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Abstract: Robust control is challenging to achieve for air-breathing missiles operating in a high Mach
number regime, such as at high supersonic speeds (M > 3). The challenge arises because of strong
couplings, significant non-linearities and large uncertainties in the aerodynamics and propulsion system.
The feasibility of achieving robust control in such applications is strongly linked to the development of
an appropriate control design structure. The purpose of this paper is to illustrate that in order to stabilise
a highly unstable airframe and achieve the required performance, a hybrid of two control schemes may
be used to achieve best results. A state feedback linear quadratic regulator is used to stabilise the plant
and a forward path H∞ optimal controller is used to achieve the required performance and robustness.
We also highlight the complementary attributes of the two control schemes that together can generate a
more robust controller; LQR is used since it can achieve good gain and phase margins, whereas, the H∞

control method is better equipped to deal with uncertainties.
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NOMENCLATURE

Symbol Description Units

x, y, z Cartesian body axes m
v,w Translational velocity m/s
p, q, r Rotational velocity about x, y, z axes, respectively rad/s
U Constant forward velocity m/s

ξ, η, ζ Aileron, Elevator and Rudder deflection radians
α Angle of attack radians
β Sideslip angle radians
φ Roll angle radians

ay , az Accelerations along y and z axes, respectively m/s2

γ Controller performance metric −

1. INTRODUCTION

Classical single-input, single-output (SISO) design techniques
known for their intuitive nature have been used in the devel-
opment of missile autopilots for decades. However, as system
complexities such as high non-linear missile characteristics and
strong airframe/propulsion system couplings arise, it often be-
comes very cumbersome to design controllers using such meth-
ods. It is also well known that multiple-input, multiple-output
(MIMO) systems are handled better with optimal multi-variable
control methods. The Linear, Quadratic and Gaussian (LQG)
(Anderson and Moore (1989)) with Linear Quadratic Regula-
tors (LQR) is one such method. These techniques have been
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around since the 1960s and are widely used in academia and
industry alike. LQG uses white noise to approximate the model
uncertainties and disturbances to the system, which in practice
may not be very meaningful and can even be too conservative
at times. However, LQR (assuming all the states are available)
provides an optimal controller with guaranteed stability and
good phase and gain margins (Safonov and Athans (1976)). To
account for the robustness, a H∞ optimal controller (Zames
(1981)) may be used as they can address both performance
and robustness requirements in a single design metric, γ. H∞

optimal control techniques have been successfully used in the
development of missile and other air vehicle autopilots for sev-
eral decades (Reichert (1990), Thompson and Chiang (1990),
Hyde (1995), Reichert (1989), Urban et al. (1999)). Glover
and Mcfarlane (1989) solves the problem of robust stability for
linear systems with unstructured uncertainty.

Therefore, in this paper, we combine two control methods to
capitalize on their strengths. First we describe the liner time-
invariant state space model of the missile airframe. Then, we
use a two loop control structure to design a LQR controller on
the inner loop and a mixed-sensitivity H∞ optimal controller
on the outer loop. Autopilot transient responses and controller
effort are then shown and discussed.

2. MISSILE DYNAMICS

The developed model is a 180◦ Bank-To-Turn (BTT) missile, as
this form of steering aligns best with the incidence constraints
of the air-breathing motor; and also BTT steering can help
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keep aerodynamic cross-coupling (caused by the asymmetric
configuration of the airframe) to a lower level than if the
steering were skid-to-turn (STT). The linear airframe dynamics
of the missile are described by the state space equations (1).
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p

q
r

Fig. 1. Missile Airframe (with Body Axes superimposed)

ẋ = Ax+Bu

y = Cx+Du
(1)

We ignore gravity and the state vector x is selected as
[p q r w v]′ , the control input vector u as [ξ η ζ]′,
the plant output vector y as [p q r ay az]

′ and the ma-
trices A5×5, B5×3, C5×5 and D5×3 are as follows:
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li,mi and ni are partial derivatives of the roll, pitch and yaw
aerodynamic angular accelerations with respect to the appropri-
ate i about the respective axis. yi and zi are the partial deriva-
tives of aerodynamic translational acceleration with respect to
the appropriate i along the respective axis. U is the forward
velocity and α is angle of attack and β the sideslip angle.

3. AUTOPILOT DESIGN

The outputs being controlled are the roll angle φ which is
acquired by integrating the roll rate p, the acceleration in y-
direction and z-direction, ay and az , respectively.

The nature of the airframe happens to be inherently unstable.
In our approach we first stabilise the airframe using LQR,
which forms the inner closed loop system. Once stability is
achieved with good margins, we then solve the optimisation

problem by using the mixed-sensitivity optimal control method
to get the desired tracking performance. LQR generates a static
gain matrix Ks and this is ideal because we want to achieve
robust stability without increasing the order of the inner-closed
loop system. Figure (3) shows the isolated inner loop, which is
equivalent to Gs in figure (5).

The mixed-sensitivity H∞ optimal control method is chosen
for performance because it has the framework to explicitly take
uncertainties into account, which the traditional LQG method
lacks (S. Skogestad (1988)). The reference tracking autopilot
topology with the H∞ controller in the forward path of the
outer loop and a state-feedback LQR inner controller is shown
in figure (2).

Fig. 2. Control Topology

3.1 Linear Quadratic Regulator

The LQR controller is generated by minimizing the cost func-
tion J shown in (2). Detailed derivations can be found in Zhou
and Doyle (1998), Skogestad and Postlethwaite (1996). Proofs
for stability are found in Safonov and Athans (1976) and An-
derson and Moore (1989).

J =

∫ ∞

0

x(t)TQx(t) + u(t)TRu(t) dt (2)

Q and R are both positive definite weighting matrices chosen
by the designer. Therefore, the controller generated is optimal
only to the chosen weights.

Fig. 3. LQR Regulator

The control law u(t) = −Ksx(t), where,

Ks = R−1BTX (3)

and X = XT ≥ 0 is the unique solution to the Ricatti equation
(4). Doyle et al. (1989)

ATX +XA−XBR−1X +Q = 0 (4)

It is known that for the dynamic system described in (1), given
that (A,B) is stabilisable and (C,A) is detectable, then the
solution X to the ricatti equation (4), which minimises the cost
function (2) is always stable. (Doyle et al. (1989): lemma 3 and
Cimen (2008): lemma 1)

3.2 H∞ optimal control

The H∞ control optimization problem was developed by
Zames (1981) and further work done by Doyle et al. (1989).



Unlike, LQR where the weighting matrices essentially apply
a constant upper gain limit across the frequency response, the
H∞ optimal control method allows the designer to shape the
frequency response with transfer functions, making it a some-
what less conservative and more tailored approach.

Fig. 4. The General Configuration

The system described by (1) with the control topology shown
in figure (2) can be recast to the general control configuration
(Figure 4), so that it complies with the H∞ framework. Figure
(4) is described by (5).
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]

(5)

u = Kp(s)v (6)

Where, P (s) is the state-space realisation of the generalised
plant, which consists of the stable closed loop LQR plant Gs(s)
and the performance and control effort weights, We(s) and
Wu(s), respectively. Topology of P (s) is shown in figure (5).

”The H∞ optimal control problem solves for all stabilis-
ing controllers Kp(s) which minimises ‖Fl(P (s),Kp(s)‖∞.”
(Zhou and Doyle (1998))

Solving for the optimal controller is numerically and theo-
retically complicated and the characteristics of optimal con-
trollers are sometimes undesired (higher order). Therefore a
sub-optimal solution can be sought after.

”Given γ > 0, find all admissible controllers Kp(s), if there are
any, such that ‖Fl(P,Kp)‖∞ < γ.” (Zhou and Doyle (1998))

Detailed solution to the H∞ optimal control problem can
be found in Doyle et al. (1989) and further summaries in
Skogestad and Postlethwaite (1996).

The design approach taken to solve the H∞ norm of the plant
is called the mixed-sensitivity optimal control.

‖Fl(P,Kp)‖∞ =

∥

∥

∥

∥

WeS
WuKpS

∥

∥

∥

∥

∞

< γ (7)

Where, the sensitivity function S = (1 + GsKp)
−1, We is the

performance weight and Wu the control weighting function.

We and Wu are both stable proper transfer functions.

S(iω) is shaped as a high pass filter so that the low-frequency
steady state error is minimised to get the desired tracking
performance. Therefore, We is designed so that the inequality
‖WeS‖∞ ≤ 1 is met.

KpS(jω) is shaped to be a low pass filter to minimises the
cost of the control effort and reject the high-frequency sen-
sor noise. Therefore, Wu is designed so that the inequality

‖WuKpS‖∞ ≤ 1 is met (Skogestad and Postlethwaite (1996)).
Therefore, for a physically realisable solution, the design metric
γ has to obey the inequality given in (8).

γ < 1 (8)

Fig. 5. Mixed-Sensitivity Optimisation Problem

4. RESULTS AND DISCUSSION

The weights Q,R,We and Wu were designed according to
specification and guidelines given in Skogestad and Postleth-
waite (1996) and Zhou and Doyle (1998).

Q =


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1 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 0.01 0
0 0 0 0 0.01
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



R = I3×3

We(s) = diag[
s+ 10

2s+ 0.1
, 0, 0,

s+ 4

2s+ 0.04
,

s+ 4

2s+ 0.04
]

Wu(s) =
s+ 0.009425

0.0001s+ 94.25
I3×3

(9)

Using the weights from (9), we achieve a γ of 0.7585. Figure
(6) is the response to the plant described by (1) when the desired
input pitch acceleration az = 100 m/s2 and figure (7) the
corresponding controller effort. The plant is allowed the first
5 seconds to settle to 0 from any initial conditions the plant
may be on due to trim conditions. For a step input at t = 5s
the missile reference tracks with a transient response under
approximately 1 second with no over shoot and no steady-
state error. An elevator fin deflection of 0.02 rad is required
to hold the acceleration at 100m/s2. There is also the expected
non-minimum phase response that is characteristic of a rear-fin
controlled missile. The missile airframe is highly coupled and
this is evident in the responses of the other outputs. Roll angle
φ has a displacement of up to 0.8 rad, which is expected for
a high acceleration demand, it however settles back to 0. The
roll and yaw body rates (p and r, respectively) are regulated,
and the pitch rate (q) exhibits the expected steady-state offset
for this manoeuvre. Aileron and rudder deflections show the
missile counteracting the coupling effects of the missile.

The following results disregard the propulsion constraints that
impose 180◦BTT steering and we have assumed STT steering;



this is done only to illustrate the response of the hybrid con-
troller to aerodynamic coupling. The response to a desired pure
yaw acceleration step of 100 m/s2 at t = 5s is shown in fig-
ures (8) and (9). Characteristics of the response are somewhat
similar to the pitch accelerations, but in the opposite direction.
Since it is a non-axisymmetric missile, we see a steady-state fin
deflection in both aileron and the rudder control to hold the yaw
acceleration step demand.

Figures (10) and (11) are the responses when we demand a
step of 100 m/s2 at pitch and yaw accelerations (az and ay
respectively) simultaneously. The autopilot is able to meet both
demands and the transient response times for az and ay are still
similar. The aileron fin angle reaches maximum deflection (i.e.
saturation) briefly, but it still manages to regulate the roll angle
φ to 0 rad. As expected, the elevator and rudder deflection
angles are larger in amplitude than compared to those of the
previous results but are within expected bounds (+/ − 0.35
rad).

5. CONCLUSION

In conclusion, we tackle the issue of highly unstable airframe
aero-propulsion dynamics by using state-feedback LQR to
guarantee stability of the nominal plant. However, LQR has no
explicit means of dealing with the varying parameters and un-
certainties. Therefore, we incorporate a H∞ optimal controller
for robust stability. The LQR controller is on the feedback loop
providing disturbance rejection and stability with no increase in
the number of closed-loop states and forms the inner loop of the
overall control architecture.The H∞ controller forms the outer
loop and is on the forward path, for reference tracking. The H∞

framework enables the designer to deal with uncertainties, mak-
ing the overall two-loop hybrid controller a preferable choice to
achieve robustness and stability.
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Fig. 6. Step Response to desired pitch acceleration command
Azd = 100m/s2

Fig. 7. Controller effort to desired pitch acceleration command
Azd = 100m/s2



Fig. 8. Step Response to desired yaw acceleration command
Ayd = 100m/s2

Fig. 9. Controller effort to desired yaw acceleration command
Ayd = 100m/s2

Fig. 10. Step Response to both desired pitch and yaw accelera-
tion command Azd = Ayd = 100m/s2

Fig. 11. Controller effort to both desired pitch and yaw acceler-
ation command Azd = Ayd = 100m/s2


