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LISA for cosmologists: Calculating the signal-to-noise ratio for stochastic
and deterministic sources

Tristan L. Smith 1 and Robert R. Caldwell 2

1Department of Physics & Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
2Department of Physics & Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA

(Received 27 August 2019; published 26 November 2019)

We present the steps to forecast the sensitivity of the Laser Interferometer Space Antenna (LISA) to both
a stochastic gravitational wave background and deterministic wave sources. We show how to use these
expressions to estimate the precision with which LISA can determine parameters associated with these
sources. Tools are included to enable easy calculation of the signal-to-noise ratio and draw sensitivity
curves. Benchmark values are given for easy comparison and checking of methods in the case of three
worked examples. The first benchmark is the threshold stochastic gravitational wave background ΩGWh2

that LISA can observe. The second is the signal-to-noise ratio that LISAwould observe for a binary black
hole system identical to GW150914, radiating four years before merger. The third is the case of a monotone
source, such as a binary that is far from merger.

DOI: 10.1103/PhysRevD.100.104055

I. EXPLANATION

This document is intended to be used as a set of
instructions for calculating the sensitivity of the Laser
Interferometer Space Antenna (LISA) [1] to a stochastic
gravitational wave background (SGWB) or a continuous
wave source under idealized circumstances. By idealized we
specifically mean that all noise is Gaussian and stationary,
and that there are no foregrounds. Many of the results
presented are well known and have a long presence in the
literature (e.g., Refs. [2–8]). However, we perceive that an
accessible introduction is lacking.Moreover, we are unaware
of any literature that gives a complete, end-to-end derivation
of the signal-to-noise ratio for LISA in its current design. Our
goal is to facilitate sensitivity calculations, in the hope that
more theorists will be able to properly evaluate the ability of

LISA to detect and distinguish their favorite sources. We
have tried towrite the type of document that wewish we had
when we started our investigations. In order that these tools
are not just a black box, we have included some basic
derivations that allow for an extension to other interfero-
metric designs. The calculation of the sensitivity presented
here gives a straightforward accounting for the standard time-
delay interferometry (TDI) signals and explains how the
monitoring of the instrumental noise using the Sagnac signal
leads to a significant increase in sensitivity. For the impatient
reader who wants to evaluate the signal-to-noise ratio or
forecast parameter sensitivity for a stochastic background,
here are the key results.
The signal-to-noise ratio (SNR) for a SGWB is given in

Eqs. (60) and (63) as

SNR2 ¼ T
Z

∞

0

df
Ω2

GW

Σ2
Ω

; ΣΩ ¼ ΣI
4π2f3

3H2
0

; ΣI ≃
ffiffiffi
2

p 20

3

�
SIðfÞ
ð2πfÞ4 þ SIIðfÞ

��
1þ

�
f

4f�=3

�
2
�
;

where ΣΩ and ΣI are the inverse-noise weighted sensitivity to the spectral density and intensity for two TDI modes, T is the
observation time, where the nominal mission lifetime is 4 years, f� ¼ c=ð2πLÞ, L ¼ 2.5 × 106 km, and SI and SII are given
in Eqs. (53) and (54). The last expression is made under a low-frequency assumption. A worked example is provided in
Sec. VIII A.
The signal-to-noise ratio for a deterministic source such as an inspiraling binary is given in Eqs. (86) and (87) as

SNR2 ¼
Z

∞

0

df
h̄2ðfÞ
ΣhðfÞ

; ΣhðfÞ ≃
1

2

20

3

�
SIðfÞ
ð2πfÞ4 þ SIIðfÞ

�
RðfÞ;
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where Σh is the inverse-variance weighted waveform
sensitivity for two TDI modes, h̄ is the sky-, polariza-
tion-, and orientation-averaged waveform amplitude as
defined in Eq. (83), and RðfÞ ¼ 1þ ðf=f2Þ2 and f2 ¼
25 mHz. The last expression is again made under a low-
frequency assumption. A worked example is provided in
Sec. VIII C.
The layout of the article is as follows. In Sec. II we

introduce our notation. In Sec. III we introduce the form of
the signal and noise for the TDI modes, and calculate the
detector response. In Sec. IV we present the calculation of
the optimal statistic for a stochastic background, and in
Sec. V we introduce the LISA noise model. In Sec. VI we
present the calculation of the optimal statistic for a sky- and
polarization-averaged deterministic point source. Three
examples are presented in Sec. VIII. We wrap up in
Sec. IX, and summarize the notation used in this paper.
Finally, we also provide aMathematica notebook to enable
easy calculations.1

II. GRAVITATIONAL WAVES

We begin by establishing our notation and conventions.
We expand the gravitational-wave metric perturbation in
plane waves with respect to a coordinate system at rest
relative to the Solar System barycenter:

habðx⃗; tÞ ¼
Z

∞

−∞
df

Z
d2n̂

X
P

hPðf; n̂ÞePabðn̂Þei2πfðt−n̂·x⃗=cÞ;

ð1Þ
where ePab is the polarization tensor. For a P ¼ þ;×
polarized plane wave propagating in the n̂ direction, the
polarization tensors may be written

n̂ ¼ ðcosϕ sin θ; sinϕ sin θ; cos θÞ; ð2Þ

eþabðn̂Þ ¼ m̂am̂b − n̂an̂b; ð3Þ

e×abðn̂Þ ¼ m̂an̂b þ n̂am̂b; ð4Þ

m̂ ≡ ðsinϕ;− cosϕ; 0Þ; ð5Þ

n̂ ≡ ð cosϕ cos θ; sinϕ cos θ;− sin θÞ; ð6Þ

so that ePabðn̂ÞeP
0abðn̂Þ ¼ 2δPP0 and m̂; n̂ are basis (Newman-

Penrose) vectors that define the coordinate system in the
plane transverse to the direction of propagation.
We assume that the SGWB is Gaussian distributed and

has zero mean so that its properties are characterized in
terms of the variance or power spectrum (i.e., the spectral
density). Considering the possible polarization states, we
express the covariance in terms of Stokes parameters, as

�hh�þðf;n̂Þhþðf0; n̂0Þi hh�þðf; n̂Þh×ðf0; n̂0Þi
hh�×ðf; n̂Þhþðf0; n̂0Þi hh�×ðf; n̂Þh×ðf0; n̂0Þi

�

¼ 1

2
δDðf−f0Þδ

ð2Þðn̂− n̂0Þ
4π

�
IþQ Uþ iV

U− iV I−Q

�
: ð7Þ

The overall intensity, I, and circular polarization, V, are
scalar quantities, and hence can be measured through the
monopole of the stochastic background; the Q and U are
spin-4 quantities and hence do not contribute to an
isotropic, stochastic, background. Since we are considering
the intensity of an isotropic background, for the rest of this
discussion we will take V ¼ Q ¼ U ¼ 0. Note that the
intensity is related to the spectral density of the SGWB,

ΩGW ≡ d ln ρGW
d ln f

¼
�
4π2

3H2
0

�
f3IðfÞ: ð8Þ

Our notation agrees with Refs. [3,5], where a signal power
is defined such that ShðfÞ ¼ IðfÞ. We caution that in
Refs. [6–8], a signal power Sh ¼ 2I is defined; this alternate
convention is offset by another factor of 2, elsewhere in those
references.

III. THE SIGNAL AND COVARIANCE

The measured phase difference at a vertex of the
interferometer, Φ, can be written in terms of the gravita-
tional response in terms of an interferometer phase at that
vertex, Δφ, as well as the noise, n,

ΦABC
ðtÞ ¼ ΔφABC

ðtÞ þ nABC
ðtÞ: ð9Þ

The subscript ABC indicates the signal at the interferometer
consisting of arms AB and AC, as shown in Fig. 1. It is
straightforward but tedious to show that the phase differ-
ence measured at that vertex is given by [5]

ΔφABC
ðtÞ ¼

Z
∞

−∞
df

Z
d2n̂

X
P

hPðf; n̂Þei2πftFP
ABC

ðn̂; f; tÞ;

ð10Þ
where

FP
ABC

ðn̂; f; tÞ ¼ 1

2
e−i2πfn̂·x⃗AðtÞ=cePabðn̂Þ

× ½F abðl̂ABðtÞ · n̂; fÞ−F abðl̂ACðtÞ · n̂; fÞ�;
ð11Þ

F abðl̂ · n̂;fÞ ¼ 1

2
Wðf;f�Þl̂al̂b

×

�
sinc

�
f
2f�

ð1− l̂ · n̂Þ
�
e−i

f
2f�ð3þl̂·n̂Þ

þ sinc

�
f
2f�

ð1þ l̂ · n̂Þ
�
e−i

f
2f�ð1þl̂·n̂Þ

�
ð12Þ

1https://doi.org/10.5281/zenodo.3341817.
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gives the gain of a detector vertex. The vector l̂AB points
from vertex A to B, f� ¼ c=ð2πLÞ, and n̂ is the direction of
gravitational wave propagation. When W ¼ 1, the above
expressions fully account for the round trip paths ABA and
ACA as illustrated in the left panel of Fig. 1. To mitigate
additional sources of noise, TDI uses longer paths, which
are illustrated in the right panel of Fig. 1. The phase
accumulated by these additional paths are given by the
same expressions, but with the time offset by a factor
of t → t − 2L=c. The offset in time results in a phase shift
in the time-series Fourier transform. Hence, the factor
Wðf; f�Þ ¼ 1 − e−2if=f� accounts for the full round trips of
the TDI signal.
To detect the irreducible hum of a SGWB we correlate

the response between the different vertices of the con-
stellation of detectors. Assuming that the SGWB and the
noise are uncorrelated, the full response is a sum of the
gravitational wave signal and noise:

hΦABC
ðtÞΦXYZ

ðt0Þi

¼ 1

2

Z
∞

−∞
dfei2πfðt−t0Þ½RABC;XYZ

ðf; t; t0ÞIðfÞþNABC;XYZ
ðfÞ�;

ð13Þ

where the SGWB intensity response functionR for a given
detector geometry is given by

RABC;XYZ
ðf;t;t0Þ¼

Z
d2n̂
4π

½Fþ
ABC

ðn̂;f;tÞ

×F�þ
XYZ

ðn̂;f;t0ÞþF×
ABC

ðn̂;f;tÞF�×
XYZ

ðn̂;f;t0Þ�;
ð14Þ

and NABC;XYZ
ðfÞ is the correlated noise power between the

two detectors. Note that the response depends on time
because of the orbital motion of the spacecraft, although we
will ultimately ignore this feature. When assessing the
sensitivity of LISA to a SGWB we wish to determine the
minimum intensity I that can be determined in the presence
of noise N, as a function of frequency.

Specializing to LISA (with three spacecraft arranged on
the vertices of a fixed equilateral triangle) we can write the
full covariance for the phasesmeasured at each spacecraft as

hΦJðtÞΦJ0 ðt0Þi ¼

0
B@

C1 C2 C2

C2 C1 C2

C2 C2 C1

1
CA; ð15Þ

where J; J0 ¼ fABC; BCA; CABg. Elsewhere in the literature,
ABC; BCA; CAB are labeled as X, Y, Z [9]. The correlations
C1;2 consist of a contribution from the SGWB and from the
instrument noise, i.e.,

Ci ¼ Si þ Ni; ð16Þ

where S is the signal power convolved with the instrument
gain and N is the instrument noise power.
We can construct three orthogonal (i.e., statistically

independent) signals by diagonalizing the above covariance
matrix. Note that by diagonalizing the covariance, the
cross-correlation between the TDI variables has zero
response to both the instrumental noise and the SGWB.
The response eigenvectors are

ΦI ¼
1ffiffiffi
6

p ðΦABC
− 2ΦBCA

þΦCAB
Þ; ð17Þ

ΦII ¼
1ffiffiffi
2

p ðΦABC
−ΦCAB

Þ; ð18Þ

ΦIII ¼
1ffiffiffi
3

p ðΦABC
þΦBCA

þΦCAB
Þ; ð19Þ

which yield a diagonal covariance matrix with entries

CI ¼ CII ¼ C1 − C2; ð20Þ

CIII ¼ C1 þ 2C2: ð21Þ

The eigenmodes I; II; III are none other than the TDI
variables A, E, and T. For the rest of this document we will
refer to these eigenmodes by their TDI labels [10–12].
Hence,

NA ¼ NE ¼ N1 − N2; ð22Þ

NT ¼ N1 þ 2N2; ð23Þ

SA ¼ SE ¼ S1 − S2; ð24Þ

ST ¼ S1 þ 2S2: ð25Þ

[For comparison, see Eqs. (19)–(22) of Ref. [9].] We note
that the autocorrelations S1 and N1 are sometimes referred
to as the Michelson signal and noise [5,7]. Confusingly, the

FIG. 1. (Left) The two round-trip interferometer paths used to
compose the Michelson signal. (Right) The two pairs of round-
trip interferometer paths used to compose the Michelson TDI
signal ΔφABC

.
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eigenmodes A, E, and T with W ¼ 1 are also sometimes
referred to as Michelson modes. It might make more sense
if they were called Michelson eigenmodes. Finally, we refer
to the eigenmodes A, E, and T with W ¼ 1 − e−2if=f� as
TDI modes.
The intensity response function in Eq. (14) has the

property that in the limit of vanishing frequency, for a
single Michelson interferometer,

RABC;ABC
→

2

5
sin2β; ð26Þ

where β ¼ π=3 is the angle between the detector arms for
LISA. We use the same convention as Refs. [3,5]. On the
other hand, the response function denoted Γ in Refs. [6–8]
is related to ours by a factor of R ¼ 2Γ. This factor of 2
compensates for the different, previously mentioned factor
in the signal power.
We specify the response of LISA to gravitational waves

as follows. For this simplified discussion, we model the
position of the spacecraft as fixed in space,

x⃗A ¼ f0; 0; 0g; ð27Þ

x⃗B ¼ Lf1=2;
ffiffiffi
3

p
=2; 0g; ð28Þ

x⃗C ¼ Lf−1=2;
ffiffiffi
3

p
=2; 0g; ð29Þ

where L ¼ 2.5 × 109 m, or 25=3 cs (light seconds). Even
though the spacecrafts are moving relative to the Solar
System barycenter (the frame in which we expand the
gravitational wave signal), the optimal statistic effectively
filters any correlation with a time-lag much greater than the
light-travel time across the constellation [5]. In this dis-
cussion we ignore the relative motion between the instanta-
neous frames of the spacecraft within this time lag. See
Ref. [13] for more details.
The intensity response functions for the SGWB covering

the full frequency range must be calculated numerically.
We can obtain an analytic approximation by expanding the
gain of a detector vertex [given in Eqs. (11) and (12)] in
powers of x ≡ f=f� ≪ 1 and integrating that expansion
over the sky to obtain

R1ðf; t; tÞ ≃ jWj2
�
3

10
−

169

1680
x2 þ 85

6048
x4 −

165073

159667200
x6

þ 132439

2830464000
x8 þOðx10Þ

�
; ð30Þ

R2ðf;t;tÞ≃ jWj2
�
−

3

20
þ 169

3360
x2−

85

12096
x4þ 29239

45619200
x6

−
251389

5660928000
x8þOðx10Þ

�
; ð31Þ

where we have left the factor jWj2 intact to enable
switching between Michelson and TDI variables. We have
expanded these response functions to such a high power so
that we keep the leading and next-to-leading orders in the
expansion for the T response S1 þ 2S2.
The A and E response functions are constant for f ≪ f�

and scale as f−2 for f > f�; the T response function goes as
f6 for f ≪ f� and as f−2 for f > f�, as shown in Fig. 2. We
find that an approximate fit for these response functions is
given by

RFit
A;E ≃

9

20
jWj2

�
1þ

�
f

4f�=3

�
2
�
−1
; ð32Þ

RFit
T ≃

1

4032

�
f
f�

�
6

jWj2
�
1þ 5

16128

�
f
f�

�
8
�

−1
: ð33Þ

The full response functions and the fits are shown in Fig. 2.
It is clear that the T mode is much less sensitive than the A
and E modes.

IV. THE OPTIMAL STATISTIC FOR A
STOCHASTIC BACKGROUND

Here we describe the procedure to obtain the optimal
statistic for assessing sensitivity to a SGWB [2,3,8]. At
issue is how best to distinguish the signal from the noise.
As discussed in Ref. [14], the TDI T signal (also called the
Sagnac signal) is much less sensitive to the SGWB at lower
frequencies than the A and E signals. Because of this we
can use the T signal to partially remove the instrumental
noise from A and E. For simplicity we will assume that the
T mode allows us to completely characterize the instru-
mental noise associated with theΦA;E modes, Nðt − t0Þ. We
will also ignore any effects due to the motion of the
spacecraft, since these are expected to be negligible. This
means that for a stationary SGWB the LISA response is
also stationary [5,15].
Our assumption that the SGWB is stationary allows us to

write down an optimal statistic of the form [15]

FIG. 2. The LISA response functions RA;E and RT along with
the fitting functions are shown as functions of frequency.
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Ĉ ¼
Z

T=2

−T=2

Z
T=2

−T=2

X
i¼A;E

�
ΦiðtÞΦiðt0Þ −

1

2
Niðt − t0Þ

�

×Qiðt − t0Þdtdt0; ð34Þ
whereQðt − t0Þ is a weight that is chosen so as to maximize
the SNR of this statistic. Note that in order to obtain an
unbiased statistic with respect to the SGWB we must
subtract the instrumental noise. This might seem unneces-
sary since if we had access to two signals whose correlation
had zero response to the instrumental noise and nonzero
response to the SGWB we could form an unbiased SGWB
statistic without subtracting the instrumental noise.
However, as noted after Eq. (15), by diagonalizing the
covariance, the cross-correlation between the TDI variables
has zero response to both the instrumental noise and the
SGWB. This leaves us with using the autocorrelation
between A and E while using the T signal to estimate
and subtract the instrumental noise. The expectation value
of this statistic is given by

μ ≡ hĈi ¼ 1

2

X
i¼A;E

Z
T=2

−T=2
Siðt − t0ÞQiðt − t0Þdtdt0; ð35Þ

¼ 1

2

X
i¼A;E

Z
∞

−∞
δ2Tðf1þf2ÞSiðf1ÞQ�

i ðf2Þdf1df2; ð36Þ

where δTðf1 þ f2Þ ¼ Tsinc½ðf1 þ f2ÞπT� is the finite-time
approximation to the Dirac delta function. Note that the
actual measurements will be discrete in time so that in order

to write the Fourier transform we have assumed that the
sampling rate is larger than the frequency support for
the signal and weight. For a fixed f1 when jf2j ≫ jf1j the
finite-time delta function scales as 1=ðf2Þ2. In addition to
this the width of the finite-time delta function is 1=T. As
long as the filter function is smooth on scales of order 1=T
and grows slower than 1=jf2j we have

δ2Tðf1 þ f2Þ ≃ TδDðf1 þ f2Þ ð37Þ
so that

μ ≃
T
2

X
i¼A;E

Z
∞

−∞
SiðfÞQiðfÞdf: ð38Þ

We will see that these conditions on the filter function are
satisfied for a wide range of power-law SGWBs toward the
end of this section.
The square of the estimator is given by

Ĉ2 ¼
Z

T=2

−T=2

X
i¼A;E

X
j¼A;E

�
Φiðt1ÞΦiðt01Þ −

1

2
Niðt1 − t01Þ

�

×

�
Φjðt2ÞΦjðt02Þ −

1

2
Njðt2 − t02Þ

�

×Qiðt1 − t01ÞQjðt2 − t02Þdt1dt01dt2dt02: ð39Þ

To evaluate the expectation value of the square of the
estimator, we must compute

��
Φiðt1ÞΦiðt01Þ −

1

2
Niðt1 − t01Þ

��
Φjðt2ÞΦjðt02Þ −

1

2
Njðt2 − t02Þ

��

¼ hΦiðt1ÞΦiðt01ÞΦjðt2ÞΦjðt02Þi þ
1

4
Niðt1 − t01ÞNjðt2 − t02Þ −

1

2
hΦiðt1ÞΦiðt01ÞiNjðt2 − t02Þ

−
1

2
hΦjðt2ÞΦjðt02ÞiNiðt1 − t01Þ: ð40Þ

Computing each term separately, under the hypothesis that
no signal has yet been detected, we have

hΦiðt1ÞΦiðt01Þi ¼
1

2
Niðt1 − t01Þ; ð41Þ

hΦiðt1ÞΦiðt01ÞΦjðt2ÞΦjðt02Þi

¼ 1

4
ðNiðt1 − t01ÞNjðt2 − t02Þ þ δij½Niðt1 − t2ÞNjðt01 − t02Þ

þ Niðt1 − t02ÞNjðt01 − t2Þ�Þ; ð42Þ

where we use the fact that both A and E modes have the
same noise power spectra. Combining all of these terms and
summing over i and j we then find

σ2 ¼ hĈ2i

¼ 1

2

Z
T=2

−T=2
½Nðt1 − t2ÞNðt01 − t02Þ þ Nðt1 − t02ÞNðt01 − t2Þ�

×Qðt1 − t01ÞQðt2 − t02Þdt1dt01dt2dt02
¼ 1

2

Z
∞

−∞
df1df2df3df4δTðf2 − f3ÞδTðf1 þ f3Þ

× Nðf1ÞNðf2ÞQðf3ÞQðf4Þ ð43Þ

× ½δTðf1þf4ÞδTðf2−f4ÞþδTðf1−f4ÞδTðf2þf4Þ�
ð44Þ

≃ T
Z

∞

−∞
dfN2ðfÞQ2ðfÞ: ð45Þ
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The SNR of this measurement is then given by

SNR ¼ μ

σ
≃

ffiffiffiffi
T
2

r P
i¼A;E

R
∞
−∞ dfSiðfÞQiðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i¼A;E

R
∞
−∞ dfN2

i ðfÞQ2
i ðfÞ

q : ð46Þ

Our retention of the sum over A, E is a formality, since the
signal and noise is the same for the two detector eigen-
modes. Hence, we can write

SNR ¼
ffiffiffiffi
T

p R∞
−∞ dfSAðfÞQAðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR∞
−∞ dfN2

AðfÞQ2
AðfÞ

q : ð47Þ

To determine what filter function QAðfÞ will maximize the
SNR, we introduce a noise-weighted inner product

ðA;BÞ ≡
Z

∞

−∞
df AðfÞBðfÞN2

AðfÞ: ð48Þ

With this the SNR can be written as

SNR ¼
ffiffiffiffi
T

p ðSA=N2
A; QAÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQA; QAÞ

p : ð49Þ

It is clear that the SNR will be maximized if QAðfÞ ¼
λSAðfÞ=N2

AðfÞ, where λ is some normalization. With this
choice, the optimal SNR is given by

SNR ¼
�
T
Z

∞

−∞
df

S2
AðfÞ

N2
AðfÞ

�
1=2

¼
�
T
X
i¼A;E

Z
∞

0

df
S2
i ðfÞ

N2
i ðfÞ

�
1=2

; ð50Þ

where in this last equality we have divided by two to rewrite
the integrand as a sum over A and E modes, and multiplied
by two in changing the range of integration.
As we will see next, at small frequencies Q ∝ f8SðfÞ

due to the acceleration noise, and at large frequencies Q ∝
f−2SðfÞ due to the frequency of the instrument response.
Our ability to approximate the finite-time delta function as
a Dirac delta function relies on the filter growing slower
than 1=jfj. This means that our SNR expression will be
correct as long as we have −5 < j∂ ln SðfÞ=∂ ln fj at f ≲
f� and j∂ ln SðfÞ=∂ ln fj < 3 at f ≳ f�. If the SGWB has a
power-law index outside of this range, then we cannot
approximate the finite-time delta function as a Dirac delta
function and the SNR of this statistic will take a differ-
ent form.

V. LISA NOISE MODEL

Expressions for the expected noise power spectra are
given in the LISA Science Requirements Document [16].
The dominant sources of noise in this idealized treatment

are due to acceleration noise and optical path-length
fluctuations, with rms amplitudes

ffiffiffiffiffiffiffiffiffiffiffi
ðδaÞ2

q
¼3×10−15m=s2;

ffiffiffiffiffiffiffiffiffiffiffi
ðδxÞ2

q
¼1.5×10−11m: ð51Þ

The acceleration and optical metrology noise are given by

Sa ¼
SI

4ð2πfÞ4 ; Ss ¼ SII; ð52Þ

where

SI ¼ 4
	 ffiffiffiffiffiffiffiffiffiffiffi

ðδaÞ2
q

=L

2ð1þ ðf1=fÞ2Þ Hz−1

¼ 5.76 × 10−48ð1þ ðf1=fÞ2Þ s−4 Hz−1 ð53Þ

SII ¼
	 ffiffiffiffiffiffiffiffiffiffiffi

ðδxÞ2
q

=L

2

Hz−1 ¼ 3.6 × 10−41 Hz−1 ð54Þ

with L ¼ 2.5 × 109 m, f1 ¼ 0.4 mHz. These noise spectra
contribute to the interferometer noise (see, e.g., Ref. [5])

N1 ¼ ½4SsðfÞ þ 8½1þ cos2ðf=f�Þ�SaðfÞ�jWj2; ð55Þ

N2 ¼ −½2SsðfÞ þ 8SaðfÞ� cosðf=f�ÞjWj2: ð56Þ

The noise of the A and E signals is given by

NA;E ¼ N1 − N2

¼ ðð4þ 2 cosðf=f�ÞÞSs þ 8ð1þ cosðf=f�Þ
þ cos2ðf=f�ÞÞSaÞjWj2 ð57Þ

≃ ð6Ss þ 24SaÞjWj2; ð58Þ

where the latter expression is obtained under a low-
frequency approximation, cosðf=f�Þ ≃ 1, which provides
a good fit to the exact noise curve without the high
frequency wiggles. We use these expressions for the noise
in Eq. (50).
With these results in hand, we can determine the inverse

noise-weighted response to the variance in the SGWB
intensity or spectral density

ΣI ¼
��

RA

NA

�
2

þ
�
RE

NE

�
2
�
−1=2

; ΣΩ ¼ ΣI
4π2f3

3H2
0

;

ΩGW ¼ I
4π2f3

3H2
0

: ð59Þ

In terms of these new variables, the SNR is

SNR2 ¼ T
Z

∞

0

df I2=Σ2
I ¼ T

Z
∞

0

dfΩ2
GW=Σ2

Ω: ð60Þ
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We repeat for the impatient reader that T is the time of
observation, e.g., 4 years. We use Eqs. (59) and (60) to
evaluate the signal-to-noise ratio of LISA for a given
SGWB.
The sensitivity to the intensity is therefore

ΣI ¼
1ffiffiffi
2

p NA

RA
ð61Þ

≃
1ffiffiffi
2

p 6Ss þ 24Sa
9
20
½1þ ð f

4f�=3
Þ2�−1 : ð62Þ

We refer to Eq. (61), using Eq. (57) for the noise and the
exact expression Eq. (14) for the response, as our exact,
numerical result. The second expression, Eq. (62), gives
our approximation which uses the low-frequency approxi-
mation in Eq. (58) for the noise and the fitting function
Eq. (32) for the response, whereby

ΣI ≃
ffiffiffi
2

p 20

3

�
SIðfÞ
ð2πfÞ4 þ SIIðfÞ

��
1þ

�
f

4f�=3

�
2
�
: ð63Þ

We note that the factors ofW for the extra TDI paths cancel
exactly from both numerator and denominator in our
idealized treatment. The boxed equations, with noise
spectra given in Eqs. (53) and (54), are sufficient to specify
the signal-to-noise ratio of LISA for a given SGWB.

VI. POLARIZATION- AND SKY-AVERAGED
LISA SENSITIVITY FOR SHORT-LIVED

“MULTITONAL” DETERMINISTIC
POINT SOURCES

The optimal SNR for a short-lived multitonal point
source (i.e., a deterministic source that evolves through
the LISA band in a short time compared to the mission
lifetime) takes a slightly different form. Examples of such
sources are a spinning neutron star or a binary merger. This
is a standard calculation [6], although the detector response
is not usually included for reasons of generality. We start by
identifying the signal S as the interferometer phase Φ
convolved with a filter, Q,

Ĉ ¼
X
i¼A;E

Z
T=2

−T=2
dtΦiðtÞQiðtÞ

¼
X
i¼A;E

Z
∞

−∞
df1df2δTðf1 þ f2ÞΦiðf1ÞQiðf2Þ: ð64Þ

The expectation value of this statistic is then given by

μ ≡ hĈi

¼
X
i¼A;E

Z
∞

−∞
df1df2δTðf1 þ f2ÞΔφiðf1ÞQiðf2Þ: ð65Þ

If the source has a broad frequency dependence, then the
finite-time delta function approximates a Dirac delta; in
other words, the source passes through the LISA band in a
time much shorter than the observation. For the following
discussion we will focus attention on those sources with a
Fourier transform that is smooth on frequencies around and
below 1=T so that we can write the signal as

μ ≃
X
i¼A;E

Z
∞

−∞
dfΔφiðfÞQ�

i ðfÞ: ð66Þ

The squared noise is the mean of the square of this same
convolution in the absence of signal,

σ2 ¼
X
i¼A;E

Z
dt dt0QiðtÞQiðt0ÞhΦðtÞΦðt0Þi ð67Þ

¼
X
i¼A;E

Z
dt dt0QiðtÞQiðt0Þ

1

2
Niðt − t0Þ ð68Þ

≃
X
i¼A;E

Z
∞

−∞
df jQiðfÞj2

1

2
N�

i ðfÞ; ð69Þ

where in the last line we again approximated the finite-time
delta function as a Dirac delta function. Here we introduce
the inner product

ðA;BÞ ≡
Z

∞

−∞
df

AðfÞBðfÞ
1
2
NiðfÞ

ð70Þ

to facilitate writing the SNR as

SNR2 ¼ μ2

σ2
¼ ðPi¼A;EðΔφi; 12NiQiÞÞ2P

i¼A;Eð12NiQi; 12NiQiÞ
: ð71Þ

This ratio is clearly maximized by the filterQi¼λΔφi=1
2
Ni,

where λ is some normalization, whereupon

SNR2¼
X
i¼A;E

ðΔφi;ΔφiÞ¼
X
i¼A;E

Z
∞

−∞
df

jΔφiðfÞj2
1
2
NiðfÞ

: ð72Þ

If we were to rename the phase as “h̃” ¼ Δφi, then we
would recover the appearance of a standard formula

SNR2 ¼
X
i¼A;E

4

Z
∞

0

df
jh̃ðfÞj2
NiðfÞ

ð73Þ

[e.g., Eq. (16) of Ref. [6] ]. However, the signal is the
interferometer phase, so to take into account the response of
the detector, we adapt Eqs. (13) and (14) and we have
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SNR2 ¼
X
i¼A;E

4

Z
∞

0

df
jΔφiðfÞj2
NiðfÞ

; ð74Þ

jΔφiðf; n̂sÞj2 ¼
����
X
P

hPðfÞFP
i ðn̂s; f; tÞ

����
2

; ð75Þ

where n̂s is a unit vector that points to the source. To
calculate the SNR due to a specific object, this is the
expression to use. Note that the direction of this vector will
change in time due to the motion of LISA relative to the
source location. However, we are going to proceed under
the assumption that the instrumental response varies on the
timescale of days to weeks due to the orbital motion of the
spacecraft, whereas the signal oscillates on seconds to hour-
long timescales.
We proceed for the case of an average source, such as a

radiating binary. We assume that the source is in a plane
with a normal that points in the û direction (for a binary this
is the orbital angular momentum). This axis defines a
coordinate system in which we can establish a natural basis
on the sky

ê0x ≡ n̂s × û
jn̂s × ûj ; ê0y ≡ −

n̂s × ê0x
jn̂s × ê0xj

: ð76Þ

From this we can define a set of GW tensors in the usual
way:

e0þabðn̂s; ûÞ ¼ ðê0xÞaðê0xÞb − ðê0yÞaðê0yÞb; ð77Þ

e0×abðn̂s; ûÞ ¼ðê0xÞaðê0yÞb þ ðê0yÞaðê0xÞb: ð78Þ

This set of polarization tensors are related to the detector-
defined polarization tensors [see Eqs. (3) and (4)] through a
polarization matrix

RA
BðψÞ ≡

�
cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ

�
; ð79Þ

where eA ¼ RA
BðψÞe0B. Defining ν ≡ n̂s · û ¼ cos θu the

gravitational wave received at the detector can be
written

habðfÞ ¼ AðfÞ½gþðνÞRþ
A ðψÞe0Aabðθu;ϕuÞ

þ g×ðνÞR×
AðψÞe0Aabðθu;ϕuÞ�: ð80Þ

The most agnostic assumption is that we do not have any
prior information on the direction of û. In this case we can
average over the orientation û as well as the direction n̂s of
the source on the sky, in which case we take

jΔφiðfÞj2 →
1

4π

Z
dΩu

1

4π

Z
dΩns

����
X
P

hPðfÞFP
i ðn̂s; f; tÞ

����
2

ð81Þ

¼ 1

2
h̄2ðfÞRiðfÞ; ð82Þ

h̄2ðfÞ≡A2ðfÞ
2

Z
dθu sinðθuÞ½g2þðθuÞþg2×ðθuÞ�: ð83Þ

Averaging over polarization is implicit in Eqs. (81) and (82)
so that the polarization- and sky-averaged SNR is finally

SNR2 ¼
X
i¼A;E

4

Z
∞

0

df
RiðfÞ
NiðfÞ

1

2
h̄2ðfÞ ¼

Z
∞

0

df
h̄2ðfÞ
ΣhðfÞ

:

ð84Þ

By collecting terms in the middle expression above, we
define the noise power spectral density Σh for short-lived
sources in terms of the detector noise N and response R,

Σh ¼
�
2
X

i¼A;E

RiðfÞ
NiðfÞ

�
−1
: ð85Þ

The contribution of the T mode can be included by an
obvious generalization of the above expression. For the
exact, numerical sensitivity we use Eqs. (57) and (14) for
the noise and response. For the low-frequency approxima-
tion, we use Eqs. (58) and (32). Hence, the signal-to-noise
ratio is given by

SNR2 ¼
Z

∞

0

df
h̄2ðfÞ
ΣhðfÞ

ð86Þ

with

Σh ≃
1

2

20

3

�
SIðfÞ
ð2πfÞ4 þ SIIðfÞ

�
RðfÞ; ð87Þ

where RðfÞ ¼ 1þ ðf=f2Þ2 and f2 ¼ 25 mHz (note that
with L ¼ 2.5 × 109 m we have 4f�=3 ¼ 25.4 mHz). This
SNR is useful for cases in which the waveforms are known.
Equations (86) and (87) match the expression for the SNR
given in the LISA Science Requirements Document [16].
The range of integration in the SNR for burst sources is

set by considerations of the noise properties of the instru-
ment (i.e., fmin ≃ 10−5 Hz and fmax ≃ 1 Hz). However, we
can generalize this expression for the SNR to cover
continuous wave sources that sit for an extended period
of time within the LISA band by taking fmin ¼
maxð10−5 Hz; fobsÞ and fobs is set by the time the object
has been observed. Likewise, fmax ¼ minð1 Hz; fmÞ and
fm is an upper frequency based on the source, such as the
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frequency at the innermost stable compact orbit for a binary
merger. See Ref. [17] for details.
It may be surprising that the sensitivity for a continuous

source differs from that of a SGWB. However, the optimal
statistic is responding to an important differencebetween these
two cases. Namely for a continuous source the signal is linear
in wave amplitude, whereas for a SGWB the signal is the
intensity, which is quadratic in wave amplitude. Since I ∝ h2,
it follows that the uncertainty in the intensity is related to the
uncertainty in the wave amplitude δI ∝ 2hδh. Consequently,
the sensitivity to I should be half of that toh, assuming that we
restrict our simplistic argument to one TDI mode. Indeed,
revisiting Eqs. (63) and (87) for one TDI mode, ΣI;1¼

ffiffiffi
2

p
ΣI

and Σh;1 ¼ 2Σh. Comparing these expressions, we find that
ΣI;1¼2Σh;1, as expected.A similar behavior for the sensitivity
of pulsar timing arrays to aSGWBanddeterministic signal has
recently been pointed out in Ref. [18].

VII. POLARIZATION- AND SKY-AVERAGED
LISA SENSITIVITY FOR MONOTONE

POINT SOURCES

The case of a long-lived monotone point source (i.e., a
source that remains fixed within the LISA band for a period
of time of longer than the mission lifetime), such as a
binary that is many years before merger, can be treated in
a fashion similar to the short-lived source. We consider a
gravitational wave that oscillates like a cosine with fixed
amplitude. Consequently, the interferometer phase is
ΔφðtÞ ¼ Δφm cosð2πfmtþ ϕÞ, where the subscript m indi-
cates the source is monotone. The Fourier transform of this
waveform is

ΔφðfÞ ¼ 1

2
Δφmðδðf þ fmÞ þ δðf − fmÞÞ: ð88Þ

We can insert this expression into Eq. (65) to obtain

μ ¼
X
i¼A;E

Z
∞

−∞
df1df2δTðf1 þ f2ÞΔφiðf1ÞQiðf2Þ ð89Þ

¼
X
i¼A;E

Z
∞

−∞
df

1

2
Δφm;iðδTðfþfmÞþδTðf−fmÞÞQiðfÞ:

ð90Þ
The noise is unchanged from Eq. (69), so we may proceed
directly to Eq. (72), whereby

SNR2¼
X
i¼A;E

Z
∞

−∞
df

j1
2
Δφm;iðδTðfþfmÞþδTðf−fmÞÞj2

1
2
NiðfÞ

ð91Þ

¼
X
i¼A;E

1

2
jΔφm;ij2

Z
∞

−∞
df

jðδTðfþfmÞþδTðf−fmÞÞj2
NiðfÞ

:

ð92Þ

Since NðfÞ is slowly varying in the region where the
finite-time delta functions have support, we can replace
δ2Tðf � fmÞ ≃ TδDðf � fmÞ. The SNR becomes

SNR2 ¼
X
i¼A;E

T
jΔφm;ij2
NðfmÞi

: ð93Þ

This result is valid for a general, long-lived monotone source.
The sky and polarization averaging is the same as before,
jΔφm;ij2 ¼ 1

2
h̄2mRiðfmÞ. Our final result for the SNR is

therefore

SNR2 ¼ 1

4
T

h̄2m
ΣhðfmÞ

; ð94Þ

where T is the observation time and h̄m is the dimensionless,
polarization-averaged waveform amplitude.
We can make a connection between the SNR for

deterministic long-lived monotone and short-lived multi-
tonal point sources by considering a process through which
an evolving source radiates in narrow frequency intervals
½fn − 1

2
Δf; fn þ 1

2
Δf� for a sequence of times Tn. We can

adapt Eq. (94) to describe such a sequence as

SNR2 ¼
X
n

1

4
Tn

h̄2m;n

ΣhðfnÞ
: ð95Þ

Likewise, we can adapt Eq. (86) to describe radiation into a
sequence of frequency intervals, to obtain

SNR2 ¼
X
n

Z
fnþ1

2
Δf

fn−1
2
Δf

df
h̄2ðfÞ
ΣhðfÞ

¼
X
n

Z
tnþ1

2
Δt

tn−1
2
Δt

dt
df
dt

h̄2ðfÞ
ΣhðfÞ

¼
X
n

Tn
df
dt

h̄2ðfnÞ
ΣhðfnÞ

: ð96Þ

We assume that the detector noise Σh is very slowly varying
across the frequency intervals. These two expressions for
the SNR are equivalent, provided that

1

4
h̄2m;n ¼

df
dt

h̄2ðfnÞ: ð97Þ

The above equation is indeed valid. As shown in Ref. [17],
given a function BðtÞ ¼ AðtÞ cosϕðtÞ, then under a pair of
conditions that restrict the rate of change of ϕ, and which
are satisfied for both monotone and multitonal sources, the
Fourier transform is BðfÞ ¼ 1

2
AðtÞðdfdtÞ−1=2. In our nomen-

clature, h̄ðfnÞ ¼ 1
2
h̄m;nðdfdtÞ−1=2, so that Eq. (97) is proved.

Our results for monotone and multitonal sources are
consistent.
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VIII. WORKED EXAMPLES

Here we will present worked examples of how to apply
the SNR expressions to determine sensitivity to various
sources of cosmological interest.

A. LISA sensitivity curve to a SGWB

We now compute the sensitivity of LISA to a SGWB.
We require the signal-to-noise ratio as given in Eqs. (59)
and (60),

SNR ¼
�
T
Z

fmax

fmin

df
Ω2

GW

Σ2
Ω

�
1=2

; ð98Þ

to exceed SNR ¼ 5 for T ¼ 4 years observation. A rea-
sonable range of frequencies is fmin ¼ 0.1 mHz and
fmax ¼ 0.1 Hz. In the case of a flat, scale-invariant spec-
trum, assuming H0 ¼ 67 km=s=Mpc [19], we obtain
ΩGW ¼ 4.7 × 10−13 or ΩGWh2 ¼ 2.1 × 10−13. We stress
that this includes both A and E TDI modes. This is an
idealization, which we have made clear throughout, as we
ignore foreground contamination, non-Gaussianities, data
interruptions, and other systematics. For example, we
expect that the scientific dataset will be shorter, due to
engineering tests and cuts in the data. The LISA Science
Requirements Document [16] projects that “the duty cycle
of usable science data at full (nominal) performance
shall be greater than 75%,” which we interpret to mean
a T ≥ 3 year dataset. To adjust our forecast accordingly,
ΩGW is scaled upwards by a factor of

ffiffiffiffiffiffiffiffi
4=3

p
. Hence, we

obtain ΩGW ¼ 5.4 × 10−13, or ΩGWh2 ¼ 2.4 × 10−13.
In the case of a scale-free, power-law spectrum, we use

the method of Thrane and Romano [7] to draw the
integrated sensitivity curve. The procedure is as follows:
(1) We model the SGWB as a power law so that

ΩGWðfÞ ¼ ΩGW;0ðf=f0ÞnT .
(2) For each value of the spectral index nT we determine

the threshold ΩGW;0 that yields SNR ¼ 5.
(3) We draw the maximum of the locus of curves consist-

ing ofΩGWðfÞ for each value of nT andΩGW;0, at each
frequency. This gives the integrated sensitivity curve.

The integrated SGWB sensitivity curve using all TDI modes
is shown in Fig. 3. The curve shows that by combining
information from the A and Emodes, a four-year-long LISA
mission can detect a SGWB as low as ΩGW ≃ 4.7 × 10−13

with SNR ¼ 5. Any power-law spectrum that intersects with
the above curve is detectable at SNR ¼ 5.
In the case of a SGWB with any other shape within the

sensitivity range, e.g., a brokenpower law, then drawing such
a curve is only useful to guide expectations. The sensitivity is
determined by evaluating the SNR on a case-by-case basis.

B. Computing the Fisher matrix

We can also use a Fisher analysis to determine how well
a gravitational wave observatory can infer parameters

associated with the spectral density of a SGWB [20,21].
In order to perform this analysis we need to identify the
data and then compute its covariance. Laser interferometers
monitor the phase difference between light traveling along
different paths, ΦaðtiÞ ¼ ΔφaðtiÞ þ naðtiÞ, where ΔφaðtiÞ
is due to gravitational waves and naðtiÞ is the instrumental
noise. We will denote the time interval between these
measurements by Δt ¼ tiþ1 − ti.
We will divide up the total dataset of duration T into

time intervals of duration 1=fl, where fl is the highest
frequency we are interested in (for LISA’s nominal design
fl ¼ 0.1 Hz; see Fig. 3). We imagine performing a Fourier
analysis on each interval and will assume that different
intervals are statistically independent (this is a better
approximation the further separated the intervals get in
time) [22,23]. In this way we obtain M ≡ flT quasi-
independent measurements in each frequency bin fi.
The “data” are then given by each phase measurement,

fΦð1Þ
a ðfiÞ;Φð2Þ

a ðfiÞ;…;ΦðMÞ
a ðfiÞg, for the two independent

modes a ¼ A;E. The mean of the data vanishes and its
covariance is diagonal and is given by

C ≡ hΦðpÞ
a ðfiÞΦðqÞ

b ðfjÞi ð99Þ

¼ 1

2
½SaðfiÞ þ NaðfiÞ�δijδpqδab: ð100Þ

Assuming that the data are a realization of a Gaussian
distribution, then the Fisher information matrix is given
by [20]

Fαβ ¼
1

2
Tr

�
C−1 ∂C

∂θα C
−1 ∂C

∂θβ
�

ð101Þ

¼ 1

2
M

X
a¼A;E

X
i

∂SaðfiÞ∂θα
∂SðfiÞ∂θβ

½NaðfiÞ þ SaðfiÞ�2
ð102Þ

≃
1

2
T
X
a¼A;E

Z
fh

fl

∂SaðfÞ∂θα
∂SaðfÞ∂θβ

½NaðfÞ þ SaðfÞ�2
df; ð103Þ

FIG. 3. The integrated sensitivity of LISA to a power-law
SGWB with SNR ¼ 5 and observation time T ¼ 4 years.
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where we integrate to maximum frequency fh ≃ 1=Δt, θa is
a parameter used to model the SGWB, and we have
assumed that the instrumental noise can be completely
characterized by monitoring the Sagnac (T-mode) signal.
Rewriting the signal in terms of ΩGW [3] we have

Fαβ ¼
9H4

0

32π4
T
X
a¼A;E

Z
fh

fl

∂ΩGWðfÞ
∂θα

∂ΩGWðfÞ
∂θβ R2

aðfÞ
½NaðfÞþ 3H2

0

4π2f3ΩGWðfÞRaðfÞ�2
df
f6

:

The inverse of the Fisher matrix is the parameter covariance
matrix giving us estimates for their uncertainties (see,
e.g., Ref. [24]).

C. A binary inspiral

We consider the sensitivity of LISA to a black hole
binary inspiral far from merger. We describe such a system
in terms of a waveform

h̃þ ¼ AðfÞ 1þ cos2θu
2

cosΨ; ð104Þ

h̃× ¼ AðfÞ cos θu sinΨ; ð105Þ

where θu describes the inclination of the orbit relative to our
line of sight and Ψ is the phase. Considering Newtonian
orbits, the leading-order contribution to the amplitude is

AðfÞ ¼
ffiffiffiffiffi
5

24

r
ðGM=c3Þ5=6
π2=3ðD=cÞ f−7=6; ð106Þ

valid for frequencies far below the frequency at the inner-
most stable compact orbit, where M is the chirp mass and
D is the comoving distance. (See Refs. [17,25] for more
details.) Note that M and f are in the source reference
frame. Adapting Eqs. (80) and (83), we obtain

h̄2ðfÞ ¼ 4

5
A2ðfÞ ¼ ðGM=c3Þ5=3

6π4=3ðD=cÞ2 f
−7=3: ð107Þ

We can apply this to Eqs. (86) and (87) to evaluate the
signal-to-noise ratio. If we assume that the binary is
radiating when the detector turns on, and subsequently
evolves out of the sensitivity window, then the range of
frequency for integration of the SNR extends from the
initial frequency up to the highest frequency detectable,
which is about 1 Hz.
As a classic example [26], we consider a system identical

to GW150914 [27] that is radiating in the LISA band for
several years prior to merger. We take M1 ¼ 36M⊙,
M2 ¼ 29M⊙, and place the binary at z ¼ 0.09 in a standard
cosmology with ΩM ¼ 0.3, ΩΛ ¼ 0.7, and h ¼ 0.7 so that
DL ¼ 411.5 Mpc. The chirp mass is M ¼ ððM1M2Þ3=
ðM1 þM2ÞÞ1=5 ≃ 28M⊙. We consider the situation that
when LISA first spots the binary, it is radiating at a

frequency fr in the binary rest frame, or fi¼fr=ð1þzÞ
in the reference frame of the observer. This predicts a time
to merger in the binary frame

tmerge ¼
5

256π8=3
ðGM=c3Þ−5=3f−8=3r ; ð108Þ

which is Δtobs ¼ ð1þ zÞtmerge in the observer frame. For
convenience, we imagine observing the binary in the
LISA window 4 (10) years before merger, so that Δtobs ≃
4ð10Þ years implies fr ¼ 0.018ð0.013Þ Hz and fi ¼
0.016ð0.012Þ Hz [26]. Using Eq. (107), we find that the
characteristic strain is

hc ¼ hcðfiÞðf=fiÞ−1=6;

hcðfiÞ ¼
ffiffiffi
2

3

r
ðGMð1þ zÞ=c3Þ5=6f−1=6i

π2=3ðDL=cÞ
ð109Þ

with hcðfiÞ ≃ 1.2 × 10−20 and h̄ ¼ hc=ð2fÞ, and f is now
in the reference frame of the observer. We can now use
Eqs. (86) and (87), integrating from fi up to fmax ¼ 1 Hz,

SNR2 ¼
Z

fmax

fi

df
h̄2ðfÞ
ΣhðfÞ

¼
Z

fmax

fi

d ln f
h2cðfÞ

4fΣhðfÞ
: ð110Þ

Figure 4 shows the characteristic strain hc relative to the
characteristic strain sensitivity,

ffiffiffiffiffiffiffiffiffiffiffi
4fΣh

p
. A good rule of

thumb for assessing detectability is that the strain must lie
half an order of magnitude above the strain sensitivity over
an order of magnitude span in frequency. In our worked
case, the result is SNR ¼ 2.3ð3.4Þ as shown in Table I,
which is just at the threshold of detection. We have also
verified that, given the frequency of GW150914, the T
mode contributes negligibly to the SNR.

FIG. 4. The characteristic strain hc due to a system identical to
GW15094 [27] that is radiating in the LISA band for 10 years
prior to merger (dashed line) is shown relative to the strain
sensitivity 2

ffiffiffiffiffiffiffiffi
fΣh

p
(solid line), calculated from Eq. (87).
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D. A monotone binary

Weconsider the sensitivity of LISA to a binary system that
is far from merger, which emits at essentially a single
frequency.We describe such a system in terms of awaveform

h̃þ ¼ Am
1þ cos2θu

2
cosΨ; ð111Þ

h̃× ¼ Am cos θu sinΨ; ð112Þ

where θu describes the inclination of the orbit relative to
our line of sight, and Ψ is the phase. In this case, again
considering Newtonian orbits, the leading contribution to
the amplitude is

Am ¼ 4
ðGMÞ5=3ðπfmÞ2=3

Dc4
: ð113Þ

(See Ref. [28] for more details.) Adapting Eqs. (80) and
(83), we obtain h̄2m ¼ 4

5
A2
m, so

h̄2m ¼ 64

5

ðGMÞ10=3ðπfmÞ4=3
ðDc4Þ2 : ð114Þ

We can apply this to Eqs. (87) and (94) to evaluate the
signal-to-noise ratio.
As a timely example, we consider a system comparable

to the recently discovered double white-dwarf binary
ZTFJ1539 [29]. We use M1 ¼ 0.6M⊙ and M2 ¼ 0.2M⊙
so thatM ¼ 0.3M⊙, the orbital period is P ¼ 415 s so that
fm ¼ 4.8 × 10−3 Hz, and we place the object at a distance
2.3 kpc, where the difference between physical and
comoving distance is irrelevant. The time to merger is
over 2 × 105 years, and the radiating frequency evolves

TABLE I. The SNR for LISA to observe a system identical to
GW150914 under various conditions. The left (right) column
shows the case that the binary is radiating for 4 (10) years before
merger in the reference frame of the observer. The SNR is
calculated first using the low-frequency approximation to the
sensitivity, given in Eq. (87). Second, the SNR is calculated using
the exact, numerical results for the noise and response functions
in Eq. (85). All SNR values include two independent TDI modes.

GW150914 benchmarks

Time to merger 4 years 10 years
minðfÞjobs 0.016 Hz 0.012 Hz
SNR, Eqs. (86),(87) 2.3 3.4
SNR, Eqs. (85),(86) 2.7 3.8

TABLE II. Summary of the notation used in this paper.

Symbol Description (dimensions) Defining equation

f GW frequency (1)
n̂ Unit vector along the GW direction of propagation (1)
habðf; n̂Þ Fourier transform of the GW strain (frequency−1) (1)
eþ;×
ab ðn̂Þ Linear gravitational wave polarization tensor (3) & (4)
IðfÞ Total intensity of the SGWB (frequency−1) (7)
ΩGW Energy density of SGWB per log f in units of the critical energy density (8)
ΔφABC

ðtÞ Laser phase accumulated at detector vertex due to GW (10)
nABC

ðtÞ Phase noise accumulated at detector vertex (10)
FP
ABC

ðn̂; f; tÞ Geometrical function describing gain of a detector vertex (11) & (12)
W The “TDI” factor (12)
f� Characteristic interferometer frequency (12)
L Interferometer arm length (12)
RABC;XYZ

ðf; t; t0Þ SGWB intensity response (14)
NX¼A;E;T TDI spectral noise response (frequency−1) (22) & (23)
SX¼A;E;T TDI spectral signal response (frequency−1) (24) & (25)
Rfit

X¼A;E;T Fit to TDI intensity response (32) & (33)
T Lifetime of the mission (34)
Ĉ Optimal statistic (34)
Qðt − t0Þ Optimal weight (34)
δTðf1 þ f2Þ Finite-time delta function (frequency−1) (36)
Sa Acceleration noise spectral density (frequency−1) (52)
Ss Optical metrology noise spectral density (frequency−1) (52)
ΣX Noise-weight response (59)
n̂s Unit vector pointing to a point-source (75)
û Unit vector normal to point-source plane (76)
ν Cosine of angle between n̂s and û (80)
AðfÞ Gravitational wave amplitude (80)
M Chirp mass (80)
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very slowly, changing by 10−6 per year. Hence, we are
justified to treat this system as a monotone source. Using
these numbers, the averaged strain amplitude is h̄m ¼
1.8 × 10−22, and the noise power spectral density is
ΣhðfmÞ ¼ 1.5 × 10−40 Hz−1. For T ¼ 1, 4 years observa-
tion, the sky- and polarization-averaged SNR is 40,80. All
SNR values include two independent TDI modes. This
source should be clearly observed by LISA [30].

IX. DISCUSSION

We have presented expressions for the optimal signal-to-
noise ratio for LISA, in particular the power spectral density
ΣΩ for sensitivity to a SGWB and Σh for the sky- and
polarization-averaged sensitivity to a deterministic source.
We have illustrated eachwith aworked example. A summary
of the notation used in this paper is included in Table II. We
envision that these tools should enable a cosmologist to be
able to assess the detectability of any new source of
gravitational waves. These examples include benchmarks
for easy comparison of methods. LISA should be able to
observe a SGWBwithΩGWh2 ¼ 2.1 × 10−13 assumingT ¼
4 years at SNR ¼ 5. A binary black hole system that is
identical to GW150914, radiating for 4 years prior tomerger,
would be marginally resolved with SNR ¼ 2.3. A nearby
double white-dwarf binary similar to ZTFJ1539 should be
clearly detected with one year of observation, with
SNR ¼ 40. All three results are obtained through idealized
calculations that ignore the presence of foregrounds and
other systematic effects beyond the noise model.
Additional, independent sources of noise, beyond the

instrumental noise modeled herein, can be included easily
in the SNR expressions. For example, a noise spectral
density representing a foreground of unresolved sources
ΔNi can be included by replacing Ni → Ni þ ΔNi in
Eqs. (50) and (84). Covariance or cross-correlation across
different detectors is straightforward to calculate, but is
beyond the scope of this article.
The tools we have presented may be naively extended

to other space-borne gravitational wave observatories, such
as TianQin [31] and the DECi-hertz Interferometer
Gravitational Wave Observatory (DECIGO). TianQin is
a LISA-like constellation of three drag-free spacecraft,
but orbiting the Earth with separation L ¼ ffiffiffi

3
p

× 108 m.
The targeted acceleration noise and optical path-length

fluctuation rms amplitudes are
ffiffiffiffiffiffiffiffiffiffiffi
ðδaÞ2

p
¼ 10−15 m=s2 andffiffiffiffiffiffiffiffiffiffiffi

ðδxÞ2
p

¼ 10−12 m. Assuming identical TDI modes as for
LISA, then the equations in Secs. V and VI can be adapted
(and rescaled, as for f1) to obtain ΣΩ for sensitivity to a
SGWB and Σh for polarization- and sky-averaged sensi-
tivity to a deterministic source. DECIGO is another LISA-
like constellation, but with arm length L ¼ 1000 km.
We provide a Mathematica notebook, available to

download from our url, to facilitate easy computation.
The notebook contains easy to use tools for SGWB studies.
This includes a data table for ΣI using the calculated
response functions, the analytic expression for ΣI to enable
fast calculation of SNR for a SGWB, as well as a data table
for the SNR ¼ 5 integrated sensitivity curve shown in
Fig. 3 for easy graphing. For studies of continuous sources,
a data table and analytic expression for Σh are included, as
well as a data table for the strain sensitivity curve shown
in Fig. 4.
At this moment, during this first stage of the age of

gravitational wave astronomy, it is clearly necessary for the
gravitational wave community to provide clear, simple, and
accurate tools with which researchers in adjacent fields can
estimate the sensitivity of current and future gravitational
wave observatories to a variety of sources. The current state
of the literature on this topic can be at best described as
confusing, with a proliferation of various notations and
conventions; there are several popular online tools that
produce sensitivity curves for LISA but which are signifi-
cantly out of date, e.g., Refs. [32,33].
In this paper we have provided a derivation of this

sensitivity curve from start to finish along with specific
examples of the SNR for LISA due to a handful of standard
sources. Our hope is that this paper provides a clear guide
for any researcher looking to estimate the SNR for LISA
due to any source and can provide the basic building blocks
to assess the sensitivity of other space-based gravitational
wave observatory designs.
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