
Proceedings of VarDial, pages 194–201
Minneapolis, MN, June 7, 2019 c©2019 Association for Computational Linguistics

194

TwistBytes - Identification of Cuneiform Languages and German Dialects
at VarDial 2019

Fernando Benites
benf@zhaw.ch

Zurich University of
Applied Sciences,

Switzerland

Pius von Däniken
vode@zhaw.ch

Zurich University of
Applied Sciences,

Switzerland

Mark Cieliebak
mc@spinningbytes.com

SpinningBytes AG,
Switzerland

Abstract

We describe our approaches for the Ger-
man Dialect Identification (GDI) and the
Cuneiform Language Identification (CLI)
tasks at the VarDial Evaluation Campaign
2019. The goal was to identify dialects of
Swiss German in GDI and Sumerian and
Akkadian in CLI.

In GDI, the system should distinguish four
dialects from the German speaking part of
Switzerland. Our system for GDI achieved
third place out of 6 teams, with a macro av-
eraged F-1 of 74.6%. In CLI, the system
should distinguish seven languages written in
cuneiform script. Our system achieved third
place out of 8 teams, with a macro averaged
F-1 of 74.7%.

1 Introduction

The 6th Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial 2019) included an
evaluation campaigns with five shared tasks with
the goal to find approaches which can differenti-
ate dialects in various languages. We describe our
solutions for two sub-tasks: German Dialect Iden-
tification (GDI) and Cuneiform Language Identi-
fication (CLI).

GDI The GDI task (Zampieri et al., 2019) had
the goal to classify sentences into four dialects
of Swiss German. Each sentence was transcribed
and annotated with the dialect area of the speaker
(Bern, Basel, Lucerne, and Zurich). No additional
information other than the task data should be used
(closed submission). The task was a continuation
of similar shared tasks in previous years (Zampieri
et al., 2018).

In the German speaking part of Switzerland,
there exist many dialects which are quite differ-
ent, and speakers of one dialect might even have
difficulty understanding dialects of regions not far

away. There is no standardized writing for Swiss
German.

The identification of dialect based on text is a
challenging task, especially if there is no standard-
ized written form of the dialects. First of all, tran-
scribing audio signals to text is highly ambiguous
and can be very subjective. Even with detailled
transcription guidelines, the resulting text can dif-
fer significantly among annotators. This subjec-
tivity of the annotations manifests in similar tasks
such as in labelling multi-label samples (Benites,
2017). Another problem is that for short sentences
there is little text which could point to a dialect.
A good example can be found in the GDI dataset,
which contains samples“jaja jaja” and “jaja ja ja”.
Both roughly translate to “yes yes“ or “indeed“,
and both mean the same for Swiss German speak-
ers. The first is labelled with Lucerne dialect,
while the second is labeled with Zurich dialect.
Therefore these samples are easily misclassified.
To cope with this issue, i-Vectors were provided
by the organizers this year (see Section 3.2.4).

CLI The CLI task (Jauhiainen et al., 2019) is
new to VarDial and consists of classifying texts
written in cuneiform script into Sumerian or one
of six dialects of Akkadian: Old Babylonian,
Middle Babylonian Peripheral, Standard Babylo-
nian, Neo-Babylonian, Late Babylonian, and Neo-
Assyrian. Cuneiform is one of the oldest known
writing systems and has been used for 3,000 years
by different cultures around Mesopotamia.

Our Solutions We describe in this paper the ap-
proaches taken by our team TwistBytes. The GDI
system is an updated version of our solution for
the previous year’s competition (Benites et al.,
2018). We improved several parameters and ex-
tended it to use semi-supervised learning and i-
Vectors. For the sake of completeness, we reca-
pitulate the base system description in Section 3.2,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/286342648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


195

and then describe the applied modifications. This
system achieved 3rd place among 6 participants at
GDI, with a macro averaged F-1 of 74.6%.

For CLI, we use a linear SVM as classifier with
character n-gram features and include perplexities
from character n-gram language models as addi-
tional features. This system achieved 3rd place
among 8 participants at CLI, with a macro aver-
aged F-1 of 74.7%.

2 Related Work

The central focus of the evaluation campaign at
VarDial is to properly identify dialect of various
languages. For GDI, there have been two previous
editions of the shared task, which laid the basis for
dialect identification in Swiss German (Zampieri
et al., 2017, 2018). Solving this problem can have
a positive impact on many tasks, e.g. for POS-
tagging of dialectal data (Hollenstein and Aepli,
2014), for compilation of German dialect corpora
(Hollenstein and Aepli, 2015), or for automatic
speech recognition of Swiss German.

Many studies tackled the problem of language
and dialect identification for other languages, cre-
ating a noticeable amount of related work, de-
scribed in short in the evaluation campaign reports
and (Jauhiainen et al., 2018b). A typical approach
uses SVMs with different feature extraction meth-
ods. The use of character language models for
language identification has previously been stud-
ied by (Vatanen et al., 2010).

Our approach is most similar to MAZA, which
was proposed at VarDial 2017 (Malmasi and
Zampieri, 2017b). MAZA uses Term Frequency
(TF) on character-n-grams and unigrams for word
features to train several SVMs. Then it uses a
Random Forest meta-classifier with 10-fold cross-
validation on the predictions of the SVMs. We ex-
tended this approach and used Term Frequency-
Inverse Document Frequency (TF-IDF) on word
and on character level. We used an SVM as meta-
classifier, and we did not concatenate the output of
the base classifiers but summed them. Similar to
(Malmasi and Zampieri, 2017a) we used a single
SVM classifier for the i-Vectors. More details are
given in Section 3.2.

3 Data and Methodology

3.1 Task Definition
The task of GDI is to classify a transcribed sen-
tence from the ArchiMob data set (Samardžić

et al., 2016) into one of four classes of Swiss
German dialect. Each class represents a dialect
area of Swiss German: Bern (BE), Basel (BS),
Lucerne (LU) and Zurich (ZH). Since the dialects
are very different from Standard German, the sen-
tences are transcribed using the guideline book by
Dieth (Dieth and Schmid-Cadalbert, 1986). It is
a phonetics oriented transcription method but it is
orthographic and is partially adapted to standard
German spelling habits and alphabet. As such
it loses some of the precision and explicitness of
phonetic transcription methods such as the Inter-
national Phonetic Alphabet. We expected there-
fore that character-based and error tolerant meth-
ods will perform best, since different spellings of
the same word might occur.

Table 1 shows the number of sentences in the
training set, the validation set, and test set per di-
alect area. The training set was slightly changed
in comparison to the one from last year. The val-
idation set was the test set of 2018 GDI shared
task. The sentence distribution is almost evenly
balanced over all four dialect areas.

One peculiarity that occured in the data of last
year was the ambiguity of labels for identical sen-
tences, i.e. that multiple sentences with identi-
cal transcriptions had different labels. This was
not the case when looking at the training and val-
idation set in isolation1. Only when both were
merged, the sentence ”i däre ziit” was labelled
as originating from Zurich in the training set and
from Basel in the validation set. We expected that
i-Vectors would help solving these kinds of ambi-
guities.

GDI dataset information
Set BE BS LU ZH Total

Train 3750 3268 3390 3870 14278
Validation 1053 1528 1016 932 4529

Test 4742

Table 1: Number of instances per dialect area for GDI
dataset

For the Cuneiform Language Identification
task, CLI (Jauhiainen et al., 2019), we have to dis-
tinguish Sumerian (SUX) and six variants of the
Akkadian language: Old Babylonian (OLB), Mid-
dle Babylonian Peripheral (MPB), Standard Baby-
lonian (STB), Neo-Babylonian (NEB), Late Baby-

1However, some sentences were on a character level very
close, as pointed out in the Introduction.



196

CLI dataset information
Train Validation Test

LTB 15947 668
MPB 5508 668
NEA 32966 668
NEB 9707 668
OLB 3803 668
STB 17817 668
SUX 53673 668
Total 139421 4676 6895

Table 2: Number of instances for CLI dataset

lonian (LTB), and Neo-Assyrian (NEA). Table 2
shows the distribution of labels per language in
the dataset. The texts are all written in cuneiform
script and provided as their Unicode representa-
tion. Since the different language variants are
spread over multiple centuries, we assumed that
the symbols in use differ across them. Table 3
shows the Jaccard Similarity (Jaccard, 1902) be-
tween the sets of unique symbols used by every
language computed on the training set. Sumerian
is the most dissimilar in its use of symbols com-
pared to the other languages. This was to be ex-
pected, as it is the only language not in the Akka-
dian language family. We expect that dialects with
lower similarity in symbol use can be easier dis-
tinguished, which was our motivation to use lan-
guage modeling as part of the classification sys-
tem.

3.2 System Definition TB-Meta for GDI

In this section, we describe our approach for
GDI in detail. One part (meta crossvalidation) is
based on the system from (Malmasi and Zampieri,
2017b) but extended in several ways. A previous
version was already described in (Benites et al.,
2018). The key improvements this year are the op-
timization of the preprocessing and and the feature
extraction, a new preprocessing step between base
classifier and meta-classifier, and using an SVM
as meta-classifier. This year we extended our
approach for GDI to also use a semi-supervised
method.

We observed that much of the recognition can
be performed on character level, where character
bigrams can provide a key insight, while demon-
strating a high efficiency. The four processing
steps of the system are: a) to preprocess the sen-
tences, b) extract features from them, c) classify

with a base classifier and d) pass the predictions
to a meta-classifier which, in turn, provides the
final prediction. This year, we were additionally
provided with i-Vectors. These represent impor-
tant new features, especially given the fact that
there are only few speakers per label set. That
means that if we can identify the speaker and the
spoken dialect at least once with high confidence,
we can easily label the other sentences spoken by
them. Here especially, we expect that the semi-
supervised approach improves the overall perfor-
mance.

3.2.1 Preprocessing
The basic preprocessing step was to split the sen-
tences in words by using white-spaces and con-
vert them to lower case. No stopword removal
or lemmatization was performed since these steps
might erase any traces of key features for differen-
tiating between the dialects (see (Maharjan et al.,
2014)). Afterwards multiple feature extraction
methods were applied, as explained in the next
section.

3.2.2 Feature Extraction
In this edition of the VarDial GDI task, we were
provided with i-Vectors in addition to textual fea-
tures. This leads to the following observation: the
textual feature vectors are very sparse, as the aver-
age word occurrence is 7.4±4.16 per sentence in
the training set, whereas the i-Vectors are dense.
This has the effect that the SVMs need to cope
with multi-modal features with different density
and that was the main reason why we used a sepa-
rate SVM for the i-Vectors.

We use Term Frequency (TF) with n-grams for
characters and words for n ranging from 1 to 7.
An additional preprocessing for the classifiers em-
ployed (see Section 3.2.3) is to normalize the TF
values, at least per sentence, which in some cases
can improve prediction quality. Also, we calcu-
lated the TF-IDF (Manning et al., 2008), which
usually gives the best single feature set for predic-
tion quality.

For the feature extraction, we mainly used the
scikit-learn2 package with one modification: We
also used a custom character bigram analyzer (re-
ferred to later as CB) in order to produce character
bigrams without spaces, since the standard imple-
mentation considers all characters in the text in-
cluding the spaces, especially at the beginning and

2http://scikit-learn.org



197

LTB MPB NEA NEB OLB STB SUX
LTB 1.00 0.71 0.80 0.77 0.72 0.71 0.53
MPB 0.71 1.00 0.65 0.68 0.71 0.57 0.43
NEA 0.80 0.65 1.00 0.85 0.70 0.82 0.61
NEB 0.77 0.68 0.85 1.00 0.71 0.81 0.60
OLB 0.72 0.71 0.70 0.71 1.00 0.62 0.46
STB 0.71 0.57 0.82 0.81 0.62 1.00 0.70
SUX 0.53 0.43 0.61 0.60 0.46 0.70 1.00

Table 3: Jaccard similarities between the sets of symbols used per language in the training set of CLI

end of a word3. We employed TF-IDF not only on
word level but also on character level.

Each of the feature extraction methods from the
texts served as a separate feature set which was
processed by a base classifier. The entire list is: TF
word n-grams (TF-W), TF character n-grams (TF-
C), TF-IDF words (TF-IDF-W), custom bigrams
analyzer (CB-C), TF-C normalized to range from
0 to 1 (TF-C-N) and TF-IDF character n-grams
(TF-IDF-C).

Additionally, i-Vectors were used to extract
characteristics about the speaker from the audio
signal. These were provided by the task organiz-
ers. They are basically a simplified variant of the
joint factor analysis (Chen et al., 2014) which as-
sured the anonymity of the speakers. As in (Suh
et al., 2011), we also normalized the i-Vectors to
unit length for better performance based on experi-
ments on the validation set. We used them as input
features to a separate base classifier (along with
the extracted text features), that is each textual fea-
ture had their separate classifier and likewise the
i-Vectors, only the output of the classifiers were
merged.

3.2.3 Classifiers
Last year edition of GDI (Zampieri et al., 2018)
showed that concatenating textual features for
SVM produced worse prediction quality than the
use of ensemble classifiers. We use the ensem-
ble S-Classifier, which sums the predictions of the
base classifiers and gives as input to a linear SVM
(see Figure 1), and achieved considerably good re-
sults in GDI.

Meta Crossvalidation Classifier We used a
two-tier meta-classifier bottom-up with crossval-
idation (referred to as TB-Meta) to eliminate the

3This can also be probably implemented with sklearn set-
ting the analyzer to ”char wb” but we did not evaluate the
differences in implementations.

SVM

TF-IDF-W

SVM

TF-W

SVM

CV-C

SVM

TF-C-N

SVM

TF-IDF-C

Sentence

SVM

S-Classifier

Figure 1: TB-Meta classifier workflow, with S-
classifier and textual features

need for parameter/weighting search. The work-
flow of the system is depicted in Figure 1. First an
input sentence is preprocessed, then the features
are extracted and passed to the base classifiers, one
classifier per feature set. The predictions of the
classifiers are summed (S-Classifier output), and
these intermediate predictions are passed to a last
classifier (meta-classifier) that decides about the
final label. The second level of the procedure also
ensures that the class interdiscrimination is im-
proved. Further, each base classifier prediction is
then weighted by the meta-classifier. That means
a weighting scheme and time-consuming parame-
ter search is not needed anymore. For a detailed
description please see (Benites et al., 2018).

Semi-Supervised Learning After the training,
we augmented TB-Meta with a semi-supervised
learning similar as in (Jauhiainen et al., 2018a).
This approach consists of classifying the unla-
belled test set with a model based on the training
data, then selecting the predictions with the high-
est confidence and using them as new additional
(weak) labelled training samples. The method can
be very useful if there are few training samples and
a test set with out-of-domain data is expected. Our
approached consisted of setting a threshold for the
confidence output of the SVM (fitted with regres-



198

sion) to 0.9 and in each iteration decreasing it by
i
20 where i is the number of the iteration.

3.2.4 I-Vectors

There is strong indication that the i-Vectors in the
context of dialect identification provide strong fea-
tures for Arabic dialect classification, as described
in (Bahari et al., 2014; Malmasi and Zampieri,
2017a). We used them in the context of GDI
with caution, especially, because there are only
few speakers in each set. On the one hand, if a
speaker was identified and correctly classified, the
problem would be solved. However, if there was
something off with the i-Vectors of one speaker, it
could throw the classifier off the right track. We
integrate the i-Vectors into last year’s system by
training a separate base SVM classifier with the i-
Vectors and the output is used as additional input
for the S-classifier.

3.3 System Definition TB-LM for CLI

The TB-LM system consists of TF-IDF features,
language modelling features, and a linear SVM
classifier. We do not apply any preprocessing steps
to the texts but work directly with the Unicode
codepoints.

TF-IDF We use TF-IDF features on the symbol
level for n-gram lengths from 1 to 3. Most sam-
ples in the training set are short: On average they
are 7.05 symbols long, with a median length of 5
symbols. Therefore, we use only binary term fre-
quency counts, as those tend to be more robust for
classification of short texts.

Language Modelling Additionally, we train a
3-gram language model with Kneser-Ney smooth-
ing (Kneser and Ney, 1995) for every language.
We use the language model scores as additional
features for every sample.

We again use scikit-learn for the TF-IDF fea-
tures and the SVM, as well as nltk (Natural Lan-
guage Toolkit4) for language modeling.

During experimentation, we train the system on
the training set and evaluate on the validation set.
For the final submission, we train on training and
validation set jointly.

System macro F-1
GDI validation set

Random(10) 0.2468±0.0079
SVM Char-Ngram(1,7) 0.6494
TB-Meta 0.6984
TB-Meta−iV 0.6769
TB-Meta−S 0.7516
TB-Meta−SiV 0.9028
TB-Meta−SiVp 0.9031

GDI test set
TB-Meta−iV 0.6823
TB-Meta−SiV 0.7455
TB-Meta−SiVp 0.7349

Table 4: Results for the GDI task on the validation and
test set for TB approaches.

BE BS LU ZH
Predicted label

BE

BS

LU

ZH

Tr
ue

 la
be

l

1002 82 52 55

17 1137 25 20

494 77 560 45

16 221 58 882

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 2: Confusion matrix of TB-Meta-SiV GDI

4 Results

4.1 GDI

Parameters For this year’s shared task, we used
a maximum of 100’000 features per subclassi-
fier/feature set for the TB-Meta approach, based
on our experimental results from last year. For the
semi-supervised method we used 10 iterations.

Results Discussion We present in Table 4 the
different approaches used in the GDI task and how
they performed on the validation set. We also
put the submitted results for comparison, which
allows to see how the submitted approaches per-
formed on the test set. TB-Meta refers to the
TwistBytes Meta classifier, the −iV suffix refers

4https://www.nltk.org/



199

Team macro F-1 Place
tearsofjoy 0.7593 1
SUKI 0.7541 2
TwistBytes 0.7455 3
BAM 0.6255 4
dkosmajac 0.5616 5
ghpaetzold 0.5575 6

Table 5: Competition result of GDI with TwistBytes
approach TB-Meta-SiV

System F-1 (macro) Accuracy
TB-Meta 0.6669 0.6751
TB-LM 0.7433 0.7469

Table 6: Performance of the runs submitted for the CLI
task on the test set.

to the use of i-Vectors, the suffix −S to the semi-
supervised version, and −SiV to i-Vectors with
semi-supervised. The p index points to a different
parameter set with a maximum of 90’000 features
and C=1.5 for the SVM.

System TB-Meta-SiV shows a surprisingly
good score of 0.90 on the validation set. As stated
before, one reason could be the low numbers of
speakers in the validation set. Also with a base-
line composed by TF-IDF and SVM (SVM Char-
Ngram(1,7), see Table 4), we achieved better re-
sults as from our approach in VarDial 2018 GDI,
which was 64.6% macro F-1. This points to the
fact that the data was curated, and therefore eas-
ier to classify. The assumption that the test set
was similarly built like the validation set guided
our approach. However, the results showed clearly
that there was some difference, since the scores on
the test data were significantly lower for the TB-
Meta−SiV systems. We intend to investigate this
observation in a future study.

Figure 2 shows the confusion matrix of our sys-
tem on the test data. It shows that sentences from
Lucerne were often predicted as from Bern, and
some of Zurich were predicted as Basel. Apart
from that, error rates were mostly below 10%.

In Table 5 the results of the shared task are
shown. The best three results achieved macro F-1
scores between 74.55% and 75.93%. This pushes
forward by a considerable margin the results of
last year. One reason might be the i-Vectors fea-
tures, which were available for the first time this
year. Our system achieved 74.55% macro F-1.

Team macro F-1 Place
NRC-CNRC 0.7695 1
tearsofjoy 0.7632 2
TwistBytes 0.7433 3
PMZ 0.7387 4
ghmerti 0.7210 5
ghpaetzold 0.5562 6
ekh 0.5501 7
situx 0.1276 8

Table 7: Competition result for CLI with TwistBytes
approach TB-LM

Precision Recall F-1
LTB 0.93 0.95 0.94
MPB 0.87 0.84 0.85
NEA 0.60 0.84 0.70
NEB 0.73 0.49 0.58
OLB 0.89 0.43 0.58
STB 0.67 0.71 0.69
SUX 0.66 0.93 0.77

micro avg 0.74 0.74 0.74
macro avg 0.76 0.74 0.73

Table 8: Evaluation of TB-LM on the validation set of
CLI

4.2 CLI

Table 6 shows the performance of our submitted
systems on the test set of the CLI shared task. TB-
Meta is the same architecture as used for GDI and
described in Section 3.2.3. The TB-LM system
is described in Section 3.3. Table 7 shows how
our system performs compared to the other partic-
ipants. We achieve third place out of 8 participants
with a macro F-1 score of 0.74. Table 8 shows
the performance of TB-LM on the validation set
in more detail. The performance on the validation
set is 0.73, which is slightly lower than on the test
set.

Figure 3 shows the confusion matrix of our sys-
tem on the test set, and Figure 4 shows the confu-
sion matrix on the validation set. They are mostly
similar. Overall, LTB was the easiest language to
identify, with an F-1 score of 0.94. NEB and OLB
were the hardest to identify, OLB having overall
the lowest number of samples in the training set.
Noteworthy is that the number of samples alone is
not an indicator of how well a class can be distin-
guished. For example, MPB has the second low-
est number of samples (5508) but the second high-



200

LT
B

MP
B

NE
A

NE
B

OL
B

ST
B

SU
X

Predicted label

LTB

MPB

NEA

NEB

OLB

STB

SUX

Tr
ue

 la
be

l
940 12 2 2 22 7

5 818 47 15 27 35 38

4 12 863 40 5 27 34

22 38 226 548 9 108 34

16 50 57 13 707 50 92

13 29 191 137 25 475 115

3 8 26 11 51 87 799

Confusion Matrix

0.0

0.2

0.4

0.6

0.8

Figure 3: Confusion matrix of TB-LM for CLI on the
test set

Figure 4: Confusion matrix of TB-LM for CLI on the
validation set

est F-1 score (0.85), whereas SUX has by far the
largest number of samples (53673), but only the
third highest F-1 (0.77).

5 Conclusion

We described our dialect identification systems
that were submitted to the VarDial shared tasks
GDI and CLI. In GDI, we achieved 3rd place out
of 6, using a linear SVM as base, semi-supervised
meta crossvalidation training, multiple word and
character features, and i-Vectors. In CLI, we
achieved 3rd place among 8 teams, using a linear
SVM with character n-gram and language model
perplexity features.

Acknowledgement

We thank the task organizers for their support and
the reviewers for their detailed and helpful feed-
back. This research has been funded by Commis-
sion for Technology and Innovation (CTI) project
no. 28190.1 PFES-ES and by SpinningBytes AG,
Switzerland.

References
Mohamad Hasan Bahari, Najim Dehak, Hugo

Van Hamme, Lukas Burget, Ahmed M. Ali, and
Jim Glass. 2014. Non-negative Factor Analysis of
Gaussian Mixture Model Weight Adaptation for
Language and Dialect Recognition. IEEE/ACM
Trans. Audio, Speech and Lang. Proc., 22(7):1117–
1129.

Fernando Benites. 2017. Multi-label Classification
with Multiple Class Ontologies. Ph.D. thesis, Uni-
versity of Konstanz, Konstanz.

Fernando Benites, Ralf Grubenmann, Pius von
Däniken, Dirk von Grünigen, Jan Deriu, and Mark
Cieliebak. 2018. Twist Bytes-German Dialect Iden-
tification with Data Mining Optimization. In Pro-
ceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial 2018),
pages 218–227.

Kuan-Yu Chen, Hung-Shin Lee, Hsin-Min Wang,
Berlin Chen, and Hsin-Hsi Chen. 2014. I-vector
based language modeling for spoken document re-
trieval. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 7083–7088. IEEE.

E. Dieth and C. Schmid-Cadalbert. 1986. Schwyz-
ertütschi Dialäktschrift: Dieth-Schreibung.
Lebendige Mundart. Sauerländer.

Nora Hollenstein and Noëmi Aepli. 2014. Compilation
of a Swiss German dialect corpus and its application
to PoS tagging. In Proceedings of the First Work-
shop on Applying NLP Tools to Similar Languages,
Varieties and Dialects, pages 85–94.

Nora Hollenstein and Noëmi Aepli. 2015. A Resource
for Natural Language Processing of Swiss German
Dialects. In GSCL.

Paul Jaccard. 1902. Distribution comparée de la flore
alpine dans quelques régions des Alpes occidentales
et orientales. Bulletin de la Murithienne, (31):81–
92.

Tommi Jauhiainen, Heidi Jauhiainen, Tero Alstola, and
Krister Lindén. 2019. Language and Dialect Identi-
fication of Cuneiform Texts.

Tommi Jauhiainen, Heidi Jauhiainen, and Krister
Lindén. 2018a. HeLI-based experiments in Swiss



201

German dialect identification. In Proceedings of the
Fifth Workshop on NLP for Similar Languages, Va-
rieties and Dialects (VarDial 2018), pages 254–262.

Tommi Jauhiainen, Marco Lui, Marcos Zampieri, Tim-
othy Baldwin, and Krister Lindén. 2018b. Auto-
matic Language Identification in Texts: A Survey.
arXiv preprint arXiv:1804.08186.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for M-gram language modeling. In
ICASSP, pages 181–184. IEEE Computer Society.

Suraj Maharjan, Prasha Shrestha, and Thamar Solorio.
2014. A Simple Approach to Author Profiling in
MapReduce. In CLEF.

Shervin Malmasi and Marcos Zampieri. 2017a. Arabic
Dialect Identification Using iVectors and ASR Tran-
scripts. In Proceedings of the Fourth Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial), pages 178–183, Valencia, Spain.

Shervin Malmasi and Marcos Zampieri. 2017b. Ger-
man Dialect Identification in Interview Transcrip-
tions. In Proceedings of the Fourth Workshop on
NLP for Similar Languages, Varieties and Dialects
(VarDial), pages 164–169, Valencia, Spain.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York,
NY, USA.

Tanja Samardžić, Yves Scherrer, and Elvira Glaser.
2016. ArchiMob–A corpus of spoken Swiss Ger-
man. In Proceedings of the Language Resources
and Evaluation (LREC), pages 4061–4066, Por-
toroz, Slovenia).

Jun-Won Suh, Seyed Omid Sadjadi, Gang Liu, Taufiq
Hasan, Keith W Godin, and John HL Hansen. 2011.
Exploring Hilbert envelope based acoustic features
in i-vector speaker verification using HT-PLDA. In
Proc. of NIST 2011 Speaker Recognition Evaluation
Workshop.

Tommi Vatanen, Jaakko J. Väyrynen, and Sami Vir-
pioja. 2010. Language Identification of Short Text
Segments with N-gram Models. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associ-
ation (ELRA).

Marcos Zampieri, Shervin Malmasi, Nikola Ljubešić,
Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
Scherrer, and Noëmi Aepli. 2017. Findings of the
VarDial Evaluation Campaign 2017. In Proceedings
of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial), Valencia,
Spain.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Ahmed Ali, Suwon Shon, James Glass, Yves Scher-
rer, Tanja Samardžić, Nikola Ljubešić, Jörg Tiede-
mann, Chris van der Lee, Stefan Grondelaers,

Nelleke Oostdijk, Antal van den Bosch, Ritesh Ku-
mar, Bornini Lahiri, and Mayank Jain. 2018. Lan-
guage Identification and Morphosyntactic Tagging:
The Second VarDial Evaluation Campaign. In Pro-
ceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial), Santa
Fe, USA.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
Tanja Samardžić, Francis Tyers, Miikka Silfverberg,
Natalia Klyueva, Tung-Le Pan, Chu-Ren Huang,
Radu Tudor Ionescu, Andrei Butnaru, and Tommi
Jauhiainen. 2019. A Report on the Third VarDial
Evaluation Campaign. In Proceedings of the Sixth
Workshop on NLP for Similar Languages, Varieties
and Dialects (VarDial). Association for Computa-
tional Linguistics.


