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A B S T R A C T

Blackheart (BH) is a physiological disorder of potato tubers in which internal tissue becomes discoloured during
storage. The development of BH has been previously linked with general phenolic accumulation. In this study,
five potato stocks cv. Maris Piper with different susceptibility to BH were selected across two consecutive sea-
sons, whereupon targeted analysis of sugar and individual phenolic compounds in two tuber sections (flesh and
heart) was conducted after storage at 1.5 °C or after one week at 15 °C. The most susceptible stock to BH had the
highest accumulation of reducing sugars, while crypto- and neo-chlorogenic acids (chlorogenic acid isomers)
were more abundant in flesh tissue of non-susceptible stocks. It is postulated that these metabolites may re-
present putative pre-symptomatic predictive biomarkers of stock susceptibility to BH.

1. Introduction

Potato blackheart (BH) is a postharvest disorder, which was initially
reported by Bartholomew (1916) in shipped potatoes, and still results in
significant losses for the potato industry (Kiaitsi, 2015). BH-affected
tubers remain firm and odourless, without external symptoms, and the
disorder is only observed when tubers are sliced open. Thus, tubers may
pass quality control checks and be marketed, with defects only be-
coming apparent to the consumer during preparation or prior to con-
sumption. Customer complaints associated to internal discoloration in
potato are significant and have risen over the last decade in the UK
(Kiaitsi, 2015; Terry, 2015). The disorder has been associated with O2

depletion and/or CO2 accumulation in internal tissue (Hooker, 1981)
but it has not been clearly characterised. BH is a non-pathogenic dis-
order appearing as internal brown-to-black discoloration; it mainly af-
fects medullary tuber tissues without reaching the cortex and may re-
sult in cavity formation (Hooker, 1981). Due to variable degrees of
tissue discoloration (brown or black, severity-related) the disorder can
be mistakenly referred to as incipient brown centre (BC), brown heart,
hollow heart (HH) or sugar heart (SH) (Bussan, 2007). This diversity in
nomenclature has led to confusion over the identification of the factors
which relate to the specific disorder (Reeve, 1968; Sowokinos, 2007).
Disorders such as BC, HH might coexist with BH or act as its precursor
(Hooker, 1981).

Near freezing or high (> 32 °C) temperatures have been reported to
play a role in BH development during storage, likely as a result of

different gas diffusion properties within tuber tissues (Stewart and Mix,
1917). It has been reported that BH development requires longer sto-
rage times at colder temperatures (0–2.5 °C) (Link and Ramsey, 1932).
More recently, Zhou et al. (2015) reported that BH can be induced in
tubers enclosed in zip-lock bags (carbon dioxide accumulation and
oxygen depletion) when stored at 4 °C for four months.

The brown to black coloration associated with BH indicates a phe-
nolic-based reaction, and indeed Bartholomew (1916) suggested that
tyrosine oxidation, via polyphenol oxidase (PPO), might be responsible
for the tissue discoloration. Reeve (1968) demonstrated that suberin
and other phenolics accumulated in the parenchyma of BH affected
tubers compared to symptomless tubers. It is possible that, together
with PPO, phenylalanine ammonia lyase (PAL) plays a role in the
brown pigmentation development, since PAL activity is affected by
gaseous stress (Joos and Hahlbrock, 1992; Geigenberger, 2003).
Nevertheless, no direct correlation between potato phenolics and BH
susceptibility has been described. In fact, further research has mainly
focused on non-destructive detection methods of the disorder rather
than biochemical profiling during development (Zhou et al., 2015;
Mohamed et al., 2016; Tian et al., 2017).

In the current work, targeted metabolomic approaches were applied
to investigate putative predictive biomarkers of BH susceptibility in
potato tubers allowing improved management of crops for possible
reduction in customer complaints.
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2. Materials and methods

2.1. Plant material and experimental design

During two consecutive growing seasons, a total of five stocks of
potato (Solanum tuberosum L.) cv. Maris Piper (supplied by Fresh Potato
Suppliers Association, FPSA, UK) with different susceptibility to BH
were analysed [season 1 (2011–2012), stocks A, B, and C; season 2
(2012–2013), stocks E, and D]. Tuber size ranges between 85−110mm
in length, 68−78mm in diameter, and 198−270 g in weight. To es-
tablish the BH susceptibility of each stock, tubers underwent a “hot-
box” procedure developed and carried out at Sutton Bridge Crop
Storage Research (SBCSR, UK): unwashed tubers, were initially stored
at 3.5 °C and incubated in sealed chambers at 30 °C for 60 h. After in-
cubation, tubers were longitudinally cut in half, placed on trays at room
temperature for 24 h, and inspected by SBCSR staff for symptoms of BH
(tissue discoloration). Following the hot-box treatment, stocks A, B and
D were classified as susceptible, while C and E did not show any dis-
coloration and were ranked as non-susceptible. Tubers of each stock
were collected from SBCSR and transported to Cranfield University
(CU) across the two consecutive seasons. During each season, tubers
were assessed at four time points [0 (baseline, arrival at CU), 8, 16 and
20 weeks] after cold storage (1.5 °C) or after one week under shelf-life
conditions (15 °C). At each time point, tubers (9 tubers/stock) were
removed from cold storage and assessed as day zero (d0), while another
set of tubers (18 and 9 tubers/stock in season 1 and in season 2, re-
spectively) were transferred to 15 °C in air for one week and assessed
after seven days (d7) for shelf-life evaluation. Baseline measurements
were conducted on tubers of each stock before cold storage (1.5 °C). A
total of 108 and 72 tubers per stock were used in season 1 and season 2,
respectively. Shelf-life evaluation was conducted in 300 L boxes flushed
with air (O2; 21 %, CO2; 0.04 %) controlled by the ICA6000 system
(International Controlled Atmosphere Ltd., Paddock Wood, Kent, UK)
(Amoah et al., 2017).

2.2. Stock susceptibility evaluation

On each sampling day (d0 and d7), tubers were carefully washed
and left to air dry. One slice (10mm in thickness) was longitudinally cut
from the central part of each tuber with a sharp knife. Tubers slices
were visually evaluated for tissue discoloration (BH-like symptoms;
Fig. 1). Tissue discoloration evaluation was used to confirm or reject the
previous rank following the hot-box procedure, and to evaluate the
development of BH. The slices were then peeled and used for further
analysis.

After discoloration evaluation, two sets of samples were in-
dividually cut from each slice: an inner section (heart) of 24mm in

diameter, using a cork borer, including central medullary (pith) tissues;
and an outer section (flesh), consisting of pith, perimedullary and
cortex tissues (Fig. 2). The peel was discarded, and samples were im-
mediately snap frozen in liquid nitrogen and freeze-dried in the dark at
−50 °C using a digital freeze drier (Scanvac, Lynge, Denmark) for seven
days.

2.3. Targeted biochemical analysis

The freeze-dried samples were used for sugars and individual phe-
nolic quantification in both sets of tissue samples (flesh and heart).
During season 1, the samples were collected on every sampling day (d0
and d7) at each time point after the visual inspection (stocks A, B, and
C; total of 648 samples), and evaluated following two different ap-
proaches: i) an analysis of biochemical variations related with BH-sus-
ceptibility, and ii) a snapshot of BH incidence-related profiles. Samples
collected during season 2 were used to integrate the dataset for the
incidence-related analysis. The tubers were individually inspected and
ranked at every time point, while the tissues were sampled (from all the
tubers at that time points) when a discoloration was present (stocks E
and D; total of 144 samples).

To identify possible biomarkers of BH-susceptibility (i), the bio-
chemical profiles of tuber tissues were investigated during storage. Due
to the relatively low incidence of BH, the tubers sampled at each
sampling point were individually ranked for discoloration, and the
freeze-dried tissues were treated as replicates/stock (3 tubers each rep,
3 reps per stock), regardless of BH incidence. As a result, discolored and
non-discolored tissues of susceptible stocks (A, B and D) were merged
when presented at the same time point. The identified differences were
therefore related with the stock susceptibility rather than discoloura-
tion per se.

To study possible biomarkers related to BH-incidence (ii), samples
of each susceptible stock of both seasons were grouped into discolored
vs. non-discolored (regardless of the time point), compared between
them, and against the non-susceptible tuber tissues (stock C and E).

2.3.1. Non-structural carbohydrate extraction and quantification
Non-structural carbohydrates (fructose, glucose and sucrose) were

extracted and analysed as described by Terry et al. (2007) using a High-
Performance Liquid Chromatography Agilent 1260 series coupled to
Infinity Evaporative Light Scattering Detector (ELSD) (Cheshire, UK).
Diluted extracts (1/4) were injected into a Prevail Carbohydrate ES 5 u
(GRACE) 250mm×4.6mm column. Sugar concentrations were cal-
culated against authentic calibration standards of fructose, glucose and
sucrose (Sigma, Dorset, UK) ranging from 0.1 to 5 g L−1 and the results
were expressed as g kg−1 of dry weight (DW).

Fig. 1. Longitudinally sliced potato tubers with different intensity in tissue discolorations. a) no discoloration b) pith discoloration. c) brown discoloration. d) dark
brown to black discoloration. Apical end at the top and stolon end at the bottom.
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2.3.2. Phenolic extraction and quantification
Individual phenolics were extracted from 50mg freeze-dried mate-

rial. Samples were extracted with 1.5 mL of 50:50 LCMS grade metha-
nol:water (v/v) + 1 % formic acid solution and then placed in a
shaking water bath at 35 °C for 15min and every 5min they were re-
moved and vortexted (Vortex Genie 2, Scientific Industries, NY) at room
temperature for ca. 20 s. After incubation, samples were centrifuged for
10min at 10,000 rpm and the supernatant collected and filtered
through a 0.2 μm filter (Cronus PTFE filters, Jaytee Biosciences Ltd.,
Kent, UK). Individual phenolic compounds of samples (10 μL injection)
were measured using an ElectroSpray Ionisation (ESI) source in nega-
tive mode on an Agilent Technology 1290 Infinity UPLC coupled with
Agilent Technologies 6540 GHD Accurate-Mass Quadrupole Time of
Flight (Q-ToF) mass spectrometer. Chromatography was performed on
a WATERS – ACQUITY UPLC C18 2.1×150mm 1.7 μm column
(WATERS, Ireland) with a gradient of eluent A: 0.1 % (v/v) formic acid
for LC/MS in HPLC grade water and eluent B: acetonitrile for LC/
MS+0.05 % formic acid for LC/MS. Flow rate was set at 0.4 mL/min.
The mobile phase was as follows: time 0min, 95 % A, 5 % B; 0.5 min,
95 % A, 5 % B; 2.5min, 81 % A, 19 % B; 6min, 81 % A, 19 % B; 15min,
60 % A, 40 % B; 15.50min, 60 % A, 40 % B; 15.6 min 100 % B;
17.6 min; 100 % B; 17.65min, 95 % A, 5 % B; 20min. 95 % A, 5 % B.
Run time per sample was 21min. Quantification of phenolic com-
pounds was carried out using chromatographic peaks that were iden-
tified according to their retention times compared against external
standard compounds ranging from 20 to 10000 ng mL−1 and then
concentrations of phenolic compounds calculated in mg kg−1 DW. Each
external standard of [chlorogenic acid (5-O-caffeoylquinic acid),
crypto-chlorogenic acid (3-O-caffeoylquinic acid), neo-chlorogenic acid
(4-O-caffeoylquinic acid), tyrosine, phenylalanine, rutin (quercetin-3-
O-rutinoside), and quercetin-3,4-O-diglucoside] (Sigma, Dorset, UK)
was dissolved with 50:50 methanol:water (v/v).

2.4. Statistical analysis

Non-structural carbohydrates and individual phenolic data sets
were analysed by general Analysis of Variance (ANOVA) performed
with GenStat 16th Edition (VSN International Ltd, Herts., UK). Raw data
were checked for residuals distribution; ANOVAs were followed by a
comparison of the means according to the least significant difference
(LSD) test (P < 0.05).

3. Results

3.1. Stock susceptibility

Visual assessment data on tissue discoloration confirmed the dif-
ferences in degree of susceptibility among the stocks as indicated by
SBCSR, and no discoloration was detected in the two non-susceptible
stocks (C and E) at any time point (Table 1). Generally, greater sus-
ceptibility was observed in stocks B (season 1) and D (season 2)
showing up to a 6-fold difference compared to stock A (Table 1).

Tissue discoloration incidence was first observed during shelf-life
evaluation at week 0 (baseline) in stock D and peaked after 16 weeks’
storage (Appendix A; Supplementary Table 1). BH incidence increased
after seven days (d7) shelf-life at 15 °C.

3.2. Biomarkers of BH-susceptibility

At baseline, no significant differences in sugar contents were de-
tected among season 1 stocks A (least susceptible), B (most susceptible)
and C (non-susceptible), nor between the separate tissues analysed
(heart and flesh). As expected, reducing sugars accumulated during
cold storage at 1.5 °C (cold-induced sweetening) and this behaviour was
more evident in the most susceptible stock (B). In particular, stock B
showed a marked accumulation of glucose and fructose in both tissues
throughout cold storage (Fig. 3, line and scatter plots). In addition, a
similar pattern was still identified for those similar tubers assessed after
one week of shelf-life at 15 °C. The tubers of stock B also exhibited
significantly high reducing sugars concentrations compared to the other

Fig. 2. Tuber slice (10mm in thickness) (a), flesh and heart samples derived from stolon end of the tuber (24mm in diameter) (b).

Table 1
Total incidence of tissue discoloration of potato tubers cv. Maris Piper and total
percentage of stock susceptibility to BH (season 1, stocks A, B, and C; season 2,
stocks D, and E).

STOCK TOTAL
TUBERS

TOTAL
DISCOLORATION

%a %b SUSCEPTIBILITY
RANK (CU)

A 108 3 74.0 2.8 least susceptible
B 108 18 80.0 16.7 most susceptible
C 108 0 0.0 0.0 non-susceptible
D 72 11 18.8 15.3 susceptible
E 72 0 0.0 0.0 non-susceptible

a Total percentage of BH symptoms incidence reported by SBCSR following
the hot box method.

b Total percentage of BH symptoms incidence reported by CU after 20 weeks
of storage.
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stocks analysed (Fig. 3, bar plots). Sucrose contents were also in-
vestigated but no specific patterns were identified between stocks of
different susceptibility.

In terms of the amino acids, tyrosine exhibited an upwards trend in
the heart tissue of non-susceptible stock C during cold storage, while its
concentration fluctuated in the susceptible stocks A and B (Fig. 4a, line
and scatter plots). A peak in tyrosine accumulation was detected at
week 16, and during shelf-life, in both susceptible stocks (Fig. 4a, bar
plots). Phenylalanine accumulated in heart tissues of the most suscep-
tible stock (B) but after shelf-life (15 °C) no differences were found
among stocks (Fig. 4b). Chlorogenic and crypto-chlorogenic acids fol-
lowed a similar pattern of accumulation like glucose and phenylalanine
in heart samples of the most susceptible stock B throughout the cold
storage (Fig. 4c and d).

In contrast, the flesh tissue of the non-susceptible stock accumulated
more chlorogenic acid isomers (neo- and crypto -chlorogenic acids)
than the susceptible stocks, during both cold storage and shelf-life
(Fig. 5).

For BH-incidence interpretation, and because of the sporadic nature
of the disorder, the flesh and heart samples of all stocks were grouped
into discolored and non-discolored (regardless of the time point), and
the biochemical profiles compared. In particular, reducing sugars
mainly accumulated in heart samples of all stocks but the highest ac-
cumulation was recorded in both discolored flesh and heart samples of

stock B which showed the greatest BH incidence (Fig. 6). Crypto- and
neo-chlorogenic acids were ca. triple and double the concentration,
respectively, in flesh samples of both non-susceptible stocks (C and E)
when compared to heart samples (Fig. 7). In addition, rutin and quer-
cetin-3,4-O-diglucoside were twice as high in non-susceptible stock E
(Appendix A; Supplementary Fig. 1) than susceptible stock D.

4. Discussion

Blackheart development in potato tubers can occur at any tem-
perature where there is inadequate oxygen supply. Storage at very low
or high temperatures slows down gaseous diffusion in the internal
tissue and it is believed that longer periods of storage are required for
BH development at cold temperatures (Stewart and Mix, 1917; Link and
Ramsey, 1932; Zhou et al., 2015). The results of the current study
confirmed that a storage temperature as low as 1.5 °C affected the tissue
discoloration of susceptible stocks (A, B and D). Moreover, the results
herein highlighted that shelf-life conditions at 15 °C (following cold
storage) played a major role in eliciting discoloration. Therefore, it is
reasonable to suggest that very low storage temperatures may trigger
the mechanisms responsible for discoloration, which are then ex-
acerbated during shelf-life. An extended shelf-life period, perhaps under
low oxygen, might further enhance BH development and intensify its
symptoms.

Fig. 3. Fructose and glucose (g kg−1 DW) in flesh and heart samples of stocks A (least susceptible), B (most susceptible), C (non-susceptible) during cold storage
(1.5 °C; line and scatter plots), and after one week of shelf-life (15 °C; bar plots) (baseline; week 0). LSD bars are shown (P < 0.05).
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Fig. 4. Tyrosine, phenylalanine, chlorogenic acid and crypto-chlorogenic acid (mg kg−1 DW) in heart samples of stocks A (least susceptible), B (most susceptible) and
C (non-susceptible) after cold storage (1.5 °C; line and scatter plots), and after one week of shelf-life (15 °C; bar plots) (baseline; week 0). LSD bars are shown
(P < 0.05).

Fig. 5. Neo- and crypto-chlorogenic acids (mg kg−1 DW) in flesh samples of stocks A (least susceptible), B (most susceptible) and C (non-susceptible) after cold
storage (1.5 °C; line and scatter plots), and after one week of shelf-life (15 °C; bar plots) (baseline; week 0). LSD bars are shown (P < 0.05).
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Previously, it has been argued that tubers affected by other internal
physiological disorders, such as brown centre, hollow heart, and in-
ternal brown spot, may be misdiagnosed as being BH-affected due to
the commonality in symptoms. Reeve (1968) suggested that sometimes
these other disorders may overlap or act as precursors for BH induction.

Potato tissue discoloration has been closely linked with phenolic
compounds and amino acids accumulation (Navarre et al., 2009). More
specifically, it has been suggested that tyrosine and chlorogenic acid are
both adequate substrates for enzymatic oxidation via PPO, resulting in
black and brown pigments, respectively. Nevertheless, the relationship
between substrate, enzyme and resulting discoloration has yet to be
clearly described (Takahama, 2004; Adams and Brown, 2007; Werij
et al., 2007). In the current study, chlorogenic acid and its isomer
crypto-chlorogenic acid increased in heart samples of the most sus-
ceptible stocks (A and B) during cold storage.

It is well established that low temperature storage can induce higher
concentrations of reducing sugars in potato tubers, this being a un-
desirable trait for the processing industry. The association between
reducing sugars and internal disorders is less well documented. Bussan
(2007) reported that reducing sugars can accumulate in tubers with
brown centre and hollow heart symptoms. Lipton (1967) reported BH
incidence in cv. White Rose potato tubers after storage in 0.5–1% O2 at
15–20 °C with ca. 2-fold lower glucose concentration in the outer and
inner parts of the tubers compared to those held in air (21% O2). The
results herein showed that the most susceptible stock (B), showed
greater reducing sugar accumulation in both flesh and heart tissues
during storage, indicating that BH susceptibility is aligned to non-
structural carbohydrate hydrolysis.

5. Conclusion

For the first time targeted metabolomic approaches were performed
in order to identify biochemical changes in potato stocks cv. Maris Piper
with different susceptibility to BH. From our findings it was hypothe-
sized that tissue discoloration might be initiated during cold storage
and be enhanced during shelf-life. Taken together, our results suggest
that both the accumulation of reducing sugars and chlorogenic acid
isomers could be used as pre-symptomatic biomarkers of BH suscept-
ibility and may allow practitioners to segregate between potato con-
signments with different propensity to BH during storage.
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Fig. 6. Fructose and glucose contents (g kg−1 DW) in discoloured and non-discoloured heart (h) and flesh (f) samples of season 1 (2011–2012) stocks B (most
susceptible) and C (non-susceptible) and season 2 (2012–2013) stocks D (susceptible) and E (non-susceptible).

Fig. 7. Crypto- and neo-chlorogenic acids (mg kg−1 DW) contents in discolored and non-discolored heart (h) and flesh (f) samples of season 1 (2011–2012) stocks B
(most susceptible) and C (non-susceptible) and season 2 (2012–2013) stocks D (susceptible) and E (non-susceptible) according to tissue discoloration regardless the
time point.
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