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This paper concerns the implementation and evaluation of high-order reconstruction schemes for 
predicting three well established hovering rotor flows i.e. Caradonna and Tung, PSP and UH-60A. 
Monotone Upstream Centred Scheme for Conservation Laws (MUSCL) and Weighted Essentially Non-
Oscillatory (WENO) spatial discretisation schemes, up to fourth-order, are employed to approximate 
the compressible Reynolds Averaged Navier-Stokes (RANS) equations in a rotating reference frame, on 
mixed-element unstructured grids. Various flow speed conditions are simulated including subsonic 
and transonic, with the latter stretching the discontinuities capturing abilities of the numerics. We 
consistently evaluate the accuracy, cost and robustness of the developed numerical framework by 
analysing the discretisation error with respect to the grid resolution. A thorough validation is conducted 
for all cases by comparing the obtained numerical solutions with experimental data points and relevant 
literature.

© 2019 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the not-so-distant past, academic codes were the backbone 
of high-order method development, these codes generally lacked 
the robustness and efficiency of low-order methods (≤ 2). Recently, 
commercial software developers have introduced third-order spa-
tial discretisation schemes within their numerical arsenal; this is 
an affirmation that there is a commercial demand of higher or-
der schemes as the maturity of the technology has reach wide 
adoption level. The scope of these methods is to implicitly increase 
the resolution of a CFD solution with a high-order approximation 
rather than refining the mesh; a labour intensive and generally 
difficult-to-automate task. These methods are applied successfully 
for CFD applications requiring low dissipation levels and enhanced 
discontinuities capturing abilities e.g. acoustics applications, tur-
bulence modelling, transonic/supersonic flows and rotating wings 
amongst others. Helicopter aerodynamics encompass several chal-
lenges that high-order methods can address such as shock captur-
ing and vortex dominated flow resolution, where the inherent low 
numerical dissipation properties of these methods complements 
the computed solutions.

The earliest methods for modelling rotorcraft aerodynamics 
were based on the Prandtl’s lifting line theory, only in the 1980’s 
advances of Euler based methods reached the point where simu-
lating of an isolated rotor was feasible. Agarwal and Deese [1] in-
vestigated the flow around the Caradonna and Tung rotor [2] solv-
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ing the Euler’s equations formulated in a rotating reference frame 
using the Jameson’s finite volume scheme with explicit Runge-
Kutta time stepping [3]. The work of Caradonna and Tung in 1981 
[2], encompassed experimental measurements of a hovering rotor 
through a wide envelop of flow conditions, their findings provided 
the CFD community a tangible database for code validation. With 
an external wake model to compute the inflow velocities and wake 
effects Wake and Sankar [4] presented a finite difference Navier-
Stokes approach using a hybrid implementation of the alternating 
direction implicit time marching scheme to reach a steady state 
solution of the ONERA hovering rotor [5].

Computational advances during the following decade, enabled 
developments of new Euler and Navier-Stokes methods in captur-
ing the rotor wake without external models e.g. vortex confine-
ment techniques [6]. Srinivasan et al. [7] simulated a hovering ro-
tor by a Reynolds Averaged Navier Stokes (RANS) equations model 
using an implicit, upwind, finite difference scheme on a C-H grid 
topology; the authors highlighted the importance of well meshed 
domains for the farfield wake capture. At that time, the current 
state of CFD methods were insufficient in conserving the wake, 
since the numerical schemes needed to be dissipative for stabil-
ity, producing a faster rate of diffusion of the sheets and vortices 
[8]. Thereby, great research efforts are made on the development 
of high-order methods and mesh adaptation techniques.

The initial step of a high-order framework involves the formu-
lation of the governing equations; either in integral or differential 
form or a hybrid combination of theses, to enable the discretisation 
in time and space by a high-order approximation scheme. There 
are various flavours of formulating the Navier-Stokes equations. 
ss article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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One of the most promising ones is the Discontinuous Galerkin (DG) 
approach [9] that inherents characteristics from the finite volume 
[10], and finite element method. A recent overview of high-order 
methods is presented by Z.J. Wang et al. [11], the paper sum-
marises the collaborative work of several successful International 
Workshop on High-Order CFD Methods. Another popular formula-
tion is the Flux Reconstruction (FR) technique [12], an extensive 
comparison of PyFR, an open-source solver based on a high-order 
FR implementation, with a commercial solver, is presented by Ver-
meira et al. [13] demonstrating promising efficiencies of high-order 
systems.

For fluid dynamics problems the finite volume method provides 
several benefits; flexibility, the ease of formulating transport equa-
tion systems, conservation properties on arbitrary-defined spatial 
elements, extensibility to multi-physics systems and robust nu-
merical frameworks including schemes, solvers and limiters for hy-
perbolic systems. An example of these is the Weighted Essentially 
Non-Oscillatory scheme (WENO) and Monotone Upstream-Centred 
Scheme for Conservation Laws (MUSCL). On unstructured meshes 
the MUSCL scheme was first introduced by Barth and Jepersen [14]
presenting a limiter which acts on the linear reconstruction and it 
is free of oscillations at strong gradients. Due to its robustness, 
this method gained popularity over the years and many authors 
contributed for high-order flux limiters on unstructured 3D grids 
[15–18]. WENO schemes [19] are an extension of the Essentially 
Non-Oscillatory (ENO) schemes first proposed by Harten [20]. Both 
approaches use an adaptive local stencil to enhance the resolution 
in smooth region preserving the non-oscillatory behaviour near the 
discontinuity, but while ENO select the smoothest stencil, WENO 
employs a weighted combination of all the candidates resulting 
in smoother solutions with better convergence property. Compar-
ing to the classic ENO, such a improvement increase the stability 
and accuracy on unstructured grids [10]. Zhang and Shu [21] ex-
tended this approach for third-order on tetrahedral grids. Dumbser 
[22] presented a hybrid method up to sixth-order accurate for 
compressible Navier Stokes equations. Tsoutsanis et al. [23,24] im-
proved the applicability of WENO schemes extending it for hybrid 
unstructured meshes. This scheme provides an accurate numerical 
framework on turbulent shock-wave boundary layer interaction on 
Implicit Large Eddy Simulations (ILES) [25] and for the RANS equa-
tions [26] and has been recently optimised for massively parallel 
computations [27].

Hariharan et al. [28] used a seventh-order overset WENO 
scheme on arbitrary block structured moving grids to capture the 
blade tip vortices of a hovering rotor, and their work outlines the 
clear benefits of the WENO scheme on capturing the wake turbu-
lent structure and the challenges of overlap grids. Postdam et al. 
[29] performed steady state simulation of an isolated, half-span, 
and full-span V-22 tiltrotor hover configurations using the OVER-
FLOW code and overset method. The numerical dissipation of the 
schemes demonstrates a direct impact on the prediction capabili-
ties of blade-vortex interaction. Zhong et al. [30] presented a block 
incomplete lower-upper decomposition on C-H structured invis-
cid and Navier-Stokes solver written in rotating reference frame 
using the Osher’s approximate Riemann solver and MUSCL re-
construction. The findings demonstrated enhanced convergence 
acceleration with larger time steps. Costes et al. [31] study the
extensive overview of the ONERA experience using CFD techniques 
for rotorcraft applications. They also emphasise the importance of 
developing high-order schemes on hybrid unstructured meshes. 
Hariharan et al. [32] review consistently the historical progress 
of the hover simulations including benchmark cases, grid aspects, 
turbulence models and results expected. The GOAHEAD project 
conducted one of the most prominent research over the recent 
years in terms of state-of-the-art on experimental and numerical 
studies. It conducted in a wind tunnel an extensive measurements 
data of a fully instrumented complete 4-bladed helicopter model, 
made of the NH-90 fuselage with the 7AD rotor. This database 
was used to compare with CFD simulations [33–35]. Recently Li et 
al. [36] presented an integral Arbitrary Lagrangian Eulerian (ALE) 
formulation of the unsteady RANS equations on the rotating refer-
ence frame using Roe’s difference finite splitting scheme and the 
Spalart-Allmaras turbulence model on structured grids. The solver 
utilised a third-order MUSCL and fifth-order WENO schemes, un-
steady computations of the blade cyclic operation were performed 
with reasonable accuracy by the ALE on non inertial formula-
tion. Jimenez-Garcia and Barakos [37] describe the formulation 
fourth-order MUSCL scheme with correction terms for rotating 
flows. The proposed method was validated against two- and three-
dimensional test cases, the UH-60A [38], demonstrating reasonable 
CPU and memory overhead. Hwang et al. [39] assessed the ground 
effect of the S-76 hovering rotor for three blades geometries using 
overset unstructured mesh approach and high-order WENO recon-
struction in the off-body regions.

This paper introduces the work related to the implementation 
of high-order MUSCL and WENO spatial discretisation schemes, 
up to fourth-order of accuracy, on a rotating reference frame, 
based on the k-exact finite volume formulation of the compress-
ible Reynolds Averaged Navier-Stokes equations. Turbulence is ac-
counted through the Spalart-Allmaras turbulence model; solutions 
are obtained on hybrid (mixed-element) three dimensional un-
structured grids. The governing equations are formulated in a non 
inertial reference frame, the Harten-Lax-van-Leer-Contact (HLLC) 
Riemann solver [40], the spatial discretisation employs the MUSCL-
MOGE variant limiter of Tsoutsanis [18] and the WENO imple-
mentation of Tsoutsanis et al. [23,24], the solution is advanced 
in time is with a Lower-Upper Symmetric Gauss-Seidel (LU-SGS) 
implicit backward Euler time integration unless otherwise stated. 
The CFD solver labelled Unstructured Compressible Navier-Stokes 
3D (UCNS3D) [41] has been the focus of research work by the au-
thors for the last decade. The numerical framework is validated, 
assessed and evaluated across a wide range of flow conditions: 
inviscid flows [23], time dependent laminar, transitional and tur-
bulent flows [42] and high-Reynolds number flows for external 
aerodynamics [43]. We study the implementation of the schemes 
on three hovering rotor configurations, the sensitivity of the mesh 
on the solution is consistently analysed, the accuracy and the com-
putational cost. The rotor configuration includes the Caradonna 
and Tung [2], PSP [44] and UH-60A [38]. To the author’s knowl-
edge, this is first time that high-order solutions are obtained for 
rotorcraft aerodynamics on mixed-element unstructured grids. The 
paper is structured as follows: The governing equations on the ro-
tating reference frame are presented in section 2. An overview of 
the numerical framework is detailed in section 3. Numerical solu-
tions are presented in the following section, where we discussed 
in depth the findings. The conclusions of the present work are out-
lined in the last section.

2. Governing equations in rotating reference frame

The compressible Navier-Stokes equations are formulated in a 
blade-fixed reference frame with steady angular velocity. The equa-
tions are cast and solved in terms of absolute variables, thereby the 
flow in the farfield is uniform but the relative flow is not. This ap-
proach allows a precise computation of the fluxes on non uniform 
grids [1]. The relative velocity components ur , vr and wr and abso-
lute velocity components u, v and w are related by the rotational 
velocity components u� , v� and w� in the Cartesian coordinates 
x, y and z as follows:

u = ur + u�, v = vr + v�, w = wr + w�. (1)
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For constant clockwise angular velocity in all components ω1, ω2

and ω3 and the radius, r, as the distance of the element from the 
axis origin, the rotational velocity yields

u� = ω1 × r, v� = ω2 × r, w� = ω3 × r. (2)

The compressible Navier-Stokes equations with the one-transport-
equation turbulence model of Spalart-Allmaras [45] for three di-
mensional flow in a coordinate system attached to the blades can 
be written in conservative form as:

∂U(x, t)

∂t
+ ∇(Fc(U) − Fv(U,∇U) = S(U,∇U), (3)

where U is the vector of the conserved mean flow variables and 
turbulence model variable, x denotes the coordinate of a point of 
the domain, Fc and Fv are the convective and viscous flux vectors, 
respectively, and S is the source term vector due to the inertia 
forces and SA turbulence model [46]:

U =

⎡⎢⎢⎢⎢⎢⎣
ρ
ρu
ρv
ρw
ρE
ν̃

⎤⎥⎥⎥⎥⎥⎦ ,Fx
c =

⎡⎢⎢⎢⎢⎢⎣
ρur

ρuru + p
ρur v
ρur w

ρEur + pu
uν̃

⎤⎥⎥⎥⎥⎥⎦ ,

Fy
c =

⎡⎢⎢⎢⎢⎢⎣
ρvr

ρvru
ρvr v + p

ρvr w
ρE vr + vp

vν̃

⎤⎥⎥⎥⎥⎥⎦ ,Fz
c =

⎡⎢⎢⎢⎢⎢⎣
ρwr

ρwru
ρwr v

ρwr w + p
ρE wr + wp

wν̃

⎤⎥⎥⎥⎥⎥⎦ ,

Fx
v =

⎡⎢⎢⎢⎢⎢⎢⎣
0
τxx

τxy

τxz

�x
1
σ (νl + ṽ) ∂ν̃

∂x

⎤⎥⎥⎥⎥⎥⎥⎦ ,Fy
v =

⎡⎢⎢⎢⎢⎢⎢⎣

0
τxy

τyy

τyz

�y
1
σ (νl + ν̃) ∂ν̃

∂ y

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Fz
v =

⎡⎢⎢⎢⎢⎢⎢⎣
0
τxz

τyz

τzz

�z
1
σ (νl + ν̃) ∂ν̃

∂z

⎤⎥⎥⎥⎥⎥⎥⎦ ,

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
ρ (ω2 w − ω3 v)

ρ (−ω1 w + ω3u)

ρ (ω1 v − ω2u)

0

Cb1 S̃ν̃ fr1 + 1
σ Cb2(∇ν̃)2 − C w1 f w

(
ν̃
d

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where ρ is the density, p is the pressure, ν̃ is the turbulent vis-
cosity SA working variable. Assuming a calorically perfect gas, the 
total energy per unit volume is calculated by E = p/(γ − 1) +
0.5ρ(u2 + v2 + w2), where γ = 1.4 is the ratio of specific heats 
for air at normal atmospheric condition. The kinetic laminar vis-
cosity, νl , is computed by the Sutherland law relating the dynamic 
viscosity, (νl = μl/ρ) to the ideal gas temperature:

νl = T0 + S
(

T
)3/2

, (5)

ν0 T + S T0
where S is the Sutherland temperature (S = 110.4 K) and the ref-
erence state of these variables is given by the subscript 0. In this 
case, the reference values are based on the atmospheric conditions: 
ν0 = 1.785 × 10−5 kg.m.s−1, T0 = 288.16 K. Through the Boussi-
nesq’s approximation the viscous stress tensor, τi j , yields

τi j = (νl + νt)

(
∂ui

∂x j
+ ∂u j

∂xi
− 2∂ui

∂3xk
δi j

)
, (6)

where νt is the eddy viscosity, δi j is Kronecker delta and the sub-
scripts i, j, k are the Cartesian components of x = x, y, z. The work 
performed by the viscous stress and heat conduction, �i , can be 
written:

�x = uτxx + vτxy + wτxz +
( ν

Pr
+ νt

Prt

) γ

γ − 1

∂T

∂x
,

�y = uτyx + vτyy + wτyz +
( ν

Pr
+ νt

Prt

) γ

γ − 1

∂T

∂ y
,

�z = uτzx + vτzy + wτzz +
( ν

Pr
+ νt

Prt

) γ

γ − 1

∂T

∂z
,

(7)

where, Pr is the Prandtl number and Prt is the turbulent Prandlt 
number. The kinematic turbulent viscosity, νt is approximated by 
the SA turbulence model, the implementation is comprehensively
described in [26].

3. Numerical framework

The computational domain is discretised on three dimensional 
shaped elements of type hexahedra, tetrahedra, prisms and pyra-
mids. The element has a volume |V i |. An ordinary differential 
equation is achieved by integrating the Eq. (3) over the unstruc-
tured mesh using the finite volume formulation, yields

dUi

dt
= − 1

|V i |
N f∑
l=1

Nqp∑
α=1

Fn,1
c (U(xα, t))ωα |Al|

+ 1

|V i|
N f∑
l=1

Nqp∑
α=1

Fn,1
v (U(xα, t),∇U(xα, t))ωα |Al| + Si, (8)

where Ui and Si is a volume average of the conserved variable 
and source term vectors, respectively, within the control volume 
of element i. Summation limits, N f correspond to the number of 
adjacent faces per element and Nqp is the number of quadrature 
points employed to approximate the surface integrals. |Al| is the 
surface area of the corresponding face, and α correspond to the 
Gaussian points, with coordinate vector xα and weights, ωα , over 
the adjacent face. Both weight and distribution depends on the or-
der of the Gaussian quadrature rule applied. Thereby, higher inte-
gration rule improves the flux approximation. The interface fluxes 
are computed using extrapolated values, which are obtained from 
a polynomial reconstruction from the element-averaged data.

3.1. Spatial discretisation

The reconstruction process is based on the k-exact reconstruc-
tion and aims to build a high-order polynomial pi(x, y, z) of a 
specified order for each element V i which present the same cell 
average quantity Ui yielding,

Ui = 1

|V i |
∫
V i

U(x, y, z)dV = 1

|V i |
∫
V i

pi(x, y, z)dV . (9)

The reconstruction algorithm is based on the approach given by 
Tsoutsanis et al. [25] and involves the decomposing of each ele-
ment into unit tetrahedra. This procedure transforms the system 
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of equations from physical space to a reference space, this is per-
formed to reduce the scaling effect inherent in stencil with differ-
ent element size. The reconstructed polynomial at the transformed 
element, V ′

i , is expanded over local polynomial basis functions la-
belled as λk(ξ, η, ζ ), given by:

p(ξ,η, ζ ) =
K∑

k=0

akλk(ξ,η, ζ ) = U0 +
K∑

k=1

akλk(ξ,η, ζ ), (10)

where ξ, η, ζ are the coordinates in the transformed reference 
frame, ak are the degrees of freedom. K relates to the order of 
the polynomial r by K = 1

6 (r + 1)(r + 2)(r + 3) − 1. The decompo-
sition into tetrahedrals is only performed to improve the condition 
number of the reconstruction matrices, rather than computing the 
inter-element quantities such as fluxes, due to the advantage in 
using prismatic or hexahedral elements for the boundary layer for 
computing the gradients with high-accuracy [47]. To compute ak
degrees of freedom at least k elements are required in the stencil. 
However, using the minimum (M ≡ k) weakens the solution of the 
linear system and its matrix may become ill-conditioned. Thereby, 
M = 2K makes the method more robust and in the present study 
the stencil based compact algorithm is used for the central stencils 
and the type 3 for the directional stencils as introduced in the re-
cent work of Tsoutsanis [48]. By using a least square approach, the 
system of equation (10) allows the solution for the unknown de-
grees of freedom ak . The QR decomposition solves the final form of 
the linear system. Limiting functions are used to deal with discon-
tinuities solutions, such as shock waves, maintaining the numerical 
stability by suppressing non physical oscillations.

3.2. MUSCL

The MUSCL method has it origins with the pioneering work of 
Van Leer [49–51], Barth and Jepersen [14] extended the scheme by 
applying a limiter to reduce the slopes of high gradient regions and 
preserve monotonicity of the solution, so no new local extrema are 
created. The scheme can be written as:

Ui j,α = Ui + φi ·
K∑

k=1

akλk(ξa, ηa, ζa), (11)

where Ui j,α is the extrapolated reconstructed solution at face j, and 
at quadrature point α, Ui is the value for the conserved variable of 
element i, and (ξa, ηa, ζa) are the coordinates of the quadrature 
point at the i j face. All polynomials, for all the faces and for all 
the quadrature points are then limited by the limiter φi which is 
valid for cell i to prevent any spurious oscillations from contami-
nating the solution. This slope limiter requires the minimum and 
maximum values from the stencil formed by the considered cell i
and the direct side neighbours:

Umin
i = min(Ul : l = 1, .., L) and Umax

i = max(Ul : l = 1, .., L),

(12)

where l = 1, .., L; L is the local numbering for the cell i and 
it’s direct-side neighbours, where l = 1 corresponds to the cell i. 
However in the MUSCL-MOGE variant employed in this work the 
minimum and maximum values are determined not only from the 
direct side neighbours but from the entire stencil neighbourhood
as detailed in [18]. Therefore the minimum and maximum values 
from the all the elements in the stencil including the considered 
cell i are considered:

Umin
i = min(Um : m = 1, .., M) and

Umax
i = max(Um : m = 1, .., M), (13)
where m = 1, .., M; M is the local numbering for the cell i and 
it’s stencil elements, where m = 1 corresponds to the cell i. The 
limiter seeks the minimum value of the slope limiter for all the
quadrature points α that satisfy the following conditions:

φi = min(φil,a) l ∈ [1, L], α ∈ [1, Nqp]. (14)

Where φil,α corresponds to the slope limiter value at side l and 
quadrature point α for cell i. Then, the limiting function is applied, 
composed by three different states according to the difference of 
the unlimited reconstructed value Uil,α at the quadrature points of 
the considered element U(i,l,α) , the minimum Umin

i and maximum 
Umax

i values from the entire stencil, yielding:

φil,α =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

(
1,

Umax
i − Ui

Uil,α − Ui

)
, if Uil,α − Ui > 0

min

(
1,

Umin
i − Ui

Uil,α − Ui

)
, if Uil,α − Ui < 0

1, if Uil,α − Ui = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(15)

However in the case of the MUSCL-MOGE variant the limiting 
function used is a new function m̃in(1, y) which replaces the min-
imum function of Barth and Jepersen [14] to achieve higher order 
of accuracy in smooth regions of the flow, and the reader is re-
ferred to [18] for further details.

3.3. WENO

In WENO scheme the non-linearity is preserved by combining a 
number of reconstructed polynomials arising from various stencils, 
which are weighted according to the smoothness of its solution. 
The key aspect is that the coefficient of the reconstruction polyno-
mial are dependent only on the mesh and on the particular stencil 
considered, but not on the solution. In general, the polynomials are 
defined as

pweno
i =

ms∑
m=1

ωm pm(ξ,η, ζ ), (16)

where ms is the total number of WENO stencils. Applying the 
scheme on Eq. (10) it becomes

pm(ξ,η, ζ ) =
K∑

k=1

am
k λk(ξ,η, ζ ). (17)

As the sum of all weights is unity, we obtain

pweno
i = U0 +

K∑
k=1

( ms∑
m=1

ωmam
k

)
λk(ξ,η, ζ )

≡ U0 +
K∑

k=1

ãkλk(ξ,η, ζ ), (18)

where ãk are the reconstructed degrees of freedom and the non-
linear weights, ωm is defined as

ωm = ω̃m∑m=ms
m=1 ω̃m

where ω̃m = dm

(ε + Im)b
, (19)

where dm is the linear weight, Im smoothness indicator and ε is 
a small number to prevent division by zero. The typical values for 
ε is 10−6 and b = 4, and for the linear weights a large value is 
assigned to the central stencil d1 = 10000 and a value of d2,3,...,s =
1 to the remaining directional stencils. The main idea is to define 
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Fig. 1. Initial solution profile for the finest hybrid mesh employed for the 2D vortex evolution problem at t = 10.
for each stencil that generate a polynomial approximation for the 
cell a smoothness indicator, which yields

Im =
∑

1≤|β|≤r

∫
V ′

i

(Dβ pm(ξ,η, ζ ))2(dξ,dη,dζ ), (20)

where β is a multi-index, r is the polynomial’s order and D is the 
derivative operator. This smoothness function is a quadratic func-
tion of the degrees of freedom and can be expressed as a universal 
mesh-independent oscillation indicator matrix. Further details con-
cerning the WENO characteristic reconstruction can be found in 
[23,25]. In addition, the pressure and density remain positive for 
each Gaussian quadrature points (α) through the reconstruction 
process by the positivity condition of Harten et al. [52]:

|ρiα − ρi | < 0.8ρi and |piα − pi| < 0.8pi . (21)

3.4. Fluxes

The Riemann problem is solved with the approximate Harten-
Lax-van-Leer-Contact (HLLC) solver [40] for the convective fluxes. 
This is also used to deal with the convective part of turbulence 
transport equation. Taking into account the rotational velocity in-
variant, Û� , on the wave speed, S , for right and left state and its 
reconstructed solution, the flux function yields:

F̂ H LLC =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̂ − − Û�Ŵ −, if 0 ≤ (S− − Û�),

F̂ ∗− = F̂ − + S−(Ŵ ∗− − Ŵ −) − Û�Ŵ ∗−,

if (S− − Û�) ≤ 0 ≤ (S∗ − Û�),

F̂ ∗+ = F̂ + + S+(Ŵ ∗+ − Ŵ +) − Û�Ŵ +,

if (S∗ − Û�) ≤ 0 ≤ (S+ − Û�),

F̂ + − Û�Ŵ + if 0 ≥ (S+ − Û�),

(22)

where

Ŵ ∗± = ρ±( S± − u±

S± − S∗
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
S∗
ν±
w±

E±
ρ± (S∗ − u±)

(
S∗ + p±

ρ±(S±−u±)

)
ν̃

ρ±

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(23)

Ŵ ∗± is calculated for the element itself or its neighbour “+”. The 
approximation of the wave speeds, S± and S∗ , are iteratively cal-
culated as explained in [53]. For the evaluation of the viscous 
fluxes the unlimited k-exact least square reconstruction is used for 
the gradients and they are then averaged from two discontinuous 
states as detailed in [25,54]. For the gradients additionally penalty 
terms are included following the formulation of Gassner et al. [55]
for suppressing odd-even decoupling modes in the numerical solu-
tions [56], in the following manner:

∇U = 1

2

(∇U− + ∇U+) + α

Lint

(
U+ − U−) 	n, (24)

where Lint is the distance between the cell centres of adjacent 
cells, and α = 4/3 similarly to previous approaches [56,57].

3.5. Demonstration of the spatial discretisation methods on 2D Vortex 
Evolution

The 2D vortex evolution test problem introduced by Balsara 
and Shu [59] is used to demonstrate the accuracy of the em-
ployed numerical framework. In this test problem an isentropic 
vortex propagates at supersonic Mach number at 45◦ across the 
domain, which is ideal for assessing the multi-dimensional dis-
cretisation algorithms used. The computational domain is given 
by [0, 10] × [0, 10] with periodic boundary conditions applied 
on the sides. The unperturbed domain has an initial condition 
(ρ, u, v, p) = (1,1,1,1), where temperature and density are de-
fined as T = p/ρ , and S = p/rγ the adiabatic gas constant γ = 1.4
and the vortex perturbations are given by:

δT = − (γ − 1) ε2

8γπ2
e
(
1−r2

)
,

(δu, δv) = ε

2π
e0.5

(
1−r2)

(− (y − 5) , (x − 5)) . (25)

The vortex strength ε = 5 and adiabatic gas constant γ = 1.4. The 
eL2 and the eL∞ errors are computed as follows:

eL2 =

√√√√∑
i

∫
�i

(
Ue

(
x, t f

) − Uc
(
x, t f

))2
dV∑

i |�i| , (26)

eL∞ = Max
∣∣(Ue

(
x, t f

) − Uc
(
x, t f

)∣∣ , (27)

where Uc
(
x, t f

)
and Ue

(
x, t f

)
are the computed and exact solu-

tions at the end of the simulation t f . The exact solution Ue
(
x, t f

)
coinciding with the initial condition at t0. One type of hybrid un-
structured mesh is employed consisting of quadrilateral and trian-
gular elements for this test problem of 16, 32, 64, and 128 edges 
per side as shown in Fig. 1, and the simulation is run for a time of 
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t f = 10 with a third-order Strong Stability Preserving Runge-Kutta 
method [60].

As expected all the schemes achieve convergence rates close to 
their theoretical ones as seen in Table 1, and the MUSCL3, and 
MUSCL4 being at least two times and three times faster than the 
corresponding WENO schemes respectively. The MOGE formula-
tion of the MUSCL limiter version employed in this study exhibits 
high-order of accuracy at significant reduced computational cost 
compared to WENO schemes.

3.6. Temporal discretisation

The implicit approach is much desired in steady state solutions 
of high speed flows, especially dealing with complex geometries 
in RANS problems which requires a small element to ensure a y+
lower than 1. In order to accelerate the solution towards steady 
state, the time step is computed locally taking into account the 
absolute velocity and the minimum edge at each element. Thereby, 
the solution advances in time with the maximum permissible time 
step of the control volume.

Since the goal is a steady state flow, the time step is com-
puted locally taking into account the rotational velocity and the 
minimum edge of each element. In such a technique, the solu-
tion advances in each control volume with maximum permissible 
time step and thereby accelerate the convergence. The method 
marches in time using the Lower-Upper Symmetric Gauss-Seidel 
(LU-SGS) and implicit backward Euler time integration schemes, 
as it presents advantages in terms of parallelisation and compu-
tational cost. The finite volume formulation shown in Eq. (8) is 
rewritten the semi-discrete form

dUi

dt
= Ri, (28)

where Ri is the right-hand side residual of the conservative equa-
tion, which convergence approach the machine precision. Employ-
ing the first-order backward Euler implicit time stepping scheme, 
Eq. (28) yields

dUi

dt
= Un+1

i − Un
i

dt
= Ri . (29)

Linearising in time, Eq. (29) becomes

dUi

dt
= ∂Rn

i

∂U
+ Ri, (30)

where Ri tends to be equal to zero and ∂Rn
i

∂U is the flux Jacobian, 
which contains the linearisation of convective and viscous flux vec-
tors and the source terms. Thereby, Eq. (30) gives( I

dt
− ∂Rn

i

∂U

)
dUi = Rn

i , (31)

where I stands for the identity matrix. Once the linear system is 
solved, the solution at each element i is simply updated as Un+1

i =
Un

i + dUi .
The residual is linearised by a first order approximation of the 

numerical flux using the Rusanov flux function as

Ri(Ui,U j,nij) = 1

2
(F

nij
c,v(Ui,∇Ui) + (Fni j

c,v(U j,∇U j)))

− 1

2
|λi j

c + λ
i j
v |(U j − Ui), (32)

where the convective and viscous eigenvalues are written respec-
tively

λ
i j
c = |Vi j.ni j| + aij, λ

i j
v = μi j

ρ |x − x | , (33)

i j j i
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Table 2
Specification of the grids, employed for the simulations of the Caradonna and Tung [2] rotor flow.

Mesh Blade elements Volume elements [106]

Upper Lower Span Total Hexa Tetra Pyra Prism Total

Coarse 49 49 69 7359 0.42 0.32 0.08 0.02 0.84
Medium 72 72 69 11318 0.62 0.78 0.12 0.04 1.57
Fine 89 89 159 29846 1.62 1.28 0.30 0.03 3.24
Superfine 163 118 200 61106 3.35 2.49 0.63 0.11 6.57
Wake refined 49 49 69 7359 0.42 2.28 0.08 0.02 2.80
where ni j is the normal vector to the element interface, Vi j is the 
contravariant absolute velocity at the face j on the cell i and aij is 
the speed of sound.

The linearisation of the Rusanov flux of Eq. (32) gives the block 
diagonal and off-diagonal elements as:

∂Ri

∂Ui
= 1

2

(
∂Fc,v

∂Ui
+ |λi j

c + λ
i j
v |I

)
,

∂Ri

∂Uj
= 1

2

(
∂Fc,v

∂Uj
− |λi j

c + λ
i j
v |I

)
.

(34)

The linear system of the form A X = B in Eq. (31) is solved by 
its factorisation into three parts given by the following equation:

(D + L)dU∗ = R(D + U )dU = DdU∗, (35)

where U∗ is the intermediate state and the lower, diagonal and 
upper operators are written as

L = 1

2

(
− Fc,v

∂U j
− |λi j

c + λ
i j
v |I

)
,

D = I

dt
+

N f∑
l=1

1

2

(Fc,v

∂Ui
+ |λi j

c + λ
i j
v |I

)
− ∂S

∂U
,

U = 1

2

(Fc,v

∂Ui
− |λi j

c + λ
i j
v |I

)
,

(36)

in which ∂S
∂U is Jacobian of the non-inertial source term which is 

added directly on the diagonal component to keep its dominance 
[58]. The diagonal elements of the matrix are stored and inverted 
directly and the off-diagonal ones are calculated at every stage.

4. Caradonna-Tung rotor

The Caradonna and Tung [2] experiment is conducted in a con-
trolled wind-tunnel facility at NASA Ames Research Center, where 
a two-bladed rotor is used. The blade is based on an untwisted 
and untapped NACA 0012 aerofoil with a radius of 1.143m and 
an aspect ratio of 6. Two main aspects of the flow around the 
blade were measured: the surface pressure distribution by pres-
sure tubes in five radial sections for both upper and lower sides 
of the blade; and also the tip vortex strength and trajectory cap-
tured by hot-wire probes mounted underneath the rotor. A wide 
range of blade tip Mach numbers (Mtip) and collective pitch an-
gles (θc) were assessed. The developed schemes and the nature 
of the solver is tailored for compressible flows, the case with a 
blade tip Mach number of Mtip = 0.89 and pitch angles of θc = 8◦
is considered for the computational assessment. The correspond-
ing operating conditions are considered fairly challenging both in 
terms of the experiment but also with respect to prediction abili-
ties of CFD solvers.

The computational domain has a cylindrical shape with 40m 
radius and 80m length, in which the helicopter blade is placed 
at the center. An angular velocity of 265.9 rad/s is applied to 
the whole domain, and at the farfield surface, characteristic in-
let/outlet Riemann boundary conditions are applied, in which the 
choice of inlet/outlet conditions is made on the extrapolated value 
of the contravariant velocity at the interface of the domain bound-
aries. No-slip adiabatic wall boundary conditions are applied to the 
blade.

Five mixed-element unstructured grids are generated to per-
form computations and study the discretisation impact combined 
with two numerical approaches MUSCL and WENO of various re-
construction orders. The specifications of the grids are shown in 
Table 2.

The blade surfaces are meshed with quadrilateral elements, as 
they capture efficiently the surface by preserving its curvature 
in the vicinity of the leading edge. The meshed surfaces of the 
blade are projected normal to their base and the inflation layers 
are grown. Hexahedra-type elements are generated to capture the 
boundary layer, they are aligned with the flow and maintain or-
thogonality in the near-wall region. The first wall cell distance of 
10−5 m is set by using the 1/7 power law suggested in [61] to en-
sure a y+ < 1. The rest of the domain is composed by isotropic 
hexahedra and tetrahedra elements automatically generated by the 
advancing front mesh algorithm [62]. Through a consistent refining 
process on the blade span and upper/lower surfaces, the grid lev-
els range from 0.83 × 106 to 6 × 106 elements. An additional fifth 
grid is constructed specifically to assess the numerical accuracy in 
capturing the tip vortex trajectory. The grids are shown in Fig. 2, 
where in red the cross sectional mesh is shown near the blade 
tip, in blue the surface cell distribution on the blades for the four 
consecutively refined meshes and in black the wake refinement on 
the fifth grid compared with the coarse grid. For the refined wake 
grid, the coarse grid is used as baseline and a volumetric local re-
finement is performed at the tip blade (r/R = 1) near the wake 
covering up to three rotor radii downstream the rotor.

Computations are performed by employing the two classes of 
spatial discretisation namely the MUSCL-TVD and the WENO. High-
order approximations are computed of third- and fourth-order for 
both scheme classes and compared with a standard second-order 
approach. We evaluate the effect of each scheme and discretisa-
tion order on all meshes by computing the integrated blade load 
of thrust coefficient Ct given by

CT = T

ρ∞U 2
tipπ R2

, (37)

where T is the thrust, R is the blade radius and Utip is the tip ve-
locity. The computed thrust coefficients are shown in Fig. 3, where 
each scheme is shown with a different colour. At first glance, 
it is reasonable to believe that grid independent solutions could 
be obtained with all numerical approaches for the two most re-
fined grids, particularly the WENO predictions demonstrating clear 
asymptotic trend. These predictions on the grids with the lowest 
number of elements, suggest a Ct much closer to the grid in-
dependent value compared with their MUSCL counterparts. The 
fourth-order MUSCL solution exhibit opposite behaviour in terms 
of grid convergence monotonicity compared with the other com-
puted thrust coefficients, and overall has the highest discrepancy 
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Fig. 2. Isometric view of the four meshes employed showing a sectional view and two-dimensional mesh distribution on the two-bladed Caradona and Tung rotor [2], the 
wake refinement of the fifth mesh is also shown compared with the other four, simulation are performed at blade tip Mach number of Mtip = 0.89 and pitch angles of 
θc = 8◦ . (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
Fig. 3. Computed thrust coefficient for the Caradonna and Tung rotor flow [2]
plotted against number of grid elements, plot demonstrates grid convergence be-
haviours of numerical schemes.

compared with the experiment. This is also mirrored in the coeffi-
cient of pressure plots shown in Fig. 4 at five radial cross sections, 
this scheme is the only one producing spurious oscillation of pres-
sure, particularly in the vicinity of the shock near the blade tip 
(r/R = 0.8). This erratic behaviour is partly attributed to the pro-
nounced difference between the reconstruction stencil and the el-
ements used for bounding the solution for a fourth-order MUSCL 
scheme, as it has been reported in [18], and unless the bounds of 
the entire reconstruction stencil are considered these types of os-
cillations can occur.

Furthermore, from the C p sectional plots of Fig. 4 the flow be-
haviour can be depicted, the flow mid-way the blade is smooth, 
and the computed profiles are in good agreement with the exper-
iment. At r/R = 0.5 it can be observed that higher than second-
order predictions capture the suction peak more precisely, particu-
larly the WENO ones. The same trend is observed at the following 
section, r/R = 0.68, where the rotational velocity is not as high 
and the flow is still smooth. It is noteworthy that MUSCL4 present 
small spurious oscillations at 0.35 < x/c < 0.6. At r/R = 0.8 the 
flow is characterised by a shock at x/c ≈ 0.25 and the solu-
tions fairly agree with the experiment. It is worth mentioning 
that even on the coarsest grid the schemes are able to predict 
the shock position with reasonable level of accuracy, particularly 
with the weighted reconstruction. The MUSCL predicts a more 
smeared shock, especially the fourth-order which slightly oscil-
lates at x/c ≈ 0.4 due to the bounds difference as reported in 
[18]. The influence to the tip vortex is clear on the last two sec-
tions, r/R = 0.89 − 0.96, in which all schemes struggle to capture 
the pressure drop and its recovery. Overall, the computed solu-
tion fairly describes the pressure curve over the span sections. 
Nonetheless, small inaccuracy is expected in numerical solutions 
and may be due to deficiencies related to the turbulence model 
employed.

The wake and its particular strong vortical structures which de-
velop at the tip of the blade are the most complex feature that 
characterises the flow over hovering rotors. For every rotation, the 
blade interacts with the vortex generated by its previous passage. 
This phenomena, known as Blade-Vortex Interaction (BVI), is sen-
sitive to the numerical approach and spatial resolution [31]. In 
this sense, an accurate computation of the wake trajectory and 
strength is much desired and challenging in rotor flow analysis. 
Thereby, high-order schemes can greatly improve the accuracy of 
wake vortex estimations. The wake-refined grid, shown in Figure 3, 
is employed to assess the vortex capturing capabilities of the de-
veloped numerical schemes. Fig. 5 shows the predicted tip vortex 
trajectories of the computed solutions compared with the experi-
ment hot-wires measurements [2]. The plots present the axial and 
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Fig. 4. Coefficient of pressure at five radial stations compared with experiment of Caradonna and Tung [2]. The plots showcase the computed C p on the fine mesh by different 
spatial schemes.
radial coordinates and vorticity magnitude for all schemes from 
0◦ to 440◦ degrees of revolution. Figure (a) 5 the vortex radial 
contraction is well predicted by computations, at 180◦ where the 
blade is submitted to BVI for the passage of the advancing blade 
on the wake of the retreating one.

The computed solutions slightly overpredict the vortex contrac-
tion, this is also observed in [36]. This deviation may be associated 
the effect of the rotor hub which is neglected in the present com-
putational model. The fourth-order scheme performs slightly better 
than others, but the effect on the numerical scheme on the ra-
dial contraction is negligible. In Fig. 5 (b) it can be seen that the 
CFD results accurately predict the slow convection of the tip vor-
tices seen in the vertical displacement (Z/R) up to the advancing 
blade at 180◦ . At higher degrees, the downwash rate increases due 
to the passage of the retreating blade and it is clear the advan-
tage of the low dissipation nature of the high-order schemes on 
predicting this phenomenon. Looking at the slope of second- and 
third-order predictions, it is evident that the numerical dissipation 
can be major obstacle for accurately predicting the vortex’s path. It 
is worth to draw attention to the precision of the fourth-order ap-
proaches on both reconstruction schemes which agree with experi-
mental measurements. In this sense, the lower dissipation of high-
order scheme helps preserve the vortex core strength as shown in 
terms of vorticity magnitude shown in Fig. 5 (c), whilst the vortic-
ity levels are significantly lower for the second-order solutions at 
θ = 200. Fourth-order solutions are able to predict BVI, shown with 
the small bump just after first blade passage at ≈ θ = 180◦ . Over-
all, it can be seen that both reconstruction schemes with respect 
to their approximation order behave similarly in terms of vortex 
contraction, convection and strength.

Fig. 6 shows the vorticity magnitude contours at the cutting 
plane along the rotor center and blade. Looking at the vortex struc-
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ture convecting downstream the rotor it is noticeable the advan-
tages of the numerical scheme as we increase its order: the tip 
vortex is captured for two full rotations on both third-order solu-
tions and up to three from the fourth-order. The vortex core it is 
clear distinguishable on high-order scheme while it is more dissi-
pated on second-order. It is also noted that fourth-order contours 
are not completely symmetrical as it is more efficient in com-
puting the unsteadiness and instability of the flow. Fig. 7 shows 
the helical wake structure of the tip vortex using iso-surfaces for 
Q − criterion = 1000. It is evident that high-order method can 
improve the prediction of the wake sheet and vortex tip flow phe-
nomena, better preserving the helical vortex filaments that trails 
from each blade tip, up to several rotations. It is worth noting that 
the wake resolution is affected by the mesh shape and refinement 
[32] and capturing a clear vortex core trajectory is challenging for 
many codes, particularly when unstructured grids/solvers are em-
ployed.

Fig. 5. Vortex age and trajectory of computed solutions in terms of vortex radial 
contraction (a) and downwash rate (b) against azimuth angle compared with ex-
periment [2] and published CFD data [36] and vorticity magnitude (c). Numerical 
solutions are computed on the wake-refined grid.
5. PSP rotor

The flow over the PSP (Pressure Sensitive Paint) rotor is sim-
ulated, Watkins et al. [63] carried out extensive experimental ac-
tivities on this configuration. Compared with the Caradonna and 
Tung rotor case, the PSP entails a much more complex blade ge-
ometry and topology, a property that is in tune with the flexi-
bility of the unstructured grid framework. The four-bladed rotor 
is made of three aerofoil profiles with a linear twist angle along 
its blade span: RC(4)-12 aerofoil at r/R < 0.65, RC(4)-10 aerofoil 
at 0.7 < r/R < 0.8 and RC(6)-08 aerofoil at 0.85 < r/R < 1. The 
last section having a 60% tapered and 30◦ sweep angle. The main 
attributes of the blade are summarised in the Table 3. Further de-
tails concerning the aerofoil coordinates and blade radial twist and 
chord distribution are presented by Noonan [64] and Watkins et al. 
[63], respectively.

The spatial domain is composed of by three boundary condi-
tions: viscous wall, rotational periodicity and farfield, depicted in 
Fig. 8. The non-slip wall condition is applied on the blade’s surface, 
rotational periodic conditions permit efficient computational re-
sourcing by modelling the rotor in an axisymmetric fashion. A grid 
refinement strategy is conducted, the grids are generated based on 
the number of points on the aerofoil section, blade span and re-
gions of interest, details on the grids are tabulated in Table 4.

The number of elements on the blade span and aerofoil are 
chosen carefully to maintain good geometric quality metrics such 
as skewness, aspect ratio and growth rate. Fig. 8 depicts the blade 
surface mesh, consisted of quad-dominant mesh elements which 
contributes for the generation of hexahedrals on the boundary 
layer. To get a full resolution of the boundary layer, 60 nodes 
are positioned on the surface and orthogonally projected with a 
1.2 grown rate, the height of the first element is positioned at 
1.6 × 10−6 to insure y+ < 1. Three meshes are generated ranging 
from 2.64 to 15.2 millions elements, mainly composed by hexahe-
dra and tetrahedra.

Steady state solutions are achieved with the implicit LU-SGS al-
gorithm, which is extensively employed for high-Reynolds flows on 
unstructured grids as it is free of matrix inversion and has mod-
erate memory requirements at reasonable convergence rate [65]. 
A Courant-Friedricks-Lewy (CFL) number is fixed to 20, which is 
estimated based on the smallest edge in the spatial domain. The 
simulation running strategy is tailored for convergence acceler-
ation; the second-order solution is used to initialise third-order 
simulations, for both scheme classes, and subsequently the later is 

Table 3
Specifications and operating conditions of the PSP flow [63].

Parameter Value

Number of blades 4
Radius (R) 1.69m

Blade chord (c) 0.14m
Rotor solidity 0.1033

linear twist angle −14◦
Pitch angle 8.68◦,10◦ and 12◦

Mtip 0.585
ρ∞ 1.2168 kg/m3

T∞ 290◦
p∞ 101325 Pa
Table 4
Grid specifications of the PSP rotor simulations.

Mesh Blade elements Volume elements [106]

Upper Lower Span Total [103] Hexa Tetra Pyra Prism Total

Coarse 30 30 397 45 1.7 0.66 0.22 0.037 2.64
Medium 50 50 880 102 5.4 1.5 0.057 0.066 7.6
Fine 100 100 1080 223 10.6 3.5 1.1 0.023 15.2
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Fig. 6. Vorticity magnitude [s−1] contours on longitudinal plane section of Caradonna and Tung rotor. Numerical solutions obtained on the wake-refine grid.
used for the fourth-order ones, with its respective scheme class. 
Convergence acceleration procedures and techniques can also be 
extended to the spatial grid, with multigrid methods for ex-
ample; however, the sequential procedure is strictly applied to 
the same mesh, to minimise the sources of computational uncer-
tainty.

The convergence decay of each scheme on the medium mesh 
is shown in Fig. 9; the log l2 norms for the mass conservation 
equation are plotted against the accumulated iteration number. 
Both scheme types have similar convergence speed and level, with 
the MUSCL one slightly better, the restart on the higher order 
scheme results in a spike, followed with a sudden drop. The WENO 
achieves lower levels with a smoother trend, suggesting lower con-
vergence levels in fewer iterations. Fourth-order MUSCL solution 
exhibits fluctuations similar to the previous case, this could be at-
tributed to the combination of low dissipation and inefficiency of 
slope-limiters to dismiss spurious oscillations. A possible remedy 
to circumvent this behaviour of the MUSCL approach is with an 
artificial dissipation technique as recently presented by Jimenez-
Garcia and Barakos [66] on rotating flows.

The pressure coefficient C p is compared with experimental data 
at two tip radial stations (r/R = 0.93 − 0.99) at Mtip = 0.585 on 
the medium mesh illustrated in Fig. 10. Wind tunnel measure-
ments consists of C p by two techniques: kulite transducers and 
pressure sensitive paint. CFD predicts the overall C p curve at a 
reasonable level of agreement compared with both experimental 
techniques. An undershoot of pressure is observed by simulations 
in the vicinity of the leading edge stagnation point, this trend is 
confirmed also by Jimenez and Barakos [67] high-order solutions 
by the HMB solver. The agreement is improved moving towards 
the pressure recovery zone; it is worth noting that the predicted 
pressure on the blade, appear to be independent of the scheme 
type and order and mesh. This is somewhat expected for this case, 
as the flow is subsonic and compared with the previous test-case 
the flow is relatively smoother without strong discontinuities.

A property of rotorcrafts that assessed the aerodynamic perfor-
mance and its efficiency is the Figure of Merit (FoM) yielding

F oM = C3/2
t√
2C Q

, (38)

where C Q is the power coefficient and Ct the thrust coefficient; 
FoM evaluates the amount of generated thrust for given power 
as the ratio of the ideal power required to hover over the actual 
power required. Overmeyer et al. [68] conducted an experiment 
measuring the FoM of this case, the model employed included 
fuselage and rotor. The computed FoM against Ct/σ is plotted for 
all grids and schemes in Fig. 11 compared with Overmeyer et al. 
[68] measured data points.

The θc = 12◦ case is used as the selecting point for grid and nu-
merical schemes order, as it corresponds to the one of the highest 
thrust tested and thereby the most challenging for CFD methods. 
Lower thrust points were computed using only the fine grid and 
second and third-order MUSCL to demonstrate the validity of the 
calculations across Ct/σ range. At high thrust, it is clear the range 
of dispersion concerning numerical method and space discretisa-
tion. Even though the precision requirements are not well defined 
in the industry, aerodynamicist define a numerical prediction to 
be robust when the FoM ranges less than ±0.02 from experimen-
tal data [71]. Using this recommendation, only the refined meshes 
achieve accurate results. Even though the agreement improves 
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Fig. 7. Isosurfaces of Q criterion of Q=5000 coloured by vorticity magnitude contours.

Fig. 8. Left figure depicts the spatial domain, highlighting the domain sizes and type of boundary conditions; on the right, a top view of the blade topology and zoomed 
section of a top view of the surface mesh, also a cut section of the mesh is shown illustrating the O-type grid topology of the PSP rotor flow configuration.
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with increasing the discretisation order, all solutions obtained on 
the coarse grid cannot reach the required accuracy in agreement 
with the experiment. However, the medium (green symbols) and 
fine (solid red symbols) meshes perform consistently better on 
both reconstruction schemes and even MUSCL2 (�) reaches high 
precision level, particularly on the fine mesh (red �). The weighted 
fourth-order scheme (�) demonstrates to have the smallest devi-
ation from the measured data. It is worth to mention that even 
though the computed thrust and FoM showcase good agreement 
with experimental data, discrepancies related to fuselage presence 
and unsteadiness must be taken into account to assess numerical 
uncertainty. According to Rohit et al. [69], an isolated rotor config-
uration, such as the present case, predicts lower FoM values than 
when one is installed with the fuselage, this is mainly attributed 
to the effect of upwash vortices induced by the fuselage. Thereby, 
this may be one reason that most of simulations underpredict FoM 
when compared against wind tunnel data. As matter of numerical 
comparison, the present work presents similar results and trends 
with CFD solutions found in the public domain [67,69,70].

The computational footprint differs for the class of scheme 
and of course the discretisation order. The attributed cost of each 
method and the obtained accuracy will determine the overall ef-
ficiency of the method. Table 5 shows the computational time in 
work units per implicit iteration for the simulation of the PSP rotor 
flow. The work unit is the non-dimensional time required to com-
pute one implicit iteration of the MUSCL2 method at each grid. 
A similar approach evaluates the cost associated with the num-

Fig. 9. Continuity residuals per accumulated iteration for the flow around the PSP 
rotor. Solutions are shown for all numerical schemes on the medium mesh.
ber of elements, in this case the MUSCL2 results using the coarsest 
mesh is taken as reference time and expressed as CPU time. The 
relative error associated to each simulation is given in percentage 
of deviation from the FoM experimental measurements (run 156) 
[72] under the same operating conditions. For a detailed overview 
of the parallelisation performance of the UCNS3D code, the reader 
can refer to [27]. All solutions are performed on the Delta, HPC 
facility, at Cranfield University. The system consists of two in-
tel E5-2620 v4 processors with 16 cores per node and 128GB of 
shared memory.

The cost of WENO scheme is noticeable, as the whole process 
of computing the reconstruction polynomials arising from several 
stencils, computing the oscillations indicators and applying a non-
linear combination of them is significantly more expensive than a 
scheme (MUSCL) that uses one reconstruction polynomial per el-
ement. In general, at same grid level its cost is around three and 
seven times higher than third- and fourth- order, respectively. This 
price pays out in terms of accuracy, as WENO results are more ac-
curate. On other hand, MUSCL presents a much cheaper procedure 
costing up 3 times as the lowest order on the same mesh and de-
livering a reasonable error level.

It can be seen that the computational cost dramatically esca-
lates with the number of elements. Overall, this scalability factor 
is about the same ratio of elements between the meshes. In this 
sense, we can compare solutions with the similar precision using 
different grids. Looking for margin of error lower than 3%, WENO3 
on the medium mesh presents the most efficient one since it con-
sumes half of the computational time of the fine mesh using the 
same scheme. Increasing this margin up to 5%, with a small differ-
ence in accuracy MUSCL3 on the medium mesh presents the most 

Table 5
Computational time and error of the simulated flow over the PSP rotor.

Scheme FoM Work units Cpu time Error %

Coarse (2.5M) MUSCL2 0.55 1.00 1.00 23.35
MUSCL3 0.59 1.54 1.54 18.68
MUSCL4 0.60 2.81 2.81 16.17
WENO3 0.62 3.11 3.11 13.87
WENO4 0.62 7.43 7.43 13.47

Medium (7.6M) MUSCL2 0.65 1.00 3.15 9.60
MUSCL3 0.69 1.58 4.99 3.64
MUSCL4 0.75 3.13 9.87 4.52
WENO3 0.70 3.23 10.19 2.55
WENO4 0.73 7.89 24.85 1.29

Fine (15.2M) MUSCL2 0.69 1.00 6.94 4.97
MUSCL3 0.69 1.71 11.86 4.25
MUSCL4 0.77 3.10 21.47 6.45
WENO3 0.71 4.14 28.74 2.22
WENO4 0.71 8.12 56.11 1.03
Fig. 10. Computed pressure coefficient (C p ) compared with experimental data by Watkins et al. [44]. Solutions are shown for both MUSCL and WENO schemes with the 
equivalent discretisation order on the medium grid at two radial stations, left at r/R = 0.93 and right at r/R = 0.99 for θc = 12◦ .
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cheap scheme using half of the computational time consumed by 
WENO3.

Fig. 11. Figure of Merit (FoM) against thrust coefficient Ct/σ (where σ is rotor 
solidity) for the PSP rotor flow at Mtip = 0.585. Solutions are shown for all sim-
ulations employed both MUSCL and WENO schemes on three grid refinements and 
three discretisation orders, the CFD data is compared with the experimental data of 
Overmeyer et al. [68] (opened square symbols) for fixed-transition (Run 156) and 
published CFD data: HMB [67] (black line), OVERFLOW [69] (blue line) and FUN3D 
[70] (green line).
6. UH-60A rotor

The UH-60A “Blackhawk” rotorcraft is part of an extensive pro-
gram carried out by NASA which includes a large experimental 
database measured in-flight level conditions. Quantities acquired 
include aerodynamic pressures, structural loads and rotor forces 
and moments [38]. The UH-60A database is extensively used for 
code validation for fluid [32,36] and structural solvers [73–75]. 
The configuration entails a 4-bladed rotor based on SC1095 and 
SC1094R8 aerofoil profiles, with a non linear twist along the 
blade’s span [76]. The blade has an aspect ratio of 15.3 and a 
sweep angle of 20◦ from r/R = 0.93 to its blade tip. The rotor 
operates at Mtip = 0.628 with a collective pitch angle of 6◦, 8◦ and 
9◦ .

The computational domain has a quarter of a cylindrical shape 
with radius of 20m and length of 120m. The rotor is placed 40m 
from the top surface with the same boundary conditions set-up 
with the PSP case. The grid is also refined in the same manner by 
increasing the number of points in both aerofoils and blade span. 
In this case, 50 prismatic layers were placed at boundary layer, 
with the first element height of 1.9 × 10−6 m. Three meshes are 
generated ranging from 4.89 to 15.69 millions elements shown in 
Table 6. (See Fig. 12.)

The simulations are performed by following the same strategy 
as with the PSP rotor flow configuration. The converged second-
order solution kick-starts the third- and fourth- order solutions. 
Fig. 13 illustrates the log of l2 norm of momentum as function of 
the accumulated iterations for UH-60A rotor on the coarse mesh. 
Both scheme types on third-order approximation manage lower 
residual levels compared with the second-order, that plateaus 
Fig. 12. Left figure depicts the grid on the periodic and farfield surfaces, on the right, a top view of the blade topology and zoomed cut sections of the mesh: parallel and 
perpendicular to the blade axis; are shown illustrating the O-type grid topology of fine mesh of the UH-60A rotor flow configuration.

Table 6
Grid specifications for the UH-60A rotor simulations.

Mesh Blade elements Volume elements [106]

Upper Lower Span Total [103] Hexa Tetra Pyra Prism Total

Coarse 40 40 900 72 3.36 1.15 0.37 0.010 4.89
Medium 50 50 1000 100 4.5 1.8 0.23 0.536 7.20
Fine 100 100 1150 229 10.05 4.45 1.17 0.008 15.69
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higher at ≈ 10−4. The fourth-order one, inheriting higher disper-
sion characteristics, asymptotically convergence earlier; it’s worth 
noting that the implicit solver with the WENO spatial scheme 
appears to have more desirable convergence properties than its 

Fig. 13. Illustration of simulation strategy by residuals of l2 momentum for the 
UH-60A rotor flow on the coarse mesh for θc = 9◦ .
MUSCL counterpart, in terms of convergence’s speed and thresh-
old level.

The pressure coefficient on three radial stations (r/R = 0.400, 
0.775 and 0.945) is extracted from the three-dimensional com-
puted solutions, Fig. 14 depicts the C p profiles compared with the 
experiment [38]. In general, there is good agreement between CFD 
and measurements and as with the PSP case no significant vari-
ation between the computed pressure profiles and experimental 
data.

We further evaluate the efficacy of the numerical schemes by 
analysing the computed thrust and power coefficient in terms of 
FoM. The coefficients are represented by the FoM and compared to 
four flight test program data summarised by Shinoda et al. [77]. 
The full scale test was conducted by Nagata et al. [78] at the 
NASA Ames 80x120 feet wind tunnel. The second data set refers to 
Airloads Program [79] that was conducted by US Army/NASA and 
included both shaft and total engine power measurements. The last 
two data sets used a model-scale at two test facilities: the Sikorksy 
Model Hover Test Facility [38] and Duits-Nederlandse Windtunnel 
(DNW) in Netherlands [80]. There is experimental scatter mainly 
due to the differences in operating conditions, local temperature 
magnitude, transducer locating tolerance and other factors related 
to ambient conditions. These and other issues, such as scalability 
and facility influences still not fully understood yet for both exper-
imental [77,81,82] and numerical works [83].

The computed FoM is shown in Fig. 15 and compared with 
the aforementioned wind tunnel data points. Both numerical and 
experimental data demonstrates the challenges in capturing this 
Fig. 14. Comparison between the computed pressure coefficient versus x/c at three radial stations on the medium grid and experimental data[38] for the UH-60A rotor: (a) 
r/R = 0.4, (b) r/R = 0.775, c) r/R = 0.945.
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Fig. 15. Figure of Merit (FoM) against thrust coefficient Ct/σ (where σ is rotor 
solidity) for the UH-60A rotor flow at Mtip = 0.63. Solutions are shown for all sim-
ulations employed both MUSCL and WENO schemes on three grid refinements and 
three discretisation orders, the CFD data is compared with four experimental data: 
Nagata et al.[78] Airloads Program [79] and by Lorber et al. [38,80] and published 
CFD data Zhao et al. [84] and Schmitz et al. [71].

complex unsteady flow physics at high thrust levels. Even consis-
tent measurements which took part in highly instrumented wind 
tunnel tests significantly differ one from another. This uncertainty 
between the existing data sets were highlighted by Shinoda et al. 
[77] who pointed out the FoM ranging up to 0.05 under the same 
wind tunnel facility. As stated by Schmitz et al. [71] this poses a 
dilemma in the numerical validation process once the experimen-
tal discrepancy extrapolates the accuracy recommended by aero-
dynamicists of FoM varying not more than 0.02 from the dataset.

Taking into account these uncertainties in measurements and 
the lack of a fuselage on the numerical simulation, the computed 
performance fairly agrees with those experimental data set. At high 
thrust, a clear range of accuracy is seen in terms of mesh and 
reconstruction order. Therefore, precise solution is achieved by ei-
ther refining the mesh or increasing the scheme order. Taking into 
comparison the medium and fine meshes, 7M and 15M elements, 
respectively, overall it seems that increasing the order of the re-
construction method is more effective than increasing the grid res-
olution, since the higher-order scheme better capture the physical 
complexity of the hovering rotor. At low thrust point (θc = 6◦ and 
8◦), the computed integrated load using the fine grid and MUSCL2 
and WENO3 matches with the experimental data showing the va-
lidity of the calculations across the Ct/σ range.

7. Conclusion

We study, analyse and evaluate the computational performance 
in terms of accuracy and cost of the UCNS3D solver on three hover-
ing rotor flow configurations. Numerical solutions are obtained by 
the finite volume, k-exact, high-order (up to fourth order) discreti-
sation approach by solving the 3D compressible RANS equations 
on mixed-element unstructured grids. The high-order numerical 
framework has proven to considerably enhance the accuracy of 
the predictions on given grids, with desirable convergence prop-
erties, particularly by the WENO approach. Pressure coefficients 
are compared with corresponding experimental data points where 
high-order solutions better approximate discontinuities and strong 
gradients. In terms of integrated load predictions the most accurate 
scheme, fourth-order WENO, demonstrates the smallest discrep-
ancies compared with experiment but with the highest registered 
cost. Assuming a level of accuracy of FoM, the trade-off in terms 
of cost and accuracy demonstrates that the third-order approach 
would be have the best of both cost and accuracy. Resolution of the 
vortex path can be considerably improved with increased scheme 
order, up to three full rotations where the standard second-order 
scheme can achieve only one, on the same grid. Currently, research 
is conducted on improving the limiting functions of the MUSCL ap-
proach, as well as extending the single rotating frame to multiple 
including a sliding mesh approach to enable the undertaking of 
complete helicopter (including fuselage) simulations and compre-
hensive turbo-machinery flows.
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