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ABSTRACT

Measuring the equations of state of a compressed magnetized plasma is important for both advancing fusion experiments and understanding
natural systems such as stellar winds. In this paper, we present results from our experiments on the thermodynamics of compressed
magnetized plasmas; we call these studies “magnetothermodynamics.” In these experiments, we generate parcels of relaxed, magnetized
plasma at one end of the linear Swarthmore Spheromak eXperimental device and observe their compression in a closed conducting
boundary installed at the other end. Plasma parameters are measured during compression. Instances of ion heating during compression are
identified by constructing a pressure-volume diagram using the measured density, temperature, and volume of the magnetized plasma. An
axial scan of the ion temperature at upstream locations suggests that the increase in ion temperature arises due to the compression of the
magnetized plasma in the conducting boundary. The theoretically predicted magnetohydrodynamic (MHD) and double adiabatic equations
of state are compared with experimental measurements to estimate the adiabatic nature of the compressed plasma. The equilibrium of our
magnetized plasmas is well-described by magnetohydrodynamics; however, we find that the MHD equation of state is not supported by our
data. Our results are more consistent with the parallel Chew-Goldberger-Low equation of state, suggesting that there is significant anisotropy
in the ion distribution function.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083623

I. INTRODUCTION

An experimental study of the determination of the equations of
state (EOS) applicable to a compressible magnetized plasma is essen-
tial for realizing controlled nuclear fusion. Numerous laboratory
experiments have been performed to achieve a highly compressed
plasma to ultimately lead toward fusion such as inertial confinement
fusion experiments on unmagnetized plasma,1,2 experiments on mag-
netically confined plasmas,3–7 and magnetized liner inertial fusion
experiments.8–10 However, very little has been done to understand the
thermodynamics of these magnetized plasmas.

We have been exploring the thermodynamics of compressed
magnetized plasmas (referred to as magnetothermodynamics) using
measured plasma parameters in a stagnating Taylor state, as described
in the study by Kaur et al.11,12 The main motivation behind these ther-
modynamics studies is to explore the possibility of producing dense

hot plasma by compressing them using their own inertia. In this paper,
we review these results and present our latest findings. The
Swarthmore Spheromak eXperimental (SSX) device launches a plasma
which is compressed by stagnation in a closed conducting volume. To
identify events corresponding to adiabatic heating, we use the mea-
sured plasma parameters, such as density, temperature, and magnetic
field, to construct pressure-volume (PV) diagrams. Axial scans of the
ion temperature confirm that the ion heating occurs due to compres-
sion of the magnetized plasma against a conducting wall. The heating
events are used to identify the dominant equation of state applicable to
our magnetized plasma. In these experiments, we found that the
dynamics of SSX plasmas is determined by the parallel Chew-
Goldberger-Low (CGL) equations of state.

Figure 1 shows analytically solved streamlines of the magnetic
field for a Taylor state13,14 by solving the linear eigenvalue problem
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r� B¼ kB with the PSI-center TETrahedral mesh (PSI-TET) code33

for a 10:1 aspect ratio (ratio of the length of a conducting boundary to
its radius) and plotted using VisIt.15 The color represents the strength
of the magnetic field, normalized to its maximum value. The ivory
color corresponds to a weak magnetic field, whereas the dark red color
indicates a strong magnetic field. The conducting cylindrical boundary
with an aspect ratio>10 acts as a quasi-infinite cylinder, and the mini-
mum energy state for such a boundary corresponds to the ka ¼ 3.11
solution.14 This nonaxisymmetric double helix state is found to have a
helical pitch of ka¼ 1.29, where k is the wave number associated with
the z axis and a is the radius of the cylinder. In our experiments, we
measure the value of k from the magnetic field data as a proxy for the
length of the Taylor state.

One important feature of these Taylor state plasmas is that one
does not need to apply any external magnetic field for their confine-
ment. In this way, these plasmas are different from tokamak plasmas
where a careful configuration of external magnetic fields is required to
sustain the plasma. The Taylor state is a self-contained object where
the magnetic field is generated due to the flow of current in the plasma
and the current carrying charged particles are confined by the self-
generated magnetic field. Therefore, it serves as an ideal closed system
for performing this type of thermodynamic studies.

The remainder of this paper is organized as follows. In Sec. II, we
briefly review the different equations of state applicable to a magne-
tized plasma. In Sec. III, we discuss the experimental setup used to per-
form these studies and our main diagnostics used to carry out
different measurements. In Sec. IV, we show results related to ion
heating and the tests on various equations of state followed by a brief
discussion. In Sec. V, we summarize the results and discuss our future
plans.

II. THEORY

We consider three equations of state (EOS) for our magnetized
plasmas. We ignore the radiation effects. In the magnetohydrody-
namic (MHD) regime, plasma with isotropic velocity distribution can
be treated as an ideal gas and the adiabatic equation of state for such a
plasma is given by

@

@t
P
nc

� �
¼ 0; (1)

where P and n are the plasma pressure (P¼ nkBT) and density, respec-
tively; T is the plasma temperature and for an MHD plasma with three
degrees of freedom, c¼ 5/3.

If the collisionality is low, i.e., the ion-ion collision frequency is
less than the ion cyclotron frequency, it is hard to maintain an

isotropic velocity distribution. In such a case, the perpendicular and
parallel pressures to the magnetic field are not same and the MHD
equation of state no longer remains valid. To account for such a situa-
tion, Chew et al.16 proposed a modified adiabatic equation of state
model, known as the CGL equations of state
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¼ 0: (3)

Equation (2) is related to the constancy of the first adiabatic invariant,
l ¼W?/B, and Eq. (3) is related to the constancy of the second adia-
batic invariant, J ¼ vkL, where W?; vk, and L are the perpendicular
kinetic energy with respect to the magnetic field, parallel velocity with
respect to the magnetic field, and the length of the guiding center
motion along the field lines, respectively.

We test our data from SSX plasmas against these three equations
of state (EOS). If the time derivative of any of these measured quanti-
ties is zero during a heating event, that particular equation of state
would be valid for our plasma. Since the equilibrium of the twisted
Taylor state is determined by magnetohydrodynamics, it is reasonable
to expect that it can be described by the MHD equation of state. On
the other hand, because of the strong magnetic field embedded in the
structure and the low collisionality, confined particles could support
different parallel and perpendicular velocity distributions. In that case,
the Taylor states may follow the CGL double adiabatic equations of
state.

III. EXPERIMENTAL SETUP AND DIAGNOSTICS

We produce parcels of magnetized plasma using a coaxial mag-
netized plasma gun, which is located at one end of the linear
Swarthmore Spheromak eXperimental (SSX) device, as shown in Fig.
2. Details about the plasma gun can be found in earlier publica-
tions.17–19 At the other end of the linear chamber, a � 30 cm long
closed, tungsten-lined copper can, referred to here as a stagnation flux
conserver (SFC), is installed. A 1 m long glass tube (inner diameter
¼ 15 cm) is installed in between the gun and the SFC. To provide flux
conservation to the magnetized plasma, the glass tube has been cov-
ered with a copper flux conserving shell with a 10:1 aspect ratio and a
long magnetic soak time. The magnetic soak time is the time magnetic
lines of force would take to diffuse through the conductor and is given
by sm ¼ l0rd/2q, where d, r, and q are the thickness of the conductor
used for preventing the magnetic field diffusion, radius of the conduct-
ing shell, and its electrical resistivity, respectively. For the copper flux

FIG. 1. A 3D arrangement of the magnetic
field lines in a twisted Taylor state plotted
using VisIt. The relative magnitude of jBj
at any location is plotted using the color-
bar at the top.
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conserver being utilized, the magnetic soak time is greater than 200 ls
and our plasma lifetime is�100ls.

Initially, the gun is prepared with a strong magnetic field (�1T)
in the inner electrode using an external electromagnet (stuffing field).
A hydrogen gas puff is applied into the annular region between the
two electrodes using gas puff valves. A voltage pulse (�4 kV, 8 kJ) is
applied between the two electrodes (at 0ls), which ionizes the gas pre-
sent in the annular region and a high current (�100 kA) flows through
the plasma. The current causes a strong magnetic field that gives rise
to a J�B force which accelerates the plasma out of the gun, like a rail
gun, whereas the stuffing field initially keeps the plasma confined to
the annular region. If the J�B force is strong enough, the stuffing
field bulges outward around the accelerating plasma and eventually a
self-consistent toroidal magnetic structure, called a spheromak,18 is
formed at around 20–25ls.

After formation, the spheromak travels at v� 40 km/s, consistent
with the J�B force, away from the gun due to its inertia. The sphero-
mak is not the lowest energy equilibrium for the long aspect ratio flux
conserver. Therefore, it tilts and relaxes to a nonaxisymmetric twisted,
force-free, minimum energy state, called a Taylor state.14,19,20 The
relaxation process is highly turbulent in nature and happens within a
couple of Alfv�en times. The center-of-mass inertia carries the relaxing
Taylor state to the other end of the device (into the SFC), where it stag-
nates and compresses against the end wall. Compression is mostly
expected to happen near the back end of the SFC. We perform mea-
surements 20 cm upstream in the absence of diagnostic ports near the
back end of the SFC.

We rely on three principal diagnostics located in the SFC. To
measure submicrosecond time-resolved ion temperature with an
instrument temperature of 3–5 eV, we make use of ion Doppler spec-
troscopy (IDS). Our IDS system features a 1.33 m (Czerny-Turner)
spectrometer which makes use of an echelle grating (with 316 groove/
mm) to achieve a high spectral resolution and a 32-channel photomul-
tiplier tube (PMT) array for fast time response.21 The plasma light is
collected along a vertical chord, dispersed on the echelle grating, and is
recorded using the PMT array. Our current studies are focused on the
evolution of 229.687 nm emission lines from CIII impurity ions present
in our plasma,22 which we observe at the 25th order.

For measuring the plasma density, we use a HeNe laser interfer-
ometer. It is a Mach-Zehnder arrangement where laser beam is split
into two beams, one passes through the plasma and the refractive
index of the plasma introduces a phase shift. The interference signal is
passed through a Wollaston prism which converts it into two outputs
90� out of phase with each other. This arrangement enables us to mea-
sure the plasma density during each shot.

In order to measure the helical pitch of the Taylor state, we use a
long _B probe array installed along the axis of the SFC. We use 14 bit
D-Tacq digitizers at a high cadence (65MHz) to record the _B probe
data, which is later numerically integrated using the trapezoidal rule to
obtain the absolute magnetic field values. Since the magnetic probe
array is aligned along the axis of the SFC, we see a helical structure of
the relaxed Taylor state as it enters the SFC.

The typical SSX plasma parameters in the SFC are as follows.
The plasma density (n) is �2� 1021 m�3. The electron temperature
(Te) measured using vacuum ultraviolet (VUV) spectroscopy is
�10 eV and remains nearly constant.23 The ion temperature (Ti)
varies from 10 to 40 eV and the magnetic field (B) embedded in the
Taylor state is �2000G. For these plasma parameters, the ion gyrora-
dius and the Alfv�en speed are �2mm and �100 km/s, respectively
and the plasma b varies from 0.1 to 1.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results obtained using different
diagnostics and the EOS analysis on a compressed plasma.

The plasma moves at 40 km/s and reaches the SFC at �40ls.
Figure 3 shows a vector rendering of the magnetic field along the axis
of the SFC obtained from the long _B probe array (Multimedia view).
The object enters from the right-hand side and the solid black lines
indicate the end of the SFC. As the object moves inside the SFC, we
see a right-handed helical magnetic field structure. The helical pitch
confirms that by the time the plasma reaches the SFC, it has already
relaxed to a twisted Taylor state. Using this magnetics data, we extract
the information about the time varying pitch of the Taylor state which
serves as a proxy for the length of the Taylor state. We use the frac-
tional time variation in length to determine the fractional time varia-
tion in volume.

FIG. 2. A schematic of the experimental setup along with the diagnostic ports. The plasma source is located at the left end of the linear SSX device and at the other end, a
closed conducting boundary (referred to as the stagnation flux conserver) is installed, indicated by the red color. A glass tube is mounted in between the gun and the closed
boundary and is covered with a copper flux conserving shell (also indicated by the red color). Principal plasma diagnostics are located in the SFC to measure the plasma com-
pression. The ion Doppler spectroscopy telescope is mounted vertically, along the y-axis, to measure Ti, and n is measured using HeNe laser interferometry along the x-axis.
The long _B probe array is aligned along the axis of the SFC (along the z-axis). The _B probes (represented by the maroon lines) are densely spaced in the SFC to measure
the magnetic field structure and time of flight velocity of the plasma.
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Figure 4 shows a typical time trace of the (a) density, (b) ion tem-
perature, and (c) magnetic field from a three-directional _B probe colo-
cated with the interferometry and IDS chords. As the plasma stagnates
and gets compressed against the end wall, we observe ion heating from
65ls to 67ls (indicated by the red color). Since the plasma flow veloc-
ity is much less than the ion sound speed (�70 km/s) and Alfv�en
speed (�130 km/s), plasma stagnation, and compression (due to its
own inertia) against the SFC end wall is not expected to produce
shocks.

To confirm that the ion heating is arising due to the compression
of the plasma in the SFC, we carried out an axial scan of the ion tem-
perature (at four axial locations away from the gun), as shown in Fig.
5. We record a number of shots, around 20–30, at each axial location

and calculate the averages. From the axial scan of hTii at each axial
location, we found that the gun generates a hot plasma (shown by the
hTii trace at 24 cm), which cools down as it moves away from the gun,
evident from the hTii trace at 72 cm away from the gun. The plasma
ion temperature increases again as it reaches the stagnation flux con-
server, shown by the hTii traces at a distance of 92.6 cm and 124 cm
from the gun. The increase in ion temperature can arise due to a num-
ber of factors such as due to turbulence followed by magnetic recon-
nection or kinetic effects or simply due to compression of plasma.

To check if the ion heating is originating due to any turbulence
driven effects, we perform a frequency power spectrum on the mag-
netic field time traces. A typical power spectrum is shown in Fig. 6(a).
The frequency power spectrum shows a steep spectral index (��11/3),

FIG. 3. A four-panel plot showing the vector rendering of the Taylor state inside the SFC at different times. The plasma enters the SFC at �40 ls and fills the entire SFC at
43 ls. At later times, we see the plasma being compressed and more than one lobe entering the SFC. Multimedia view: https://doi.org/10.1063/1.5083623.1

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 052506 (2019); doi: 10.1063/1.5083623 26, 052506-4

Published under license by AIP Publishing

https://doi.org/10.1063/1.5083623.1
https://scitation.org/journal/php


much steeper than the one observed during the turbulence phase
upstream24,25 and the usual Kolmogorov scaling26 of �5/3. This indi-
cates that by the time the Taylor state reaches the SFC, there is no tur-
bulence present in the plasma. The steeper slope further confirms that

the ion heating is arising solely due to the stagnation and compression
of the magnetized plasma against the conducting SFC wall.

In addition, we calculate the probability distribution function
(PDF) of increments27 constructed by taking the differences of _Bx ( _By

or _Bz ) time series separated by a time scale Dt, i.e.,

D _Bx ¼ _Bxðt þ DtÞ � _BxðtÞ: (4)

The PDF of increments for Dt ¼ 1ls, plotted in Fig. 6(b), is close to a
Gaussian distribution confirming no turbulence. We also observe that
the magnetic field fluctuations (root mean square) are almost absent
during compressive heating events confirming that the compression of
the magnetized plasma or a rise in thermal pressure does not drive
fluctuations in the plasma.

The time traces of plasma density and ion temperature are used
to calculate the plasma thermal pressure for constructing a PV

FIG. 4. A typical time trace of (a) the plasma density, (b) ion temperature, and (c)
magnetic field measured in the SFC. The leading edge of the Taylor state enters
the SFC at 40ls (indicated by the blue dotted line) and we observe a substantial
ion heating event at 65 ls (indicated by the red color).

FIG. 5. Ti is measured using ion Doppler spectroscopy at four different locations
away from the gun averaged over a number of shots at each location. The plasma
reaches the end of the SFC at t �40ls. The gun generates a hot plasma, evident
from the hTii trace 24 cm away from the gun. The plasma cools down as it moves
away from the gun, indicated by the hTii trace 72 cm away from the gun. The ion
temperature increases as the plasma reaches the stagnation flux conserver, shown
by the hTii traces 92.6 cm and 124 cm away from the gun.

FIG. 6. (a) A typical frequency power spectrum performed on the magnetic field
time traces obtained using the _B probes located in the SFC and (b) the probability
distribution function (PDF) of the increments for Dt ¼ 1 ls. The x-axis is normal-
ized by the standard deviation in _B ðr _B Þ. A spectral index steeper than �11/3 and
a Gaussian distribution of increments confirm that no turbulence is active in the
plasma by the time it reaches the SFC.
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diagram. Since the electron temperature remains nearly constant and
for EOS analysis, we are only interested in time varying quantities, Te
is not used for these studies. For approximating the volume of the
Taylor state, we assume that the plasma initially fills the entire SFC
volume. Fractional changes in the pitch are mapped to fractional
changes in the length of the confined plasma and hence to fractional
changes in the confined plasma volume.

Figure 7 shows a typical PV diagram from the time traces pre-
sented in Fig. 4 corresponding to a big ion heating event at 65–67ls.
The ion temperature increases by a factor of 3 for this time and density
increases by 25% [shown in Figs. 4(b) and 4(a), respectively]. From
the magnetics data, we find that the length of the Taylor state com-
presses by 30% at the same time, as shown in Fig. 7(a). We call this
type of event, where the Taylor state compresses, ions are heated, and
the PV diagram shows a transition from a lower to a higher isotherm,
a compressive heating event.

To see the statistical behavior of the plasma, we recorded a num-
ber of shots under the same gun conditions and identified many such
compressive heating events. Since the gun generates a slightly different
plasma in each shot, the criteria for any event to be called a compres-
sive heating event is as follows:

• Length compression of the Taylor state is equal or greater than 10%,
we usually observe a length compression of 10%–40%.

• The duration of the event is longer than 1 ls, which is the time reso-
lution of our IDS system.

• The PV diagram demonstrates a transition from a lower to a higher
isotherm.

Using the above criteria, we identified �120 compressive
heating events. A histogram showing the volume compression (or

length compression) of the Taylor state is shown in Fig. 8. We used
these to analyze the different equations of state shown in Fig. 9.
The first panel corresponds to the MHD EOS, and the second and
third panels are for the perpendicular and parallel CGL EOS,
respectively. The light red lines in each panel show the spread of
120 compressive heating events and the dark red band corresponds
to the standard error in the mean of the spread. The black line cor-
responds to the zero axis. It can be clearly seen that the first two
EOS show a nonzero time derivative, and hence are not satisfied
during compression. The parallel CGL EOS stays near the zero
axis, which indicates that our plasma obeys the parallel CGL equa-
tion. The MHD EOS does appear to hold for our plasma, despite
the equilibrium being well-described by pure MHD.

These results can be explained in the following way: After
formation, the spheromak tilts and relaxes to a twisted Taylor
state by minimizing its magnetic energy. During relaxation, the
magnetic field embedded in the structure drops by a factor of 10
under the constraint of helicity conservation. Our object lies in
the weakly collisional regime so we expect the particle magnetic
moment to be an adiabatic invariant. Therefore, if there is a drop
in the magnetic field then there should be a corresponding drop in
the perpendicular proton energy. We have observed (from the
magnetic field vector renderings shown in Fig. 3) that by the time
the plasma arrive in the SFC, it has already relaxed to a twisted
Taylor state indicating that T? has dropped and the proton energy
is primarily in Tk.

As we mentioned earlier, we measure the ion temperature along
a chord and do not distinguish between parallel and perpendicular
temperatures. To test the different EOS, we use the total pressure (P)
in place of parallel (Pk) and perpendicular (P?) pressures. If protons
enter the SFC with most of their energy in the parallel direction, then
the total pressure mostly consists of the parallel pressure (i.e.,
P ¼ Pk þ P? � Pk). Thus, even if both CGL equations are satisfied
during our compression events, we may not be sensitive to the perpen-
dicular dynamics. In this case, we expect to find consistency with the
parallel CGL equation and inconsistency with the perpendicular CGL

FIG. 7. Typical time trace of the Taylor state length (showing 30% compression) is
shown in (a). Second panel (b) shows an increase in the thermal pressure of the
plasma for the same time. The third panel (c) shows a graph of pressure vs volume
with different isotherms plotted using the dotted lines in the background.

FIG. 8. A histogram showing the compression in the volume of the Taylor state
(proportional to the length).
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equation because the quantity we use as a proxy for Pk and P? would
in fact be primarily Pk in both cases.

V. SUMMARY AND FUTURE PLANS

A magnetized plasma is launched at 40 km/s into a long-aspect-
ratio cylinder by a magnetized coaxial plasma gun. The plasma relaxes
to a Taylor state and reaches the other end of the device where it stag-
nates in a closed conducting boundary and compresses by �30%. We
measure the parameters of the compressed plasma and identify the
events corresponding to adiabatic compression of the plasma by con-
structing PV diagrams. These events are used to statistically identify
the equation of state being followed by the compressed plasma. In
these experiments, we found that the dynamics of the SSX plasmas is
determined by the parallel CGL EOS. This further suggests that the
SSX plasma possesses an anisotropic velocity distribution and has
more proton energy in the parallel direction with respect to the back-
ground magnetic field.

From the axial scan of the ion temperature, we observed that the
ion temperature increases as the plasma enters the SFC and gets com-
pressed there. A frequency power spectrum on the magnetics data (in
the SFC) showed a steep spectral index (��11/3) confirming that
there are no turbulence related mechanisms active in the plasma and
hence, the ion heating arises solely due to the plasma stagnation and
compression.

To aid the existing results, we are planning to carry out the fol-
lowing improvements in our future experiments: Currently, we do not
have the flexibility to measure parallel and perpendicular components
of ion temperature separately as we perform the ion temperature mea-
surements along a chord. For performing a precise CGL EOS analysis,
we are planning to use an ion Doppler spectroscopy probe or an ion

energy analyzer (IEA) to enable measurements of the parallel and per-
pendicular ion temperatures.

Ion Doppler spectroscopy has been utilized in the past on
Madison Symmetric Torus (MST) for measuring localized, direc-
tional ion temperature.28 In this technique, plasma light was col-
lected by two fused silica fiber optic bundles with perpendicular
collection chords. To obtain a spatial resolution of 5 cm, the light
collection chord was terminated by using an optical dump. A simi-
lar technique could be employed in the SSX device. For measuring
the direction of the magnetic field, a three-directional _B probe
could be housed in the optical dump which could be placed
�5mm away from the IDS fiber.

In such a case, an IDS probe would provide information about
the ion temperature over a small chord length. The local plasma den-
sity could be measured using a separate colocated probe (maybe a dou-
ble Langmuir probe operating in the ion saturation region). For
minimizing the plasma perturbations and for localized Ti measure-
ments, the IDS probe needs to be very compact. This could be done by
shortening the length of the light collection chord, which could further
result in reduction in the signal. The signal could be increased by
replacing H2 with Helium as the working gas and by utilizing the He
line (instead of the CIII line) for IDS measurements. A similar tech-
nique was employed by Hsu et al.29

Another method to measure the directional ion temperature
could be to use a planar ion energy analyzer30 (IEA), where the ions
would be filtered through a microchannel plate prior to collection.31

The energy analyzer can be equipped with a three-directional _B probe
to measure the direction of the magnetic field locally. Since the mag-
netic field embedded in the plasma is much stronger than the mag-
netic field generated by the ion collection current (from the IEA), it is
not expected to affect the _B probe measurements. However, the
dimensions of the microchannels and the interelectrode separation in
an IEA should be smaller than the plasma Debye length (�1lm for
SSX plasmas) and the ion gyroradius (�2mm), which imposes chal-
lenging requirements in the case of SSX plasmas.

We are also planning to carry out merging experiments where
two Taylor states will be fired from two opposite ends of the linear
SSX device using two magnetized coaxial plasma guns. The main goal
of these experiments is to check if the two relaxed states merge
together to form one longer object. If the two Taylor states do not
merge we expect to observe increased compressive heating, as the
plasma will be compressed against another oppositely moving plasma
(in place of a metallic wall in the present experiments).

In addition to these projects, our group is performing proton
orbit simulations32 in the Taylor state fields to understand the particle
dynamics in more detail. A typical trajectory of a trapped particle is
shown in Fig. 10. Because the magnetic field varies on length scales
close to the ion gyroradius, it is not possible to treat the motion in
terms of guiding center trajectories. The fraction of an initial particle
distribution that is confined in the Taylor state is only of order 10%
less than the corresponding fraction for the axisymmetric spheromak.
We are analyzing the characteristics of the particles that remain con-
fined, with the goal of illuminating the requirements for particle con-
finement in the Taylor state. Currently, we are tracking test particles in
a static Taylor state field. Eventually, we plan to track the particle
orbits in dynamical Taylor state fields to investigate the evolution of
distributions during compression.

FIG. 9. Statistical variation of the time derivatives of the three equations of state for
120 compression events are shown by the light red lines for: (a) the MHD EOS for
3D compression (c ¼ 5/3), (b) perpendicular, and (c) parallel CGL EOS. The dark
red band in each panel shows the standard error of the mean. The MHD equation
of state (a) and the perpendicular CGL EOS (b) have the nonzero time derivative,
whereas, the parallel CGL EOS (c) has a nearly zero time derivative for most of the
compression time. Adapted with permission from Kaur et al. Phys. Rev. E
97, 011202 (2018). Copyright 2017 The American Physical Society.
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FIG. 10. A typical orbit of a confined proton, with initial parallel and perpendicular
velocities of the order of the ion thermal speed, is represented by the yellow trace.
The static Taylor state field is shown in grayscale (cropped to show the orbit
region), where the lighter values indicate lower field magnitudes. The orbit aligns
with the local field over much of the trajectory, but it is clear that the field changes
on spatial scales close to the ion gyroscale.
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