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Chromatin immunoprecipitation, followed by quantification of immuno-

precipitated DNA, can be used to measure RNA polymerase binding to

any DNA segment in Escherichia coli. By calibrating measurements against

the signal from a single RNA polymerase bound at a single promoter, we

can calculate both promoter occupancy levels and the flux of transcribing

RNA polymerase through transcription units. Here, we have applied the

methodology to the E. coli lactose operon promoter. We confirm that

promoter occupancy is limited by recruitment and that the supply of RNA

polymerase to the lactose operon promoter depends on its location in the

E. coli chromosome. Measurements of RNA polymerase binding to DNA

segments within the lactose operon show that flux of RNA polymerase

through the operon is low, with, on average, over 18 s elapsing between

the passage of transcribing polymerases. Similar low levels of flux were

found when semi-synthetic promoters were used to drive transcript

initiation, even when the promoter elements were changed to ensure full

occupancy of the promoter by RNA polymerase.

This article is part of the themed issue ‘The new bacteriology’.

provided by BCU Ope
1. Introduction
Many bacteria rely on transcription regulation in order to adapt to fluctuating

environments. This often involves the interaction of regulatory activator

proteins at or near promoters, which results in recruitment of the

DNA-dependent RNA polymerase (RNAP) and subsequent transcript

initiation and gene expression. In contrast, when the regulatory proteins are

repressors, access to the promoter is blocked and, hence, expression of the

corresponding transcription unit is silenced [1–3]. Most experimental studies

of bacterial gene regulation have relied on measurements of fold-induction or

fold-repression of measured levels of transcripts or gene products. However,

few studies have addressed directly the issue of the number of RNAP mol-

ecules that engage with individual transcription units, and, to date, most

calculations of RNAP flux through genes are based on estimates that work

backwards from measured levels of RNA synthesis [4–6]. Here, we describe

a new approach to direct quantification of RNAP bound to the Escherichia
coli lac operon and its promoter, exploiting chromatin immunoprecipitation

(ChIP). Recall that ChIP, in combination with analysis of immunoprecipitated

DNA, permits us to detect protein binding at any chromosomal locus [7],

independent of function, and many investigators have used it to measure

the distribution of RNAP across bacterial chromosomes [8–11]. Here,

we exploit the properties of the drug rifampicin, which blocks RNAP

bound at promoters [9,12–14], to calibrate our ChIP measurements. This

allows an absolute measure of promoter occupancy and RNAP flux through

downstream genes.
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Figure 1. RNAP flux through the lac operon on the E. coli MG1655 chromo-
some. The figure shows experimentally measured RNAP occupancies at the lac
promoter region (denoted lac0), or downstream regions (denoted lac1 – 5),
illustrated in the sketch of the operon (approximately to scale). The
probes are located from position 2147 to þ123 (lac0), position þ518
to þ781 (lac1), position þ1421 to þ1686 (lac2), position þ2308 to
þ2575 (lac3), position þ3691 to 3949 (lac4) and position þ4654 to
4916 (lac5), all positions being with respect to the lac operon transcript
start site. Cell cultures were grown and treated with formaldehyde, as
described in the Material and methods section. Total DNA with cross-
linked proteins was extracted and sonicated, and fragments cross-linked to
RNAP were purified by immunoprecipitation. RNAP occupancy was measured
by a ChIP – qPCR protocol. The figure illustrates measurements from cells
grown with or without the inducer IPTG and with or without rifampicin,
as indicated by the different shadings.
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2. Results
(a) Measurement of RNA polymerase flux though the

lac operon
Formaldehyde treatment of cultures of E. coli efficiently cross-

links RNAP to bound DNA targets [8,9]. Commercially

available monoclonal mouse antibodies directed against the

RNAP b subunit can then be used to immunoprecipitate

RNAP from sonicated extracts of the cross-linked cells, and

specific DNA targets can be quantified by PCR. We chose

the well-characterized E. coli K-12 lactose (lac) operon to

study RNA polymerase flux. Recall that the lac operon is

expressed in a transcription unit from a promoter whose

activity is repressed by the Lac repressor protein, and that

induction requires a chemical inducer such as isopropyl

b-D-1-thiogalactopyranoside (IPTG) [15,16]. To analyse

RNAP flux through the lac operon, we used the lac0 pair of

probes that samples the lac promoter, and the lac1–5 pairs

of probes that sample approximately 300 base pair DNA

sequences that are 518, 1421, 2308, 3691 and 4654 base

pairs, respectively, downstream from the transcript start.

Because each probe pair creates an amplicon that is a similar

size, we can directly compare signal intensity between the

different probes.

Escherichia coli K-12 strain MG1655, growing exponen-

tially in medium, either with or without IPTG, was subject

to our ChIP protocol (see Material and methods section for

details, and electronic supplementary material, table S1 for

probe sequences), and figure 1 shows quantification of the

immunoprecipitated DNA at different loci in the lac operon

(probed with the lac0–5 probes). The data show that the

inclusion of IPTG in the bacterial growth media triggers a

more than a 100-fold increase in levels of imunoprecipitated

DNA, confirming that RNAP association with the lac
operon is regulated by the Lac repressor. Accepting that the

level of immunoprecipitated DNA corresponding to each

probe reflects the amount of transcribing RNAP associated

with the chromosomal DNA corresponding to each probe,

the data argue that, at least for the first 2000 base pairs of

the operon, RNAP levels remain constant, while they decline

towards the end of the operon, presumably contributing to

polarity effects [17]. Some quantitative differences seen with

certain fragments, for example, with the lac3 probes, are

likely owing to pause sequences [18,19].

In order to calculate the absolute numbers of RNA poly-

merase molecules associated with the lac operon from the

data in figure 1, we needed to measure the quantity of immu-

noprecipitated DNA that results from the binding of a single

RNAP molecule. To do this, we exploited the property of

rifampicin to block initiating RNAP at promoters and to inhi-

bit transcript elongation [9]. Hence, rifampicin was added to

MG1655 cells growing in the presence of IPTG, and figure 1

shows quantification of immunoprecipitated DNA at the

different lac operon loci, probed with the lac0–5 probes. As

expected, rifampicin causes a sharp decrease in the levels of

immunoprecipitated DNA corresponding to the lac1–5

probes, but an increase with the lac0 probes. If we take the

measured signal with the lac0 probe as indicative of a

single promoter-bound RNAP, then we can deduce that,

during induction in our growth conditions, the lac promoter

is approximately 50% occupied, which is consistent with

experimental data showing that the activity of the E. coli lac
promoter is limited by the recruitment of RNAP [20,21]. Fur-

thermore, the data permit an estimate of the flux of RNAP

through the lac operon. Messenger elongation by RNAP in

bacteria is known to proceed, on average, at 20–50 bases

per second [22–24]. Because the DNA segment correspond-

ing to each of the lac1–5 probes consists of approximately

300 base pairs, which would take at least 6 s to transcribe,

approximately 33% observed occupancy by RNAP implies

that a transcribing RNAP must arrive on average no more

frequently than once every 18 s (3 � 6). This unexpected

low level is likely owing to the time that individual RNAP

molecules can take to escape from the promoter [25–27].

(b) RNA polymerase supply at the lac promoter
is location-dependent

In a previous study, we found that the measured activity of

the lac promoter in E. coli strain MG1655 was dependent on

its chromosomal location [28]. To show this, we constructed

a portable lac promoter::green fluorescent protein (gfp) cas-

sette that we inserted at different chromosomal locations.

We found that expression varied by up to 200-fold according

to location, and, using ChIP, we showed that the measured

differences were due to different levels of RNAP associated

with the gfp gene. Because lac promoter activity is limited

by RNAP recruitment [20], we reasoned that the differences

could be caused by the concentration of available RNAP dif-

fering from one chromosomal location to another. Hence, to
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Figure 2. Chromosome position effects on activities of the lac (a) and lpL (b) promoters. The figure shows experimentally determined measurements of the
expression of lac and lpL promoter::gfp fusions, at different locations on the E. coli chromosome. Fluorescent output from the reporter cassette was measured
during growth in the presence of 100 mM IPTG, and is represented on the y-axis. Chromosomal positions of the reporter cassette are represented on the
x-axis and denoted in the figure by the name of a neighbouring gene. Below each chart is a linear schematic of the E. coli genome, with the origin of replication
(OriC), terminus (dif ), macrodomains and non-structured regions (NSR, right, Ter, left, NSL, ori) shown as previously reported [30].

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20160080

3

test this, we replaced the lac promoter with the bacteriophage

l major leftward promoter (lPL), whose activity is known to

be limited by RNAP escape rather than recruitment [29].

Figure 2 shows the results of an experiment where we com-

pared gfp expression from either our lac promoter::gfp or

lPL::gfp fusions inserted into the MG1655 chromosome at

different specific locations. The data show that observed

differences in expression are much smaller with the lPL::gfp
fusions than with the lac promoter::gfp fusions, and this is

consistent with the suggestion that the effective concentration

of RNAP differs according to location along the E. coli
chromosome.

(c) Promoter determinants alter RNA polymerase
recruitment and RNA polymerase escape

Although the E. coli lac operon promoter is often adopted as a

paradigm, we wanted to compare results with an unrelated

promoter, and so we used a previously constructed set of pro-

moter::lac fusions [31], where the promoters carry different

combinations of 235, extended 210 and 210 elements

upstream of the galP1 transcript start region. In an initial

experiment, we selected the KAB-TTTG promoter that carries

the 235 element TAGACA (consensus is TTGACA), an

extended 210 element of TTTG (consensus is TGTG) and a

210 hexamer of TATGGT (consensus is TATAAT). Figure 3

illustrates ChIP data from an experiment run either with or

without rifampicin, from which, as before, RNAP occupancy

can be calculated. Surprisingly, the data reveal occupancy

and flux levels that are similar to the induced lac promoter.

Hence, promoter occupation by RNAP, as judged by the

ratio of signal without rifampicin to with rifampicin, is

approximately 40%, whereas occupancy of the downstream
DNA segments corresponding to the Lac1357 and Lac2720

probes, ranges from 10% to 20%, which would correspond

to an RNAP flux of one every 30 s.

Because it is well established that promoter 235 and

extended 210 elements contribute to the recruitment of

RNAP at bacterial promoters [32,33], we repeated the exper-

iment with derivatives of the KAB-TTTG promoter carrying

the p34T point mutation that creates a consensus 235

element (TTGACA), or the p16G mutation that creates a

consensus extended 210 element (TGTG). As a control, we

also used a derivative of the KAB-TTTG promoter with the

p12C mutation that creates a corrupted 210 element

(CATGGT). The results, illustrated in figure 3, show that

recruitment of RNAP is reduced by the 210 element

mutation. In contrast, recruitment of RNAP to the promoter

is increased to approximately 50% by the consensus 235

element, and to nearly 100% by the consensus extended

210 element. However, for both promoters, the increase in

occupancy leads to only modest increases in RNAP flux

through the downstream-transcribed DNA.
3. Discussion
We have developed a simple method, based on ChIP with

E. coli, for quantifying the binding of RNAP in vivo to any

specific segment of DNA. For promoter regions, we can

directly measure occupancy by RNAP, whereas for regions

within transcription units, we can deduce the flux of

RNAP. The method exploits rifampicin that specifically tar-

gets RNAP and blocks it in open complexes at promoters.

Here, we make the assumption that formaldehyde equally

efficiently cross-links rifampicin-blocked RNAP, RNAP that
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Figure 3. RNAP flux through the lac operon controlled by synthetic promoters. The figure shows experimentally determined levels of RNAP occupancy at the
promoter and downstream regions Lac1357 and Lac2720, measured by ChIP – qPCR, during exponential growth in the presence of absence of rifampicin, as indicated
by the different shading. The positions of probe regions are shown on the schematic diagrams (approximately to scale). RNAP occupancy of each promoter in the
presence of rifampicin is taken as 100% occupied and other figures normalized accordingly. Data are shown for the KAB-TTTG promoter and three mutant derivatives:
p16G (an extended 210 element ‘up’ mutant), p34T (a 235 element ‘up’ mutant) and p12C (a 210 element ‘down’ mutant).
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is bound and paused at promoters, and elongating RNAP, to

cognate DNA targets. This appears reasonable as RNAP has

a large molecular mass, and makes intimate contacts with the

DNA template in all three situations.

Our results are consistent with previous observations that

transcript initiation at the lac operon promoter is limited by

RNAP recruitment [20,21]. We believe that this explains, at

least in part, our previous observation that the expression

of a lac promoter::gfp fusion differs according to its location

on the E. coli chromosome [28], because the activity of a pro-

moter that is limited by RNAP recruitment will depend on

the local concentration of available RNAP. Hence, we suggest

that, according to its position on the E. coli chromosome, the

promoter will sample different locations, including locations
where the effective concentration of RNAP is higher or lower.

Consistent with this, a recent live-cell super-resolution

microscopy study of RNAP in E. coli showed that the vast

majority of non-transcribing RNAP molecules that were

‘searching’ for promoters were DNA-bound [34]. Interest-

ingly, we found that Lac repressor-mediated repression of

the lac operon promoter is not dependent on location [28].

From this, we deduce that diffusion of the Lac repressor

ensures that its effective concentration is the same at all

locations within the E. coli cell, whereas diffusion of larger

RNAP molecules is constrained, and this is consistent with

calculations of macromolecular mobility in bacteria [35].

The low measured flux of RNAP through the lac operon is

consistent with previous observations, from both in vitro
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[26,27] and in vivo [36] studies, that the transition of RNAP

from the transcriptionally competent open complexes to

the elongating complex, via the promoter escape phase, is

not simple and can be slow and rate-limiting. We observe

low flux of one RNAP every 18–50 s, irrespective of

whether transcription was being driven by the lac promoter

or by genetically engineered promoters, even when the

promoter is fully occupied. This underscores that promoters,

as well as being drivers of transcription, are also bottle-

necks, and delays to RNAP result in reduced flux through

downstream-transcribed sequences [36,37]. Contributing

reasons for delays include pauses owing to scrunching

[38–40], pauses owing to disengagement of various

RNAP determinants with promoter elements [32,33,41] and

sigma factor-mediated pauses early in the elongation phase

[42,43]. Additionally, it may well be that there are topological

and mechanical reasons why transcribing RNAP molecules

must be well separated, but, to date, these are speculative

and poorly understood.

We are aware that the measured rates of RNAP flow that

we report here are surprisingly low, and depend critically on

estimates of RNA chain growth rates. Hence, it is worth

underscoring that measured in vivo rates of RNA chain

elongation [22–24] are corroborated by single molecule

studies of RNA chain growth in vitro [44], and that previous

estimates of RNAP flux, defined by synthetic biologists in

terms of polymerase per second (PoPS) units, are consistent

with our findings [5,45]. The prime motive for initiating

this project was the need, perceived by the synthetic

biologists, to provide robust characterization for ‘parts’ that

could be used in novel circuits. Taken together, our results

argue that full and robust characterization might not be

possible, and, for many promoters, their ‘performance’ is

context-dependent. Recent insights into transcript initiation

and elongation, confirmed here by the low measured levels

of RNAP flux through the lac operon, contradict the simple

view that promoters are simply devices that ‘feed’ RNAP

into transcription units [37]. Hence, while ‘parts’ such as

the lac promoter have many uses in synthetic biology, their

full exploitation will require considerable extension of our

current knowledge base.
4. Material and methods
(a) Bacterial strains, plasmids and growth conditions
The experiments analysing the flux of RNAP through the chro-

mosomal lac operon were completed using E. coli K-12 strain

MG1655 [46], whereas the synthetic promoter experiments were

conducted using a Dcrp derivative of strain M182 [47], with

the promoter::lac fusion carried on the low copy number

broad host range lac expression vector, pRW50 [31]. Fragments

carrying the different KAB promoter derivatives were previou-

sly described [31,48]. The promoter derivatives are denoted

pNX, where N is the position of the substitution upstream

from the transcript start, and X is the substituted base on the

non-template strand.

For the ChIP assays, triplicate single colonies were used to

inoculate Luria Bertani (LB) media, supplemented with

35 mg ml21 tetracycline, where appropriate, and incubated for

16 h at 378C with aeration. Cells were then subcultured into

fresh media to a final OD650 of 0.03, then incubated at 378C
with aeration until an OD650 of 0.4 was reached. The growth con-

ditions used for fluorescence assays were the same, except M9
minimal media supplemented with 2 mM MgSO4, 0.1 mM

CaCl2, 0.1% casamino acids, 0.3% fructose and 100 mM IPTG

was used [28].

(b) Construction of plasmids, chromosomal
recombination and green fluorescent protein
measurements

To construct the gene doctoring donor plasmids required

to insert the lPL::gfp fusion into the genome of E. coli
MG1655, an oligodeoxynucleotide was synthesized to encode

an EcoRI restriction target site and the lPL G-12 T up-mutant

l leftward promoter fused to the ribosome binding site of the

lacZ gene. This ribosome binding site was used in order to

make the fusion comparable to previously used lac promo-

ter::gfp fusion [28]. This oligonucleotide primer was then used

with a primer downstream of the HindIII site in the pJB plas-

mids to create an EcoRI–HindIII lPL promoter fragment,

which was subsequently cloned into EcoRI–HindIII digested

pJB plasmids containing the appropriate homology regions for

insertion into the chromosomal targets used previously [28].

Insertion of the lPL promoter::gfp fusion into the target chromo-

somal loci was achieved exactly as described previously by the

gene doctoring chromosome recombineering method [28,49],

and fluorescence assays were run using the growth conditions

described above.

(c) Chromatin immunoprecipitation and quantitative
real-time PCR analysis

Chromatin immunoprecipitation (ChIP) and quantitative real-

time PCR (qPCR) were performed as before, using commercial

mouse monoclonal antibody for the RNAP b subunit (Neoclone

no. W0002) to immunoprecipitate DNA cross-linked to RNAP

[8,28,50]. Overnight cultures were used to subculture into

fresh LB to a final OD650 of 0.025, and incubated at 378C,

with aeration, until an OD650 of 0.4 was reached. When

appropriate, rifampicin was added to the culture to a final con-

centration of 50 mM, and incubated for 15 min, which is

sufficient to trap RNAP molecules at promoters [8,9]. Cells

were cross-linked by addition of formaldehyde to a final con-

centration of 1%, and incubated for a further 20 min at 378C.

After the ChIP protocol, immunoprecipitated DNA was quanti-

fied by qPCR, using the Agilent Technologies Stratagene

Mx3005P machine and the Agilent Brilliant III Ultra-fast SYBR

Green qPCR master mix, and this permitted calculation of

RNAP occupancy units for each amplicon. Oligonucleotide pri-

mers were designed to amplify approximately 300 bp regions

with the same PCR efficiency, either at promoter regions or

within the lac operon (primer sequences are listed in electronic

supplementary material, table S1). Control primers were used to

amplify transcriptionally silent control regions. Enrichment of

ChIP samples for RNAP binding was calculated relative to the

transcriptionally silent control regions, as previously described

[50], with the samples from rifampicin-treated cells used to

define 100% occupation.
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