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Abstract: Electrocaloric (EC) effect in ferroelectric/antiferroelectric thin films has been widely 

investigated due to the potential applications in solid state cooling devices. It is demonstrated that the 

EC effect of the Pb0.78Ba0.2La0.02ZrO3 (PBLZ) relaxor thin films prepared by using a sol-gel method 

strongly depends on the substrates. The maximum ΔT of PBLZ thin films deposited on the 

Pt(111)/TiOx/SiO2/Si(100) (Pt), the LaNiO3/Pt(111)/TiOx/SiO2/Si(100) (LaNiO3/Pt), the 

LaNiO3/n-type GaN (LaNiO3/n-GaN) and the LaNiO3/p-type GaN (LaNiO3/p-GaN) substrates are ~ 

13.08 K, 16.46 K, 18.70 K, and 14.64 K, respectively. Moreover, negative EC effects in a broad 

temperature range (~ 340 K to 440 K) could be obtained in the thin films deposited on 

LaNiO3/n-GaN and LaNiO3/p-GaN substrates, which is ascribed to the higher proportion of 

orthorhombic antiferroelectric phase to rhombohedral ferroelectric phase induced by GaN substrates. 

These results indicate that tailoring the EC effects by the substrates could provide a new strategy in 

designing the EC cooling device with high cooling efficiency. 
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1. Introduction

Recently, the electrocaloric (EC) refrigeration have drawn more and more research attentions 

due to the breakdown of the large ΔT in ferroelectric/antiferroelectric (FE/AFE)1-10, and is considered 

as a competitive solid-state cooling technology for microelectronic systems such as the computers 

and smart phone11-16. It refers to an induced change in the adiabatic temperature (ΔT) or isothermal 

entropy (ΔS) of a polarizable dielectric material upon the application or withdrawal of an electric 

field1,5,17. The ΔT and the ΔS are very sensitive to many factors such as the applied electric field, 

thickness, phase structure and orientation, etc18,19. 

With the development of the preparation technology of ceramic thin film with high quality, 

larger electric breakdown strength can be achieved. Triggered by the giant EC effect (ΔT ~ 12 K) 

reported by Mischenko1 et al., a lot of theoretical and experimental studies have been carried out. No 

matter the bulk ceramics or the thin films, the EC effect all have been improved significantly. For 

example, a large EC effect with ΔT ~ 2.05 K at 40 kV/cm is obtained in the PbxSr1-xTiO3 bulk 

ceramics near the phase transition temperature20. A giant EC effect with ΔT ~ 45.3 K at 598 kV/cm is 

achieved in the Pb0.8Ba0.2ZrO3 thin films with the coexistence of antiferroelectric and ferroelectric 

phase17. A large EC effect with ΔT ~ 14.5 K at 600 kV/cm is obtained in the 

0.67PbMg1/3Nb2/3O3-0.33PbTiO3 thin films with a highly (001)-orientation21.  

In addition to the great progress made in the above positive EC effects, the progress in negative 

EC effect has also been made rapidly. For example, a giant negative EC effect with ΔT ~ - 52.2 K at 

low temperatures (150 - 210 K) were observed in the PbZr0.53TiO0.47/CoFe2O4 

ferroelectric/ferromagnetic multilayer nanolaminate22, and very recently a giant EC effect with ΔT ~ 

- 42.5 K at 436 K were demonstrated for the 0.5(Ba0.8Ca0.2)TiO3–0.5Bi(Mg0.5Ti0.5)O3 lead-free 

relaxor ferroelectric thin film due to the electric field induced structural phase transition (nanoscale 

tetragonal and orthorhombic to rhombohedral)23. 

Although most of research work about the EC effects are reported in thin films deposited on the 

well-known Pt/TiOx/SiO2/Si substrate, some EC effects have also been reported in thin films 

deposited on other substrates. For example, a large EC effect with ΔT ~ 2.13 K at 508 K is obtained 

in the PMN-PT ferroelectric thin films deposited on Ir/SrTiO3/TiN/Si (001) substrates using pulsed 



laser deposition (PLD) method24. A large EC effect with ΔT ~ 6.4 K at 471 K was obtained in the 

PbZr0.95Ti0.05O3 film fabricated on the FTO substrate using a sol-gel method25. It is well known that 

the GaN is one of the third-generation semiconductor materials, and it possesses many new unique 

features which are not available in traditional silicon-based semiconductor materials, such as high 

thermal conductivity, good chemical stability (nearly corroded by any acid) and strong 

anti-irradiation ability, etc. However, as far as we concerned, few research works have been paid 

attention to the influence of GaN substrate on the EC effects of FE/AFE thin films. Therefore, it is 

interesting to carry out a research work on it. 

In this work, the influence of the substrates on the EC effects of the Pb0.78Ba0.2La0.02ZrO3 (PBLZ) 

relaxor thin films prepared using a sol-gel method on different four substrates (Pt, LaNiO3/Pt, 

LaNiO3/n-GaN, and LaNiO3/p-GaN) were studied systematically. Large positive EC effects at room 

temperature were obtained and the maximum ΔT for the four substrates are ~ 13.08 K, 16.46 K, 

18.70 K, and 14.64 K, respectively. Moreover, negative EC effect in a broad temperature (~ 340 K to 

440 K) are obtained in the thin films deposited on LaNiO3/n-GaN and LaNiO3/p-GaN substrates, 

which is attributed to a higher proportion of orthorhombic antiferroelectric phase to rhombohedral 

ferroelectric phase induced by GaN substrates. These findings make the GaN substrates very 

attractive in tailoring the EC effect of thin film materials. 

2. Method

2.1 Fabrication of PBLZ 

PBLZ thin films were prepared by using a sol-gel method as shown in Fig. S1 a). Pb(CH3COO)3

with 20% excess Pb, Ba(CH3COO)2 and C6H9O6LaxH2O were dissolved in a mixture of glacial 

acetic acid and deionized water at 120 ºC. Simultaneously, Zr(OC3H7)4 was dissolved in a mixture of 

glacial acetic and CH3COCH2COCH3 at room temperature. The Pb/Ba/La and Zr solution were then 

mixed and stirred for 30 min at 100 ºC. After that, appropriate additives were added into the mixed 

Pb/Ba/La/Zr solution. The final concentration of the PBLZ precursor solution was 0.2 M. After the 

precursor solution was aged for 24 h, the PBLZ thin films were deposited on four different substrates 

rinsed with acetone and ethanol. These substrates include Pt(111)/TiOx/SiO2/Si(100) (abbreviated as 



Pt), LaNiO3/Pt(111)/TiOx/SiO2/Si(100) (abbreviated as LaNiO3/Pt), LaNiO3/n-type GaN (abbreviate 

as LaNiO3/n-GaN) and LaNiO3/p-type GaN (abbreviate as LaNiO3/p-GaN). The PBLZ thin films 

were prepared by using the layer-by-layer annealing mode. Each layer of thin films was dried on 

hotplate at 350 ºC for 5 min when spin-coated at 4000 rpm for 30 s, and then pyrolyzed on hotplate 

at 550 ºC for 5 min, and finally was annealed in a tube furnace at 700 ºC for 3 min in air. After that, 

the above process was repeated for 8 times. The final film thickness was about 280-390 nm, 

depending on the substrates. 

2.2 Fabrication of substrates with LaNiO3 bottom electrodes 

Substrates with LaNiO3 bottom electrodes were prepared by using a sol-gel method, as shown in 

Fig. S1 b). Ni(CH3COO)2 and La(NO3)3 were dissolved in a mixture of glacial acetic acid, water and 

formamide (CH3NO) at room temperature. The final concentration of the LaNiO3 precursor solution 

was 0.3 M. After the precursor solution was aged for 24 h, 6-layer-LaNiO3 thin films were deposited 

on Pt(111)/TiOx/SiO2/Si(100), n-GaN and p-GaN substrates by using the layer-by-layer annealing 

mode. Each layer of thin films was dried on hotplate at 180 ºC for 3 min when spin-coated at 4000 

rpm for 40 s, and then pyrolyzed on hotplate at 450 ºC for 10 min, and finally was annealed in a tube 

furnace at 700 ºC for 5 min in air. 

2.3 Characterization 

The crystallinities of PBLZ thin films were monitored by X-ray diffraction (XRD; Rigaku 9 kW 

Smartlab, Tokyo, Japan). The cross-sectional morphologies of thin films were examined by scanning 

electron microscopy (SEM; HITACHI SU8220). The micro-structures of thin films were observed by 

transmission electron microscopy (TEM; JEOL JEM-2100F). For the measurement of the electrical 

properties, square Au/Cr top electrodes with a side length of 90 μm were deposited by the RF 

magnetron sputtering method and using a shadow mask. Polarization-electric field (P-E) hysteresis 

loops were obtained by means of a ferroelectric tester (Precision Premier II Radiant Technologies 

Inc.). All samples were measured by using the top-to-bottom electrode configuration. The 

temperature of sample was controlled by a thermal controller (THMSG600, Linkam) with an 

accuracy of 0.1 ℃. 



3. Results and discussion 

3.1 Structure 

Fig. 1a) shows the X-ray diffraction (XRD) patterns of PBLZ thin films deposited on four 

different substrates. All thin films exhibit good crystallinity and pure perovskite structure. For 

simplicity, the diffraction peaks were indexed by using the pseudo-cubic structure rather than the 

orthorhombic or rhombohedral one. The thin film deposited on Pt substrate exhibits a weak 

(111)-preferred orientation (black curve). In addition to the Rhombohedral ferroelectric (RFE) phase, 

the orthorhombic antiferroelectric (OAFE) phase (see OAFE(240/004), etc.) can also been observed26.

The thin film deposited on LaNiO3/Pt substrate exhibits a strong (110)-preferred orientation. The thin 

film deposited on LaNiO3/n-GaN substrate exhibits (100)-preferred orientation. However, the thin 

film deposited on LaNiO3/p-GaN substrate exhibits a weak (110)-preferred orientation. Particularly, 

the intensity of the OAFE(210) superlattice peak of the thin film deposited on LaNiO3/p-GaN 

substrate is much stronger to that of the thin film deposited on LaNiO3/n-GaN substrate, indicating a 

higher proportion of orthorhombic antiferroelectric phase to rhombohedral ferroelectric phase. By 

comparison with the XRD pattern of the pure p-GaN (see Fig.S2), it can be found that the OAFE(210) 

superlattice peak maybe be more easy to be induced by the p-GaN since that it is very close to its 

characteristic peak (2θ ~ 31.25 °). It should be noted that the (111) peak can also be detected on the 

thin film deposited on the LaNiO3/p-GaN substrate (Fig. 1a)), which is stronger than that on the thin 

film deposited on LaNiO3/n-GaN substrate, and the intensity becomes more and more weak with the 

increase of the number of the LaNiO3 layers (see Fig.S2).  

Fig. 1b shows the cross-sectional transmission electron microscopy (TEM) image of the PBLZ 

thin film deposited on the LaNiO3/Pt substrate. In the inside of some nanocrystals (~ 20 nm), wide 

lamellar nanodomains with thickness of ~ 3 nm (blue circles) and narrow lamellar nanodomains with 

thickness of ~ 1 nm (red dash circles) are clearly visible. Based on the fact that the cubic and 

hexagonal phases do not exist in the PBLZ relaxor ferroelectric thin film, the rhombohedral 

ferroelectric phase was identified easily since the corresponding FFT spectrum is a regular hexagonal 

shape (inset in Fig. 1b))23. However, the wide lamellar nanodomains are hard to be identified in the 

PBLZ thin films deposited on LaNiO3/n-GaN substrate, as shown in Fig. S3. The narrow lamellar 



nanodomains could be attributed to the antiferroelectric domains, as reported by Viehland in PZT 

thin film27. These results indicated that the thin film deposited on LaNiO3/n-GaN substrate possesses 

a higher proportion of orthorhombic antiferroelectric phase to rhombohedral ferroelectric phase than 

that of the thin film deposited on LaNiO3/Pt substrate. 

Fig.1 c) and Fig. S4 show the temperature dependences of the Raman scattering spectra of the 

PBLZ thin films deposited on the p-GaN substrate and the Pt/LaNiO3 substrate, respectively. Peak 1 

(~ 140 cm-1) is the A1(TO1) mode. Peak 2 (~ 225 cm-1) is the A1(TO2) mode23. Peak 4 (~ 417 cm-1), 

Peak 6 (~ 569 cm-1) and Peak 8 (~ 735 cm-1) are ascribed to the contribution of the substrate28. Peak 

5 (~ 508 cm-1) is the A1TO3/E(TO) which is attributed to the Zr-O stretching vibration23. Peak 7 (~ 

588 cm-1) is the A1(LO2) mode29. Peak 9 (~ 840 cm-1) is similar to the cases in the La-doped 

Ba(Zr0.3Ti0.7)O3 and the La-doped Ba(Zr0.2Ti0.8)O3 ceramics30, 31. 

The full width at half maxima (FWHM) of each characteristic peak of the PBLZ thin film 

deposited on p-GaN substrate are summarized in Fig. S5. The variation of the FWHM of each 

characteristic peak is almost invariable. For the thin film deposited on the p-GaN substrate, the peak 

3 (~ 311 cm-1) activated by the vibrations of asymmetric B-O phonon in orthorhombic 

antiferroelectric phase can be observed in the whole measuring temperature range23. These results 

indicate that the distorted polar nanoclusters in the thin film deposited on the p-GaN substrate may 

be in a dynamic and thermally stable state by interacting with each other with increasing temperature, 

especially for the orthorhombic phase. However, for the thin film deposited on the Pt/LaNiO3 

substrate, the peak 3 (~ 311 cm-1) can be hardly detected in the whole measuring temperature range, 

and all peaks are broadened and become weaker with the increase of temperature. The result 

mentioned above further confirmed that the orthorhombic antiferroelectric phase may be easier to be 

induced in the thin films deposited on GaN substrates than that in thin films deposited on 

Pt/TiOx/SiO2/Si substrate. 

The cross-sectional SEM image of the thin film deposited on Pt substrate shows a typical 

well-developed columnar-like texture (Fig. 2a). However, the thin film deposited on LaNiO3/Pt 

substrate shows a layer structure (Fig. 2c)) rather than a columnar-like texture. Both the thin films 

deposited on LaNiO3/n-GaN and LaNiO3/p-GaN substrates all show an underdeveloped 



columnar-like texture (Fig. 2e) and Fig. 2g)), but the interface between the PBLZ layer and the 

LaNiO3 layer is unclear for the thin films deposited on LaNiO3/n-GaN. In contrast, it is clearly 

visible for the thin films deposited on LaNiO3/p-GaN substrates with different layer number of 

LaNiO3, as shown in Fig. 2g), Fig. S6c) and S6e). Benefitting from the well-developed 

columnar-like texture, the thin film deposited on the Pt substrate show large grain size on its surface 

SEM image (Fig. 2b)). However, the thin films on LaNiO3/Pt, LaNiO3/n-GaN and LaNiO3/p-GaN 

substrates show small grain sizes. 

3.2 Electrocaloric 

To assess the EC effect in the PBLZ thin films, the P-E loops were collected at 10 kHz and at a 

step of 5 K. To obtain a large ΔT, a conservative electric field below the dielectric breakdown 

strength (see Fig. S7.) is applied. The temperature dependences of the polarization (P(T)) at selected 

electric fields were extracted from the upper branches of the P-E loops in E > 0 and presented in the 

lower right insets of Fig. 3a), 3c), 3e) and 3g). The color solid lines in these insets represent fittings 

of a polynomial of the raw experimental data. 

Based on the Maxwell relationship (∂P/∂T)E = (∂S/∂E)T , the ΔT and the ΔS of dielectric material 

can be determined by:  
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Where T is the operation temperature, P the maximum polarizations at the applied electric field E, ρ

the density, C the heat capacity, and E1 and E2 the initial and final applied electric fields, respectively. 

Based on previous research results, the ρ and C are assumed to be 7.7 g cm−3 and 330 J K−1 kg−1 in 

the temperature range studied, respectively. The adiabatic temperature change ΔT and entropy change 

ΔS of the PBLZ thin films are plotted in Fig. 3b), 3d), 3f), 3h) and their insets. Not only the ΔT and

ΔS of the thin films increase with the increase of the applied electric field, but also the temperature 

dependences of the ΔT and the ΔS change with the change of the substrate. Two positive EC peaks 

are observed around the room temperature for the thin films deposited on the Pt substrate and the 



LaNiO3/p-GaN substrate. By contrast, the positive EC peaks cannot be visible for the thin films 

deposited on the LaNiO3/Pt substrate and the LaNiO3/n-GaN substrate due to shift to a lower 

temperature. The maximum values of the ΔT of the thin films deposited on Pt, LaNiO3/Pt, 

LaNiO3/n-GaN, and LaNiO3/p-GaN substrates are 13.08 K, 16.46 K, 18.70 K, and 14.64 K, 

respectively. Obviously, the positive EC effect of the thin film deposited on the LaNiO3/n-GaN is the 

largest one. These results indicate that the EC effect can be tailored by the strategy of selecting 

various substrates. 

In addition to the positive EC effect around the room temperature, negative EC effect can also be 

observed at a higher temperature. The thin films deposited on the Pt substrate show the largest 

negative EC effect, and the ΔT is about - 6.18 K at 1355 kV/cm. The thin film deposited on 

LaNiO3/Pt substrate exhibits the smallest negative EC effect, and the ΔT is only - 1.63 K at 1010 

kV/cm. Although the negative EC effects (< 4 K) of the thin films deposited on the LaNiO3/n-GaN 

and LaNiO3/p-GaN substrates are smaller to that of the thin film deposited on the Pt substrate, they 

exhibit a broader temperature range, and ~ 340 K to 433 K and ~ 362 K to 440 K, respectively.  

It is believed that the phase structure and the orientation of the thin film together play a very key 

role on the magic EC effect. Previous research work of ours has been pointed out that a negative EC 

effect can be induced under the trigger of phase-transition (nanoscale tetragonal/orthorhombic to 

rhombohedral) when applied an electric field along the out-of-plane [111] direction of relaxor thin 

film. Therefore, it can be believed that the large negative EC effect may be related to the higher 

(111)-preferred orientation in the thin film deposited on the Pt substrate, as shown in the XRD 

pattern (Fig. 1a)) and the cross-sectional SEM image (Fig. 2a)). Meanwhile, the broad negative EC 

could be related to the higher proportion of orthorhombic antiferroelectric phase to rhombohedral 

ferroelectric phase in the thin films deposited on LaNiO3/n-GaN and LaNiO3/p-GaN substrates since 

that the orthorhombic antiferroelectric phase could be easier to be induced on GaN substrates than 

that on Pt/TiOx/SiO2/Si substrate, as confirmed by the Raman scattering spectra (Fig.1 c) and Fig. 

S4). 

Although the negative EC effect in the thin films deposited on LaNiO3/n-GaN and 

LaNiO3/p-GaN substrates is not ideal, the ΔT & the ΔS can be further enhanced by increasing the 



degree of the (111)-preferred orientation. Therefore, it is expected that a large negative EC in a broad 

temperature range could be achieved in the thin films deposited on GaN substrates. As a result, 

refrigeration devices with high cooling efficiency in one cycle can be realized by utilizing and 

combining both the large negative and positive EC effects in the further. 

Conclusions 

The EC effects of the Pb0.78Ba0.2La0.02ZrO3 (PBLZ) relaxer thin films can be tailor by the 

substrates, and large ΔT ~ 13.08 K, 16.46 K, 18.70 K and 14.64 K were obtained on thin films 

deposited on Pt, LaNiO3/Pt, LaNiO3/n-GaN and LaNiO3/p-GaN, respectively. Thin films deposited 

on LaNiO3/n-GaN and LaNiO3/p-GaN exhibit negative EC effects in a broad temperature range, and 

~ 340 K to 433 K and ~ 362 K to 440 K, respectively. The negative EC effects can be ascribed to the 

higher proportion of orthorhombic antiferroelectric phase to rhombohedral ferroelectric phase 

induced by GaN substrates. Tailoring the EC effects of the thin films by the substrates could provide 

a new strategy in designing the EC cooling device with high cooling efficiency. 
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Fig. 1. a) XRD patterns of Pb0.78Ba0.2La0.02ZrO3 (PBLZ) thin films on Pt, LaNiO3/Pt, LaNiO3/p-GaN 

and LaNiO3/n-GaN substrates. b) Cross-sectional TEM image of thin film on LaNiO3/Pt substrate. 

Inset: the fast Fourier transform spectrum of the HRTEM image of nanodomains with blue circle as 

guided by the red arrow. c) Raman scattering spectra of PBLZ thin film on p-GaN substrate. FE: 

ferroelectric, AFE: antiferroelectric, O: orthorhombic, R: rhombohedral.  





Fig. 2. Cross-sectional and Surface SEM images of PBLZ thin films. (a), (b) on Pt electrode. (c), (d) 

on LaNiO3/Pt substrate. (e), (f) on LaNiO3/n-GaN substrate. (g), (h) on LaNiO3/p-GaN substrate.  





Fig. 3. P-E loops and the corresponding ΔT(T) of the PBLZ thin films at selected temperatures at 10 

kHz. (a), (b) on Pt substrate. (c), (d) on LaNiO3/Pt substrate. (e), (f) on LaNiO3/n-GaN substrate. (g), 

(h) on LaNiO3/p-GaN substrate. Insets in (a), (c), (e) and (g): P(T) at selected electric fields. Insets in 

(b), (d), (f) and (h): ΔS(T) at selected electric fields.  
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Fig.S1. Flow charts of the preparation of (a) Pb0.78Ba0.2La0.02ZrO3 (PBLZ) thin films and (b) LaNiO3

bottom electrode.  



Fig. S2. XRD patterns of the pure p-GaN and PBLZ thin films on p-GaN substrate, LaNiO3 (2 

layers)/p-GaN substrate and LaNiO3 (2 layers)/p-GaN substrate.  



Fig. S3. TEM image of the PBLZ thin film on LaNiO3/n-GaN substrate. 



Fig. S4. Raman scattering spectra of the PBLZ thin film on Pt/LaNiO3 substrate at selected 

temperature. 



Fig. S5. FWHM of Raman scattering spectra of the PBLZ thin film on p-GaN substrate as a function 

of temperature of peak 1,2,3,4,5,6,7 and 9. Inset: Raman shift as a function of temperature of peak 

1,2,3,4,5,6,7 and 9. 



Fig. S6. Cross-sectional and the corresponding surface SEM images of the PBLZ thin films. a), b) on 

pure p-GaN. c), d) on LaNiO3(2 layers)/p-GaN substrate. e), f) on LaNiO3(4 layers)/p-GaN substrate. 



Fig. S7. P-E loops of the PBLZ thin films at selected electric fields at 10 kHz (a) on Pt substrate. (b) 

on LaNiO3/Pt substrate. (c) on LaNiO3/n-GaN substrate. (d) on LaNiO3/p-GaN substrate. Insets in (a), 

(b), (c) and (d): I-E curves at selected electric fields. 




