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Abstract
We conducted a simulation study to compare two methods that have been recently used

in clinical literature for the dynamic prediction of time to pregnancy. The first is land-

marking, a semi-parametric method where predictions are updated as time progresses

using the patient subset still at risk at that time point. The second is the beta-geometric

model that updates predictions over time from a parametric model estimated on all

data and is specific to applications with a discrete time to event outcome. The beta-

geometric model introduces unobserved heterogeneity by modelling the chance of

an event per discrete time unit according to a beta distribution. Due to selection of

patients with lower chances as time progresses, the predicted probability of an event

decreases over time. Both methods were recently used to develop models predicting

the chance to conceive naturally. The advantages, disadvantages and accuracy of these

two methods are unknown. We simulated time-to-pregnancy data according to dif-

ferent scenarios. We then compared the two methods by the following out-of-sample

metrics: bias and root mean squared error in the average prediction, root mean squared

error in individual predictions, Brier score and c statistic. We consider different sce-

narios including data-generating mechanisms for which the models are misspecified.

We applied the two methods on a clinical dataset comprising 4999 couples. Finally,

we discuss the pros and cons of the two methods based on our results and present

recommendations for use of either of the methods in different settings and (effective)

sample sizes.

K E Y W O R D S
beta-geometric model, Cox model, dynamic prediction, frailty, heterogeneity, landmarking, time to

pregnancy

1 INTRODUCTION

Clinical prediction models can be utilized by clinicians and patients to inform medical decision making in a shared, personal-

ized and evidence-based manner (Moons, Royston, Vergouwe, Grobbee, & Altman, 2009). Typical examples are to predict the
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probability that a disease is present to justify the use of an invasive or expensive diagnostic test, or prediction of the expected

course of a disease to aid in deciding whether treatment should be initiated. However, there is rarely solely one fixed moment

in time when a medical decision has to be made. More often, clinicians make an initial decision based on information known

at baseline, but wish to reassess this decision later on, since during the period between assessments often additional or updated

information has become available (Schumacher, Hieke, Ihorst, & Engelhardt, 2019). Examples include (re)measured biomark-

ers or an intermediate event that the patient can experience. The fact that the patient has remained event-free until the time of

reassessment is also important information that can be used to update the patient’s prognosis (van Houwelingen & Putter, 2012).

Statistical methods for dynamic prediction have been introduced that allow predictions to be updated over time. This enables

the clinicians and patients to make an informed decision at later time points based on the most recent information. Dynamic

prediction thus has a high clinical utility (Schumacher et al., 2019). Dynamic prediction models are being used more often in

recent years as shown by 86 search results for ‘dynamic prediction’ on PubMed in 2000 and 603 results in 2017. Further, several

published models in oncology and cardiology are ready for clinical use via a web-based calculator or nomogram (Eichinger,

Heinze, & Kyrle, 2014; Fontein et al., 2015).

One setting where there is an explicit need for dynamic prediction is in reproductive medicine, in particular the subspecial-

isation of fertility. Approximately 1 in 10 heterosexual couples who wish to have a child cannot conceive naturally within one

year of trying and this is referred to as subfertility (Gnoth et al., 2005). Subfertile couples receive a fertility workup wherein the

basic necessities to achieve a natural pregnancy are established, but in 40–50% no barrier can be found, which is referred to as

unexplained subfertility (Aboulghar et al., 2009). Treatment (medically assisted reproduction, MAR) is available, for example,

intrauterine insemination or in vitro fertilisation, but since couples without a clear-cut diagnosis can still conceive naturally, the

preferred treatment course is not evident (van Eekelen et al., 2017b).

To make decisions on whom to treat, clinicians may turn to statistical models to inform them on the chance of pregnancy

when following alternative scenarios. For instance, if a couple’s prognosis of natural conception is relatively good, they might

not need invasive MAR treatment but could instead keep trying to conceive naturally. If their prognosis is poor, the couple is

expected to benefit from MAR and they can be treated. The initial decision is made upon completion of the diagnostic workup.

However, if a couple choose to continue trying to conceive naturally for an additional period of time and do no succeed, again

a decision has to be made when the couple return to the clinic.

‘Static’ models that predict over one fixed time horizon are unable to update predictions and will overestimate the probability

of conception when reapplied at a later time (van Eekelen et al., 2017b). This is because the prognosis of natural conception

decreases as time progresses due to a selection process that occurs. This is caused by couples who have a high chance of natural

conception conceiving earlier and dropping out of the population, leaving behind a subset that, on average, has a lower probability

of conception (van Eekelen et al., 2017b). Several statistical methods and models have been suggested to estimate the prognosis

of (natural) conception in the presence of heterogeneity, but most focus on retrospective or cross-sectional studies regarding

time-to-pregnancy since those are the most cost-efficient study designs (Ecochard, 2006; Scheike & Jensen, 1997; Scheike &

Keiding, 2006; Zhou, 2006). These methods do not naturally extend to a setting of dynamic prediction.

Recently, two dynamic prediction models have been developed in the setting of reproductive medicine, published in a high

impact clinical journal in the field (McLernon et al., 2019; van Eekelen et al., 2017a). The statistical methods used in these two

publications are quite different: one used the landmarking in combination with Cox proportional hazards models and the other

used the beta-geometric model (Bongaarts, 1975; van Houwelingen & Putter, 2012; Weinberg & Gladen, 1986).

It is unknown what the advantages or disadvantages are of these two methods and how their predictive accuracy compares.

The aim of this paper is to identify which of these two methods perform best when used to develop a clinical dynamic

prediction model. This cannot formally be assessed in an internal validation of the developed prediction models as the truth that

they are estimating is unknown. We conducted a simulation study based on the setting of predicting the chances of pregnancy

to compare these methods and to advise which method should be preferred in a particular setting. We applied the two methods

on a clinical data set comprising 4999 couples with unexplained subfertility.

2 METHOD DESCRIPTION

2.1 Landmarking with Cox proportional hazard models
The first method to derive dynamic predictions of time to pregnancy is landmarking. This method was recently used by McLernon

et al. (2019) to develop a clinical prediction model for time to pregnancy. Landmarking was first suggested by Anderson, Cain,

and Gelber (1983) to prevent immortal time bias induced in survival modelling in oncology. In this original proposal, the authors
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suggested creating new datasets, the landmark datasets, at fixed time points after inclusion in the study using only patients who

have survived at least until that time point. Covariates are updated based on information that has become available since the start

of follow-up, for example, a surgery that was since performed, after which the effect of those covariates can be estimated in the

landmarks in the absence of immortal time bias.

Landmarking for dynamic prediction was introduced by van Houwelingen (2007). We define s as the landmark time point, w
as the fixed prediction window, that is the time span that each landmark covers and t as the follow-up time after inclusion in the

study. The prediction window can be any time period over which one wants to predict, it is not related to the distance between

landmarks. Van Houwelingen (2007) suggests to select a set of K + 1 landmark time points {s0, s1, sj…, sK} and then to create

a landmark dataset for each landmark time point by only selecting patients from the original dataset that are still at risk at sj and

censoring them at time sj + w (often referred to as administrative censoring).

After creating these landmark datasets, there are three approaches to estimate the dynamic predictions over time. The first

and easiest option is to fit a separate Cox model on every landmark dataset and use these separate models to derive dynamic

predictions. We get K + 1 Cox models:

𝑆𝑖𝑗 (𝑠𝑗 +𝑤|𝑋𝑖𝑗) = 𝑆0𝑗(𝑠𝑗 +𝑤)exp(
∑

𝛾𝑗𝑋𝑖𝑗 ) (1)

with

𝑆0𝑗 (𝑠𝑗 +𝑤) = exp(−𝐻0𝑗(𝑠𝑗 +𝑤)),

where 𝑆𝑖𝑗(𝑠𝑗 +𝑤|𝑋𝑖𝑗) is the probability that subject i with covariate values Xij at landmark time point sj will survive until at

least sj+w and 𝛾𝑗 are the estimated regression coefficients for covariates X. We assume that the 𝛾𝑗 are constant over time, that is

the assumption of proportional hazards is met, at least within landmarks. The cumulative hazard H0j is estimated based on the

follow-up information of subjects at risk from sj.

Using separate Cox models in landmarking has the advantage of being semi-parametric and thus not reliant on the shape

of the underlying distribution of the baseline cumulative hazard. The method can easily incorporate time-varying covariates;

however, it might be sensitive to small sample sizes in later landmark datasets when estimating separate baseline hazards and

separate regression coefficients based on limited sample sizes.

If it is not expected that effects of covariates will change over time, or if that does not align with the research question, one

might wish to fit a simpler, more concise model. Van Houwelingen and Putter (2012) propose a second approach referred to

as the ipl (integrated partial likelihood) ‘super’ model (van Houwelingen & Putter, 2012). The process is equivalent to the first

approach in that it uses the constructed landmark datasets at time points sj, but instead of analysing them separately, we now

assume that there is only one fixed set of coefficients 𝛾 . Thus, we assume that all 𝛾 j from (1) are equal to 𝛾 and that not only do

they remain constant over time within a landmark, but also across landmarks. 𝛾 is estimated using likelihood contributions from

all landmark sets, which might improve the stability of the estimations. In this second approach, the baseline hazards are still

estimated separately for each landmark. In practice, the parameters for this second approach can be estimated by using landmark

as a ‘strata’ variable when estimating one Cox model on a ‘stacked’ dataset consisting of all landmark datasets.

The third approach, referred to as the ipl* super model, is to simplify the model further by assuming that the baseline hazards

across landmarks are related. One can assume a functional form of the baseline hazard by adding (functions of) sj to the model.

We get

𝑆0𝑗(𝑠𝑗 +𝑤 | 𝑠𝑗) = exp(−𝐻0(𝑤) exp(Γ(𝑠𝑗)), (2)

where exp(Γ(𝑠𝑗)) is the assumed fixed ratio between the cumulative hazard at landmark sj relative to the cumulative hazard at s0.

This function can comprise multiple parameters that are usually incorporated using linear and quadratic terms for transformed

values of sj in landmarks, dividing by sK such that the range of values for the terms becomes 0 to 1(van Houwelingen & Putter,

2012). Alternatively, we can also formulate the ipl* super model by rearranging (2), yielding an expression where Γ(𝑠𝑗) is

modelled as additional coefficients in the regression part of the Cox model,

𝑆𝑖𝑗(𝑠𝑗 +𝑤 | 𝑠𝑗 , 𝑋𝑖𝑗) = 𝑆0(𝑤)exp
(∑

𝛾𝑋𝑖𝑗+Γ(𝑠𝑗 )
)

(3)

with

𝑆0 (𝑤) = exp(−𝐻0(𝑤)).
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The advantage of this third ipl* approach is that it avoids estimation of many separate baseline hazards by pooling the baseline

hazard of all landmarks at the cost of assuming a functional form of how the baseline hazard changes over landmarks. An

additional advantage is that the ipl* model no longer depends on the choice of values for sj: The model can predict over time

horizons exceeding sj+w or at time points not included in sj, which is something the ipl model cannot do since there are no

estimated baseline hazards between landmarks or after the prediction window.

When applying landmarking in combination with Cox models in the fertility setting, the separate baseline hazards will accom-

modate the decrease in chances over time for the ‘separate Cox models’ and the ipl super model. For the ipl* super model, the

decrease in chances is captured by the function Γ(𝑠𝑗).

2.2 Beta-geometric model
The second method to derive dynamic predictions from time-to-pregnancy data is the parametric beta-geometric model intro-

duced by Bongaarts (1975). This method was recently used by van Eekelen et al. (2017a) to develop a clinical prediction model

for time to pregnancy. The beta-geometric model is based on the notion that given a per cycle probability to conceive p that

holds for all couples, time to conception T will follow a geometric distribution (Bongaarts, 1975). In the context of conception

and subfertility, the cycle refers to every menstrual cycle, that is every opportunity for a couple to conceive. The probability of

a first pregnancy in cycle t is thus

P (𝑇 = 𝑡 | 𝑝) = 𝑝(1 − 𝑝)𝑡−1. (4)

However, p is unlikely to be equal for all individual couples who wish to conceive and the spread in chances is modelled

according to a beta distribution (Bongaarts, 1975; Leridon & Spira, 1984; te Velde, Eijkemans, & Habbema, 2000). The two

shape parameters of the beta distribution, 𝛼 and 𝛽, are reparametrized following Griffiths (1973) to

𝜇 = 𝛼

𝛼 + 𝛽
, 𝜃 = 1

𝛼 + 𝛽
, (5)

where 𝜇 is the mean probability of conception in the first cycle and 𝜃 is now the second shape parameter that represents the

extent of heterogeneity (Griffiths, 1973; Weinberg & Gladen, 1986). After s failed cycles, there remains a subset of couples with

on average a lower probability per cycle p, such that p will follow a beta distribution with updated 𝜇 and 𝜃

𝜇𝑠 =
𝜇

1 + 𝑠𝜃
and 𝜃𝑠 =

𝜃

1 + 𝑠𝜃
. (6)

The probability to conceive within s + w cycles given that a couple did not conceive within s cycles is

P(𝑇 ≤ 𝑠 +𝑤 | 𝑇 ⟩ 𝑠) = 1 −
𝑠+𝑤−1∏
𝑗=𝑠

1 − 𝜇 + 𝑗𝜃

1 + 𝑗𝜃
. (7)

To incorporate baseline covariate information X, we follow Weinberg and Gladen (1986) and regress the logit of the population

mean 𝜇 linearly on the covariates X. We use a log link for 𝜃 and get

𝜇(𝑋𝑖) =
exp

(
𝜇0 +

∑
𝛽𝑋𝑖

)
1 + exp

(
𝜇0 +

∑
𝛽𝑋𝑖

) , 𝜃 = exp(𝜃′). (8)

Let np denote the subset of couples with observed pregnancies, nc the subset of couples that were right censored, n = nc + np the

total sample size and Ti the last observed cycle for an individual couple i either corresponding to pregnancy or censoring. We can

estimate the coefficients 𝛽, 𝜃 and the intercept 𝜇0 for X = 0 via maximum likelihood optimization. The likelihood contribution

of individual couples can be assumed to be independent, thus the total log-likelihood L is the sum of the log-likelihood for

couples with observed pregnancies (Lp) and the log-likelihood for couples who were right-censored (Lc). After rearrangement

of the notation from Weinberg and Gladen (1986), we get

𝐿
(
𝑋1 …𝑋𝑛, 𝑇1 … 𝑇𝑛, 𝜇0, 𝛽, 𝜃

)
=

∑
𝑖∈ 𝑛𝑝

𝐿𝑝𝑖 +
∑
𝑖∈ 𝑛𝑐

𝐿𝑐𝑖,
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where

𝐿𝑝𝑖(𝑋𝑖, 𝑇𝑖, 𝜇0, 𝛽, 𝜃) =

ln(𝜇(𝑋𝑖)) − ln(1 − 𝜇(𝑋𝑖) + (𝑇𝑖 − 1)𝜃)

+
𝑇𝑖−1∑
𝑗=0

[
ln
(
1 − 𝜇(𝑋𝑖) + 𝑗𝜃

)
− ln (1 + 𝑗𝜃)

]
and

𝐿𝑐𝑖(𝑋𝑖, 𝑇𝑖, 𝜇0, 𝛽, 𝜃) =
𝑇𝑖−1∑
𝑗=0

[ln(1 − 𝜇(𝑋𝑖) + 𝑗𝜃) − ln(1 + 𝑗𝜃)]. (9)

After estimation of the parameters, dynamic predictions of the cumulative probability of pregnancy over prediction window w
given s failed cycles can be calculated using Equation (7) and plugging in 𝜇̂(Xi) and 𝜃̂.

The beta-geometric model uses all data from inclusion to the end of follow-up in its fit and is thus expected to be less sensitive

to a small sample at later s than landmarking. Since it is parametric, it could be sensitive to misspecification, in addition to being

limited to discrete time-to-event and baseline covariates. The closed expression prediction formula is convenient to apply since

a small number of parameters are required to be able to calculate a prediction.

The beta-geometric model can be extended to allow for a fraction of couples that have zero chances to conceive, that is

absolute sterile couples (Weinberg & Gladen, 1986). This fraction, denoted as the sterility parameter 𝜋, can be estimated in

the beta-geometric model (Weinberg & Gladen, 1986). This is referred to as the mixture model. We extend the log-likelihood

function from Equation (9) to

𝐿𝑚𝑖𝑥𝑡𝑢𝑟𝑒 (𝑋1 …𝑋𝑛, 𝑇1 … 𝑇𝑛, 𝜇0, 𝛽, 𝜃, 𝜋)

=
∑
𝑖∈ 𝑛𝑝

[ln(1 − 𝜋) + 𝐿𝑝𝑖] +
∑
𝑖∈ 𝑛𝑐

[ln(𝜋 + (1 − 𝜋) exp(𝐿𝑐𝑖))]. (10)

After estimation of the parameters, again using maximum likelihood, the calculation of a probability to conceive within s + w
cycles given that the couple did not conceive within s cycles now becomes

P(𝑇 ≤ 𝑠 +𝑤 | 𝑇 > 𝑠,𝑋𝑖) = (1 − 𝜋𝑠)

(
1 −

𝑠+𝑤−1∏
𝑗=𝑠

1 − 𝜇(𝑋𝑖) + 𝑗𝜃

1 + 𝑗𝜃

)
, (11)

with 𝜋𝑠 denoting the expected fraction of couples that are sterile after s failed cycles

𝜋𝑠 =
𝜋

𝜋 + (1 − 𝜋) 1
𝑛

∑𝑛
𝑖=1

(
1 −

∏𝑠
𝑗=0

1−𝜇(𝑋𝑖)+𝑗𝜃
1+𝑗𝜃

) . (12)

We described landmarking with three approaches to build a prediction model: fitting separate Cox models (model A), using

landmarks as strata (model B) and incorporating linear and quadratic terms of landmark numbers as covariates (model C). We

also described the beta-geometric model with (model D, referred to as a mixture model) and without (model E) the sterility

parameter.

Table Supp-I in the Supporting Information summarizes the expected advantages and disadvantages of the five models.

We continue with describing the framework for the simulation study where we compare the performance of models A to E.

3 SIMULATION STUDY

The parameters of the simulation scenarios were closely based on what was observed in two recent cohorts following unexplained

subfertile couples for natural conception (van der Steeg et al., 2007; van Eekelen et al., 2017a, 2018).

We are interested in the ability of the models to predict 𝑃 (𝑇 ≤ 𝑠 +𝑤 | 𝑇 ⟩𝑠), not only from baseline (s = 0), but also after s
failed cycles with s ∈ {0,1,2,…26}. We choose a prediction window w = 13 cycles, so we predict one year pregnancy chances

from 27 time points onwards.

We compare the accuracy of the predictions from models A to E where we prefer low bias and high precision summarized

in terms of the lowest root mean squared error of average predictions (RMSE) and the lowest root mean squared error of
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individual predictions (RMSPE). In addition, we were interested in other commonly used measures to denote and compare

clinical prediction model performance, namely those that describe (internal) prediction error and discrimination: the Brier

score and the c-statistic (Steyerberg, 2009).

We simulate data by 10 different data-generating mechanisms to assess the robustness of models over multiple scenarios.

3.1 Data generation
We chose a discrete time to event because the beta-geometric model is based on discrete cycles, not on calendar time.

To generate the time to event for each of n = 6000 couples, we followed these steps:

1. We simulated two covariates: female age in years (X1) drawn from a normal distribution N(34,5) and duration of subfertility

(the number of years couples have been trying to conceive, X2) from an exponential distribution Exp(0.8) + 1 such that the

minimum for the latter was 1.

2. To gain covariate-specific mean conception chances 𝜇(Xi), we combined the covariates with assumed linear effects on logit

scale and used the intercept logit(𝜇0) of −0.60 such that

logit(𝜇(𝑋𝑖)) = logit(𝜇0) − 0.03∗𝑋1∗1[𝑋1 ≤ 33] − 0.03∗33∗1[𝑋1 > 33] − 0.15∗(𝑋1 − 33)∗1[𝑋1 > 33] − 0.25∗𝑋2 (13)

and then backtransformed to means using the inverse-logit.

3. To introduce heterogeneity, we assumed the individual probabilities followed a beta distribution with 𝜇(Xi) and 𝜃 from

Equation (5) with fixed 𝜃 = 0.15 to randomly draw an individual per cycle probability of pregnancy p(Xi) for each couple.

We consider other assumptions for the heterogeneity distribution later on.

4. We drew individual time to event values from a geometric distribution with success probability p(Xi).

5. We assumed the censoring times were geometrically distributed with per cycle probability 0.1.

6. If the time of event was earlier or equal to the censoring time, the couple conceived during the study, otherwise they were

followed until the time of censoring or the end of study, set at 52 cycles. Couples were followed for at least one cycle.

3.2 Model fitting
The two beta-geometric models (models D and E) were fitted using Equations (10) and (9), respectively, by optimizing the log-

likelihood using the R command optim() and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm based on Newton’s

gradient ascent. Predictions were calculated using Equations (11) and (12) for model D and Equation (7) for model E.

For the landmarking-based models, we first derived all 27 landmark datasets by intervals of one cycle. We then followed the

steps described in Chapter 2.1, selecting the subset still at risk at time s and censoring administratively at s+w.

We fitted separate Cox models using cph() on all landmarks (A) and derived predictions following Equation (1). After stacking

all landmark datasets into one ‘super’ dataset, we fitted the ipl model (B) using s as strata and derived predictions as described

before. We fitted the ipl* model (C) by removing the strata and adding linear and quadratic terms for s divided by 26 as covariates

to the Cox model, then derived predictions following Equation (3).

In all models, we assumed a piecewise linear effect for age (differentiating between the effect of age below and above 33) and

a linear effect for duration (X2).

In every landmark dataset, we calculated individual cumulative predicted probabilities of pregnancy 𝑃 (𝑇 ≤ 𝑠 + 13 | 𝑇 ⟩𝑠,𝑋𝑖)
using the fitted models A–E. We also calculated the true cumulative probability for every individual by using the generated

individual probabilities p(Xi) in every landmark dataset as

𝑃 (𝑇 ≤ 𝑠 + 13|𝑇 > 𝑠,𝑋𝑖) = 1 − (1 − 𝑝(𝑋𝑖))13. (14)

In addition to models A–E, we fitted a Kaplan–Meier curve (model F) for the sake of tracking the observed pregnancy rates and

their variance between simulation replications as opposed to what is expected based on true probabilities.

3.3 Performance metrics
The following metrics were calculated at each landmark time point s where ns couples are still at risk.

We were interested in the expected error on the population level and the expected error on the individual level. For the first,

to compare the average predictions based on a sample to the true population parameter, we averaged the individual cumulative
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predicted probabilities of pregnancy 𝑃 into the average predicted probability ̂̄𝑃 For each simulated dataset, we averaged the

generated individual cumulative probabilities P from Equation (14) to calculate the true average probability 𝑃 . We view the

average of 𝑃 over all simulation replications as the true (empirical) population parameter given all different, possible samples

that could have been drawn. Bias of average predictions is defined as any deviation of ̂̄𝑃 in a replication from that simulation

average of 𝑃 .

We then calculated the RMSE, that is the expected error in the average estimated probability denoted in percentage points

compared to the true population parameter by

RMSE =

√√√√√ 1
𝑛𝑠𝑖𝑚

𝑛𝑠𝑖𝑚∑
1
( ̂̄𝑃 −

(
1

𝑛𝑠𝑖𝑚

𝑛𝑠𝑖𝑚∑
1

𝑃

)2

∗ 100,

where nsim is the total number of simulation replications.

Next, we calculated the RMSPE, that is the expected error in individual predictions in percentage points by comparing it to

the true individual probabilities per simulation replication following

RMSPE =

√√√√ 1
𝑛𝑠𝑖𝑚

𝑛𝑠𝑖𝑚∑
1

(
1
𝑛𝑠

𝑛𝑠∑
𝑖=1

(
𝑃𝑖 − 𝑃𝑖

)2) ∗100.

We derived Brier scores that represent the overall performance of the models, following Graf, Schmoor, Sauerbrei, and Schu-

macher (1999), and c statistics, that represent the discriminative ability of the models, following Harrell, Lee, and Mark (1996),

both for right-censored data. Finally, to show how sample size changes over time, we calculated the average of the sample size

per landmark ns over all simulation replications.

In addition to results for models A–F, simulation metrics were also calculated using the true probabilities to attain the best

obtainable (i.e. lowest) Brier score and best obtainable (i.e. maximum, highest) c statistic to aid interpretation of the differences

of performance measures between models.

All metrics were evaluated on an external dataset, representing the out-of-sample performance of the models: For each devel-

opment simulation set, a second validation set was generated using the same generating mechanism. The predicted probabilities

in the validation set were calculated by applying the models that were fitted to the development set. True probabilities were

based on the validation set only. We also evaluated the main scenario (scenario 1) on the training data, that is internal validation

to see differences with out-of-sample performance.

3.4 Alternative simulation scenarios
We varied several aspects of the data generation algorithm that might influence the performance of the models.

First, the heterogeneity distribution could be different from beta: We used the compressed beta distribution and the logit-

normal distribution as alternatives. For the first, true probabilities p(Xi) were drawn from a beta distribution as in step 5 of the

main algorithm but multiplied with a compressor value of 0.6. For the second, individual log-odds for pregnancy were drawn

from a normal distribution 𝑁(logit(𝜇(𝑋𝑖)), 1) with adjusted logit(𝜇0) = −1.5. These were backtransformed to individual per

cycle probabilities cycle 𝑝(𝑋𝑖) using the inverse-logit.

We also considered a scenario where there was no (unobserved) heterogeneity at all, so where the individual true probabilities

per cycle were equal to the covariate-specific means, that is 𝑝(𝑋𝑖) = 𝜇(𝑋𝑖).
Second, we considered the possibility that a fraction of the couples in the cohort was sterile. To simulate this, we drew a

random fraction of couples from a Bernoulli distribution with probability 0.3 (assuming 5% sterile couples in the population

and the simulated data represent a subfertile cohort who have been trying to conceive for at least one year) and set their p(Xi)

to zero, meaning they are followed until the time of censoring or until the end of the study. The intercept 𝜇0 was adjusted such

that cumulative probabilities were similar to scenarios without the sterile fraction.

Third, it is assumed in the main scenario that for each couple, the true probabilities per cycle p(Xi) are fixed over the entire

follow-up of the study. This may not hold, in particular because women age over follow-up and their fecundability may decline.

This is likely to have more impact in women that were older at the start of follow-up (Sozou & Hartshorne, 2012).

We have implemented ageing in some of the simulation scenarios by assuming that p(Xi) changed over time within the same

couple. If the female age reached 33 years or above, their p(Xi) decreased by the same 0.15 on logit scale that is assumed to hold

for differences between couples in terms of baseline female age.
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T A B L E 1 Description of scenarios. Parameters not included in this table did not differ between scenarios

Scenario number
Intercept
logit(𝝁0)

Heterogeneity
distribution

Ageing over
follow-up

Sterile
fraction

Probability of
censoring per
cycle

1 (main) −0.60 Beta No 0.3 0.1

2 (no sterile fraction) −1.05 Beta No 0 0.1

3 (ageing over follow-up) −0.60 Beta Yes 0.3 0.1

4 (no censoring) −0.60 Beta No 0.3 0

5 (no frailty) −1.20 None No 0.3 0.1

6 (no frailty and no sterile fraction) −1.77 None No 0 0.1

7 (logit normal frailty) −1.5 Logit normal No 0.3 0.1

8 (logit normal frailty and ageing) −1.5 Logit normal Yes 0.3 0.1

9 (compressed beta frailty) −0.43 Compressed beta No 0.3 0.1

10 (compressed beta frailty and ageing) −0.43 Compressed beta Yes 0.3 0.1

Finally, we considered the possibility where there is no censoring, for instance, in a retrospective study when data linkage

with maternity databases is performed. For this scenario, we set the probability of right censoring per cycle to zero.

Table 1 summarizes all the 10 different scenarios we implemented.

We consider scenario 1 as the main scenario because we view it as the most realistic given evidence from literature (Hunault

et al., 2004; van der Steeg et al., 2007; van Eekelen et al., 2017a, 2018).

All simulations were replicated 1000 times. All datasets were generated using a known seed. We tracked how often models

failed to converge. If so, results were calculated using replications where models did converge.

All analyses were performed using R version 3.3.2 (R Core Team [2017], R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/) using the survival, dynpred,

rms, xtable and ipred packages.

Source code for all data generation, model fitting, simulation replication and processing of simulation results are provided

online at the Biometrical Journal web page.

4 RESULTS

4.1 Bias in the average predictions
Results for the average predictions over all landmarks are visualized in Figure 1 for scenarios 1–10.

The ipl* model (C) overestimated the average cumulative probability of pregnancy for all scenarios up until landmark 10.

This is likely due to an inaccurate approximation of the baseline hazard function using a linear/quadratic functional form in the

model.

In the main scenario 1, all models except C (which overestimated by 6.9 percentage points in the baseline landmark) gave

unbiased estimates of the average predictions until landmark 5 but both beta-geometric models overestimated chances in land-

marks thereafter (D by 2.1 percentage points and E by 1.5 percentage points in landmark 26). This is likely because the presence

of a sterile fraction led to inaccuracy in the estimation of the beta distribution. Model D often had difficulty estimating the sterile

fraction: Model D estimated an average fraction of sterile couples at baseline of 0.5% and in 24% of simulation replications this

was less than 5%, compared to the true value of 30% used in the simulation. Results when the average prediction was evalu-

ated on internal data were similar to the main scenario 1, which was expected given we were evaluating against the population

parameter which is identical for internal and external datasets.

In the scenario without sterile couples (scenario 2), all models except model C were unbiased. Including ageing over follow-up

(scenario 3) yielded similar results as scenario 1, so all models were robust with regard to ageing.

In the scenario without censoring (scenario 4), the beta-geometric mixture model (D) was better able to estimate the fraction

of sterile couples (now 27% on average at baseline) but this did not improve accuracy of the average predictions of the model.

In the scenario where there was no heterogeneity (scenario 5), both beta-geometric models performed poorly since they

falsely assumed some degree of heterogeneity (estimates for 𝜃 were substantially lower compared to scenario 1 but non-zero in

all simulations). However, in the scenario where there was neither heterogeneity nor a fraction of sterile couples (scenario 6),

http://www.R-project.org/
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F I G U R E 1 Average predictions ( ̂̄𝑃 (𝑇 ≤ 𝑠 + 13|𝑇 > 𝑠,𝑋𝑖)) and true values (𝑃 (𝑇 ≤ 𝑠 + 13|𝑇 ⟩𝑠,𝑋𝑖)) for all landmarks s for scenarios 1–10

we can see that both beta-geometric models no longer found spurious heterogeneity (estimates for 𝜃 were almost zero). This

falsely assumed heterogeneity in scenario 5 thus seems to result from the inability of the model to accurately estimate both the

sterile fraction and the beta distribution.

In scenarios where we used the logit-normal distribution for heterogeneity (scenarios 7 and 8, the latter with ageing) or the

compressed beta distribution (scenarios 9 and 10, the latter with ageing), the results were similar to scenarios 1 and 3 although

there was slightly more bias in the beta-geometric mixture model (D) in scenarios 9 and 10. This indicates that the beta-geometric

models were robust to misspecification of the exact heterogeneity distribution.
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F I G U R E 1 Continued

4.2 RMSE in the average predictions
Table 2 denotes the RMSE for average predictions for s ∈ {0,13,26} for scenarios 1–10. Sample sizes per landmark were similar

for all scenarios except for scenario 4 in which no censoring is present. In the main scenario 1, the RMSE increased for all

models in later landmarks due to decreasing sample sizes. RMSEs at baseline were around 0.7–0.8 percentage points for all

models except ipl* (C), which had a prediction error of approximately 7 percentage points due to its large bias. The beta-

geometric model without sterility parameter (E) performed the best in all landmarks except s = 0 in scenario 1 in terms of the

lowest RMSE. This is because, albeit slightly biased upwards at the later landmarks, model E had the lowest empirical standard



VAN EEKELEN ET AL. 185

T A B L E 2 RMSE (in percentage points) of average predictions for models A–F or the empirical variance of true probabilities between

simulation replications in selected s for scenarios 1 to 10

Scenario s n
Separate
Cox (A)

Super
ipl (B)

Super
ipl* (C)

Beta-geometric
mixture (D)

Beta-
geometric (E)

Kaplan–
Meier (F)

Empirical
variance

1 (main) 0 6000 0.826 0.831 7.03 0.727 0.759 0.825 0.481

13 1023 1.42 1.41 1.69 2.20 1.21 1.42 0.68

26 228 2.43 2.43 2.11 2.30 1.55 2.46 1.03

1 (internal

validation)

0 0.823 0.829 7.04 0.727 0.755 0.825 0.489

13 1.41 1.41 1.68 2.22 1.22 1.42 0.699

26 2.42 2.43 2.10 2.35 1.57 2.46 0.953

2 (no sterile

fraction)

0 0.815 0.82 7.18 0.738 0.715 0.827 0.451

13 1.58 1.58 1.90 0.925 0.846 1.59 0.666

26 3.02 2.97 2.61 0.802 0.749 2.96 1.08

3 (ageing over

follow-up)

0 0.797 0.796 6.84 0.725 0.76 0.788 0.477

13 1.34 1.34 1.57 2.34 1.41 1.33 0.638

26 2.15 2.17 1.91 2.65 1.99 2.19 0.879

4 (no censoring) 0 6000 0.603 0.619 2.09 0.548 0.903 0.614 0.468

13 4031 0.523 0.523 0.526 2.20 0.308 0.516 0.331

26 3531 0.417 0.418 0.415 2.28 0.697 0.412 0.247

5 (no frailty) 0 0.874 0.891 7.00 0.731 0.771 0.888 0.321

13 1.86 1.85 2.34 2.92 1.28 1.87 0.726

26 3.61 3.51 3.29 6.12 3.19 3.58 1.46

6 (no frailty and

no sterile

fraction)

0 0.843 0.844 6.23 0.68 0.68 0.859 0.166

13 2.08 2.08 2.90 1.07 1.09 2.08 0.382

26 4.61 4.55 4.66 1.77 1.78 4.62 0.904

7 (logit normal

frailty)

0 0.793 0.795 6.35 0.739 0.732 0.788 0.43

13 1.45 1.45 1.77 2.02 1.08 1.45 0.673

26 2.36 2.32 2.02 2.43 1.59 2.34 1.02

8 (logit normal

frailty and

ageing)

0 0.768 0.769 6.20 0.737 0.746 0.758 0.426

13 1.44 1.43 1.73 1.85 1.26 1.44 0.619

26 2.28 2.22 1.91 2.39 1.92 2.26 0.879

9 (compressed

beta frailty)

0 0.807 0.815 6.33 0.758 0.694 0.812 0.387

13 1.58 1.57 1.92 2.62 0.935 1.60 0.644

26 2.89 2.84 2.53 3.07 0.908 2.84 1.03

10 (compressed

beta frailty and

ageing)

0 0.788 0.79 6.12 0.713 0.684 0.793 0.383

13 1.56 1.56 1.90 2.24 0.907 1.56 0.603

26 2.79 2.78 2.41 2.75 1.17 2.79 0.968

error, that is the highest precision. Results when the RMSE was evaluated on internal data were similar to the main scenario

1, which was expected given we were evaluating against the population parameter which is identical for internal and external

datasets.

In scenario 2 without sterile couples, both beta-geometric models vastly outperformed the landmarking models because now

both approaches were unbiased but the beta-geometric models were more precise. In scenario 3 including ageing over follow-

up, the beta-geometric models performed less well compared to scenario 1 but still outperformed the landmarking-based Cox

models in most landmarks in terms of the lowest RMSE. In scenario 4 without censoring, landmarking-based Cox models A

and B outperformed the beta-geometric models D and E in terms of a lower RMSE because there was much more data available

in later landmarks (ns = 3531 at s = 26 where it was approximately ns = 228 for scenarios 1–3). In scenarios 5–10, the beta-

geometric model without sterility parameter (E) performed best overall in terms of the lowest RMSE.
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T A B L E 3 RMSPE (in percentage points) of individual predictions for models A–F or using true individual probabilities in selected s for

scenarios 1–10

Scenario s n
Separate
Cox (A)

Super
ipl (B)

Super
ipl* (C)

Beta-geometric
mixture (D)

Beta-
geometric (E)

Kaplan–
Meier (F)

True
probabilities

1 (main) 0 6000 35.2 35.2 36.0 35.2 35.2 37.1 0

13 1023 21.4 21.3 21.3 21.5 21.3 21.6 0

26 228 15.4 14.9 14.9 15.0 14.9 15.0 0

1 (internal

validation)

0 35.2 35.2 35.9 35.2 35.2 37.1 0

13 21.3 21.3 21.3 21.5 21.3 21.6 0

26 15.0 14.7 14.7 14.9 14.7 14.8 0

2 (no sterile

fraction)

0 31.9 31.9 32.7 31.9 31.9 34.6 0

13 20.7 20.6 20.6 20.5 20.5 21.9 0

26 16.1 15.2 15.2 14.9 14.9 16.0 0

3 (ageing over

follow-up)

0 34.9 34.9 35.6 34.9 34.9 36.8 0

13 20.3 20.2 20.2 20.4 20.2 20.5 0

26 13.9 13.3 13.3 13.5 13.4 13.4 0

4 (no censoring) 0 6000 35.2 35.3 35.3 35.2 35.2 37.0 0

13 4031 21.2 21.2 21.2 21.5 21.2 21.6 0

26 3531 14.6 14.6 14.6 15.0 14.6 14.7 0

5 (no frailty) 0 22.6 22.6 23.7 22.6 22.6 25.4 0

13 23.3 23.3 23.4 23.6 23.4 24.0 0

26 21.7 21.6 21.5 22.9 22.0 21.1 0

6 (no frailty and

no sterile

fraction)

0 1.5 1.6 6.8 1.3 1.3 12.7 0

13 3.6 2.5 3.4 1.5 1.5 12.8 0

26 8.4 5.0 5.1 1.9 1.9 13.2 0

7 (logit normal

frailty)

0 31.5 31.5 32.2 31.5 31.5 33.2 0

13 21.2 21.1 21.2 21.3 21.1 21.6 0

26 15.9 15.3 15.3 15.5 15.3 15.4 0

8 (logit normal

frailty and

ageing)

0 31.1 31.1 31.8 31.1 31.1 32.9 0

13 20.0 20.0 20.0 20.0 20.0 20.5 0

26 14.4 13.8 13.8 13.9 13.8 14.0 0

9 (compressed

beta frailty)

0 28.1 28.1 28.8 28.1 28.1 29.5 0

13 20.7 20.6 20.7 20.9 20.7 20.9 0

26 17.2 16.7 16.6 17.0 16.5 16.6 0

10 (compressed

beta frailty and

ageing)

0 27.7 27.7 28.4 27.7 27.7 29.2 0

13 19.4 19.3 19.4 19.5 19.3 19.7 0

26 15.4 14.7 14.6 14.9 14.5 14.7 0

4.3 RMSPE in the individual predictions
Table 3 denotes the RMSPE for individual predictions for s ∈ {0,13,26} for scenarios 1–10. The RMSPE were very high

(approximately 35% off for s = 0 in scenario 1) since the unobserved heterogeneity in individual chances of pregnancy far

outweighed the information in the two simulated covariates, which also holds for the out-of-sample performance for scenario

1. The RMSPE decreased for all models in later landmarks due to a more homogeneous subset, and a larger sterile fraction, of

couples that remain in the cohort. The only exception was scenario 6 with no heterogeneity and no sterile fraction of couples

where the RMSPE was very low (approximately 1.5% at s = 0) and increased over landmarks.

Aside from the ipl* model (C) that generally performed the worst in the first landmark s = 0 in most scenarios and the

beta-geometric models that performed the best in scenario 6 without heterogeneity, there were no relevant differences between

models suggesting that all models were similar in their (in)ability to estimate individual predictions in the presence of substantial

unobserved heterogeneity.
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4.4 Brier score
All models had similar Brier scores in scenarios 1–10 (Supporting Information, Table Supp-III) with no model clearly being

preferred over another. The Brier score for the Kaplan–Meier (F) represents the prediction error for a model without covariates

and was close to the Brier scores of models A–E for all scenarios since the unobserved heterogeneity in individual chances of

pregnancy far outweighed the information in the two simulated covariates.

4.5 c statistic
The c statistics (Supporting Information, Table Supp-IV) were also similar for all models in scenarios 1–10 except for the separate

Cox approach (A). This approach yielded the poorest statistic in nearly all scenarios and landmarks, except in scenario 1 where

the c statistic was evaluated on internal data. In that scenario, the separate Cox landmark approach (model A) yielded the highest

c statistic beyond landmark s = 0, with a value of 0.66 in landmark s = 26. This indicates that model A might discriminate well

in the development data landmarks but does not transport well to external datasets at later landmark time points.

4.6 Convergence
The beta-geometric mixture model (D) failed to converge in 17.7% of simulation replications of the main scenario 1 and at

least one of the separate Cox landmark models (model A) in 2.3%. The other models always converged. Model D failed due to

insufficient information after censoring and an insufficient length of follow-up to estimate the sterile fraction and model A failed

due to an insufficient number of events in later landmarks. Table Supp-II in the Supporting Information shows the proportion

of convergence failure for models D and A in the remaining simulation scenarios.

5 APPLICATION

We applied the five models to clinical data obtained from 2002 to 2004 in a Dutch national prospective cohort study conducted

in 38 fertility centres (van der Steeg et al., 2007; van Eekelen et al., 2017a). Couples for which no barrier to pregnancy could

be found during the fertility workup (unexplained subfertility) were followed for pregnancy from the completion of the fertility

workup onwards. Data on n = 4999 couples were available, which decreased to n = 151 in the final landmark. The median

number of cycles of follow-up was 7. After fitting the models, we evaluated the average predictions, Brier scores and c statistics

in all landmarks in an internal validation with all methods and approaches similar to the simulation study.

To align with the simulation study, we only used the covariates female age and duration of subfertility in the models as these

were shown to be the most important predictors of pregnancy in previous work, as was the piecewise linear effect of female

age above and below approximately 33 years (Hunault et al., 2004). All models converged. The model parameters are shown in

Table 4 for the landmarking-based models and Table 5 for the beta-geometric models.

The pooled estimates for coefficients from the ‘stacked’ landmarking-based models (B and C) are easier to interpret than

the separate Cox models as for the latter, the coefficients change over time. We observed that some coefficients in models B

and C pointed in counterintuitive directions such as a positive effect of increasing female age over 33 years on pregnancy. The

estimated sterile fraction in the beta-geometric mixture model (model D) was close to zero.

The average model predictions per landmark in the application to clinical data are shown in the last, lower right-most panel of

Figure 1, decreasing from 0.27 in s = 0 to 0.07 in s = 26. Notably, the tendency of the super ipl* landmark model (model C) to

overestimate in the first six landmarks compared to the Kaplan–Meier estimates was also visible in this application to real data.

The beta-geometric models underestimated compared to the Kaplan–Meier estimates from landmark s = 7 onwards, but due to

the rapidly decreasing sample size over time Kaplan–Meier estimates were imprecise. Estimates from Brier scores were similar

T A B L E 4 Estimated parameters for the landmarking-based models in the data application

Parameter Separate Cox (A) Super ipl (B) Super ipl* (C)
Coefficient for age < 33 years Varied from −0.12 to −0.01 −0.04 −0.04

Coefficient for age > 33 years Varied from −0.15 to 0.02 −0.08 −0.08

Coefficient for duration Varied from −0.44 to −0.17 −0.23 −0.23

Coefficient for linear term for baseline hazard – – −5.67

Coefficient for squared term for baseline hazard – – 1.50
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T A B L E 5 Estimated parameters for the beta-geometric models in the data application

Parameter Beta-geometric mixture (D) Beta-geometric (E)
Coefficient for age < 33 years −0.03 −0.03

Coefficient for age > 33 years −0.08 −0.08

Coefficient for duration −0.29 −0.29

Intercept (𝜇0) 0.17 0.17

Heterogeneity (𝜃) 0.11 0.11

Sterile fraction (𝜋) 0.002 –

for all models, decreasing from 0.21 in s = 0 to 0.07 in s = 26. c statistics were also similar for all models and comparable to

fixed, that is non-dynamic models in the field, but showed more variability over landmarks than Brier scores, with a median of

0.60, increasing from 0.60 in s = 0 to the highest value of 0.71 in s = 24, back to a value of 0.59 in s = 26.

6 DISCUSSION

In this paper, we have compared two methods for dynamic prediction of time to pregnancy and applied these to clinical data. We

observed in most of our simulation scenarios that although the beta-geometric models were slightly biased at later landmarks,

the beta-geometric model without the sterility parameter had the lowest RMSE of average predictions out of all models due

to higher precision. The landmarking-based Cox models performed better than the beta-geometric models in terms of RMSE

when a large amount of information, in terms of sample size in both the baseline landmark and in later landmarks, was available.

All models were comparable in RMSPE and Brier scores due to the difficulty of estimating chances on the individual level in

the presence of a strong degree of unobserved heterogeneity between couples. The separate Cox approach (A) yielded a high

internal c statistic at later landmarks in internal validation but did not transport well to external data due to following noise in

highly varying, small landmark risk sets later on.

Our results were based on a simulation study using several data generating mechanisms, but there remain limitations to

interpretations and generalizations when applying these methods to clinical data of which the data-generating mechanisms are

unknown.

The super ipl* landmark model was not able to accurately model the baseline hazard in the early landmarks, not even when

adding cubic terms of landmark numbers or when using natural or restricted cubic splines of landmark numbers as a sensitivity

analysis, so we advise against using this method. The tendency of this model to overestimate chances in early landmarks was also

noted in the internal validation of our application to clinical data. The main challenge for the other two landmarking approaches

is a low (effective) sample size, not only expressed as the risk set in the first landmark but in particular if one wishes to cover later

landmarks in the presence of censoring. When estimating separate Cox models on all landmarks, the fluctuations in covariate

effects over time are sensitive to noise in small risk sets. Another disadvantage of this method is that varying covariate effects

can be difficult to report and communicate to clinicians and their patients.

We recommend landmarking in combination with fitting a super ipl Cox model that incorporates landmarks as strata when

the effective sample size remains above 500 over follow-up since this model was both accurate and concise. At sample sizes

around 500 or lower, the RMSE for the model increased considerably.

Both beta-geometric models were sensitive to the presence of a sterile fraction which led to overestimated probabilities at later

landmarks. Estimation of the sterile fraction is computationally challenging and convergence requires sufficient information,

both in terms of a large sample size and a long follow-up (Klebanov & Yakovlev, 2007; Shi & Yin, 2017). In our application

to clinical data, the sterility parameter was close to zero, which might be due to couples in the data being followed for only a

median of seven cycles. If the effective sample size drops below 500 in landmarks that researchers wish to cover, as was the case

in the data used by van Eekelen et al. (2017a) to develop their clinical prediction model, the beta-geometric model without the

sterility parameter is a more precise alternative than landmarking. The beta-geometric model was also robust across scenarios

where the heterogeneity distribution was not strictly beta or where we introduced decreasing probabilities of conception per

cycle due to ageing over follow-up.

The beta-geometric model can also be useful in other fields where there is a discrete time to event. Other examples could

be the number of days to discharge from an intensive care unit, the number of payments to defaulting for mortgages or time

to unsubscription for companies offering services in monthly subscriptions such as cell phone plans. However, there may be

time-varying information that researchers wish to incorporate in predictions such as divorce which increases the probability
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to default on a mortgage, something the beta-geometric model is not capable of. Thus, another reason to prefer landmarking

methods in some situations is that they are more flexible in incorporating time-varying covariates.
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