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Concurrent Learning Adaptive Control with
Directional Forgetting
Hae-In Lee, Hyo-Sang Shin, Antonios Tsourdos

Abstract—This paper proposes a new concurrent learning
based adaptive control algorithm. The main objective behind
our proposition is to relax the persistent excitation requirement
for the stability guarantee, while providing the ability to identify
time-varying parameters. To achieve the objective, this paper de-
signs a directional forgetting algorithm, which is then integrated
with the adaptive law. The theoretical stability analysis shows
that the tracking and parameter estimation error is exponentially
stable with the signal only finitely excited, not persistently
excited. The analysis also shows that the proposed algorithm can
guarantee the stability under time-varying parameters. Moreover,
the necessary and sufficient conditions for the stability given the
time-varying parameters are derived. The results of numerical
simulations confirm the validity of the theoretical analysis results
and demonstrate the performance of the proposed algorithm.

Index Terms—Directional Forgetting, Model Reference Adap-
tive Control, Concurrent Learning

I. INTRODUCTION

THE model reference adaptive control (MRAC) has been
widely used for estimating the uncertainty and canceling

out its effect from the system to achieve the nominal designed
performance [1]. One of the main issues of the MRAC is
that the persistence of excitation (PE) is required for the
parameter estimation to be converged. The PE corresponds
to the continuous change in the states, which is undesirable
for the control performance as it contradicts with obtaining
the steady-state, and may contribute to the waste of energy.

There have been great efforts made to relax the PE require-
ment. Earlier studies on the relaxation of the PE requirement
for parameter convergence include the concurrent learning
(CL) based method [2], [3] and its modifications [4]–[6].
Conceptually, the PE condition is required since the adaptive
law is rank-1 and thus the inputs are required to be persistently
excited in every direction to span the parameter estimation
error. The common principle to relax the dependence on PE
in CL based methods is to use the stored data containing
information from the Finite Excitation (FE) in the past together
with the current data. In this way, the rank deficiency of an
information matrix is expected to be solved after sufficient
accumulation of data, and this is the key of relaxation.

The issue with these methods is that the parameter con-
vergence is difficult to be guaranteed if parameters are time
varying. The information accumulated before a parameter
change contains only the information about the previous
parameters. After the parameter change, the information about
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the parameters changed starts to be accumulated. Roughly
speaking, since the information matrix contains both the pre-
vious parameters and those changed, utilising this information
matrix is difficult to guarantee the convergence to time-varying
parameters. Especially when the information about previous
parameters is rich, the convergence issue could be exacerbated.
The CL based methods thus may not guarantee the stability
of parameter estimation for the systems with time-varying
parameters, such as the control of strip temperature for heating
furnaces, automation of the heavy duty vehicles, and self-
tuning cruise control [7]–[9].

Forgetting the previous information could address con-
vergence issue under the time-varying parameters: various
forgetting algorithms have been used in the online parameter
estimation [10] to cope with the time-varying parameters. Note
that an adaptive control architecture for uncertain dynamic
system consists of two principal components: one is the
adaptive element in the control law and the other is the
adaptation law. The adaptive element in the control law is
usually a function approximator to cancel out the effect of
uncertainty from the tracking error dynamics. The adaptation
law is in principle a regression algorithm working for better
approximation of uncertainty. Therefore, it is clear that the
forgetting methods can be applied to the adaptation law and
thus integrated to CL methods.

Cho et al. [6] developed a composite MRAC algorithm to
relax the PE requirement. Based on the filtered regressor, they
integrated the exponential forgetting method in the composite
MRAC. The potential issue is that their proposed algorithm
requires PE condition for the forgetting algorithm. To avoid
the PE condition, which is required for the stability guarantee
in other methods with either forgetting [11], [12] or finite-
time identifier [13] for the stability guarantee, they applied
the exponential forgetting only when the minimum eigenvalue
of the stacked data increases. However, the forgetting is not
working in the modified forgetting algorithm when the signal
is not persistently exited. Therefore, the PE condition is again
crucial either for the convergence of parameter estimation or
for the forgetting of past information.

This paper proposes a new CL adaptive control algorithm to
relax the PE requirement and also to handle the convergence
issue under time-varying parameters. The key idea of the
proposed adaptive control algorithm is to integrate directional
forgetting to the adaptation law. Note that the directional
forgetting method [14]–[16] was intended to avoid the esti-
mator windup – zero eigenvalue of the information matrix
– by forgetting the old data only in the direction of new
data. In this paper, its objective is extended to guarantee
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the stability of the both tracking and parameter estimation
error. To achieve this objective, we modify the directional
forgetting proposed in [16] and apply it to the adaptation
law. As the modified directional forgetting accumulates the
data and maintains the stacked data, the PE condition can be
directly relaxed. Moreover, since it discounts the information
in the direction of new data, forgetting is always working
on the non-zero signals after FE. This could relax the PE
condition for forgetting the past data and consequently provide
the convergence of time-varying parameters.

The characteristics of the new CL adaptive are analytically
and empirically investigated. The stacked data is first proven
to be always lower bounded by a positive value and thus
full-rank. Then, this paper shows that the past information
is consistently forgotten but maintains its ability to estimate
parameter uncertainty without requiring the PE condition.
The stability of tracking and parameter estimation under the
presence of parameter change is also theoretically analysed
by assuming the discrete changes in parameters. The stabil-
ity conditions depend on the size of parameter change and
forgetting rate, providing the design trade-offs of forgetting
rate. The numerical results on the wingrock dynamics confirm
the stability analysis results and demonstrate the effect of
forgetting rate.

The rest of the paper is organised as follows. In Section
II, mathematical preliminaries with definitions and lemmas
are given for later proofs. The control problem with the
parameterised uncertainty is formulated in Section III. In
Section IV, the adaptive control with directional forgetting is
suggested, and the bounds of the information and the stability
conditions are examined. The numerical simulations in Section
V show the performance of the proposed control and support
the theoretic stability conditions. The paper is concluded in
Section VI.

II. PRELIMINARIES

The PE condition is crucial for the common MRAC methods
and the parameter estimation with exponential forgetting. This
paper intends to relax the PE condition to FE which requires
exciting signals only for a finite time interval. The PE and FE
conditions are defined as in [17].

Definition 1 (Persistence of Excitation (PE)). A bounded
vector signal q(t) is persistently exciting if there exist T > 0
and γ > 0 such that∫ t+T

t

q(τ)q(τ)T dτ ≥ γI, ∀t ≥ t0. (1)

Definition 2 (Finite Excitation (FE)). A bounded vector signal
q(t) is finitely exciting over a time set [ts, ts+T ] if there exist
ts ≥ t0, T > 0 and γ > 0 such that∫ ts+T

ts

q(τ)q(τ)T dτ ≥ γI. (2)

The following Lemma utilises the characteristics of spectral
radius to obtain the bound of a matrix. This Lemma is used
in Theorem 1 to prove the lower bound of the information.

Lemma 1. For a positive semi-definite matrix A ∈ Rn×n,
A ≤ I if and only if ρ(A) ≤ 1, where the spectral radius ρ(·)
is defined as the largest absolute value of the eigenvalues of
a matrix.

III. PROBLEM FORMULATION

A. System Dynamics

Consider a state-space representation as:

ẋ(t) = Ax(t) +B(u(t) + ∆(t)), (3)

where x(t) ∈ Rn, u(t) ∈ Rm, and ∆(t) ∈ Rm stand for
state, input, and uncertainty vector, respectively. The system
matrices A ∈ Rn×n and B ∈ Rn×m are assumed to be
constant and controllable.

The uncertainty ∆(t) is assumed to be linearly parametrised
as:

∆(t) = W ∗T (t)Φ(x(t)), (4)

where W ∗(t) ∈ Rl×m is the unknown true parameter matrix,
and Φ(x(t)) ∈ Rl is the basis vector.

B. Baseline Controller and Tracking Error Dynamics

The controller is designed in two parts as:

u(t) = ubase(t)− uad(t), (5)

where the baseline control ubase(t) determines the nominal
performance of the control and the adaptive control uad(t)
alleviates the effect of uncertainty.

The baseline controller is designed as ubase(t) = −Kx(t)+
Krr(t) such that the system is stable and tracks the reference
input r(t) ∈ Rm. The reference model, the model without any
parameter uncertainty, is obtained as:

ẋr = Arxr(t) +Brr(t) (6)

where xr(t) ∈ Rn is the reference state. The input matrix of
the reference model is defined with respect to the reference
input matrix Kr ∈ Rm×m as Br = BKr. The control gain
K ∈ Rm×n is determined such that the system matrix of the
reference model, Ar = A − BK, is Hurwitz stable. Then,
there exists a positive definite symmetric matrix P ∈ Rn×n
satisfying the following Lyapunov equation:

ATr P + PAr = Q. (7)

If there exists the matrix Kr such that Br = −Ar, the
reference state xr(t) converges to the reference input r(t).
Here, the adaptive control is designed to reduce the error
between the reference and real model, and to eventually obtain
the states converge to the reference input r(t). Defining the
tracking error as e(t) = xr(t) − x(t), the tracking error
dynamics is given by

ė(t) = Are(t) +Bε(t), (8)

where ε(t) , uad(t)−∆(t) is the adaptation error.
Assuming that the uncertainty lies in the span of the input

matrix B, the uncertainty is accessed as:

∆(t) = B+(ė(t)−Are(t)) + uad(t), (9)
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where B+ is a pseudoinverse of B.
Note that the derivative of the tracking error ė(t) cannot be

perfectly known and should be obtained based on measured
signals which contain measurement noise. To alleviate this
issue, various filters, such as fixed-point smoother [4] and a
low pass filter [6], can be used. Using one of the filters, the
filtered plane of the equation Eqn. (9) is expressed as:

c(t) = W ∗T (t)q(t), (10)

where c(t) and q(t) denote for the filtered vectors of ∆(t)
and Φ(z(t)), respectively. The filtered parameter is assumed
the same as W ∗(t). Here, ∆(t) is obtained by approximating
Eqn. (9) at every time step, and Φ(z(t)) is the basis vector
with respect to z(t). For the details on approximating ∆(t) in
Eqn. (9), please refer to [6].

IV. ADAPTIVE CONTROL

A. Adaptive Law

The adaptive control is designed to cancel out the effect of
uncertainty from the tracking error dynamics in Eqn. (8) by
estimating the parameter as:

uad(t) = ŴT (t)Φ(z(t)). (11)

Here, the estimated parameter vector Ŵ (t) ∈ Rl×m is
determined by an adaptive law. The adaptive law used in this
paper is the summation of gradient descent method and the
information-based parameter estimation:

˙̂
W (t) = Γ

(
Φ(z(t))eT (t)PB − γb(Ω(t)Ŵ (t)−M(t))

)
, (12)

where Γ ∈ Rl×l, and γb ∈ Rl×l are the adaptive gains for gra-
dient descent and information architecture, respectively. Also,
Ω(t) ∈ Rl×l, and M(t) ∈ Rl×l are the information matrix
and auxiliary matrix, respectively. The gradient descent terms
directly reduce the tracking error, and information architecture
stores the past data to maintain the convergence of parameter
estimation without requiring the PE condition.

The information matrix is the accumulation of measured
basis vectors, and the auxiliary matrix is that of the filtered
uncertainty. Once the FE condition is satisfied, both the infor-
mation and auxiliary matrices are forgotten with the directional
forgetting method. The dynamics of the accumulation and
forgetting method is expressed as

Ω̇(t)

=


q(t)qT (t) if rank(Ω(t)) < rank(Ω(t) + q(t)qT (t))

− k
Ω(t)q(t)qT (t)

qT (t)Ω(t)q(t)
Ω(t) + q(t)qT (t) otherwise

Ṁ(t)

=


q(t)cT (t) if rank(Ω(t)) < rank(Ω(t) + q(t)qT (t))

− k
Ω(t)q(t)qT (t)

qT (t)Ω(t)q(t)
M(t) + q(t)cT (t) otherwise

(13)

where k ∈ R is a positive constant. The initial values of the
information and auxiliary matrices are zero.

The physical meaning of the dynamics of forgetting is that
the information is forgotten only on the direction that the new

q(t) is added. For example, assume that the two independent
vectors q1 ∈ R2 and q2 ∈ R2 are stacked in the information
matrix, such that Ω(t) = q1q

T
1 + q2q

T
2 is full-rank. Then, the

derivative of the information matrix with the new input q(t) ⊥
q2(t) satisfies

Ω̇(t)q = −k
(q1q

T
1 + q2q

T
2 )qqT

qT (q1qT1 + q2qT2 )q
(q1q

T
1 + q2q

T
2 ) + qqT

= −k
(q1q

T
1 )qqT

qT (q1qT1 )q
(q1q

T
1 ) + qqT .

(14)

From the equation, it can be implied that the stacked input
in the direction orthogonal to q(t) is not forgotten, whereas
the others are forgotten exponentially.

B. Lower and Upper Bounds of the Information Matrix

The value of the information matrix is directly related to the
convergence rate of the parameter estimation as in Eqn. (12),
and thus the bounds of the information matrix are inferred
to be crucial for proving the stability of parameter estimation
and for finding the convergence rate. The following theorems
give the lower and upper bounds of the information matrix.
Note that the upper boundedness of the information matrix is
guaranteed for the bounded signal, i.e. |q(t)| < c, as other
forgetting algorithms [11].

Theorem 1 (Lower bound of the information matrix). If the
signal is finitely exciting over [t0, t1], there exists a constant
α > 0 such that

Ω(t) ≥ αI, ∀t ≥ t1. (15)

Proof. Let the subspace which is excited by q(t) be φ with
its dimension m, and the unexcited subspace be φ⊥. The
information matrix can be decomposed as:

Ω(t) = Ωo(t) + Ωp(t), Ωo(t)q(t) = 0, (16)

where Ωo(t) is orthogonal to q(t) and Ωp(t) is the remainder
to be forgotten. The dynamics of each part Ωo(t) and Ωp(t)
is defined by following equations such that the summation of
the dynamics satisfies Eqn. (13).

Ω̇o(t) = 0

Ω̇p(t) = −k
Ωp(t)q(t)q

T (t)

qT (t)Ωp(t)q(t)
Ωp(t) + q(t)qT (t)

(17)

Defining an orthogonal matrix U = [U1 U2] where the
columns of U1 ∈ Rn×m are the orthogonal basis for φ and
those of U2 ∈ Rn×(n−m) are the orthogonal basis for φ⊥, the
following equation is obtained:

UT Ω̇(t)U ≥
(
−kUT1

Ωp(t)q(t)q
T (t)

qT (t)Ωp(t)q(t)
U1

)
UT1 Ωp(t)U1

+UT1 q(t)q
T (t)U1

0

0 0

 (18)
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The forgetting part, UT1 Ωp(t)U1 is structured with its value
at t = t1 as:

UT1 Ωp(t)U1 = Ψ(t, t1)UT1 Ωp(t1)U1

+

∫ t

t1

Ψ(t, τ)UT1 q(τ)qT (τ)U1dτ
(19)

where Ψ(t, t1) ∈ Rl×l is the transition matrix from t1 to t:

Ψ(t, t1) = exp

(
−k
∫ t

t1

F (τ)dτ

)
,

F (τ) , UT1
Ωp(τ)q(τ)qT (τ)

qT (τ)Ωp(τ)q(τ)
U1

(20)

Here, the spectral radius of the matrix F (τ) is upper
bounded by 1 as:∑

i

λi(F (τ)) = tr(F (τ)) = 1, λi(F (τ)) ≥ 0 ∀i, (21)

where λi(·) is the i-th eigenvalue of a matrix.
Using Lemma 1 and the upper bound of the matrix F (τ),

the lower bound of the transition matrix is obtained as:

Ψ(t, t1) ≥ e−k(t−t1)I. (22)

As UT1 q(τ) acts as a persistently exciting signal, i.e.
UT1 q(t)q

T (t)U1 > 0, there exists a constant α > 0 such that

UT1 Ωp(t)U1 ≥ e−k(t−t1)UT1 Ωp(t1)U1 + αI. (23)

The non-forgetting part, UT2 Ωo(t)U2, is obtained as:

UT2 Ωo(t)U2 = UT2 Ωo(t1)U2 (24)

For Ω(t1) ≥ γI , the solution of the equation (18) is thus
lower-bounded as:

UTΩ(t)U ≥ min(γe−k(t−t1) + α, γ)I (25)

Therefore, the lower bound of the information matrix is
obtained as:

Ω(t) ≥ αI (26)

Theorem 2 (Upper bound of the information matrix). If the
signal is finitely exciting over [t0, t1] and the signal is bounded,
i.e. |q(t)| < c, there exists a constant β > 0 such that

Ω(t) ≤ βI, ∀t > t1. (27)

Proof. The forgetting dynamics of the information matrix
results in

Ω(t) = Ω(t1) +
∫ t
t1

(
q(τ)qT (τ)− kΩ(τ)q(τ)qT (τ)

qT (τ)Ω(τ)q(τ)

)
dτ (28)

The trace of the information matrix is computed as:

tr(Ω(t)) = tr(Ω(t1)) +
∫ t
t1

qT (τ)(|q(τ)|2I−kΩ2(τ))q(τ)
qT (τ)Ω(τ)q(τ)

dτ (29)

Assume that the information matrix is unbounded from
above, i.e. there exists an eigenvalue λΩ that diverges to ∞.
Then, the integration term becomes negative and unbounded:

lim
λΩ→∞

∫ t

t1

qT (τ)(|q(τ)|2I − kΩ2(τ))q(τ)

qT (τ)Ω(τ)q(τ)
dτ = −∞ (30)

With the positive and boundedness of the left-hand-side,
tr(Ω(t)), the equation is contradictory. Therefore, the infor-
mation matrix is upper bounded by a constant:

Ω(t) ≤ βI, ∀t > t1. (31)

C. Stability Analysis

Using that the information matrix is lower-bounded to be
positive definite even without the persistent excitation, the
tracking error and the parameter estimation error can be proved
to be stable by the following theorem.

Theorem 3 (Stability in (e, W̃ )). If the signal is finitely
exciting over [t0, t1], the tracking error e and the parameter
estimation error W̃ are globally uniformly exponentially stable
for t > t1.

Proof. The explicit forms of the information matrix and the
auxiliary matrix are expressed as:{

Ω(t) = Ψ(t, t0)Ω(t0) +
∫ t
t0

Ψ(t, τ)q(τ)qT (τ)dτ,

M(t) = Ψ(t, t0)M(t0) +
∫ t
t0

Ψ(t, τ)q(τ)cT (τ)dτ,
(32)

where the transition matrix is defined as:

Ψ(t, t0) = exp

(
−k
∫ t

t0

Ω(τ)q(τ)qT (τ)

qT (τ)Ω(τ)q(τ)
dτ

)
. (33)

As the initial values of the information and auxiliary matrix
are zero, the following equation is obtained:

Ω(t)Ŵ (t)−M(t) = Ω(t)W̃ (t). (34)

The Lyapunov function is defined as:

V (e, W̃ ) =
1

2
eT (t)Pe(t) +

1

2
tr(W̃T (t)Γ−1W̃ (t)), (35)

where W̃ (t) , Ŵ (t) − W ∗(t) is the parameter estimation
error. Defining an augmented vector ξ(t) , [eT (t), W̃T (t)],
the upper bound of the Lyapunov function is given as:

V (e, W̃ ) ≤
1

2
max(λ(P ), λ(Γ−1))||ξ(t)||2, (36)

where λ(·) is the eigenvalue of a matrix.
Substituting the tracking dynamics in Eqn. (8) and the

adaptive law in Eqn. (12), the derivative of the Lyapunov
function is obtained as:

V̇ (e, W̃ ) = −
1

2
eT (t)Qe(t)− tr(W̃T (t)γbΩ(t)W̃ (t)). (37)

From the Theorem 1, the information matrix is lower
bounded, and thus the derivative of the Lyapunov function
is upper bounded as:

V̇ (e, W̃ ) ≤ −
1

2
min(λ(Q), 2γbα)||ξ||2. (38)

Using the upper bound of the Lyapunov function in
Eqn. (36),

V̇ (e, W̃ ) ≤ −
min(λ(Q), 2γbα)

max(λ(P ), λ(Γ−1))
V (e, W̃ ). (39)
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As V (e, W̃ ) > 0 for all (e, W̃ ) except the origin, and the
lower bound of the information matrix is positive, i.e. α > 0,
by Theorem 1, (e, W̃ ) are globally uniformly exponentially
stable.

One of the main reasons of the forgetting algorithms is
to cope with the parameter changes. Assume the parameter
change with the size of ∆W ∗i at t = ti as:

W ∗(t) = W ∗0 +
∑
i

∆W ∗i h(t− ti), (40)

where h(t) is the step function.
The sufficient and necessary stability condition under the

presence of parameter change is derived in the following
theorem.

Theorem 4 (Stability in (e, W̃ ) with parameter changes).
Given the finitely exciting signal, the tracking error e and
the parameter estimation error W̃ are Lyapunov stable for
t ∈ [ti, ti+1] if and only if

F (e, W̃ ) ,
1

2
eT (t)Qe(t)I + Ω(t)W̃ (t)W̃T (t)

+

i∑
j=1

Ψ(t, tj)Ω(tj)∆W
∗
j W̃

T (t) ≥ 0,
(41)

where the transition matrix Ψ(t, tj) is given by

Ψ(t, tj) = exp

(
−k
∫ t

tj

Ω(τ)q(τ)qT (τ)

qT (τ)Ω(τ)q(τ)
dτ

)
. (42)

Proof. For the time span t ∈ [ti ti+1], the information matrix
and the auxiliary matrix are expressed as:{

Ω(t) = Ψ(t, ti)Ω(ti) +
∫ t
ti

Ψ(t, τ)q(τ)qT (τ)dτ

M(t) = Ψ(t, ti)M(ti) +
∫ t
ti

Ψ(t, τ)q(τ)cT (τ)dτ
(43)

As the values of both information and auxiliary matrices
are continuous at the parameter jumps, the following equation
is satisfied.

Ω(t)Ŵ (t)−M(t)

= Ω(t)W̃ (t) +

i∑
j=1

Ψ(t, tj)Ω(tj)∆W
∗
j

(44)

Substituting the equation into the same Lyapunov function
as the equation (35), the derivative of the Lyapunov function
is computed as:

V̇ (e, W̃ ) = −
1

2
eT (t)Qe(t)− tr(W̃T (t)γbΩ(t)W̃ (t))

−
i∑

j=1

tr(W̃T (t)γbΨ(t, tj)Ω(tj)∆W
∗
j )

(45)

The necessary and sufficient condition for V̇ (e, W̃ ) ≤ 0 for
all (e, W̃ ) except the origin is

1

2
eT (t)Qe(t)I + Ω(t)W̃ (t)W̃T (t)

+

i∑
j=1

Ψ(t, tj)Ω(tj)∆W
∗
j W̃

T (t) ≥ 0
(46)

In the Theorem 4, the sufficient and necessary condition
F (e, W̃ ) is not deterministic as the transition matrix Ψ(t, tj)
for the time-varying system is almost impossible to obtain.
Instead, the following propositions separate the sufficient
condition F1(e, W̃ ) and the necessary condition F2(e, W̃ ),
of which the bounds are conservative, but can be computed
deterministically.

Proposition 1. The tracking error e and the parameter esti-
mation error W̃ are exponentially stable for t ∈ [ti, ti+1] if
∆W ∗j W̃

T (tj) ≥ 0 for all j ∈ [1, i].

Proof. If ∆W ∗j W̃
T (t) ≥ 0, the derivative of the Lyapunov

function under the presence of parameter change in the equa-
tion (45) is less than or equal to that without the parameter
change in the equation (37). Converging faster than the expo-
nentially stable case, (e, W̃ ) is also exponentially stable.

Proposition 2. The tracking error e and the parameter es-
timation error W̃ are Lyapunov stable if F1(e, W̃ ) ≥ 0 for
t ∈ [ti, ti+1], where the function F1(e, W̃ ) is defined as:

F1(e, W̃ ) =
1

2
eT (t)Qe(t)I

+ αW̃ (t)W̃T (t) + β

i∑
j=1

∆W ∗j W̃
T (t)

(47)

Proof. If ∆W ∗j W̃
T (t) < 0, from the bounds of the informa-

tion matrix and the upper bound of the transition matrix as

αI ≤ Ω(t) ≤ βI, Ψ(t, tj) ≤ I, (48)

the following inequality is satisfied:

R1(e, W̃ ) ≤ f(e, W̃ ). (49)

It follows that if F1(e, W̃ ) is positive semi-definite, the
stability condition in Theorem 4 is satisfied, i.e. F (e, W̃ ) ≥ 0.
If ∆W ∗j W̃

T (t) ≥ 0, F1(e, W̃ ) is always positive semi-definite
and from Proposition 1, the Lyapunov stability is guaranteed.
Therefore, F1(e, W̃ ) ≥ 0 is the sufficient condition for the
Lyapunov stability of (e, W̃ ).

Proposition 3. The tracking error e and the parameter esti-
mation error W̃ are Lyapunov stable, only if F2(e, W̃ ) ≥ 0
for t ∈ [ti, ti+1], where the function F2(e, W̃ ) is defined as:

F2(e, W̃ ) =
1

2
eT (t)Qe(t)I

+ βW̃ (t)W̃T (t) + α

i∑
j=1

e−k(t−tj)∆W ∗j W̃
T (t)

(50)

Proof. If ∆W ∗j W̃
T (t) < 0, from the bounds of the informa-

tion matrix and the lower bound of the transition matrix in
Eqn. (22), the following equation is satisfied.

F (e, W̃ ) ≤ F2(e, W̃ ) (51)

If the stability condition in Theorem 4 is satisfied, the
function F2(e, W̃ ) is positive semi-definite. If ∆W ∗j W̃

T (t) ≥

e805814
Text Box
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0, F2(e, W̃ ) is always positive semi-definite and is satisfied
regardless of the stability of (e, W̃ ). Therefore, F2(e, W̃ ) ≥
0 is the necessary condition for the Lyapunov stability of
(e, W̃ ).

While the exact values of the functions F1(e, W̃ ) and
F2(e, W̃ ) are not obtainable, the effect of the parameter
change ∆W ∗i and the forgetting factor k on them is interpreted
in the following remark.

Remark 1.
• The parameter change ∆W ∗i in the direction of making

∆W ∗j W̃ (t)T ≥ 0 does not effect on the stability condi-
tion.

• If the parameter change ∆W ∗i lies in the direction of
∆W ∗j W̃

T (t) < 0, increase in the size of ∆W ∗i reduces
both F1(e, W̃ ) and F2(e, W̃ ), narrowing down both the
necessary and sufficient stability condition.

• When ∆W ∗j W̃
T (t) < 0, large forgetting factor k in-

creases F2(e, W̃ ), enlarging the region for satisfying the
necessary condtion.

• Large forgetting factor k results in smaller lower bound
of the information matrix, reducing the convergence rate
of parameter estimation.

The value of the forgetting factor k needs to be chosen
accordingly, considering the expected change of parameter, its
effect on the stability conditions, and the desired convergence
rate.

V. NUMERICAL SIMULATIONS

A. Simulation Setup

The wing rock roll dynamics, a common application exam-
ple of adaptive control for its nonlinearity, is considered. The
dynamics is modeled as in [18].

φ̇ = p

ṗ = I−1
xx

1

2
ρU2
∞Sb(Cl + Clδa δa) = ∆(x) + Lδaδa,

(52)

where φ and p are the roll angle and its rate, and δa and Clδa
are the aileron deflection and its nondimensional effectiveness.

Defining the state vector as x = [φ p]T , the basis vector
and the time-varying parameter are modelled as:

Φ(x) = [1, φ, p, |φ|p, |p|, φ3]T , t1 = 50s

W ∗0 = [.8, .2314, .6918,−.0624, .0095, .0215]T

∆W ∗1 = [.8,−.5 · .2314,−.9 · .6918,

− 9 · .0624, 2 · .0095,−.3 · .0215]T

(53)

The reference input is given as:

r(t) = g(t, 15) + g(t, 55) + g(t, 75)

+ g(t, 95) + g(t, 115) + g(t, 135)
(54)

where the split square function g(t, ti) is defined as:

g(t, ti) =


4 for ti < t ≤ ti + 2

0 for ti + 2 < t ≤ ti + 10

−4 for ti + 10 < t ≤ ti + 12

(55)

(a) Minimum eigenvalue of Ω(t) (b) Lyapunov function V (t)

Fig. 1: Without parameter jump or excitation after 50s

For the reference, the performance of the proposed adaptive
control with the directional forgetting (DF) is compared with
that of the integral based concurrent learning (CL) algorithm
without forgetting algorithm and the exponential forgetting
(EF).

Without any forgetting, the CL method results in infinitely
large information matrix, and thus requires an stack-manager
algorithm. The stack-manager algorithm used in this paper is
given as:

Ω(t+ ∆t)

=

{
q(t)qT (t), if rank(Ω(t))<rank(Ω(t)+q(t)qT (t))

or ||Φ(z(t))−Φlast||/||Φ(z(t))||≥tol

Ω(t), otherwise
M(t+ ∆t)

=

{
q(t)cT (t), if rank(Ω(t))<rank(Ω(t)+q(t)qT (t))

or ||Φ(z(t))−Φlast||/||Φ(z(t))||≥tol

M(t), otherwise

(56)

The EF method is a forgetting method in uniform directions.
The discrete dynamics of the EF method is given as:

Ω(t+ ∆t)

=

{
q(t)qT (t), if rank(Ω(t)) < rank(Ω(t) + q(t)qT (t))

µΩ(t) + q(t)qT (t), otherwise

M(t+ ∆t)

=

{
q(t)cT (t), if rank(Ω(t)) < rank(Ω(t) + q(t)qT (t))

µM(t) + q(t)cT (t), otherwise

(57)

Likewise, the discrete dynamics of the DF method is

Ω(t+ ∆t)

=


q(t)qT (t), if rank(Ω(t)) < rank(Ω(t) + q(t)qT (t))

µ
Ω(t)q(t)qT (t)

qT (t)Ω(t)q(t)
Ω(t) + q(t)qT (t), otherwise

M(t+ ∆t)

=


q(t)cT (t), if rank(Ω(t)) < rank(Ω(t) + q(t)qT (t))

µ
Ω(t)q(t)qT (t)

qT (t)Ω(t)q(t)
M(t) + q(t)cT (t), otherwise

(58)

where the forgetting factor 0 < µ ≤ 1 corresponds to e−k

of the continuous dynamics. Considering that µ is usually
selected between 0.95 – 0.99 and the forgetting of the EF
is much faster than the DF, the value of µ is chosen as 0.99
in EF, and 0.95 in DF for their similar performance.
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(a) Minimum eigenvalue of Ω(t) (b) Lyapunov function V (t)

Fig. 2: With parameter jump at 50s

B. Simulation Results

First, assume there is no parameter change or reference
inputs after 50s. The lower bound of the information matrix,
i.e. the minimum singular value, and the Lyapunov function
are shown in Fig. 1. The information matrix of DF is lower
bounded, and both the tracking and parameter estimation error
converge to zero without PE, while the information matrix
of EF converges to zero resulting in the stagnation of the
parameter estimation. The result clearly supports the Theorem
1 and 3.

If there is a parameter jump at 50s, the lower bound of the
information matrix and the Lyapunov function are shown in
Fig. 2. The information matrix of DF is lower bounded with
a non-zero value as proven in Theorem 1, and upper bounded
to a finite value as in Theorem 2. While the parameter error
increases in CL, both forgetting algorithms show Lyapunov
stability.

The result of the same simulation with different µ’s is shown
in Fig. 3, where the necessary condition for stability F2(e, W̃ )
is given from Proposition 3. As the lower and upper bounds of
the information matrix are not determined, worst-case values
for reducing the F2(e, W̃ ), i.e. α = β, are chosen. The
Lyapunov function is stable, and the necessary condition is met
with positive semi-definiteness. Increase in k, or alternatively
decrease in µ, results in large F2(e, W̃ ) in the first part as
the positive terms decay fast. In the later part, the parameter
estimation is stagnated as the information matrix is lower
bounded by a smaller value, which mainly determines the
convergence rate

VI. CONCLUSION

In this paper, a directional forgetting based concurrent
learning adaptive control has been proposed. The theoretical
studies have shown that the information matrix is bounded,
and both the tracking and parameter error converges to zero
without the PE requirement under the assumption that there
is no parameter change. The conditions for the convergence
with the existence of parameter jumps have been obtained. The
theoretical studies are supported by the numerical simulations
on wingrock model. The proposed method is expected to
be applicable to many adaptive control problems with time-
varying parameters for its simplicity and convergence guaran-
tee.
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