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ABSTRACT

Blockchain systems (more precisely Distributed Ledger Tech-
nologies (DLTs)) represent a different digital ecosystem com-
pared with traditional computer systems. One major differ-
ence are the performance and scalability factors which will
be discussed and analytically investigated in this paper. In
doing so, we provide guidance for defining a research agenda
focusing on the investigation of the crucial role of scalability
for DLT systems. System performance — measured in terms
of (1) consensus response time (blockchain network latency
or time to convergence/agreement); (2) number of trans-
actions per second or throughput, and (3) computing (and
power) resources consumed — can be understood by consid-
ering the design dimensions of a DLT system, namely: (i)
the type of DLT system needed from a requirements per-
spective which in turn determines; (ii) the complexity of the
consensus protocol used; (iii) the topography of the antici-
pated traffic flow on the network; (iv) the performance and
complexity of the domain-specific language that implements
smart contracts; and (v) by the anticipated growth in size
and complexity of the distributed ledger itself.

CCS Concepts

eComputing Methodologies — Distributed Comput-
ing Methodologies; eNetworks — Network Performance
Evaluation;
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distributed network scalability.

1. INTRODUCTION

Blockchain systems or Distributed Ledger Technologies
(DLTs) became widely known in the form of implementa-

tions for cryptocurrencies, most prominently Bitcoin [Nakamoto

2008] and Ethereum [Buterin 2014]. Accompanying the ups
and downs of Bitcoin (and other cryptocurrency) prices, as
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well as the mixed experiences investors have had with Ini-
tial Coin Offerings (ICOs), many more innovative business
opportunities have emerged around the use of DLT systems
in supply chain, finance, logistics, and other business verti-
cals, that are promise to add economic value. Thus, while
DLT systems where started life in cryptocurrencies, many
of the interesting innovations actually take place outside of
that field. For this reason, non-cryptocurrency applications
of DLT's are the starting point for our study. These systems
elicit different requirements — and exhibit different charac-
teristics — to those used in cryptocurrencies — which are on
the whole better understood through their practical use for
tokenizing de-centralized peer-to-peer financial transactions.

1.1 DLTs and Blockchains in the loT World

While applications that use crypto-secure distributed ledgers
are attractive, the technology confronts significant hurdles
that are interesting to investigate and challenging to fully
understand. Performance and scalability hurdles are key
among these. The original implementations of public crypo-
secured distributed ledgers — Bitcoin and Ethereum are nei-
ther space nor time-scalable — in their pure form — for high-
frequency transaction-based real-time systems such as those
used in the Internet of Things (IoT). This is unsurprising
because that is not their design purpose.

There are two technical reasons why the architecture of
permissionless public blockchains is unsuited to IoT appli-
cations. The first is that the ledger (i.e. a database) is
distributed to all participants in the network, imposing stor-
age and latency costs for every node in the network. The
second is that the permissionless public blockchain model
that delivers consensus in the network involves assigning an
ever-diminishing reward to incent participants to validate
transaction blocks by computing the solution of computa-
tional hard crypto-puzzles, so called proof-of-work consen-
sus [Vukoli¢ 2016] (a.k.a. “moderately hard functions” [Abad]
et al. 2005, Dwork and Naor 1993)).

This approach is intentionally computationally expensive,
in an attempt to thwart miscreant players and transactions.
The commitment by network participants to computational
work to validate the blockchain is a surrogate for commit-
ment to the stability and trust in the distributed ledger as
a whole. The trade-off between being deliberately slow to
agree is strong transactional-trust between the participants.

Specific features of blockchain systems are their peer-to-
peer distributed (often decentralized) trust network, their
tamper-resistant record of events, and the ability — in DLTs
of the second generation and higher — to execute domain-



specific languages within the distributive ledger architec-
ture itself: implementing a form of distributed deductive
database where the deductive rules are framed by the term
“smart contracts”.

These attributes make the technology appealing to ap-
plications of edge/fog computing and the Internet of Things
(IoT), but the performance of most DLT frameworks for IoT
applications is costly, both in terms of hardware infrastruc-
ture as well as network latency. IoT-DLT implementations
in realistic scenarios with high-frequency transactions are
slow in practice. In addition, the volume of data being pro-
duced by IoT devices means the size of a distributed ledger
would overwhelm the limitations of most IoT devices. At
the same time computational demands on devices to com-
pute consensus — even via proof-of-stake [Iddo et al. 2014]
— would cost the scarcest [oT resource of all, power on the
device itself.

Before we begin, we need to ask, what is the compelling
reason for using DLT systems from a requirements perspec-
tive? Why use DLTs such as blockchain and when do you
need to use blockchain? And what is the reason one would
use blockchain for IoT applications?

1.2 When to use a Distributed Ledger System

According to Wiist and Gervais [Wiist and Gervais 2017,
the dimensions of distributed ledgers and centralized data
management systems are the degree of public verifiability,
the transparency (or otherwise) of the update process, pri-
vacy (both in terms of exposure to certain data fields, as well
as participant-identity), integrity (namely tamper-resistance)
the degree of data redundancy and the presence/absence or
degree of authority given to a trust anchor (self-sovereignty).
What results from their study is a decision system for
when a blockchain system should (or should not) be used.
In short, if the database state is not to be stored and there
are not multiple writers, a traditional DBMS is a better and
more efficient choice than a distributed ledger. Furthermore,
if the participants are willing to use a trusted third-party,
a centralized trust-authority, a blockchain is likewise unnec-
essary. What remains is Fig. [[] a summary of the decision
space for the selection of the type of blockchain solution.
Permissionless public blockchains, the best-known being
Bitcoin and Ethereum, allow anyone to interact with the
ledger, and additionally anyone to participate in consensus.
On the other hand, a permissioned public DLT system is one
where both participation and consensus-building are man-
aged, the result being that permissioned blockchains have
no requirement for brute-force computing power to reach
consensus, because all participants are credentialed.
Permissioned blockchain-systems, where all participants
are credentialed, typically use proof-of-stake [King and Nadal
2012| /proof-of-activity [Liu et al. 2017] consensus mecha-
nisms. These consensus methods are simpler than those used
in public permissionless blockchains . In these cases, consen-
sus is more about sharing the burden of consensus-building
and distributing consensus to minimize the risk of network
failure (we discuss consensus protocols later in Section .
From Fig. we can see that where it is important for
the ledger’s state to be publicly verifiable then a permis-
sionless public blockchain system solution may be selected.
A permissionless public blockchain system might need to be
publicly verifiable in a business ecosystem where there is a
regulator, such as a Government tax authority. If public
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Figure 1: A decision chart on which blockchain is
the appropriate technical solution to solve a prob-
lem, adapted from Wiist and Gervais [Wiist and
Gervais 2017].

verifiability is not a criterion, then a permissioned public or
private DLT system could be sufficient.

Read and write permissions of a fully-private blockchain
are controlled by a single organization, while consortium or
public blockchains distribute read/write permissions across
a permissioned consortium in an attempt to add the extra se-
curity of decentralization. Thus, while the consensus mech-
anism for measuring blockchain scalability and performance
is important, so too whether it is a permissionless-public or
permissioned private or public blockchain. The intended ap-
plication requirements of a DLT system can therefore — along
these requirements analysis lines — determine the complexity
and performance of a blockchain system implementation.

1.3 Paper Structure & Overview

This paper is structured as follows. In Section [2 we look
at the topography of the distributed network and in partic-
ular pay attention to a characterization of traffic over the
network, in terms of volumes of transactions and whether
the network traffic exhibits properties more (or less) simi-
lar to scale-free networks [Barabdsi et al. 1999|. In Section
we take a look at some of the consensus algorithms used
in popular blockchain implementations, since these are an
important contributor to blockchain complexity and scal-
ability. In Section E| we examine the design features and
execution complexity of the smart contract programming
language, here there are two ways of thinking about smart
contracts, the first is in terms of programming language de-
sign, and in particular the language ability to secure pro-
gramming patterns, and secondly in terms of the execution
environment for the language. Because every transaction
is recorded in the blockchain, in Section [5| we examine so
called ‘blockchain bloat’ (a condition when the data stored
in the blockchain achieves very large sizes due to increasing
numbers of users and recorded transactions) and consider
ways that blockchain implementations have overcome bloat,
by delegating the responsibility for storing the entire history
to miners or by compressing or pruning the blockchain data
structure.



2. NETWORK TOPOLOGY ANALYSIS

Research focused on the Bitcoin blockchain illustrated that

the Bitcoin traffic shows that it is a scale-free network [Barabfisi

et al. 1999]. In a similar style of research, but more nu-
anced, Chen et al. use a graph analysis
approach for the analysis of money-flows and smart con-
tract distributions on Ethereum. The authors look at three
different dimensions of Ethereum’s logical network distribu-
tion, namely the flow of money (Ether) transfers (so called
Money Flow Graph (MFQ)), the patterns for the creation of
smart contracts (Contract Creation Graph (CCQG)) and the
sequences of smart contract invocation (Contract Invocation
Graph (CIQG)).

transfer large sums of Ether. For the CCG, the distribution
of degree follows the power law, namely a small number of
accounts create a large number of contracts.

When connected pathways from accounts to contacts are
considered in either direction, if an account creates a lot
of contracts, the created contracts also create many other
smart contracts. It is evident from the analysis, that a single
account on Ethereum created 21% of all its smart contracts
and it is apparent that only a small number of developers
created most of the smart contracts on Ethereum.

Figure 2: A selection of 20,000 edges from the
Money Flow Graph show clear scale-free network
features (reprinted with permission from Chen et
al. [Chen et al. 2018])

Analysis is then conducted on the three graphs to measure
the node degree distribution (the number of connections or
edges the node has to other nodes). Nodes can be accounts
(or wallets) or smart contracts.

In the MFG, the degree of an account represents the num-
ber of accounts trading with a node. In the case of CCG, the
degree of account represents the number of contracts owned
by it. The node degree of the CIG is the number of smart
contracts invoking it and the number of smart contracts it
itself invokes.

If the structures are considered as digraphs then the in-
degree of nodes in the MFG represent the number of ac-
counts sending money, and the out-degree, the number of
accounts being transferred to. Most Ethereum users prefer
direct transfer of Ether rather than using smart contracts
and generally speaking smart contracts are under-used.

The in-degree of both the CCG and CIG for a account
is zero but for a smart contract it is 1 in CCG and CIG, a
single smart contract can be created by only one account.
The out-degree in CCG and CIG is the number of contracts
created/invoked by it.

The results show that for the MFG graph, the node degree
in Ethereum shows that nearly 93% of accounts is less than
6, and that the MFG outliers are small degree accounts that

Figure 3: A selection of 20,000 edges from the Con-
tract Creation Graph show clear scale-free network
features (reprinted with permission from Chen et al.
[Chen et al. 2018])

Figure 4: A selection of 20,000 edges from the Con-
tract Invocation Graph show clear scale-free net-
work features (reprinted with permission from Chen
et al. [Chen et al. 2018])




3. CONSENSUS ALGORITHMS

3.1 Slow builds trust

Permissionless public blockchain systems such as Bitcoin
and Ethereum have well-known latency and throughput lim-
itations. For example, Bitcoin takes up to 10 minutes on
average to reach block consensus — latency — and accommo-
dates only 3-7 transactions per second — throughput.

Ethereum is faster, it can process up to 30 transactions
per second and consensus is achieved in less than 10 min-
utes. However, when compared to traditional commercial
distributed systems, this is very slow. An often used compar-
ison is to compare blockchain system latency and throughout
to Visacard transactions, Visa being able to process 1,700
credit card transactions per second on average, with a peak
performance of up to 24,000 transactions per second, several
orders of magnitude faster.

This sluggishness is explained in two ways: (i) that a block
on the Bitcoin blockchain consists of about 2,400 transac-
tions and in practice the transactions need to arrive be-
fore mining to add a block can start and (ii) by the trust
mechanism (Nakamoto consensus) that requires participat-
ing nodes to prefer longer transaction blockchains — Bitcoin
uses 6 confirmation blocks per transaction, Ethereum uses
12. Nakamoto consensus — preferring longer blockchains —
relies on passage of time in order for miners to produce the
longer transaction blockchains that then compete for con-
sensus. The result is that the comparatively slow process-
ing time also makes for higher transaction fees as well, since
the transaction fee determines which transactions miners in-
clude in the 2,400 transactions used to compose a block. In
Ethereum the transaction fee is called Gas.

The goal of crypto-currencies such as Bitcoin is to se-
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Figure 5: This figure provides a non-exhaustive list
of blockchain consensus algorithms, adapted from
101Blockchains (https://101blockchains.com/)

quentially order transactions on a distributed ledger, hence
the name, blockchain. There are many different mecha-
nisms to reach consensus about how a block is added to the
blockchain and the complexity of these different approaches
have a significant impact on convergence of the blockchain
and the overall network latency.

Consensus algorithms are used within blockchains to en-
sure that participating nodes in the distributed network
agree with the state of the blockchain when new blocks are
added . Blockchain consensus algorithms
are called “Byzantine Fault Tolerant” [Lamport et al. 1982],
meaning that no one machine can succeed in a malicious
attack on the distributed system without being ‘checked’ or
‘detected’ by other nodes in the distributed network. The
first implementation of a blockchain for Bitcoin in 2009 uses
the consensus algorithm “proof-of-work”[Nakamoto 2008§].

Since then, various consensus algorithms have been devel-
oped and used, such as “proof-of-activity” [Iddo et al. 2014
and “proof-of-authority” [Angelis et al. 2017]. In the follow-
ing, we will discuss a few consensus mechanisms, some of
which are shown in Figure [3

3.2 Proof-of-work Consensus

The proof-of-work consensus algorithm used in Bitcoin is
based on one-way functions to enforce a brute-force method
to prove consensus, this in turn requires a large amount of
computation (and therefore energy), resulting in slow trans-
action times, the time it takes for the blockchain to syn-
chronize and update, called blockchain-convergence. The
specific proof-of-work algorithm that Ethereum uses is called
“ethash”, GPU friendly but designed to require more mem-
ory to make it harder to mine using ASICs (Application
Specific Integrated Circuit) which are specialized mining
chips that are now the only profitable way of mining Bit-
coin. Ethereum aims to transition from proof-of-work min-
ing to ‘proof of stake’ — which we discuss below — so buy-
ing an ASIC might not be a smart option since they likely
won’t prove useful for very long. Kadena uses an PoW-
consensus protocol called ‘Chainweb’. It achieves consensus
by processing a block through a network of chains that it
calls a Chainweb. Each node must validate block headers
of some number of pre-specified micro-chains in order to
produce its own new block. The effect is a parallel PoW-
consensus, merging the micro-chains as a complete inte-
grated blockchain and distributing the work across the entire
network.

3.3 Proof-of-stake Consensus

“Proof-of-stake” is a less expensive alternative to proof-of-
work. Here, no brute-force computing is required to achieve
consensus. Instead, the next node to create a block is se-
lected proportional to some “stake” in the blockchain. In
crypto-currency blockchains, the stake maybe the number of
coins a node holds combined with how long they have been
held . In non-crypto-currency blockchains,
the stakes typically resemble the investment one has made
into the DLT system. Depending on the consensus mecha-
nism, validator nodes are selected proportionately to their
stake or some other algorithm and are allowed to add blocks
to the blockchain.



3.4 Proof-of-authority Consensus

In proof-of-authority, representatives are elected how are al-
lowed to add blocks to the blockchain. In contrast to the
previous consensus mechanisms, the individual or institu-
tion behind the node needs to be known, as the penalty for
misbehaving is a decline in reputation and authority. Valida-
tors are usually selected via a ballot or lottery |[Unterweger
et al. 2018].

3.5 Proof of elsapsed time (PoET) Consensus

Hyperledger Sawtooth uses Proof of Elsapsed Time (PoET)
as concensus mechanism. Hyperledger is a blockchain con-
sortium under the Linux Foundation. In Hyperledger Fabric,
consensus is reached by the election of a leader node who co-
ordinates the broadcast of the blocks to be updated to all the
consensus participating nodes on the network. These then
respond with a hashcode to the leader who needs to ensure
than more than 2/3 of the consensus nodes agree on the
same hashcode before the blockchain update is committed.
This is a consensus mechanism for permissioned blockchain
networks, where any prospective participant must identify
themselves before joining the network. In PoET, every node
is equally likely to be a validator, PoET distributes valida-
tion fairly across the network participants. Each validator
is required to wait a randomly chosen time period, and the
first to complete the designated wait time earns validation
rights. The PoET concept was invented during early 2016
and is part of Intel’s Secure Guard Extensions. It’s reliance
on the Intel platform for the validators limits its relevance
to permissioned DLT systems.

3.6 Practical byzantine fault tolerence (PBFT)

Multichain uses a variant of of Practical Byzantine Fault
Tolerence (PBFT) similar to Hyperledger Fabric except that
only a single node is selected to compute the blockchain up-
date and these nodes are selected in a round-robin or polled
fashion, depending on the validator participation historically
in the creation of blocks on the blockchain. This is intended
to maintain ‘validating diversity’. A validator is selected de-
terministically but based on the sequence of blocks histori-
cally created by them on the blockchain, which in practical
terms makes it impossible for any one miner to anticipate
selection and in so doing impossible to game the system by
preemptively seizing control of a given miner.

3.7 Time-based Voting Protocols

Quorem uses yet another variation of consensus for its DLT
system. In QuoremChain, a time-based voting protocol is
implemented. Nodes on the network alternate from being
exclusively wvoters or makers. Voters elect the head block
by a majority and once there is consensus on the block, the
maker nodes signs the block. The partitioning of consensus
nodes into non-overlapping roles, and the time-varying allo-
cation of voter/maker roles, mean that there would need to
be massive coordination over the network between consen-
sus nodes in order to deceive or tamper with the network.
Tendermint is composed of two protocols, a peer-to-peer net-
working protocol that ensures that only nodes that are active
will be obliged to participate in the consensus and a consen-
sus algorithm that assigns a vote or stake. Tendermint polls
through block proposers or block validators. Validators with
more stake are more likely to be elected as leaders. Once a

validator is chosen the protocol proceeds in a similar way to
PBFT which we previously discussed.

3.8 Leader Consensus Protocols

The Red Belly blockchain uses a leader-based consensus pro-
tocol based on the notion of epochs in which leaders are se-
lected to propose block values and consensus is time-limited.
This is called Democratic Byzantine Fault Tolerant (DBFT)
where a leader proposes a value v that is multi-cast to all
functional nodes on the network. The leader then partici-
pates in binary consensus with each responding node until
there is a majority in agreement or, if there is not, the pro-
cess times out and new leader and epoch is selected. The
effect is a geographic emphasis on consensus since consensus
is made among nodes with lower latency that are reachable
first, the consensus is effectively asynchronous in this model.

In NEO consensus works as follows. Anyone owning NEO
can vote for a delegate (delegates are called book-keeping
nodes). The majority of NEO holders are ordinary nodes
that only transfer or exchange assets. Delegates represent
validating nodes. They verify each block — generated by the
ordinary nodes — written to the blockchain. To become a del-
egate certain requirements must be met, special equipment,
dedicated Internet connections and a certain of amount of
GAS (the NEO token) is expected. When it is time to vali-
date a block, it is randomly assigned to a delegate from the
pool of delegates. The selected delegate proposes a block
and its hash-key. The non-selected delegates decide if the
block and its hash-key match their own and confer with the
other delegates to verify correctness. If 66% percent of the
delegates agree that the proposed block and hash-key is cor-
rect, the block is added.

3.9 Other protocols

There are other approaches to consensus not covered here.
“Proof-of-Burn” is an idea to address the PoW-overhead of
Bitcoin. In this approach, miners show proof that they
burned some coins. This is an expensive approach from
any point of view. Although it consumes no power, or pro-
cessor resources, to burn the coins, all proof-of-burn imple-
mentations to date work by burning crypto-currencies that
have already been mined (at great computing expense) using
PoW consensus.

3.10 Consensus Mechanisms Summary

Table [1| is an updated version of the results published else-
where [Buchman 2016} |(Cachin and Vukolic 2017]. The table
provides us with a road-map to explore consensus protocols
but blockchain performance claims can be somewhat mis-
leading. For instance, throughput and response times with
10 validators running on 10 virtual machines in the same
server rack will vary greatly from throughput measured on
10 virtual machines geographical dispersed across the globe.
On this note, we rarely get concrete details on the resources
that provision the performance tests, the nature of the traffic
and load on the cloud-services, or the geographic spread of
the cloud resources. It seems most of the tests are also con-
ducted without the presence of deception on the network,
so we have no sense of how corruptible the protocols are,
and therefore no idea how robust or reliable the solutions —
compared to one another — when prone to deception.



Framework Name Consensus Algorithm OpenSource Throughput (tx/s) Response time (secs)
Bitcoin PoW Y 3-5 > 500 seconds
Ethereum PoW Y 15-30 360
Ethereum Casper PBFT/PoW hybrid - ethash Y ~ 5000 unknown
Ripple PBFT Y 50,000 4

NEO Delegated-BF T Y 10,000 15-20
Hyperledger Fabric PBFT Y 80,000 <1
Hyperledger Sawtooth  Proof of Elapsed Time (PoET) Y more than 80,000 <1
MultiChain PBFT + MultiChain Y 1000-1500 5—-10
Qourum PBFT + Quoremchain Y 835 5
Tendermint PBFT + Tendermint Y 4,000-10,000 <1

Red Belly Democratic-BF T N 660,000 2—-4

Kadena Scalable PoW-BFT N 8,000 <0.1

Table 1: Some blockchain performance claims, extended from [Buchman 2016, [Cachin and Vukolic 2017].

4. SMART CONTRACTS

In blockchain systems, consensus protocols are constrained
by the property of byzantine fault tolerance and while each
consensus protocol that we surveyed claims this property,
the degree of effort required to subvert the blockchain varies,
but is largely unknown, untested or unreported.

While the blockchain as a data-structure looks to be an
impregnable point of entry for attackers, DLT systems —
by virtue of very different architecture to traditional cen-
tralized systems — are not immune to new and different
types of vulnerability. On the contrary, the highly decen-
tralized architecture for the execution of smart contracts
exposes vulnerability at every consensus node that executes
an Ethereum Virtual Machine (EVM) in Ethereum. It is
worthwhile therefore to explore the execution environment
for smart contracts because the performance and vulnera-
bility of the execution languages can give insight to perfor-
mance, scalability and security.

4.1 Smart Contract Programming Languages

Smart contracts are programs that run on the blockchain
network. Smart contract languages (a.k.a. called contract-
oriented programming languages) are programming languages
that are used to write or specify smart contracts.

Solidity is the pre-eminent language for Ethereum and
some other DLT platforms. Other programming languages
can also run on the Ethereum Virtual Machine (EVM)EI
These include Python, Go, Rust, Java Ruby etc. Solidity
is believed to be the cause behind the Decentralized Au-
tonomous Organization (DAO) hack in 2016. The DAO,
built on Ethereum, was hacked but not through tampering
with the Ethereum blockchain on which it ran, but rather
through an exploit of the EVM programming language So-
lidity that fooled a smart contract into spending all its Ether.
Solidity suffers from some design flaws including batch over-
flow — if you overflow a number it overflows silently and
resets its value to 0, double-spending is also possible, and
unauthorized function calls can be inserted into code.

Bitcoin Script language, the Bitcoin programming lan-
guage, supports only conditionals, stack manipulation, hash-
ing, and digital-signature verification operations but no loops,
thus all programs halt and the language is not Turing com-
plete. Ivy [Hanke et al. 2018] is a higher-level language

"https://github.com /ethereum /wiki/wiki/Ethereum-Virtual-
Machine-(EVM)-Awesome-List

that can compile to Bitcoin Script, the low-level language
used by the Bitcoin protocol to determine whether a trans-
action is authorized, it is a stack-based language and lim-
ited to Bitcoin capabilities, Simplicity |[O’Connor 2017] is a
typed, combinator-based, functional language without loops
and recursion, designed to be used for crypto-currencies and
blockchain applications. Simplicity is meant to replace Bit-
coin Script, and thus allow for developing abstract and ex-
pressive smart contract programming languages.

Flint [Schrans et al. 2018], is type-safe, capabilities-secure,
contract-oriented programming language designed for writ-
ing robust smart contracts. Flint allows programmers to use
caller capabilities to define access control on smart contract
functions. To prevent vulnerabilities relating to the unin-
tentional loss of currency, transfers of assets in Flint are
performed through safe atomic operations. Formal model-
ing and verification of smart contracts - e.g. F* |Bharga-
van et al. 2016] either using smart contract source code or
using their byte code helps avoid the flaws existing in cur-
rent smart contract programming languages and the lack of
practical programmer experience with contract-oriented pro-
gramming languages. On the other hand, there is another
cohort who wants to use model-driven engineering to gen-
erate smart contracts from abstract models cite (Towards
Model-Driven Engineering of Smart Contracts for Cyber-
Physical Systems) to simplify the contract modeling, and
automate the source code generation.

4.2 Execution Environments

The Ethereum Virtual Machine (EVM) is Turing complete
256 bit Virtual Machine that allows anyone to execute EVM
Byte Code. EVM/Solidity are the most popular develop-
ment combination for Ethereum but it is possible to compile
other domain specific languages into the EVM. Probably the
main competitor platform to Ethereum for developing Smart
Contracts is NEqEI which offers an alternative platform to
Ethereum. NEO allows developers to use C#, Java, Kotlin,
Python or GO programming languages to write smart con-
tracts using a customized version of the Docker VM called
NeoVMEl Stratiﬁ implements the idea of blockchain as a
Service (BaaS), supporting smart contracts written in C+#.

Zhttps:/ /en.wikipedia.org/wiki/NEO_(cryptocurrency)
3 https://docs.neo.org/docs/en-us/basic/technology /neovm.html
“4https://stratisplatform.com
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Figure 6: This graph shows the growth of the Bit-
coin blockchain from 2010 to Q1 2019, data and
graph from |https://www.statista.com. As at Au-
gust 2019 the Bitcoin blockchain is 276GB.

Other systems are LISK (LSKE allowing smart contracts
to be written in Javascript and EOSﬁusing C++, but could
accommodate any domain specific language that can compile
into the Web Assembly Language (WASME which has the
obvious utility of being able to run in popular web browsers.

S. ABBREVIATING THE BLOCKCHAIN

Not every node on the Bitcoin blockchain is a full node
— full node meaning that the node is required to hold the
entire Bitcoin blockchain recording every transaction ever
made since 2009. This is fortunate because the size of the
Bitcoin blockchain as at August 2019 is 276.67GH§|. If ev-
eryone that used the Bitcoin network had to store 276.67GB
of blockchain on their laptop (or phone or wallet) to in-
teract with it, this would exclude many. However, a full
node with a blockchain of 276.67GB is most likely stored
on a miner-node server-side. The always growing size of all
blockchains is sometimes called ‘blockchain bloat’. Since the
blockchain is immutable, serial and increasingly more popu-
lar, blockchain sizes must eventually present a limiting factor
on their scalability, particularly in the IoT world. Figure [f]
shows the growth of the Bitcoin blockchain.

The complete Ethereum blockchain is 426.98GB as at Au-
gust 29, 201@ Ethereum is that large because it includes
not only the complete history of the blocks, the Ethereum
blockchain, but also the state-history, a history of the ac-
count balances of all 20 million or more Ethereum clients.
This state-history can be pruned to contain simply the cur-
rent state of participating clients, only miners need the full
image. When the state-history is included in the image
of a full node the Ethereum blockchain is twice as large
as the Bitcoin blockchain, however when the state-history
is pruned from the image the Ethereum blockchain is only
about 40GB, which is, in practice, all a participating client

Shttps://en.bitcoinwiki.org /wiki/Lisk
Shttps://en.bitcoinwiki.org/wiki/EOS
7h‘ctps://en.Wikipedia.0rg/wiki/VVebAssembly
8https://bitinfocharts.com
9https://bitinfocharts.com

needs to know and hold in order to transact.

Some blockchain implementations store only the hash-key
to a NoSQL database stored off the system, off-chain. This
has the advantage of allowing a purpose built DBMS to man-
age the content off-chain and store only a minute quantity of
the actual data. However, it does not ensure immutability of
anything other than the hash-key because it is the only part
of the data stored on the blockchain. The DMBS then be-
comes a point of vulnerability for attack, if it is compromised
or even removed, the hash-key carried on the blockchain is
as a good as useless. The hashes saved in the blockchain
can however be used as a checksum to confirm the validity
of the data stored in the database. For each individual docu-
ment retrieved from the database, the blockchain is queried
with the appropriate hashes, thus confirming the validity the
data retrieved from the database. The blockchain validity of
data is always sent to the user along with the data retrieved
from the database. This approach is well-understood from
traditional databases |[Pavlou and Snodgrass 2000].

6. CONCLUSION

Requirements influence to a large extend the computational
complexity and scalability of the system. As we have seen,
if permissionless public blockchain systems can be avoided,
consensus protocols can be simplified and this has a positive
impact on network latency and transaction throughput. Ef-
forts by major blockchain initiatives to achieve scalability,
and improve transaction throughput and convergence, focus
mostly on simpler and more efficient consensus protocols.

Likewise, analysis of the anticipated network traffic pat-
terns based on the topology of the distributed network that
underlines the blockchain system, have become a recognized
analysis tool for the forensic study of blockchain system
performance. If there is a great deal of centralization of
the network toplogy, a hub-spoke topography, then perfor-
mance varies from a less centralized, scale-free peer-to-peer
network. Where the nature of the communication occurs
via hubs in the scale-free network traffic, the provisioning
of validator nodes need to made strategically close to those
hubs. If transactions are more randomly point-to-point then
validator nodes can be more evenly distributed throughout
the network. The provisioning of the supporting hardware
and cloud infrastructure also depends on the topography.

The complexity and size of the blockchain structure itself
is also a pinch-point for system scalability. The blockchain
bloat of Ethereum is avoided by dropping the requirement
to distribute the block-states to every validating node with
considerable resource saving. While the nature of existing
blockchain systems prohibit further reductions, by any other
means than unpopular forks, we can anticipate further more
compact blockchain variants in future implementations, par-
ticular those aimed at IoT implementations.
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