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Abstract

Background:

In the immediate period following stroke, sitting balance is one of the most important predictors 

of functional recovery at discharge after rehabilitation. Thus, sitting balance determines the 

content of the early phase of stroke rehabilitation and an appropriate measurement tool is 

important. 

Research Question:

The aim of this study is to investigate the concurrent validity of center of pressure (CoP) 

excursions of patients seated on a force plate, as well as to examine the daily variability of 

trunk control after stroke. 

Methods:

Twenty stroke patients at an inpatient rehabilitation clinic underwent two assessment sessions, 

on average eight hours apart. Each session comprised two trials: quiet sitting for 30 seconds; 

extended reaching in forward, backward, left and right directions. The Trunk Impairment Scale 

(TIS) was measured during the first session. CoP excursions were measured to determine the 

outcomes of sway area and sway velocity during stable sitting and the maximal excursions in 

frontal and sagittal planes during the reaching tasks. 

Results:

High Spearman’s correlations (0.72, 0.79) were found between the TIS and the frontal and 

sagittal excursions. However, only low correlations between the TIS and the sway area and 

sway velocity were observed. Within sessions, all CoP outcomes showed high ICCs (0.73-

1.00). Between sessions, high ICCs (0.86-0.93) were found except for sway velocity (ICC 

0.51). Sway velocity increased significantly between sessions. 

Significance:

Frontal and sagittal CoP excursions during reaching tasks appear to be valid measurement 

parameters to evaluate trunk control in patients after stroke. Only small variability was 

observed and no significant differences between consecutive days.
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Introduction

In the immediate period following stroke, sitting balance is one of the most important predictors 

of functional ability at discharge after rehabilitation [1]. This could be because unsupported 

sitting requires postural stability of the trunk, which is also a precondition of many other daily 

activities, e.g. getting up from a chair, standing, walking, reaching, bending or resisting any 

perturbation [2]. Postural stability is defined as the ability to maintain equilibrium by keeping or 

returning the center of body mass over its base of support [3]. Past research on sitting balance 

after stroke has generally used global clinical measurement tools, e.g. the Trunk Control Test 

(TCT) [4, 5], the Trunk Impairment Scale (TIS) [6], the Postural Assessment Scale for Stroke 

Patients (PASS) [7] and the Fugl-Meyer Test [8]. Although these tools are able to evaluate 

major impairments of the trunk, they have significant limitations. The outcomes of these 

assessments depend on experience and training of the examiner [9] and provide only ordinal 

scaled data. In addition, they are unable to quantify postural behavior during undisturbed sitting 

with precision and without a ceiling effect [10, 11]. Optoelectronic measurement systems would 

overcome these limitations and are recognized reference-standards for non-invasive analysis 

of trunk movement within research settings [12]. However, their application in daily clinical 

practice is limited by their high cost, required installation space, and time-consuming data 

capture, analysis and processing. Alternatives such as inertial measurement unit systems may 

be prone to local magnetic field disturbances [13]. These factors limit the analysis to some 

standard procedures, which cannot be extended to clinics [14].

Thus, objective measures of postural control, such as force plates, have been used to record 

continuous and interval scaled outcome data through measuring center of pressure (CoP) 

excursions [15-20]. However, few studies have used force plates to evaluate sitting balance in 

stroke patients [2, 9, 21]. The daily variability of patients’ trunk control after stroke has not yet 

been examined, to the best of our knowledge. This daily fluctuation in trunk control can be a 

debilitating aspect of stroke rehabilitation and influence the content of rehabilitation planning. 

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118



3

Whether CoP excursions represent a clinically meaningful measure of trunk control during 

quiet sitting (sway area, sway velocity) or during seated reaching tasks (sagittal and frontal 

excursions) remains uncertain.

This study focuses therefore on trunk control and measures the excursions of the CoP during 

quiet sitting and seated reaching tasks. To evaluate whether these measures are valid in 

determining trunk control, a comparison with the TIS is also made. The TIS is a comprehensive 

tool to measure motor impairment of the trunk after stroke [6] and has shown an excellent 

overall test-retest (Intraclass correlation coefficient (ICC)=0.96) and interrater reliability 

(ICC=0.99), as well as a high correlation with the Barthel Index (Spearman’s rank correlation 

coefficient (rs=0.86)) and the TCT (rs=0.83) [6]. The Barthel Index evaluates a patient's state 

of independence [22] and the TCT assesses the motor impairment of the trunk [5]. However, 

the TIS does not record objective, continuous, and interval scaled data on quiet sitting or 

reaching and shows a ceiling effect when measuring static sitting balance [11]. Likewise, it can 

only be partially recommended to measure changes over time [6]. Therefore, the study has 

two main aims: to investigate the concurrent validity of CoP excursions in measuring trunk 

control in stroke patients during seated tasks and to examine the daily variability in trunk control 

of stroke patients. 

Methods

Participants

Twenty participants (mean age 75 ± 10 years) meeting the criteria in Table 1 were included 

in this study. Participation was, on average, 35 ± 23 days post stroke and the mean interval 

between sessions was 8 ± 7 hours. Based on an expected reliability coefficient of 0.8, a 

significance level of 0.05 and power of 0.8, a sample size of 20 participants was required 

[23]. All participants gave their oral and written informed consent prior to data collection. The 

study was approved by the local ethics committee (KEK Nr. 2016-00885) and conducted 

according to the Declaration of Helsinki [24].
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Testing procedure

CoP excursion was measured using two force plates (SPS-Kraftmessplatten MLD Station Evo 

5, SPSportdiagnosegeräte GmbH, Trins, Austria) and a sampling rate of 1000 Hz. A wooden 

board, on which the subjects sat, was placed on top of the force plates to cover the small gap 

between the force plates and, therefore, to enable comfortable sitting. Only the corners of this 

board were in contact with the force plates at predetermined locations that allowed a correct 

estimation of the CoP excursion. The force plates were positioned on a rigid table that could 

be electrically adjusted in height. To calibrate the force plates for each patients’ measurement 

session, all forces were set to zero during a reference measure (wooden board without patient, 

average between pre and post measures of each session). The patients performed three tasks 

in fixed order: Quiet sitting, reaching in frontal plane, and reaching in sagittal plane. Patients 

were instructed to sit on the wooden board as quietly as possible for 30 seconds without back 

support, feet not touching the ground and hands placed on the abdomen. Following this, they 

were asked to sit and reach out as far as possible to the front and back (sagittal plane) and to 

the left and right (frontal plane), at their own preferred speed (Figure 1). The feet were not 

allowed to touch the ground to avoid balance reactions using the lower extremities. A test trial 

of the reaching task was undertaken in advance to ensure that the instructions were clear. 

Each of the three tasks was executed immediately after the test trial. One experienced 

physiotherapist visually judged the correct task execution, focusing on the correct movement 

direction. If a patient executed a task incorrectly, the instruction and the task were repeated. 

This whole test procedure (2x3 tasks) was repeated within four to thirty hours. At the first 

measurement session, an experienced physiotherapist also scored the TIS [6] to judge the 

trunk impairment of the stroke patients.

Signal processing 

Prior to calculating the outcome variables, the signals of the CoP were filtered by a fourth-

order, zero-phase, low-pass, Butterworth filter. To establish an optimal cut-off frequency (fc), 

the signals were filtered with 300 different fc, ranging from one to 300 Hz. Then, a random-
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effects model with three fully crossed random effects (participants, repetition and day) and 

their interactions was fitted for each outcome variable (see section “Study outcomes”) and fc. 

The optimal fc was established by maximizing the R-squared (R2) of the random-effects 

models. A detailed description of this procedure is provided elsewhere [25]. For sway area, the 

signal was additionally divided into a varying number of sections (nsection), ranging from one to 

four (1x30 s, 2x15 s, 3x10 s and 4x7.5 s). Random-effects models were then calculated for 

each combination of fc and nsection. Again, the optimal combination was established by 

maximizing R2. This procedure revealed an optimal fc of 16 Hz for frontal and sagittal excursion, 

33 Hz for sway velocity and 288 Hz for sway area with dividing the whole trial into two sections. 

All calculations were made with MATLAB (MathWorks, USA). Labview (National Instruments, 

USA) was used to record data and provide the visual representation.

Study outcomes

The following outcomes were selected on the basis that they are commonly computed CoP 

measures [26].

Quiet sitting:

Sway velocity (mm/s):

Sway velocity was defined as the average velocity of CoP and was calculated as the total 

CoP path length over the time of the trial (30 seconds). 

Sway area (mm2):

The trial was divided into two sections (2 x 15 seconds). The sway area was then computed 

separately for each section by drawing a 95% confidence ellipse for a set of 2D normally 

distributed data samples [27] and calculating the area of that ellipse. The two sway area 

outcomes were averaged to obtain the mean measured sway area for each trial.

Reaching in frontal and sagittal plane:

Frontal and sagittal excursions (mm):

The ability to reach to the furthest extension in the frontal and sagittal planes is quantified by 
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the difference between the maximal and minimal CoP excursion in the mediolateral and 

anteroposterior directions, respectively. The total excursion was calculated by summing the 

excursions of both tasks.

TIS (number of points):

The TIS is a rating sheet that is divided into three sections: static (three items), dynamic (ten 

items) and co-ordination (four items). Each item is rated between zero to three points, 

depending on the task. An overall maximum of 23 points is achievable. The greater the 

number of points, the better the trunk control of the patient [6]. The sub-scores of the static 

and dynamic sections and the total score were calculated for each patient. The TIS is a well-

established test and benchmark for postural control against which this novel procedure was 

tested. However, the testing procedure does not replicate the TIS but was developed to 

measure trunk control while minimizing the influence of the functional status of the patients’ 

lower extremities.

Statistical Analysis

Means of the two repetitions per session were calculated for all CoP outcomes (sway velocity, 

sway area, frontal excursion, sagittal excursion, and total excursion) for each subject. These 

means enabled determination of the ICCs (3,1), their 95%  confidence intervals (CI) [28] and 

differences between sessions. Additionally, all outcomes and computed means were tested for 

normal distribution, using the Shapiro-Wilk method. Where the data was not normally 

distributed (p<0.1) [29], a logarithmic transformation was applied.

Concurrent Validity

To assess concurrent validity, rs and their 95% CI were used to determine correlations 

between the mean of the first session CoP outcomes and the score of the TIS (total, static 

and dynamic scores). A correlation between two tests on the same attribute should fall within 

the midrange of 0.4-0.8 [30]. A lower correlation suggests either that the reliability of one of 

the tests is unacceptably low, or that they are measuring different phenomena. A greater 

correlation would suggest that both tests might be interchangeable [30].
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Variability

The differences within sessions, (first session: repetition two – repetition one; second 

session: repetition four – repetition three) and between sessions (mean second session – 

mean first session) were calculated. The minimal accepted level of the ICC was set at 0.7 

[31]. Central tendencies of all CoP outcomes were compared and tested for statistically 

significant differences within sessions and between sessions, using the Wilcoxon-Signed-

Rank-Test. All data was collected and analyzed using IBM-SPSS Statistics Version 24 (IBM, 

USA). The significance level was set at p<0.05.

Results

All patients completed the test procedure on both measurement sessions. Thus, there were 

no missing data. The median, lower, and upper quartile outcomes of trials one to four, as well 

as the mean results from session one and session two, are presented in Table 2. 

Concurrent Validity

The Spearman’s rank correlation coefficients and 95% CI between the TIS and the CoP 

outcomes are illustrated in Table 3. Generally, stronger correlations between the TIS and the 

frontal and sagittal CoP excursions (rs=0.57-0.80) were seen than between the correlations 

of the TIS and the CoP sway area or sway velocity (rs=-0.42-0.18).

Variability

Because not all differences were normally distributed, the median, lower and upper quartiles 

of the differences within sessions and between sessions are listed in Table 2. The only 

significant difference, according to the Wilcoxon-Signed-Rank-Test (p=0.03), was found 

between the mean sway velocities of sessions one and two. Within session and between 

session ICCs and 95% CI are presented in Table 4. All ICCs and lower values of the 95% CI 

of the frontal and sagittal CoP excursions were above 0.7. Slightly lower ICCs (0.73-0.86) and 

unacceptably low values of the 95% CI (0.43-0.68) were shown for the sway area. Sway 

velocity revealed excellent within session ICCs (95% CI of 0.97-1.00) and an unacceptable 

between session ICC of 0.51 (95% CI of 0.10-0.87).
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Discussion

The purpose of this study was to investigate the concurrent validity of commonly used CoP 

outcomes (sway velocity, sway area, frontal excursion, sagittal excursion and total excursion) 

designed to measure trunk control of stroke patients in sitting and to examine the daily 

variability of trunk control.

To evaluate the concurrent validity of the selected trunk control CoP outcomes, they were 

compared with the TIS. Most of the Spearman’s rank correlations between the CoP outcomes 

and the TIS fell into the midrange of 0.4-0.8. The highest Spearman’s rank correlation was 

found between the total points of the TIS and the total excursion in the combined sagittal and 

frontal planes. This is not surprising because the maximal excursion in both planes combines 

two tasks, reflecting trunk control in four directions: forward, backward, left and right. 

Interestingly, the total number of points of the TIS mostly showed stronger correlations with 

the CoP measures than only parts of the TIS. This might be due to the isolated interpretation 

of the subscales of the TIS. It was expected that the dynamic part of the TIS would show 

stronger correlations with the frontal and sagittal excursions and that the static part of the TIS 

would show stronger correlations with the quiet sitting parameters. The negative correlation 

between the TIS and the sway area was as expected, with more movement on the force plate 

indicating less trunk control [2, 9]. The low correlation between TIS and sway area, as well as 

sway velocity, could be because they are not measuring the same phenomena. It is 

conceivable that a rating sheet is unable to quantify the small movements of quiet sitting, as 

few parameters can be quantified during quiet sitting. This could explain the low correlation 

between TIS, and sway velocity respectively sway area. For this situation, a force plate could 

be a useful tool because it measures continuous data, recording even small changes, 

compared to a rating sheet that has a maximum of 23 achievable points. However, the 

relationship between sway velocity and area with trunk control is rather complex and requires 

further research. It seems reasonable that a small sway area corresponds to increased trunk 

control, since the probability of the CoP remaining within the base of support is increased, 

which is the definition of postural stability [3]. A high sway velocity could be interpreted either 
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as increased trunk control, due to the many functional adaptations required to react to 

perturbations, or as decreased trunk control due to the fast and large excursions of the CoP. 

However, also a non-linear, perhaps U-shaped, relationship between CoP outcomes and trunk 

control is possible where both low and high values of CoP outcomes could indicate different 

forms of trunk control impairment [32]. This hypothesis is supported by studies from other 

patient populations, such as Parkinsons disease, elderly fallers, and non-specific low back 

pain, and warrants further investigation in stroke patients [32-35].

To determine daily variability, differences and ICCs were examined. Differences were found 

within both sessions one and two, even though the trials followed straight after each other. A 

negative sign in the median differences within sessions means that the central tendency of the 

second trial was lower than the first. Hence, the negative median difference of the frontal 

excursion within session two could be due to, for example, tiredness. On the other hand, a 

positive value of the median difference could be due to learning. The opposite interpretation 

can be applied to the sway area because the larger the area, the less the trunk control [9]. The 

outcomes, however, showed no significant differences and, therefore, might be due to 

coincidence. The only significant difference was shown between the median sway velocities 

of sessions one and two (Table 2). Between session differences are most likely due to the 

varying state of health of the patient, or due to measurement error. Since the time interval 

between the sessions was short, a learning effect can be assumed and is to be expected within 

sessions. Unlikely, but also possible, is an improvement occurrence in sitting balance.

All ICCs of the sway area showed values of 95% CI below 0.7. This is not surprising if we look 

at the distribution of the outcomes. The sway area, as well as the sway velocity, showed 

smaller interquartile ranges (upper quartile – lower quartile) compared to the frontal and sagittal 

excursions. The lower the between-participant variability, the lower are the ICCs [36]. The 

generally lower ICCs between sessions, compared with within sessions, was not unexpected. 

The larger time intervals between the sessions can lead to a difference in the state of health, 

or, less likely, an improvement in sitting balance over time. This is especially striking in sway 
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velocity. Sway velocity could possibly be more sensitive to day-to-day fluctuations, an early 

indicator of improvements in sitting balance, or simply a sensitive outcome to signal noise and 

small changes in the measurement setup. The distinction between measurement error and 

functional improvements should be investigated in a responsiveness study. Previous studies 

have shown comparable results. In able-bodied children, Lacoste et al. measured mean CoP 

excursion during quiet sitting of 7.2 mm in sagittal plane and 5.8 mm in frontal plane, which 

would be a comparable calculated area of about 41.8 mm2 [37]. ICCs of 

0.61 (CI=0.35-0.83) and 0.50 (CI=0.16-0.73) were observed in their study. These can be 

considered as lower correlations compared to the identified ICCs and CI of the sway area in 

this study [37]. Their reaching task outcomes cannot be compared to our study because of 

differences in execution. Nichols et al. examined the ICCs of comparable tasks in stroke 

patients, as well as healthy subjects, but the center of force data was expressed as a percent 

change in body weight distribution [38]. Through measuring three sessions of two repetitions, 

with each session two weeks apart, they showed different within session ICCs for each 

session. Patients after stroke showed comparable within session ICCs in frontal excursion 

(0.76-0.95) and lower ones in reaching forward (0.82, 0.53, 0.71) compared to the ICCs of the 

sagittal excursion (0.95, 0.92). In the steady sitting position, the within session ICCs varied 

considerably between each session (0.30, 0.75, 0.43) and are mostly lower than the within 

session ICC of the static CoP outcomes. Healthy subjects showed generally high within 

session ICCs (0.86-0.96), which is surprising due to lower between-participant variability in the 

measurements [38]. It appears that the CoP excursions in the sagittal and frontal planes, as 

well as the sway velocity and sway area, show better correlations and, therefore, might be a 

more reliable outcome measure than the percent change in body weight. Future studies should 

address properties such as the minimal clinically important difference of CoP measures.

Some limitations may have biased our results. Firstly, the time interval between the 

measurement sessions differed allowing activities between sessions to vary between patients. 

In consequence, different states of health are to be expected. Secondly, we did not have 
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information on previous therapy that patients had received or the communality of the tasks. 

Patients who had never previously executed reaching tasks could have shown a larger learning 

effect between the repetitions, resulting in lower ICCs and bigger differences. The third 

limitation of this study is the limited external validity due to the inclusion and exclusion criteria. 

Only patients who were able to understand that they were participating in a research study and 

could sign a consent form were included. Many stroke patients have high cognitive limitations, 

and cannot consequently be included in the study; therefore, external validity is limited. 

Choosing an appropriate filtering technique is a compromise between loss of information and 

allowing noise through. We could possibly have missed small fragmentations of movement 

that might have influenced the validity and variability. Future studies should address options 

that might conserve such information. The test schedule matched the patients’ rehabilitation 

program, resulting in long between measurement intervals, excluding a daily interval of 

examination in some patients. Therefore, improvements of postural control might have 

influenced the results. The patients’ rehabilitation program had to continue as planned, so it 

was not possible to schedule both tests at the same daytime. Consequently, intersession 

changes due to tiredness might have influenced the results.

Conclusion

The frontal and sagittal excursions during reaching tasks measured by a force plate seem to 

be valid parameters for the evaluation of trunk control in patients after stroke. Low variability 

between measurements was found (no significant differences and high ICC within sessions 

and between sessions). Although sway velocity and sway area generally showed high ICCs, 

only low, or no, correlation with the TIS was seen. Thus, validity was not confirmed. Further 

research is required to determine whether sway area and sway velocity are valid outcomes for 

measuring steady sitting. Comparison with a healthy control group would be interesting and 

responsiveness should be evaluated.
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Figure 1. Frontal and sagittal excursions on the force platform



Table 1.

In- and exclusion criteria. The aim of these criteria was to include only those patients who were 

able to perform the tasks on the force platform and understand the instructions of the TIS, but 

who were nevertheless affected in their balance capacity.

Inclusion Criteria Exclusion Criteria
The patient was hospitalized at a 

rehabilitation center

The patient was younger than 55 years of 

age

The patient was unable to walk, or walk only 

with the assistance of a walker , lift walker 

or walking frame

The patient was not capable of 

understanding or executing the testing 

procedure

The patient understood instructions and 

could execute them adequately

The patient was more than three months 

post stroke

The patient was unable to sit for 30 seconds 

without back support and ground contact



Table 2.
Descriptive statistics: Median, lower (Q1) and upper quartile (Q3) for all CoP outcomes of trial 1-4, 
session 1 (mean of trial 1 and 2) and session 2 (mean of trial 3 and 4), differences (Ddiff.) within session 
1 (mean trial 2 - mean trial 1), differences within session 2 (mean trial 4 – mean trial 3), and between 
session differences (mean session 2 – mean session 1). Significant differences between trials and 
between sessions according to Wilcoxon-Signed-Rank-Test are marked.

Quiet sitting Reaching in frontal and sagittal plane

Sway
velocity
(mm/s)

Sway
area
(mm2)

Frontal excursion
(mm)

Sagittal 
excursion
(mm)

Total excursion
(mm)

Median 
(Q1, Q3)

Median
(Q1, Q3)

Median 
(Q1, Q3)

Median 
(Q1, Q3)

Median 
(Q1, Q3)

Trial 1 67
(53, 76)

48
(28, 84)

160
(111, 219)

183
(145, 266)

340
(262, 437)

Trial 2 67
(53, 77)

43
(21, 72)

167
(110, 218)

198
(138, 237)

322
(256, 449)

Trial 3 79
(63, 106)

46
(29, 73)

167
(134, 220)

180
(158, 279)

354
(297, 457)

Trial 4 80
(62, 110)

36
(24, 59)

157
(117, 215)

196
(165, 269)

364
(271, 441)

Mean
Session 1

67 
(53, 77)

47
(26, 82)

166
(112, 217)

185
(143, 237)

323
(253, 445)

Mean
Session 2

79 

(63, 108)
43
(28, 71)

165
(121, 217)

186
(164, 275)

355
(286, 442)

Diff. 
session 1

0
(-1, 1)

-8
(-16, 6.)

0
(-19, 9)

8
(-9, 26)

5
(-18, 27)

Diff. 
session 2

2
(-2, 4)

-4
(-13, 2)

-8
(-24, 5)

1
(-11, 12)

-3
(-31, 12)

Between 
session 
diff.

6 a
(-2, 40)

2
(-7, 13)

2
(-20, 23)

-5
(-22, 6)

12
(-35, 36)

a Wilcoxon-Signed-Rank-Test: significant difference between session p<0.5



Table 3.
Results of concurrent validity: Spearman’s rank correlation coefficient (rs) and 95% confidence interval 
(CI) between the Trunk Impairment Scale (TIS) (total points, points of the static part, points of the 
dynamic part) and the different CoP outcomes (sway velocity, sway area, frontal excursion, sagittal 
excursion, total excursion).

Quiet sitting Reaching in frontal and sagittal plane

Sway 
velocity
(mm2)

Sway area
(mm/s)

Frontal 
Excursion
(mm)

Sagittal 
Excursion
(mm)

Total 
Excursion
(mm)

rs (95% CI) rs (95% CI) rs (95% CI) rs (95% CI) rs (95% CI)

TIS 
(Total points)

0.13
(-0.32-0.53)

-0.42
(-0.72-0.03)

0.79
(0.52-0.91)

0.72
(0.39-0.88)

0.80
(0.53-0.92)

TIS 
(Static points)

0.18
(-0.28-0.57)

-0.30
(-0.65-0.16)

0.57
(0.17-0.80)

0.66
(0.29-0.85)

0.62
(0.22-0.83)

TIS 
(Dynamic points)

0.12
(-0.33-0.52)

-0.36
(-0.68-0.10)

0.71
(0.38-0.87)

0.62
(0.22-0.83)

0.70
(0.35-0.87)
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Table 4.
Intraclass correlation coefficient (ICC) and 95% confidence interval (CI) within sessions (between trials 
1 and 2 respectively trials 3 and 4) and between sessions (between mean of session 1 and mean of 
session 2) of all variables of CoP excursion

Within session 1
ICC (95% CI)

Within session 2
ICC (95% CI)

Between sessions
ICC (95% CI)

Quiet sitting

Sway velocity 
 (mm/s) 1.00 (0.99-1.00) 0.99 (0.97-1.00) 0.51 (0.10-0.87)

Sway area 
(mm2) 0.81 (0.59-0.92) 0.73 (0.43-0.88) 0.86 (0.68-0.94)

Reaching in frontal and sagittal plane

Frontal excursion 
(mm) 0.95 (0.88-0.98) 0.92 (0.81-0.97) 0.88 (0.71-0.95)

Sagittal excursion 
(mm) 0.95 (0.88-0.98) 0.98 (0.95-0.99) 0.93 (0.82-0.97)
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