condition and its prediction based on the above theory is linear in nature and could provide a good 

estimation  when the correction is small and the thermodynamic behaviour of Equation (1) around the baseline 

condition is close to linear. When the nonlinearity of the relationship between the performance parameters and the 

gas path measurement parameters is significant, the predicted x
v

 may be far from accurate and the Newton 

Raphson iterative method adopted from [18] may be used where the linear prediction is iteratively applied until a 

converged solution is obtained. This nonlinear prediction method is schematically illustrated in Figure 1.  

To improve the convergence of the nonlinear prediction, under-relaxation may be used and its mathematical 

representation is shown in Equation (8).  

   iii xxx
vvv

 1       (8) 

where δ is an under-relaxation factor that may take a value between 0 and 1, i represents current iteration and i+1 

represents the next iteration. The determination of δ is a compromise between the computation speed and the 

stability of the iteration. In other words, a large value of δ may result in quick corrections but may result in 

divergence, and a small value of δ may have slow corrections but may result in an easy convergence.  

The convergence of the nonlinear estimation process shown in Figure 1 is declared when the predicted gas 

path measurements are very close to the actual values of the measurements.  This criterion is shown in Equation 

(9) where the Root Mean Square (RMS) of the errors must be smaller than a threshold  when a convergence is 

declared 













 
 



N

i actuali

actualipredictedi

z

zz

N
RMS

1

2

,

,,1      (9)       

where   may be chosen to be a very small number, such as 0.001.  
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Figure 1: Newton Raphson Method for Performance Estimation [18] 

 

The prediction error for each measurement parameter is defined by the relative difference between the 

predicted and the actual value of the measurement parameter and is represented by Equation (10). 

       %100
,

,, 



actuali

actualipredictedi

i
z

zz
           (10)             

where 
i
  is the error for the ith measurement parameter.   

The selection of the performance parameters and the gas path measurement parameters plays a crucial role in 

the success of the performance estimation and ensuring the convergence of the nonlinear prediction approach. 

Generally a set of selected performance parameters should be able to determine and represent unique performance 

of a gas turbine engine. Typical performance parameters are compressor pressure ratios and isentropic efficiencies, 

turbine entry temperature (or combustor exit temperature), turbine isentropic efficiencies, engine air flow rate, etc. 

Some other performance parameters, such as cooling air and bleeding air, could be included but are normally 

ignored as they have second order impact. In the selection of gas path measurement parameters, the major 

considerations are as follows: 

 The selected measurement parameters should sensitively respond to the change of performance parameters 

 Each performance parameter should have at least one measurement parameter sensitively responding to its 

change  

Baseline 

Actual 
Solution 

Predicted 
Solution 

 

2nd 
Iteration 

1st 
Iteration 

z
v

  

x
v

  
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 The number of measurement parameters should be close to the number of performance parameters although 

these numbers are allowed to be different.  

 

Trial and error may be carried out to test the effectiveness of the selected performance parameters and 

measurement parameters to ensure good selection of these parameters. In addition, a sensitivity analysis may be 

conducted to assist the selection of the measurement parameters where a unit change to each of the performance 

parameters may be seeded to the performance model and the response of the measurement parameters may be 

checked and compared with each other in a bar chart. An example of the sensitivity analysis will be shown in a 

later part of the paper.  

 

 

III. APPLICATION AND ANALYSIS 

A. Model Engine 

The introduced performance estimation method was applied to a model two-spool gas turbine engine similar to 

EJ200 low bypass ratio aero turbofan engine. The major gas path components of the model engine include a fan 

driven by a low pressure turbine (LPT), a high pressure compressor (HPC) driven by a high pressure turbine 

(HPT), a combustor, and a mixed flow convergent-divergent nozzle. The HP shaft speed of the engine is used as 

the handle of the model engine. The thermodynamic performance model of the engine was set up by using 

Cranfield gas turbine performance and diagnostic software Pythia [19] where the developed performance 

estimation method has been implemented. The model engine configuration is schematically shown in Figure 2.  

 

 

Figure 2: Schematics of Model Engine Configuration 

 

 

1   2    24                   3                        44           5 

Fan                        Combustor HPT                                    Nozzle 

HPC LPT 
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Table 1: Performance Parameters and Induced Performance Parameters 

Performance Parameters Symbol (Unit) 

Fan pressure ratio PRc1 

Fan isentropic efficiency ETAc1 

HPC pressure ratio PRc2 

HPC isentropic efficiency ETAc2 

HPT isentropic efficiency ETAt1 

LPT isentropic efficiency ETAt2 

Bypass ratio BPR 

Engine air flow rate ma (kg/s) 

Turbine entry temperature TET (K) 

Induced Performance 

Parameters 

 

Net thrust NT (N) 

Specific fuel consumption SFC (mg/N.s) 

 

 

B. Selection of Performance Parameters and Measurement Parameters 

The selected model engine performance parameters and induced performance parameters are shown in Table 1. To 

estimate the actual performance of the engine, the gas path measurement parameters selected for the performance 

estimation are shown in Table 2.  

In order to check the functional relationship between the performance parameters and the gas path 

measurement parameters, a sensitivity analysis was conducted and the results are shown in Figures 3(a) and 3(b). 

The figures represent the response of each of the gas path measurement parameters to 1% increase of each of the 

performance parameters. Such information provides the sensitivity of the gas path measurement parameters to the 

performance parameters and is very useful in assisting or assessing the selection of the measurement parameters 

for the performance estimation based on the guidance described in an earlier section of the paper.  

As the quality of the performance estimation depends on a strong functional relationship between the 

performance parameters and the gas path measurements, it is crucial that each of the performance parameters has 
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at least one gas path measurement parameter responding sensitively to its variation. If some gas path 

measurements are not available or get lost in flight, some performance parameters may not be predicted 

satisfactorily. Therefore proper selection of gas path measurements and keeping them available are very important 

to ensure the success of performance estimation. 

 

Table 2: Measurement parameters 

Measurement Parameters Symbol (Unit) 

Fan outlet total temperature T24 (K) 

Fan outlet total pressure P24 (atm) 

HPC outlet total temperature T3 (K) 

HPC outlet total pressure P3 (atm) 

HPT outlet total temperature T44 (K) 

HPT outlet total pressure P44 (atm) 

LPT outlet total temperature T5 (K) 

LPT outlet total pressure P5 (atm) 

Fuel flow rate mf (kg/s) 

 

 

 

Figure 3(a): Sensitivity Analysis 
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Figure 3(b): Sensitivity Analysis 

 

Table 3: Most Sensitive Measurement Parameters 

Performance 

Parameter 

Most Sensitive 

Measurement Parameters 

PRc1 P24, P3 

ETAc1 P5 

PRc2 P3 

ETAc2 P44, P5 

ETAt1 P44, P5 

ETAt2 P5 

ma mf 

BPR mf 

TET P5, mf, T5, P44, T44 

 

Based on the information provided in Figures 3(a) and 3(b), Table 3 shows the most sensitive measurement 

parameters to each of the performance parameters.  In other words, for each of the performance parameters the 

measurement parameters that have close to or more than 1% response to the 1% change of the performance 

parameters are listed in Table 3.  

It can be seen in Table 3 that each performance parameter has at least one measurement parameter that has 

good functional relationship with it. For example, TET has the highest number of sensitive measurement 

parameters while PRc2, ETAt2, ma, and BPR have only one sensitive measurement parameter. Deviation of ETAc2 

results in a large deviation of P44 and P5 due to that the isentropic efficiency of a compressor has a significant 
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impact on its downstream total pressure. In addition, it can be seen that P5, P3 and mf are crucial for the estimation 

of some of the performance parameters as they are the only measurement parameters that sensitively respond to 

the change of the performance parameters.  

 

C. Simulation of Gas Path Measurement Parameters  

The values of the gas path measurement parameters shown in Table 2 are simulated by running the engine model 

at three different altitudes (4km, 8km and 12km) and at Mach Numbers between 0 and 1.6 without engine 

degradation (i.e. clean engine). Figures 4 and 5 show an example of the simulated gas path measurements of T5 

and mf of the clean engine at flight, respectively.  

These simulated measurement samples represent the information that may be available from the 

measurement systems of real aero gas turbine engines at flight and may be used for engine performance estimation 

and analysis. In this particular case, measurement noise are not considered so the simulated measurements are used 

as the samples of the measurement parameters.  

The above results were obtained by assuming the HP shaft speed as the engine handle and hold constant 

during flight. However, other parameters, such as LP shaft speed, TET or engine pressure ratio, may also be 

selected instead as the engine handle, which may result in different performance of the engine at flight. In theory, 

the performance of an engine working at any steady state conditions can be predicted by the introduced 

performance estimation method no matter how an engine handle is selected.  

 

 

 

Figure 4: Simulated Measurement T3 of Clean Engine at Flight 
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Figure 5: Simulated Measurement mf of Clean Engine at Flight 

 

To demonstrate the capability of the introduced performance estimation method when it is applied to the 

degraded model engine at flight, a simultaneous degradation of LPC (fan) and HPT shown in Table 4 were seeded 

into the model engine. Correspondingly, the gas path measurements shown in Table 2 of the clean and the 

degraded model engine flying at 8km at Mach number between 0.4 and 1.4 were also simulated. An example of a 

comparison of the simulated measurement samples of T3 and mf of the clean and the degraded model engine are 

shown in Figures 6 and 7. The comparison indicates that when the model engine is degraded, its performance as 

well as the gas path measurements will deviate from their original values. It also indicates that the engine 

thermodynamic performance model created initially for the clean engine is no longer accurate for the degraded 

engine. 

 

Table 4: Assumed Engine Degradation 

Component Degradation (%) 

LPC 

(fan) 

Flow Capacity Index -3.0 

Efficiency Index -1.0 

HPT Flow Capacity Index -3.0 

Efficiency Index -1.0 

 



16 

 

Figure 6: Simulated Measurement T3 of Clean and Degraded Engine at Altitude 8km 

 

 

Figure 7: Simulated Measurement mf of Clean and Degraded Engine at Altitude 8km 

 
To demonstrate the capability of the performance estimation method at engine part-load conditions, the gas path 

measurement parameters (Table 2) of the model engine at different HP rotational speed were also simulated and 

are shown in Figures 8 and 9. 

 

Figure 8: Simulated Measurement P24, P3, P44, P5 and mf at Engine Part Load 
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Figure 9: Simulated Measurement T24, T3, T44, T5 and mf at Engine Part Load 

 

D. Performance Estimation of Engine at Flight 

By applying the novel performance estimation method to the clean model engine running at altitudes of 4km 

(Mach number 0 to 1.0), 8km (Mach number 0.4 to 1.4) and 12km (Mach number 0.6 to 1.6) using the simulated 

gas path measurements, important engine performance parameters shown in Table 1 were predicted and the results 

are shown in Figures 10 to 12. Figure 10 shows a comparison of the actual and the predicted values of the fan and 

the HPC isentropic efficiencies at different Mach numbers and flight altitudes, respectively. Figures 11-14 show a 

comparison of the actual and the predicted values of the turbine entry temperature (TET), the engine air flow rate, 

the net thrust and the SFC of the model engine at different Mach numbers and flight altitudes, respectively.  

It can be seen from the figures that the predicted performance parameters agree well with the actual values of 

the same parameters. The prediction errors are assessed by an average error   defined by Equation (11).  

%100
1 ,

,,

1





 



L

i actuali

actualipredictedi
L

i

i

Lx

xx

L


        (11) 

where L is the number of prediction points. The average prediction errors for all the performance parameters at 

different altitudes and Mach numbers are shown in Figure 15. It can be seen that the average prediction errors for 

most of the performance parameters are below 0.1% with an exception of around 0.36% for BPR.  The net thrust 

and the SFC are classified as the induced performance parameters and they have relatively large average 

prediction errors of around 1.6~2.1%. As the method is based on the ICM and the Newton Raphson iterative 

calculations, the accuracy of the predictions is determined mainly by the functional relationship between the 

performance parameters and the gas path measurement parameters. Such functional relationship is well presented 

by the sensitivity analysis shown in Figures 3(a) and 3(b). In other words, a strong functional relationship will 
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benefit the accuracy and vice versa. It can be seen in Figures 3(a) and 3(b) that the sensitivity is different for 

different parameters and this is the main cause of the prediction errors. The relatively large prediction errors of the 

net thrust and the SFC are the accumulative effect of the prediction errors of the performance parameters. 

 

 

 

Figure 10: Comparison of Actual and Estimated Compressor Isentropic Efficiencies of Clean Engine at Flight 

 

 

 

Figure 11: Comparison of Actual and Estimated Turbine Entry Temperature of Clean Engine at Flight 
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Figure 12: Comparison of Actual and Estimated Air Mass Flow of Clean Engine at Flight 

 

 

 

Figure 13: Comparison of Actual and Estimated Net Thrust of Clean Engine at Flight 

 

 

 

Figure 14: Comparison of Actual and Estimated SFC of Clean Engine at Flight 
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Figure 15: Average Prediction Errors for Performance Parameters of Clean Engine 

 
 
E. Degraded Performance Estimation of Engine at Flight 

The degraded engine performance of the model engine is determined by the engine degradation, ambient and flight 

conditions and the selected engine handle.  By applying the performance estimation method to the simulated gas 

path measurements (Figures 6 and 7) of the degraded model engine at an altitude of 8km with Mach number 

between 0.4 and 1.4, the predicted performance of the engine is shown in Figures 16 to 20 with a comparison to 

that of the clean engine. It can be seen that the predicted values of the performance parameters agree very well 

with the actual values of the performance parameters except the net thrust and the SFC. The average prediction 

errors for the performance parameters are shown in Figure 21 where most average prediction errors are very small 

with an exception of 0.12% for BPR and 0.24% for ETAt1. The average prediction errors for the induced 

performance parameters, the net thrust and the SFC, are relatively large and they are around 2%.  On the other 

hand, it can be seen that the TET, the engine air flow rate and the thrust all decrease compared with those of the 

clean engine. These variations are consistent with the drop of the fuel flow rate of the degraded engine shown in 

Figure 7. 

It is worth mentioning that the baseline engine performance model may only be able to accurately predict 

clean engine performance and the prediction errors will increase once the engine starts to degrade. By using the 

introduced performance estimation method, the performance parameters of gas turbine engines can be successfully 

estimated even when the engines are degraded. Therefore, such performance estimation method can be used as an 

effective technique to track the degraded engine performance and provide very useful performance information for 

engine condition monitoring and condition based engine control.   
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Figure 16: Prediction of ETA of Degraded Engine at H=8km and Their Comparison with Actual Performance 

 

 

 

Figure 17: Prediction of TET of Degraded Engine at H=8km and its Comparison with Actual Performance 

 

 

 

 

Figure 18: Prediction of Air Flow Rate of Degraded Engine at H= 8km and its Comparison with Actual Performance 
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Figure 19: Prediction of Net Thrust of Degraded Engine at H=8km and its Comparison with Actual Performance 

 

 

 

Figure 20: Prediction of SFC of Degraded Engine at H=8km and its Comparison with Actual Performance 

 

 

 

Figure 21: Average Prediction Errors for Performance Parameters of Degraded Engine at H=8km 
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F. Performance Estimation of Engine at Part-Load 

The gas path measurements simulated with the engine model operating at part-load at sea level static ISA 

condition are described in Section C and an example of the simulated measurements is shown in Figures 8 and 9. 

They were used as the input information for the performance estimation of the model engine at part-load. 

The most important engine performance parameters of the model engine at part-load, such as TET, engine air 

flow rate, SFC and net thrust NT varying with the engine handle (the HP shaft rotational speed PCN2), were 

predicted with the introduced performance estimation method and are shown in Figures 22 to 24, respectively. 

They are also compared with the actual values of the same parameters in these figures. The average prediction 

errors defined by Equation (11) of the engine performance parameters at the part load are shown in Figure 25. It 

can be seen that the prediction errors for most performance parameters are below 0.1% while the errors for the net 

thrust and the SFC are relatively large, around 2.3%.  

 

 

Figure 22: Prediction of TET of Engine at Part Load 

 

 

Figure 23: Prediction of mf and SFC of Engine at Part Load 
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Figure 24: Prediction of NT of Engine at Part Load 

 

 

Figure 25: Average Prediction Errors of Performance Parameters at Part Load 

 

 

G. Impact of Measurement Noise 

To analyse the impact of measurement noise on the accuracy of performance estimation, a measurement noise 

model with the maximum levels of measurement noise shown in Table 5 was implemented into Pythia to simulate 

measurement samples with the inclusion of measurement noise. The measurement noise was randomly generated 

following Gaussian type distribution and was imposed on the true values of the gas path measurement parameters 

to represent the measurement samples with measurement noise. In this study, 10 sets of random samples of the gas 

path measurement parameters (Table 2) with the inclusion of measurement noise were generated at altitude of 

12km and Mach number 1.2 and the samples of one of the gas path parameters T24 is shown in Figure 29 where 

Point 11 shows the true value of T24.  
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Table 5 Maximum Measurement Noise [20] 

Measurement Range Typical Error 

Pressure 0.204-3.06 atm 

 

0.544-31.30 atm 

±0.5 % 

±0.5 % or 0.125 

atm whichever is 

greater 

Temperature -65 – 290 C 

290 – 1000 C 

1000 – 1300 C 

± 3.3 C 

±  22 0075.05.2 T  

±  22 0075.05.3 T  

Fuel Flow Up to 250 kg/hr 

Up to 450 kg/hr 

Up to 900 kg/hr 

Up to 1360 kg/hr 

Up to 1815 kg/hr 

Up to 2270 kg/hr 

Up to 2725 kg/hr 

Up to 3630 kg/hr 

Up to 5450 kg/hr 

Up to 12260 kg/hr 

41.5 kg/hr 

34.3 kg/hr 

29.4 kg/hr 

23.7 kg/hr 

20.8 kg/hr 

23.0 kg/hr 

25.9 kg/hr 

36.2 kg/hr 

63.4 kg/hr 

142.7 kg/hr 

 

 

 

 

Figure 26: Measurment Samples of T3 with Measurment Noise 
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Using the performance estimation method shown in Section II, the engine performance parameters were 

estimated using the ten noisy samples. The predictions of two of the performance parameters, the Turbine entry 

temperature (TET) and the Net Thrust (NT), of the model engine are shown in Figures 27 and 28 where Point 11 

shows the true values of TET and NT.  

 

 

 

Figure 27: Predicted Turbine Entry Temperatue (TET) 

 

 

 

Figure 28: Predicted Net Thrust (NT) 

 

The average prediction errors calculated with Equation (11) for the engine performance parameters in 

concern are shown in Figure 29. A comparison of the average prediction errors between Figure 29 and Figures 15 

and 25 shows that the measurement noise does increase the prediction errors of the performance parameters. 

However it can be seen that the prediction errors for the compressor pressure ratios (PR) and the Turbine Entry 

Temperature (TET) are still very small, which are below 0.3% while the prediction errors for the engine air flow 

rate (ma), the isentropic efficiency (ETAt2) of the LPT, the Net Thrust (NT) and the SFC are around 2%. The largest 

prediction error happens to the bypass ratio (BPR), which is around 9.5%.   
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Figure 29: Average Prediction Errors Including the Impact of Measurement Noise 

 

H. Calculation Speed 

The performance estimation involves mathematical iterations of matrix inverse calculations and the use of 

complicated non-linear thermodynamic calculations; it is inevitable that certain amount of computation time is 

required. It takes around 13 iterations in around 30 seconds for the calculation of a typical point using a laptop 

computer with duo Intel® Core™ i7-3520M processors and CPU of 2.9GHz. Such performance estimation 

approach should be quick enough and satisfactory for off-line condition monitoring purpose but not fast enough 

for online real-time applications. To speed up the calculation speed, linear performance estimation approach and 

simplified thermodynamic models may be used but the accuracy of the performance estimation will suffer 

significantly.  

 

 

IV. CONCLUSIONS 

 

A novel performance estimation method based on Influence Coefficient Matrix (ICM) for gas turbine engines 

using engine gas path measurements is introduced in this paper and it has been applied to the performance 

estimation of a model aero low bypass turbofan engine using simulated gas path measurements to test the 

effectiveness of the method.  Based on the work conducted in this research, it can be concluded that the introduced 

method is effective and is able to provide accurate estimation of performance parameters of gas turbine engines at 

different flight, engine health and part-load operating conditions. It provides the capability of making important 

invisible gas path performance parameters visible to gas turbine users, which is a useful complement to current 

engine condition monitoring techniques. The introduced method has the advantage that no component 
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characteristic maps are required and therefore the performance estimation is relatively simple and fast, which is 

very desirable for engineering applications. The average prediction errors for most performance parameters are 

below 0.4% with the exception that the average prediction errors for the net thrust and the SFC are within 2% 

without considering the impact of measurement noise of the gas path measurements. The measurement noise has a 

negative impact on the accuracy of the estimation – around 0.3-2% for most performance parameters and around 

9.5% for bypass ratio. The calculation time for the performance estimation is around 30 seconds for a typical 

prediction point involving around 13 iterations by using a modern laptop computer, which is suitable for off-line 

engine condition monitoring applications. In theory, the introduced performance estimation method can be applied 

to any types of gas turbine engines.  
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