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Abstract. The importance of coatings in engineering has been predominant throughout the 
development of the new industrial era. The competitiveness of the field has led to the 
development of better materials that achieve superior properties. The purpose of this research is 
evaluating the adhesion to the surfaces coated by magnetron sputtering technique. The adherence 
quality of the deposited coatings on specimens was evaluated adhesion by scratch and 
indentation tests guided according to standards, using the Tribolab UMT at constant load. The 
results obtained allow validating of the additive manufacturing process as possible mechanicals 
applications. 

1. Introduction 
The new generations of functional coatings that allow a wide variety of solutions are in great demand 
today. The current trend for the individualization of products and the increase in their complexity, has 
meant that new ways of manufacturing the products must be thought of, taking the best of the available 
technologies. In the case of the individualization of the products, it is important to recognize that in the 
case of additive manufacturing the costs of making the pieces are practically independent of the number 
of pieces to be manufactured and that is why it has become so important to use them in the specialized 
processes. Additive manufacturing processes take information from a computer aided design (CAD) file 
that is then converted into a stereolithography (STL) file. The precision of this technique needs 
improvements to replace in some degree the need for a finishing process and therefore until now the use 
of coatings is the preferred solution in search of superior properties. The rapid creation of prototypes is 
one of the most striking uses because with this, researchers can build and analyze models of theoretical 
understanding and advanced studies [1–3]. 

Most polymeric resins and industrially applied compounds have low surface free energy and lack 
polar functional groups on their surface, resulting in inherently poor adhesion properties. A strong 
research drive to understand the adhesion of polymers in the last decade has been motivated by the 
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growing needs of the automotive and aerospace industries for better adhesion of components and surface 
coatings [4]. Hard coatings have become the solution to problems such as corrosion and wear. The 
technique physical vapor deposition (PVD) or sputtering is one of the most used processes for obtaining 
hard coatings, which includes any process of growth of a film in a vacuum environment that involves 
the deposition of atoms or molecules in a substrate. It consists of evaporating by physical means the 
material that will form the coating and its subsequent condensation on the substrate, this process has the 
possibility of being applied simultaneously to assemblies or pieces [5]. In recent years, the efforts made 
to develop multicomponent coatings as heterostructures in multilayers in order to improve the wear 
resistance and oxidation of the coated components have been considerable. The improvements are 
presented in the alternate deposition of two or more chemical and / or mechanically different layers, in 
such a way that the concentration of tensions and the conditions for the propagation of nano-cracks can 
be controlled. Therefore, the multilayer structure can act as an inhibitor of nanogrids, as well as 
increasing the resistance to fracture [6,7]. 

The scratch test can be used for the characterization of the materials. During the scratch test, a rigid 
penetrator is pressed on a specimen and a tangential force is applied, which produces a groove on the 
surface of the analyzed material. The resulting fingerprint is measured to determine the scratch hardness 
product of a given load [8]. 

In this work, we investigate the adhesion to the surfaces coated by magnetron sputtering technique 
following the established by ASTM G171-03 [9], and ASTM E92-17 [10] & E384-17 [11] standard, 
analyzing the effect of apply force in the specimen surface. We perform experimental tests using 
Tribolab UMT. The paper is organized as follows: in the next section, we show the methodology, which 
includes a description of the materials, specimen design and manufacturing, the failure criteria, and the 
experimental setup. In section 3, we analyze the results generated by the experimental standard tests. 
The conclusions are given in the final section. 

2. Methods and materials 
Each of the materials and methods used to evaluate the adhesion of DLC and Ti coatings on 3D printed 
polymers are described below: first the mechanical properties of each of the resins, followed by the 
design and manufacture of the textured surfaces to pass to the failure criteria and finally to the 
experimental assembly of each of the tests performed. 

2.1. Materials 
Table 1 presents the properties of materials used in the manufacture of the substrates, the commercial 
photopolymer resins Accura®60 (SLA-3500, 3D Systems) and Clear FLGPCL 02 (Form 1+, Formlabs). 
The substrates are fabricated layer by layer with a resolution of the layer thickness of 100 microns, in 
the 3D Systems SLA-3500 and Formlabs Form 1+ printers, which can read the geometric information 
of the substrates from the CAD files exported in the STL format. 
 

Table 1. Properties of Accura®60 and Clear FLGPCL 02 resins used in the printers 3D Systems SLA-
3500 and printer Formlabs Form 1+ respectively. 

Parameter Accura®60 resin Clear FLGPCL 02 resin 
Value Value 

Density 1.21	 g cm(⁄  1.10	 g cm(⁄  
Tensile strength 58	MPa − 68	MPa 61.5	MPa 
Young modulus 2.690	GPa − 3.1	GPa 2.7	GPa 
Elongation at break 5%− 13% 5% 
Flexural modulus 2.7	GPa − 3.0	GPa 2.38	GPa 
Impact strength 15	 J m⁄ − 25	 J m⁄  29	 J m⁄  
Heat deflection temperature (@𝟔𝟔	𝐏𝐒𝐈) 53	°C − 55	°C 78	°C 

 
In the SLA method, a laser beam of UV light following the path marked by the STL file scans 

across the surface in a vat with photosensitive resin that polymerizes to form of each layer of the 
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substrate. This method is fundamental to the history of additive manufacturing and provides one of the 
best compromises between part size, resolution, and surface quality [12]. 

2.2. Specimen design and manufacturing 
The geometry of the selected substrates in 3D was a circular disk of 21.3 mm in diameter with surface 
texture of curvilinear cross section of radius of curvature of 1 mm. The substrate was created in the 
computer aided design (CAD) software, SketchUp Make 2016 version 16.0.19911 (Trimble Navigation 
Limited), thus allowing the correct realization, modification, analysis and optimization of the model, 
validating the characteristics, properties and feasibility . design. The substrates were manufactured with 
commercial resin (photosensitive resin) using the technique of laser stereolithography with a layer 
thickness of 0.1 mm. The reason for the choice of materials was based on the great potential of use of 
them, specifically for laboratory applications and in the microfluidic industry, in which canals, grooves, 
crests and similar textures are found with hundreds of microns or even a few millimeters. 

For the coatings a magnetic spray technique was used in order to deposit the Ti and DLC layers. A 
blank of pure graphite (400 mm2 × 100 mm2) was used for the deposition of the DLC layer. The 
magnetron was operated in pulsed DC mode, frequency of 150 kHz, pulse time of 4 microseconds. The 
working pressure of argon was adjusted to	7 × 10B(	mbar. The substrates are located in a simple and 
parallel rotation system, at a distance of 8 cm from the target during the deposition. The deposition time 
was 90 minutes, resulting in a total thickness of the 40 nm DLC layer. In the case of Ti, the deposition 
was produced with a Ti target of pure rectangular metal (200 mm2 × 75 mm2) in the argon atmosphere 
(Ar). The working pressure of Ar and the DC power of magnetry were adjusted to 4 × 10B(	mbar and 
200 W, respectively. The deposition time was 7 minutes, resulting in a total thickness of the Ti layer of 
200 nm. The thickness measurement of the Ti and DLC film was made with a masked function and a 
glass slide using a profilometer. 

2.3. Failure criteria 
The failure criteria allow us to evaluate the final state of the piece under evaluation under comparative 
parameters. Then the representative variables are presented to consider in each of the tests to be 
performed. 

2.3.1. Scratch test. The scratch test consists of the application of a load on the surface of a certain 
material. This is achieved by pressing a point of a very hard material on the area of the material to be 
tested. While the sample is displaced at a certain speed, the resulting stresses in the interface cause marks 
and abrasions in the coating. The point of fracture initiation is called critical load. From the analysis of 
the marks left by the indenter and the applied force, it is possible to know properties and characteristics 
of the tested material such as: the modulus of elasticity, the tension at yield or the coefficient of friction 
[13]. The main criterion is that in the scratching process a measurable footprint is produced on the 
surface being analysed, without causing a catastrophic fracture or great damage to the surface of the 
material. The severe damage on the surface, when the width of the footprint is not clearly measurable 
or that the edges are cut or twisted, invalidates the use of this method. Therefore, it reflects the permanent 
deformation resulting from the scratching and not the instantaneous state of the combination of the 
elastic and plastic deformations of the surface [7]. 

2.3.2. Indentation test. It is measured by loading an indenter of specified geometry and properties on the 
material for a specified period of time and measuring the depth of penetration or the dimensions of the 
resulting indentation or impression. As the material being tested is softer, the depth of penetration or the 
indentation dimensions become larger. Common types of hardness tests include Rockwell (indentation 
depth or undeclared indentation), Knoop / Vickers and Brinell (indentation area). Knoop and Vickers 
tests are more suitable for fine materials, coatings and mounted metallographic components and are 
therefore the most suitable tests for the study in question [8]. Knoop tests are mainly performed in test 
forces of 10 g to 1000 g, Knoop tests are known primarily as microhardness or micro-indentation tests 
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and are best used in small test areas or fragile materials, since minimal material deformation occurs in 
the short diagonal area[14,15]. 

2.4. Experimental set up 
The Bruker’s scratch test system is built on the Universal Mechanical Test (UMT TriboLab) platform, 
which provides precision control of load, speed, and position. The system’s modular design ensures the 
flexibility to cover test capabilities over a wide range of forces and velocities to perform any scratch 
test. TriboLab utilizes three major drive systems, Carriage, Slider, and Y-stage for Z-, X-, and Y-motion, 
respectively. Universal mechanical and tribology testing. Figure 1 shows test of specimen photopolymer 
resins Accura®60 (SLA-3500, 3D Systems) which was tested in CETR-Universal Materials Tester 
(CETR-UMT). The required data is supplied by the DFH-5.0 sensor. 
 

 
Figure 1. Universal mechanical and 
tribology testing. Sensor DFH- 5.0. 

2.4.1. Scratch testing. Micro-scratch- tests were performed on four specimens using a diamond stylus 
with a tip radius of 5 μm. The test was conducted with reference to ASTM G171 [9] modified for thin 
coatings. The scratch hardness of a material can be determined by producing a scratch on the sample 
surface with a sharp, hard (diamond) tool 5 mm tip radius with known tip geometry, under a constant, 
load. For this case, the samples are 4 with the different coating configurations, in this case DLC and Ti, 
and with the two resins mentioned above. The diamond stylus in a stylus holder was mounted on the 
force sensor with a spring suspension. The test sample was mounted on a table of the lower linear drive, 
allowing for automated lateral motion and thereby multiple scratches on a single specimen. A sensor 
was attached to the stylus holder to monitor the high-frequency signal generated during scratching, 
which indicates the intensity of material fracture. To begin the test, a normal load of 10 g was applied 
to the stylus. The scratch was produced by dragging the stylus along the sample surface with the upper 
lateral slider. The scratch length was 3mm, and dragging speed was 0.02 mm/s. Load was maintained 
constant throughout the test by controlling the z-carriage motion based on closedloop feedback from the 
force gauge. The test was repeated three times on each sample to verify the data consistency and 
repeatability. 

2.4.2. Indentation testing. The tests were performed on four samples using a Vickers and Knoop stylus. 
The test was performed with reference to E92-82 & E384-99 [10,11], modified for thin coatings. The 
hardness of a material can be determined by producing a fingerprint the surface of the sample with a 
sharp and hard tool (diamond) with known tip geometry, under a constant load. For this case, the samples 
are 4 with the different coating configurations, in this case DLC and Ti, and with the two resins 
mentioned above. The diamond stylus on a stylus holder was mounted on the force sensor with a spring 
suspension. The test sample was mounted on a table of the lower linear drive, allowing automated lateral 
movement and, therefore, multiple fingerprints in a single sample. To begin the test, a normal load of 
50 g was applied to the pencil for 15 s, the indentation depth h being measured continuously. The load 
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was kept constant throughout the test by controlling the movement of the carriage z based on the closed 
loop feedback of the force meter. The test was repeated three times in each sample to verify the 
consistency and repeatability of the data. 

3. Results 
During the scratch test, the indenter moved slowly on the coating, causing some material removal. A 
series of runs with progressively increasing normal loads, though constant within each run, was 
performed. The normal load started from 5 g in the first run and was increased by 10 g each run until 
coating failure was observed. The critical load characterizing the coating scratch resistance was defined 
as the minimum load to cut through the coating completely. Constant load scratch testing provides better 
differentiation of damage levels. However, the constant load scratch test requires more specimen surface 
and test time. Nevertheless, a constant load test provides a greater statistical confidence in the results. 

The relevant in the graphs since it is wanted to evaluate the scratch resistance and not specifically 
the hardness, stands out in the particular behaviour for each of them. The tendency in the applied force 
line until it exceeds the maximum force forming a peak amplitude as seen in the Figure 2, Figure 3, 
Figure 4 and Figure 5, that is more noticeable and abrupt for DLC coatings, which leads us to the 
hypothesis that the scratch resistance and therefore the adhesion during film formation is more 
homogeneous and uniform for the coating, in contrast to that obtained by Ti coatings, since the transition 
does not occur instantaneously, although its penetration is smaller which leads to the conclusion that its 
film formation is not completely homogenous and may have discontinuities that lead to this behaviour. 
 

 
Figure 2. Scratch test, 20 g for photopolymer resins Accura®60 (SLA-3500, 3D Systems), DLC 
coating. 

 

 
Figure 3. Scratch test, 20 g for photopolymer resins Accura®60 (SLA-3500, 3D Systems), Ti 
coating. 
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Figure 4. Scratch test, 20 g for Clear FLGPCL 02 (Form 1+, Formlabs), DLC coating. 

 

 
Figure 5. Scratch test, 20 g for Clear FLGPCL 02 (Form 1+, Formlabs), Ti coating. 

 
As for the indentation tests, the same number of tests were carried out, with the parameters mentioned 

above for the Vickers and Knoop model. For each of them, the results obtained were close to expected 
but more significant with Knoop Hardness: for the Vickers test the dispersion was much higher and the 
taking of results was difficult taking into account the measurement of the indenter's footprint. For these 
tests, you had the geometry of the identator and with the measurement of your diagonals, the equipment 
allows you to automatically calculate the values (see Table 1 and Table 2). 
 

Table 2. Results scratch test. 
Parameter 
HV micro-
hardness 

Accura®60 resin 
DLC 

Clear FLGPCL 02 
resin DLC 

Accura®60 resin 
Ti 

Clear FLGPCL 02 
resin Ti 

Value Value Value Value 
Test 1 3065.1 2974.1 2585.5 2043.2 
Test 2 3622.4 3096.2 2194.7 2196.3 
Test 3 3198.3 3155.6 2745.3 2003.7 

 
Table 3. Results indentation test. 

Parameter 
HK micro-
hardness 

Accura®60 resin 
DLC 

Clear FLGPCL 02 
resin DLC 

Accura®60 resin 
Ti 

Clear FLGPCL 02 
resin Ti 

Value Value Value Value 
Test 1 9756.3 9256.1 7423.8 7652.8 
Test 2 9845.3 9133.6 7652.3 7155.5 
Test 3 9635.2 9035.4 7327.2 6905.1 
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4. Conclusions 
The scratch tests carried out on the different test specimens yielded the results waiting, giving as a 
conclusion a good adhesion of the film without delamination: the tendency improves for the specimens 
obtained with the industrial equipment, refer to photopolymer resins Accura®60 (SLA-3500, 3D 
Systems). Presumably by an improved surface finish and at the same time an adhesion more consistent 
to the substrate, however for the other samples the results are acceptable. The indentation test gives us 
results regarding the hardness of the coating. The ranges for tests performed for DCL coatings are 3200 
HV and 9100 HK, while for Ti coatings are 2700 HV and 7100 HK. It is also concluded that the Knoop 
test gave better results than the Vickers test, although in repeated studies the reference is in relation to 
the last one mentioned. 

Acknowledgments 
The authors acknowledge the support given by VIE, Universidad Industrial de Santander. Likewise, the 
authors express their gratitude to the Laboratorio de Desarrollo de Productos at the ETSI Industriales of 
the Universidad Politécnica de Madrid and to Nano4energy This work was partially financed by the 
Colombian agency Colciencias through doctoral scholarship 617. 

References 
[1] Calignano F, Manfredi D, Ambrosio E P, Biamino S, Lombardi M, Atzeni E, Salmi A, Minetola P, Iuliano 

L and Fino P 2017 Overview on additive manufacturing technologies Proc. IEEE 105 593 
[2] Vayre B, Vignat F and Villeneuve F 2012 Designing for additive manufacturing Procedia CIRP 3 632 
[3] Mellor S, Hao L and Zhang D 2014 Additive manufacturing: A framework for implementation Int. J. Prod. 

Econ 149 194 
[4] Awaja F, Gilbert M, Kelly G, Fox B and Pigram P J 2009 Adhesion of polymers Prog. Polym. Sci. 34 948 
[5] Aperador W, Amaya C and Butista J 2012 Evaluación de la Resistencia a la Corrosión Erosión de 

Recubrimientos Multicapas de TiN/AlTiN Rev. Latinoam. Metal. y Mater. 32 210 
[6] Moreno L H, Caicedo J C, Gaitan G B, Martínez F and Pulido P P 2011 Performance of WC- inserts coated 

with nanometric [TiN/TiAlN] multilayer for the cutting processing of hardened AISI 4340 steel | 
Desempeño de insertos de WC recubiertos con nanomulticapas de [TiN/TiAlN] en el mecanizado del acero 
Rev. Fac. Ing. 98 85 

[7] Anand M, Burmistroviene G, Tudela I, Verbickas R, Lowman G and Zhang Y 2017 Tribological evaluation 
of soft metallic multilayer coatings for wear applications based on a multiple pass scratch test method Wear 
388–389 39 

[8] Valli J 1986 A review of adhesion test methods for thin hard coatings J. Vac. Sci. Technol. A Vacuum, 
Surfaces, Film 4 3007 

[9] American Society for Testing Materials (ASTM International) 2017 Standard test method for scratch 
hardness of materials using a diamond stylus, ASTM G171-03 (West Conshohocken: merican Society for 
Testing Materials) 

[10] American Society for Testing Materials (ASTM International) 2017 Standard Test Methods for Vickers 
Hardness and Knoop Hardness of Metallic Materials, ASTM E92-17 (West Conshohocken: American 
Society for Testing Materials) 

[11] American Society for Testing Materials (ASTM International) 2017 Standard test method for 
microindentation hardness of materials, ASTM E384-17 (West Conshohocken: American Society for 
Testing Materials) 

[12] Valbuena-Niño E D, Endrino-Armenteros J L, Estupiñan-Duran H A, Pérez-Gutiérrez B and Díaz-Lantada 
A 2016 Caracterización microscópica de texturas superficiales fabricadas aditivamente mediante 
estereolitografía láser Respuestas 21 37 

[13] Bull S J and Berasetegui E G 2006 An overview of the potential of quantitative coating adhesion 
measurement by scratch testing Tribol. Int. 39 99 

[14] Korsunsky A M, McGurk M R, Bull S J and Page T F 1998 On the hardness of coated systems Surf. 
Coatings Technol. 99 171 

[15] Chicot D, Démarécaux P and Lesage J 1996 Apparent interface toughness of substrate and coating couples 
from indentation tests Thin Solid Films 283 151 


