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ABSTRACT

In eukaryotes, the location of a gene on the chro-
mosome is known to affect its expression, but such
position effects are poorly understood in bacteria.
Here, using Escherichia coli K-12, we demonstrate
that expression of a reporter gene cassette, com-
prised of the model E. coli lac promoter driving ex-
pression of gfp, varies by ~300-fold depending on its
precise position on the chromosome. At some posi-
tions, expression was more than 3-fold higher than
at the natural /ac promoter locus, whereas at several
other locations, the reporter cassette was completely
silenced: effectively overriding local /ac promoter
control. These effects were not due to differences
in gene copy number, caused by partially replicated
genomes. Rather, the differences in gene expression
occur predominantly at the level of transcription and
are mediated by several different features that are in-
volved in chromosome organization. Taken together,
our findings identify a tier of gene regulation above
local promoter control and highlight the importance
of chromosome position effects on gene expression
profiles in bacteria.

INTRODUCTION

The nucleoid is a highly compact and organized struc-
ture occupying the majority of the intracellular cytoplas-
mic space in most bacteria (1,2). Comprised of chromoso-
mal DNA, protein and RNA, the nucleoid in Escherichia
coli and Salmonella is arranged into topologically isolated
loops, each ~10 kb in length, which are further organized
into four spatially isolated, structured macrodomains and
two non-structured regions (3-5). Organization of the nu-
cleoid is mediated by DNA supercoiling, macromolecu-
lar crowding and by a number of nucleoid associated pro-
teins (NAPs), although the precise impact of each on the
overall structure is not fully understood. All NAPs in-
fluence DNA conformation: with some binding predomi-

nantly within one macrodomain and others binding ubiqui-
tously throughout the genome (6-9). Highly proteinaceous
transcriptionally silent regions of the chromosome have
been identified as potential organizational hubs that may
insulate the topologically isolated loops and macrodomains
(10). Termed transcriptionally silent Extended Protein Oc-
cupancy Domains (tsEPODs), these domains overlap with
regions bound by NAPs, but neither the precise protein or-
ganization nor whether tSEPODs contain predominantly
poor promoters, or active promoters silenced by the asso-
ciated proteins, is known.

Despite being highly compacted, the nucleoid remains
accessible for cellular processes such as transcription and
replication. Transcriptionally active regions are thought to
be extruded to the periphery of the nucleoid where they are
engaged by transcription foci, dense in RNA polymerase
(RNAP) (11-17). These foci are located in discrete areas of
the cell, indicating that some transcription events occur at
particular locations and that the specific chromosomal po-
sition and spatial organization of genes may be important
for maintaining control of gene expression (13,16). In eu-
karyotic systems, it is well established that the expression
of individual genes can be greatly affected by chromoso-
mal position (18-21). Most recently, Akhtar et al. (22) an-
alyzed ~27 000 reporter gene integrations in mouse em-
bryonic stem cells and demonstrated that expression varied
across the genome by more than 1000-fold. Furthermore,
expression levels were reflective of the local chromosomal
environment: being attenuated in lamina binding domains
and areas of compaction, and enhanced when located prox-
imal to active genes.

Only a handful of similar studies have been conducted in
bacterial systems, with all attributing minor differences in
gene expression to gene dosage effects: the correlation be-
tween the increase in gene expression and the proximity of
the gene to the origin of replication (23-31). Here we have
re-addressed chromosomal position effects in E. coli by in-
serting a transcription reporter cassette at different targeted
positions in the genome. We observed substantial position-
dependent variation of promoter activity that is mediated at
the point of transcription and is unrelated to gene dosage.
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We identified several factors that impact upon gene expres-
sion, including processes that are involved with chromo-
some structuring and organization.

MATERIALS AND METHODS
Strains and plasmids

Bacterial strains and plasmids used in this study are listed
in Supplementary Table S1. The position of the lac pro-
moter::gfp insertion site is given in base pairs with respect
to the coordinate system origin (32).

Construction of targeted recombineering plasmids

The reporter cassette was constructed in plasmid pKHS
(33), by replacing the lacl homology region with a mul-
tiple cloning site (MCS 1) and the lacZ homology region
with the Emerald gfp gene (Invitrogen) and a multiple
cloning site (MCS 2) (Supplementary Figure S1). The lac
promoter, from position —93 to +122 bp, relative to the
lacZ transcription start site, was amplified by polymerase
chain reaction (PCR) from E. coli K-12 genomic DNA us-
ing primers D68498 and D69482, and cloned into the re-
porter cassette construct upstream of the Emerald gfp gene.
The reporter cassette, flanked by I-Scel restriction sites,
was cloned into I-Scel digested pDOC-C (34), generating
plasmid pJB (Supplementary Figures S1 and S2). To tar-
get the reporter cassette to the chromosome of E. coli K-
12 MG1655, ~500 bp regions homologous to chromosomal
targets were amplified by PCR and cloned into MCS 1 and
MCS 2 in plasmid pJB. Oligonucleotides used for cloning
are listed in Supplementary Table S2.

Chromosomal recombination

The pJB donor plasmids, carrying homology to the chro-
mosome, were used to transfer the /ac promoter:.:gfp fu-
sion to the specifically targeted chromosomal loci (Sup-
plementary Figures S3-S5). E. coli K-12 MG1655 was co-
transformed with a pJB donor plasmid and plasmid pACB-
SCE, after which the donor fragment was integrated into
the chromosome, using the gene doctoring method (34).
Recombinants were screened for the presence of the in-
sert by colony PCR and targeted insertion strains were as-
signed a BRY strain number (Supplementary Table S1). The
kanamycin resistance cassette was excised from the chro-
mosome using flippase (FLP) recombinase, expressed from
plasmid pCP20 (35). Candidates were re-screened by colony
PCR to confirm kan® gene removal.

Fluorescence assays

Bacterial cultures were grown for 16 h at 37°C with aera-
tion in M9 minimal salts media, supplemented with 0.3%
fructose, 2 mM MgSQOy, 0.1 mM CaCl, and 0.1% casamino
acids. Cultures were diluted 100-fold into 5 ml of fresh
medium to a starting ODgyg of ~0.03. Additional supple-
ments were added where stated in figure legends. Cultures
were incubated at 37°C with aeration until an ODgy¢ of 0.4—
0.5 was reached. At this point, 250 .l samples of each cul-
ture were aliquoted into a sterile, black, optically clear 96-

well Corning Costar 3603 plate (Thermo Scientific). Flu-
orescence at excitation wavelength 485 nm and emission
wavelength 510 nm was measured for an integration time
of 1 s using a Thermo Fluoroskan Ascent FL fluorome-
ter (Thermo Scientific) after a 10 s shake step at 600 rpm.
Each experiment consisted of a minimum of three biological
replicates and experiments were repeated at least twice. As
a control, readings were taken from E. coli K-12 MG1655
cultures, for which, no fluorescence was detected. Fluo-
rescence output from the reporter cassette was derived as
fluorescence/ODgy to represent specific fluorescence of the
culture, with mean and standard deviation calculated for
each strain/condition.

Gene dosage measurements

Quantitative real-time PCR (qRT-PCR) was used to mea-
sure the amount of gfp gene in different BRY strains. Ge-
nomic DNA was extracted using the illustra bacteria ge-
nomic Prep Mini Spin Kit (GE Healthcare). The DNA con-
centration was determined using a NanoDrop ND-1000
spectrophotometer (Thermo Scientific). gDNA was used
as template in qRT-PCR using an Mx3000P gPCR system
(Agilent) and Brilliant IIT Ultra-Fast SYBR Green QPCR
master mix (Agilent). Oligonucleotides designed for detec-
tion of the gfp gene and the internal control, bg/B, are listed
in Table S2. Relative quantities of the gfp target gene were
determined by normalizing reaction threshold cycle (Cr)
values to that of the bg/B reference gene. ACy values for
the BRY33 reactions were used as calibrators (AACt =
ACt target — ACt BRY33) fOr analysis of results by the rela-
tive quantification method (2-22¢T), which was used with
standard curves (36). Quantities of the gfp target gene, rela-
tive to that at the tam locus, are represented as gene dosage.
Each reaction was repeated at least three times for each of
three separate biological replicates to yield mean and stan-
dard deviation for each experiment.

Chromatin immunoprecipitation and qPCR analysis

Chromatin immunoprecipitation followed by qPCR was
used to quantify the amount of RNAP occupancy within
the gfp gene in different BRY strains. ChIP-qPCR was done
as described previously, using antibody raised against the
RNAP B subunit (Neoclone # W0002) (37). The oligonu-
cleotides used to amplify the gfp gene target are listed in
Supplementary Table S2.

RNA isolation and qRT-PCR analysis

gRT-PCR was used to quantify the relative expression lev-
els of gfp mRNA in different BRY strains. Total RNA was
isolated using RNA later (Ambion) stabilization solution
and an RNeasy Mini kit with on-column DNase I digestion
(Qiagen). Total RNA was reverse transcribed using a tetro
cDNA synthesis kit (Bioline) with oligonucleotides specific
for the bg/B and gfp genes (Supplementary Table S2). cDNA
was used as template in qPCR using an Mx3000P qPCR
system (Agilent) and Brilliant IIT Ultra-Fast SYBR Green
QPCR master mix (Agilent). Relative expression levels of
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the gfp target gene were determined by normalizing reac-
tion threshold cycle (Ct) values to that of the bg/B refer-
ence gene. ACr values for un-induced, no isopropyl B-D-
1-thiogalactopyranoside (IPTG), cultures were used as cal-
ibrators for analysis of results by the relative quantification
method (2722€T) (36). Each reaction was repeated three
times for each of three separate biological replicates to yield
mean and standard deviation values.

Chloroquine agarose gel electrophoresis

BRY 35 cells carrying plasmid pBR322 were grown in min-
imal media supplemented with ampicillin (80 pg/ml) and
different concentrations of novobiocin (0—100 wg/ml). Plas-
mid DNA was purified using a QIAprep Spin Miniprep Kit
(Qiagen) and topoisomers were resolved by 1% agarose gel
electrophoresis, supplemented with 2.5 wg/ml chloroquine
in 2% tris-borate-EDTA (TBE) buffer, for 24 hat 3 V/cm in
the dark. Chloroquine was removed from the gel by rinsing
with distilled water for 2 h after which the gel was stained
with ethidium bromide and visualized under UV light.

a-galactosidase assay

To eliminate interference of melibiose transport by the
lacY encoded Lac permease (38), we deleted the wild-
type lac promoter in strains BRY 15 and BRY 37, using the
method described by Hollands (33). The resulting BRY75
and BRY79 strains were grown for 16 h with aeration in 5
ml M9 minimal salts media at 30°C. Cultures were diluted
100-fold into 5 ml of fresh medium to a starting ODgsg of
~(0.03. Cultures were supplemented with 100 uM IPTG or
0.2% melibiose, to induce melAB transcription, where re-
quired. Cultures were incubated at 30°C with aeration un-
til mid-logarithmic phase of growth and the ODgsp of the
culture recorded. 50 wg/ml chloramphenicol was added to
each culture to arrest protein production. 4-nitrophenyl-
D-galactopyranoside (PNPG) was added to each culture
to a final concentration of 3 mM, and incubated at 30°C
with aeration until a yellow colour developed, after which
the reaction was stopped by addition of ethylenediaminete-
traacetic acid and Na,CO; to final concentrations of 40
and 250 mM, respectively. The ODyj of the reaction was
recorded and «-galactosidase activities calculated as fol-
lows: a-galactosidase activity = (2.5 x V x AODyy)/(¢
x 0.0045 x 2 x ODgsp) where: 2.5 = factor for conver-
sion of ODgs¢ into bacterial mass, based on ODgsy of 1 be-
ing equivalent to 0.4 mg/ml bacteria (dry weight); V = fi-
nal assay volume (ml); 0.0045 = factor for conversion of
ODyyo into nmol p-nitrophenyl (PNP), based on 1 nmol
ml~! PNP having an ODy; of 0.0045; ¢ = incubation time
(min); v = volume of culture added (in ml) (39). Calculated
a-galactosidase activity is therefore represented as nmoles
PNP liberated/min/mg bacteria. Data are presented from
a minimum of three biological replicates for each strain
tested, repeated on at least two separate occasions.

RESULTS
Chromosomal position affects gene expression

To examine the impact of chromosomal position effects
on gene expression in E. coli we designed a transcrip-
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Figure 1. Insertion of the reporter cassette into the E. coli K-12 MG1655
genome. The chromosome positions of oriC and dif labelled, relative to the
coordinate system origin (32). The structured macrodomains, Ori, Right,
Ter and Left, are represented as coloured arcs with macrodomain bound-
aries shown inside the circular map (4). The non-structured left and right
regions are labelled as NSL and NSR respectively. The orientation of the
reporter cassette at the chromosome insertion sites is indicated by a black
arrow.

tion reporter cassette that expressed a measurable readout.
The cassette consisted of the E. coli lac promoter control-
ling production of Emerald GFP: hence, expression of gfp
was triggered by addition of IPTG. The cassette was in-
sulated from transcription read-through by the bacterio-
phage lambda oop terminator (33,40), located upstream of
the lac promoter (Figure 1A). Emerald GFP was chosen
because the gene has a higher GC bp content and is pre-
dicted to contain less DNA curvature, thus limiting undesir-
able associations with NAPs that favour AT bp rich, curved
DNA (Supplementary Figure S6) (41). To avoid impacting
upon local gene regulatory elements, the cassette was delib-
erately targeted to non-coding regions between convergent
genes at different chromosomal positions, within each of the
four macrodomains and two non-structured regions, in the
E. coli K-12 strain, MG1655 (Figure 1B). Fourteen inser-
tion positions were selected in the MG1655 genome, which
were named based on the neighbouring gene (Figure 1 and
Supplementary Figures S3-S5). GFP fluorescence measure-
ments were taken during logarithmic growth in minimal me-
dia, supplemented with IPTG, and we observed that chro-
mosomal position modulates gene expression from the re-
porter cassette over a ~300-fold range (Figure 2). Com-
pared to insertion at the wild-type lac locus, GFP fluores-
cence was more than 3-fold higher at the nupG and as/ loci
and lower at every other insertion position. Expression lev-
els varied between each of the macrodomains and expres-
sion within each macrodomain fluctuated by 5-fold (in Left
and Ori), 10-fold (in the non-structured left region) or 100-
fold (in the non-structured right region).
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Figure 2. Effect of chromosomal position on reporter cassette expression. Fluorescence output from the reporter cassette was measured during growth in
the presence of 100 wM IPTG and is represented on the y-axis as a function of ODgy. In the absence of IPTG no fluorescence was detected. The location
and orientations of each reporter cassette insertion site is indicated on the x-axis and on the linear schematic of the genome below. The locations of the
macrodomains and non-structured regions (NSR, Right, Ter, Left, NSL and Ori) and the origin (oriC) and terminus (dif) of replication are also indicated.

Chromosomal position effects are not solely due to gene
dosage

To substantiate our observations, we conducted control ex-
periments to confirm that variation in expression from the
reporter cassette was solely due to local chromosomal po-
sition effects. Previous analyses of these effects in bacteria
have concluded that variations observed in expression upon
gene translocation are minimal and are predominantly due
to gene dosage (23-27). Thus, to define the consequence of
gene dosage on gfp expression in our system we determined
the number of DNA copies of the reporter at four differ-
ent genomic loci (Figure 3A). Total genomic DNA was iso-
lated from strains carrying the reporter cassette at the zam,
lac, nupG and asl loci and the relative amounts of the gfp
gene were determined by qPCR. The relative copy number
of the gfp gene varied by only 1.4-fold between the different
loci and as expected, the biggest variation occurred between
oriC (asl) and ter (tam) proximal targets (Figure 3B). There-
fore, gene dosage can only account for 1.4-fold differences
in position-dependent variation of gene expression in the
experiments reported here.

Chromosomal position effects are mediated at the level of
transcription

Since the gene copy number did not correlate with the dif-
ferences observed in expression across the genome, we con-
sidered the possible impact of transcription events originat-
ing from elsewhere within the reporter cassette or from the
chromosome adjacent to the cassette. We also considered
the possible impact of post-transcriptional processes. First,
we assessed transcription directly by measuring RNAP oc-
cupancy within the gfp gene located at the tam, lac and
nupG loci in the presence and absence of the inducer of
the reporter cassette, [IPTG. To do this we used chromatin
immunoprecipitation (ChIP) with antibodies against the 8
subunit of RNAP and quantified the amount of immuno-
precipitated gfp DNA by quantitative PCR. The results
show that RNAP occupancy of the gfp gene correlates well
with the fluorescence output at the three loci (Figure 3C
and E). Importantly, RNAP was not observed within the
gfp gene in the absence of the inducer IPTG. This demon-
strates that occupancy of the gfp gene, and therefore dif-
ferences in fluorescence, are due to different levels of tran-
scription of the gfp gene derived only from the /ac promoter
within the reporter cassette, and not from transcriptional
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Figure 3. Position effects occur at the level of transcription. (A) Circular map of the E.coli MG1655 chromosome with the position of the reporter cassette
at the tam, nupG, lac and as/ positions marked. (B) Gene dose ratio of the gfp gene at the tam, lac and nupG loci, relative to the ram locus. (C) RNAP
occupancy within the gfp gene, at the tam, lac and nup G loci, measured by ChIP-qPCR. (D) gfp mRNA expression upon induction of the reporter cassette
at the tam, lac and nupG loci (Data are normalized to the un-induced tam culture). (E) Fluorescence output from the reporter cassette at the tam, lac and
nupG loci. (C-E) Cells were grown with the inducer of the lac operon, IPTG (100 wM: filled bars) or without (white bars), denoted as + or — below the

X-axis.

read-through from neighbouring genes or from transcrip-
tion originating from elsewhere within the reporter cassette.

We next measured the amount of gfp mRNA transcript
after isolation of total RNA from the three different strains.
We observed that the relative levels of transcript from the
three loci did not fully correlate with the amount of RNAP
occupancy (Figure 3C and D), which could indicate that
there are differences in mRNA stability or access to ribo-
somes at the different chromosome loci. However, as we
only observed transcription of gfp in the presence of IPTG,
which correlates well with fluorescence output, we suggest
that the level of transcription is the predominant contribut-
ing factor which sets the level of gene expression from each
loci, with minor fluctuations in mRNA stability and rates
of translation accounting for minimal variation.

Low expression is due to silencing in tsEPODs

To understand better the mechanisms that caused variation
in reporter cassette activity across the genome, we consid-
ered several chromosomal features and their impact on gene
expression. At the yafT, eaeH, yge and pitB loci, the re-
porter cassette was inserted into a tsEPOD. Activity of the
reporter cassette was significantly reduced in each case, indi-
cating that transcription of the active lac promoter was sup-
pressed by the tsEPOD (Figure 2). To assess whether sup-
pression was directly due to intrinsic properties of the tsE-
PODs, we re-introduced the reporter cassette at the yafT,
eaeH, yge and pitB loci by replacing the tsEPOD, rather
than inserting within (Figure 4A and B and Supplemen-
tary Figures S4 and S5). GFP fluorescence of each tsEPOD
replacement strain was then compared to the tsEPOD in-
sertion strains and, in all cases, replacement resulted in de-
repression of the reporter cassette (Figure 4C). It was noted
that although the tsEPODs tested were capable of silencing

¥T0Z ‘€T 4200100 U0 WeyBbuiwiig jo A1seAlun 1 /B0 euInolpiojxo reu//:dny wodj papeojumod


http://nar.oxfordjournals.org/

11388 Nucleic Acids Research, 2014, Vol. 42, No. 18

A Insertion site

tsEPOD

plac

B Replacement sites

tsEPOD

plac

C
0.05 ~
00 uM IPTG
@100 uM IPTG
8 0.04 -
a
(@]
o 0.03 -
c
(]
@
© 0.02 -
o
=
L 0.01 -
0 | . | | 1 . 1 1 1 . | | 1 . 1
a b a b a b a b
pitB yafT eaeH yqe

Chromosomal position

Figure 4. tsEPODs silence activity of the lac promoter. (A) Example of insertion of the reporter cassette within a tsEPOD (grey box). Genes are represented
as block arrows, labelled 4, B and C. (B) Replacement of tsEPOD sequence with the reporter cassette. (C) Fluorescence output from the reporter cassette
from the pitB, yafT, eaeH, yqe loci. On the x-axis, a or b denotes tsEPOD disruption or replacement respectively.

the reporter cassette, both the extent of silencing and of de-
repression after EPOD replacement varied, suggesting that
additional local chromosomal features may modulate gene
expression at these loci.

DNA gyrase plays a role at high activity locations

The impact of nucleoid topology on gene expression was
assessed by analyzing the effects of novobiocin addition:
an inhibitor of the GyrB subunit of E. coli DNA gyrase,
which is solely responsible for introducing negative su-
percoils into the genome (42). To evaluate gyrase inhibi-
tion, the degree of supercoiling of plasmid pBR322 was as-
sessed over a range of novobiocin concentrations. Plasmids
were harvested and visualized by chloroquine agarose gel
electrophoresis, to separate the different supercoiled plas-
mid topoisomers. Changes in migration of pBR322 con-
firmed that superhelicity is shifted to a less negative state
with increasing concentrations of novobiocin in the growth

medium (Figure 5A). These concentrations were then used
to assess the impact of supercoiling on expression from the
reporter cassette and it was observed that only the high ac-
tivity loci, nupG and as/ were affected. Inhibition of GyrB
reduced reporter cassette expression at the nupG locus by
17-fold, and at the as/ locus by 4-fold (Figure 5B). In the
presence of a sub-inhibitory to growth concentration of
novobiocin (50 pwg/ml), reporter cassette activity was ~2-
fold reduced at both the nupG and as/ loci. This resulted
in expression levels comparable to the /ac locus, suggesting
that the high promoter activity at the nupG and asl loci is
largely due to the action of DNA gyrase.

Neighbouring gene expression influences downstream pro-
moters

Insertion of the reporter cassette at the mel and mntH po-
sitions provided the opportunity to measure the effects of
neighbouring gene expression, since expression of mntH
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Figure 5. DNA gyrase influences expression at high activity insertion sites. (A) pBR322 plasmid was used as a reporter of DNA superhelicity during growth
with increasing concentrations of novobiocin. Plasmid DNA was separated on a 1% agarose gel supplemented with 2.5 pg/ml chloroquine. Ethidium
bromide stained DNA was visualized under UV light. (B) Fluorescence output from the reporter cassette at the nupG, asl and lac positions, during growth

in the presence of 100 wM IPTG and increasing concentrations of novobiocin.

and the melA B operon could be specifically controlled (Fig-
ure 6A and B) (38,43). Thus, expression of the reporter cas-
sette could be measured when expression of the upstream
neighbouring gene was on or off. At the melAB locus, in-
duction of the upstream melAB operon by the addition of
melibiose resulted in a reduction of downstream reporter
cassette expression by 4-fold, regardless of its orientation
(Figure 6C). A similar effect was observed at the mntH
locus where, upon repression of the upstream mntH pro-
moter by the addition of Mn?>* and Fe?* ions, activity of
the downstream reporter cassette increased 3-fold (Figure
6D). To examine this further, we measured the impact of
reporter cassette transcription on melAB expression, by as-
saying the activity of the a-galactosidase enzyme, encoded
by melA. When transcription from the reporter cassette was
directed away from the melA B operon, a-galactosidase ac-
tivity was unaffected by induction of the reporter cassette.
However, induction of reporter cassette transcription to-
wards the melAB operon resulted in a 50% reduction in a-
galactosidase activity (Figure 6E), indicating that transcrip-
tion events only repress expression of downstream neigh-
bouring genes, irrespective of the orientation of the down-
stream gene.

DISCUSSION

Few studies have directly assessed the effect of position
within bacterial chromosomes on gene expression, with
only small effects reported that were attributed to gene
dosage (23-31). Here, by growing bacteria in minimal nu-
trient medium, we limited variations in gene dosage to a
maximum of 1.4-fold across the genome. To minimize dis-
ruption to local chromosomal processes, we deliberately tar-
geted non-coding, non-regulatory elements of the genome
with a discrete reporter cassette that was small compared to
previously used promoter::reporter probes (23,26,27). We
show that gene expression varies between insertion sites
within the same macrodomain, and that macrodomains and
non-structured regions contain both high and low activ-
ity regions. In addition, we demonstrated that position-
dependent variation in output from the reporter cassette
was solely due to transcription of gfp derived from the
lac promoter. Therefore, our observation that position-
dependent gene expression levels can vary by ~300-fold in-
dicates that substantial differences in expression potential
exist within bacterial genomes.

Concerning silencing, previously Vora et al. (10) iden-
tified 151 tsEPODs distributed throughout the E. coli
genome, which had an average length of 2050 bp. The ge-
nomic positions of the tsEPODs were found to correlate
with regions of the chromosome that have high NAP occu-
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Figure 6. Active transcription has a negative effect on downstream promoters. (A) Schematic representation of gene organization at the mel locus. (B)
Schematic representation of gene organization at the mntH locus. (C) Fluorescent output from the reporter cassette at the mel locus during growth with
100 wM IPTG, in the presence or absence of the inducer of the mel4 B operon, melibiose (0.2%). (D) Fluorescence output from the reporter at the mntH
locus during growth with 100 wM IPTG, in the presence or absence of 10 uM MnCl, and 10 wM (NH4),Fe(SO)s4. (E) a-galactosidase activity measured
in strains with the reporter cassette inserted at the mel locus during growth with 100 uM IPTG or 0.2% melibiose. Arrows indicate co-directional (——)

or head to head (—) transcription.

pancy, as determined by ChIP analysis, and thus were pro-
posed to act as nucleoid organizational hubs. Insertion of
the reporter cassette within tsEPODs resulted in substantial
suppression of promoter activity, which was only restored
when the tsEPOD was replaced by the reporter cassette,
suggesting that theses domains are capable of silencing tran-
scription. Itis not known whether silencing within tsEPODs
is due to the binding of one particular NAP, a combina-
tion of NAPs binding, or the associated DNA architecture.
What is clear is that transcription is repressed by the intrin-
sic properties of the tsEPOD, as opposed to the tsEPOD
merely containing poor promoters. This is reminiscent of
lamina-associated domains in eukaryotic systems. Lamins
organize chromatin by interactions with Lamina-associated
domains that typically span several megabases of DNA:
much larger than tsEPODs. Similarly to tsEPODs, lamina-
associated domains are typified by low gene expression lev-
els, which have been shown to confer low activity upon in-
serted reporter cassettes (21,22,44). However, in contrast to
tsEPODs, which are predicted to be buried inside the nu-

cleoid, Lamina-associated domains are at the periphery of
the nucleus, anchored to the nuclear membrane.

Several other loci were identified where expression of
the reporter cassette was silenced, which were not located
within tsEPODs. However, at the ycb locus, the reporter cas-
sette was inserted within 500 bp of a tsEPOD, which may
influence the expression from this target. At the dkgB lo-
cus, the reporter cassette was inserted immediately down-
stream of a ribosomal operon encoding a ribosomal RNA
and a tRNA, which are likely to be highly expressed. We
therefore suggest that transcription of the reporter cassette
is repressed as a consequence of high levels of neighbour-
ing transcription. The nature of the silencing effect at the
thiQ locus is not known: this insertion locus is neither in a
tsEPOD or neighbouring a highly expressed gene.

Examination of the high expression levels at the asl/ and
nupG loci determined that activity was dependent upon the
DNA supercoiling activity of DNA gyrase. Inhibition of gy-
rase severely impaired reporter cassette expression at the as/
and nupG loci, but had little or no affect at other locations.
The genome-wide DNA gyrase distribution was previously
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determined by analyzing DNA association by ChIP-chip
experiments (45,46). The resolution of these experiments
was insufficient to enable identification of specific DNA gy-
rase binding sites, but the data clearly demonstrated an in-
creasing density gradient of DNA gyrase binding sites prox-
imal to the origin of replication. Correlations have been
drawn between the close proximity of highly expressed ri-
bosomal operons to the replication origin and their high-
dependency on DNA gyrase induced negative superhelicity
(46,47). However, we observed low expression from the re-
porter cassette inserted at the yge and pit B loci, immediately
adjacent to the nupG locus, and at the thiQ and dkgB loci,
suggesting that proximity to the ori does not intrinsically
result in high expression due to the activity of DNA gyrase.

Transcription of the reporter cassette was found to have
a profound impact on expression of neighbouring genes.
When transcription was directed towards a transcription
unit the activity of the downstream transcription unit was
repressed, irrespective of orientation. These effects may be
due to diffusion of transcription induced positive supercoil-
ing created ahead of RNAP, which impacts upon the abil-
ity of the downstream RNAP to transcribe (48,49). This
phenomenon is described as the twin-supercoiling domain
model and accounts for a large quantity of DNA super-
coiling within the bacterial cell (48,50-52). Such supercoil-
ing can diffuse along the DNA to affect local chromosome
structures several kilobases away from the site of transcrip-
tion and is dependent upon promoter strength (49,53,54).

In conclusion, we have identified several mechanisms that
account for the variations in gene expression that we ob-
served, but they are by no means all encompassing. For ex-
ample, we see silencing of gene expression at tsEPODs but it
is not clear which NAPs are bound at a particular tsEPOD
and how they interplay to silence transcription. Hence, fur-
ther scrutiny of the spatial and temporal dynamics of the
nucleoid, and the mechanisms that we have identified, is es-
sential to appreciate the full impact of chromosomal po-
sition effects in bacteria. However, our findings do clearly
demonstrate profound differences in gene expression due to
chromosomal location and hence, verify position effects as
a bona fide gene regulatory feature of bacterial genomes.
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