
LSM Management on Computational Storage
Ivan Luiz Picoli

IT University of Copenhagen
ivpi@itu.dk

Philippe Bonnet
IT University of Copenhagen

phbo@itu.dk

Pınar Tözün
IT University of Copenhagen

pito@itu.dk

ABSTRACT
LSM-trees have emerged as the write-optimized index of choice
for key-value stores and relational database systems. LSM-trees
typically rely on a storage manager on top of a file system for
storing data on Solid-State Drives (SSDs). The I/O path thus com-
prises four layers, each independently managing similar indirection,
journaling, and garbage collection mechanisms. Such overhead is
increasingly problematic. First, the advent of microsecond-scale
SSDs makes it necessary to streamline the I/O software stack. Sec-
ond, the increasing performance gap between storage and CPU
makes it necessary to reduce CPU storage overhead. A solution is
to collapse LSM, file system, and SSD management layers into a
single software layer embedded on computational storage. Specific
commercial solutions are already available. In this short paper, we
describe the design space for LSM management on computational
storage.

ACM Reference Format:
Ivan Luiz Picoli, Philippe Bonnet, and Pınar Tözün. 2019. LSM Manage-
ment on Computational Storage. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
In recent years, the rate at which data can be read from or written
to storage and network devices has increased exponentially, while
the rate at which data can be read from or written to the memory
of a host processor (CPU) has only increased linearly. This trend
is expected to continue in the coming years. Soon, CPUs will not
be able to keep up with the rate at which data moves through stor-
age and network. Computational storage, or near-data processing,
architectures are re-emerging to tackle this issue by offloading low-
level storage processing from host CPU to storage controllers [8].
At the same time, the emergence of Solid State Drives (SSDs) with
microsecond-scale latency makes it necessary to streamline the
storage stack to avoid redundancies and to bypass bottlenecks.

The confluence of these two trends motivates a profound re-
design of the storage stack. Two of the key questions in this context
are: (a) How to streamline existing layers on the I/O path? and (b)
What components of the storage stack can be offloaded from the
host CPU to the storage controller?

As initially pioneered by active disks, it makes sense to offload
access methods on the storage controller to minimize data move-
ment in database systems. In particular, LSM-trees constitute ideal
candidates for collapsing layers on the storage stack in order to
streamline the I/O path. Indeed, LSM-trees and Flash Translation
Layers both rely on immutable storage structuctures associated
with a form of garbage collection. Initial work by Baidu [9] and
CNEX Labs [7] focused on supporting an LSM-based key-value
store on open-channel SSDs by implementing an LSM-Tree specific
FTL on the host. These solutions are defined in the context of tradi-
tional host-SSD architectures. On the other hand, recently, Samsung
announced KV-SSD, an SSD equippedwith an LSM-tree specific FTL
[3]. Can these solutions be applied in the context of computational
storage? What are the possible architectures for LSM management
on computational storage? What is the associated design space?
We tackle these questions in this short paper.

2 ARCHITECTURE
Let us briefly present an overview of the architectural impact of
computational storage, illustrated in Figure 1. In traditional archi-
tectures (Figure 1a), a KV-store implemented on the host relies
on the file system and block layer from the operating system as
well as a generic FTL embedded on the SSD. Open-channel SSDs
(Figure 1b) [2, 4] make it possible to specialize the FTL for LSM
Management [7]. While Figure 1b improves on Figure 1a by stream-
lining the data path, it does so by increasing the load on the host.
In order to reduce the load on the host, it is necessary to offload
processing to the SSD.

SSD

FPGA
NIC

key-value store
(e.g., RocksDB)

custom
key-value store

(d) FPGA-based
storage controller(c) KV-SSD

NVMe driverNVMe driver

SSD

KV-FTL

key-value store
(e.g., RocksDB)

open-channel SSD

lightlsm

lightnvm

key-value store
(e.g., RocksDB)

lightlsm
lightnvm

open-channel SSD

FTL

us
er

-s
pa

ce
ke

rn
el

-s
pa

ce

(b) local OC-SSD
(e) NIC-based

storage controller

st
or

ag
e

network
interface

key-value store
(e.g., RocksDB)

(a) traditional SSD

POSIX API

SSD

FTL

filesystem

block layer

NVMe driver
Fabric

PCIe

PCIe

PCIePCIe PCIe

Figure 1: State-of-the-art architectures with (a) traditional
SSDs and (b) open-channel SSDs compared to (c) a custom
KV-store on a specialized KV-SSD and upcoming architec-
tures based on (d) FPGA-based computational storage aswell
as (e) NIC-based computational storage.

Samsung recently announced KV-SSD, an SSD equipped with
an LSM-specialized FTL (Figure 1c). KV-SSD requires a specialized
NVMe driver on the host, which is accessed from a custom KV-store.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/286340894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Ivan Luiz Picoli, Philippe Bonnet, and Pınar Tözün

An alternative to this specialized solution is to consider general-
purpose computational storage. So far, two types of computational
storage have emerged. The first type integrates a programmable
storage controller directly onto an SSD (Figure 1d). Commercial
products are available in this space (e.g., Samsung SmartSSD, Scale-
Flux, NGD). The programmable storage is either a Linux-based
ARM processor or programmable hardware (FPGA). The second
type combines Open-Channel SSDs with a programmable storage
controller integrated with a Network Interface Card (Figure 1e).
Commercial products are available from Broadcom or Mellanox,
while research products include the DFC Platform [1]. While both
architectures support functionality offload from the host, the feasi-
bility to collapse layers and streamline the I/O path on the Figure 1d
architecture is unclear as some products only expose storage media
to the storage controller via a proprietary generic FTL.

In the rest of this paper, we assume the Figure 1e architecture to
discuss the design space.

3 DESIGN SPACE
In this section, we highlight the opportunities and trade-offs as-
sociated with LSM management on computational storage with a
specialized FTL. While previous work has focused on leveraging
LSM-tree compaction as a form of garbage collection, here we focus
on the challenges of interface, mapping, and journaling.

An LSM-tree is composed of levels. The top level is an in-memory
buffer called mem-table, while the rest of the levels are kept as files
on secondary storage called Sorted Sequence Table (SST). We refer
readers to Dayan et al. [6] for a thorough description of LSM-tree
internals.

3.1 Interface
An initial design decision is whether LSM management should be
fully offloaded to computational storage, or whether one should
split the functionalities. An obvious split is to offload SST manage-
ment on computational storage and leave mem-table management
on the host. The rationale is two-fold. First, offloading SST manage-
ment on computational storage makes it possible to handle com-
paction within storage, thus avoiding unnecessary data movement
to the host, and enabling compaction to be the sole form of garbage
collection in an LSM-specific FTL. Second, keeping mem-tables on
the host leverages locality to minimize data movement.

An LSM-based storage manager manages auxiliary data struc-
tures in addition to mem-tables and SST. For example, RocksDB has
WAL for recovering mem-tables and manifest files to keep track of
SSTs with their corresponding key range. Ideally, those data struc-
tures are maintained in persistent memory with an in-memory data
structure for the manifest contents for faster access. Alternatively,
computational storage should support storing/retrieving these data
structures. On completion of a command flushing an SST to stor-
age, the WAL entry for the given SST can be discarded. The ideal
management of these data structures over computational storage
has to be studied.

3.2 Mapping
Any FTL maps a logical name space onto the physical address space.
FTLs specialized for LSM management must map SSTs onto the

physical address space. In open-channel SSDs, the physical address
space is represented as a hierarchical space of groups, parallel units
(PUs), chunks, and logical blocks. The minimal unit of read and
write is a logical block. This is a clean abstraction of the physical
space used by any FTL. We consider that the maximum size of
an SST is fixed in such a way that it corresponds to the product
number_o f _parallel_units ∗ chunk_size1. On an Open-Channel
SSD with 32 PUs and 1MB chunks, we get a maximum SST size of
32MB, with 4KB as the unit of reads.

Such an SST size gives us a range of mapping options. The fist
option is a horizontal mapping, where the contents of each SST is
striped across all PUs. This option maximizes write throughput, but
it may cause interference that will negatively impact read latency,
as any read will interfere with any write of an SST. The second op-
tion is a vertical mapping, where the contents of each SST is striped
across the PUs of a given group. This option trades write through-
put for improved concurrency as a maximum ofnumber_o f _дroups
reads and SST writes can be executed concurrently without inter-
ference. A third option is a hybrid mapping, where the contents
of each SST is striped across PUs in a subset of all groups. Such a
mapping might offer a compromise between write throughput and
read latency. In vertical and hybrid mapping, the groups on which
SSTs are striped are picked in a round-robin fashion.

A thorough investigation of the trade-off between write through-
put and read latency for LSM-tree management on computational
storage is needed.

3.3 Journaling
The state of the software embedded on computational storage must
be re-constructed whenever it starts up or recovery is needed. It is
natural to consider the modifications of this state as transactions
for which the durability property is guaranteed. The transactional
nature of the FTL for traditional SSDs has been observed in prior
work [5].

A first option to ensure durability is write-ahead logging. Specific
portions of the storage space (e.g., specific chunks) must be reserved
for this purpose. A second option is to use the out-of-bound area on
flash storage to store metadata (e.g., reverse mapping in a traditional
FTL). A third option is to store snapshots at fixed locations in the
address space.

The key tradeoff here is between the speed of recovery and space
amplification, which has to be studied to design efficient recovery
procedures for LSM-trees on computational storage.

4 CONCLUSION
We have given an overview of the fundamental trade-offs for the
design of LSMmanagement solutions on computational storage. We
have identified the design of interfaces, mapping, and journaling
as open issues. Exploring this design space on various forms of
computational storage is an interesting topic for future work.

REFERENCES
[1] DFC Platform. https://github.com/DFC-OpenSource.
[2] Open-Channel SSD. https://openchannelssd.readthedocs.io/en/latest/.
[3] Samsung KVSSD. https://github.com/OpenMPDK/KVSSD.

1The size of each SST might vary, but it will not exceed the given limit.

https://github.com/DFC-OpenSource
https://openchannelssd.readthedocs.io/en/latest/
https://github.com/OpenMPDK/KVSSD


LSM Management on Computational Storage Conference’17, July 2017, Washington, DC, USA

[4] M. Bjørling, J. González, and P. Bonnet. LightNVM: The Linux Open-channel SSD
Subsystem. In FAST, pages 359–373, 2017.

[5] J.-Y. Choi, E. H. Nam, Y. J. Seong, J. H. Yoon, S. Lee, H. S. Kim, J. Park, Y.-J. Woo,
S. Lee, and S. L. Min. HIL: A Framework for Compositional FTL Development and
Provably-Correct Crash Recovery. ACM Transactions on Storage (TOS), 14(4), 2018.

[6] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal Navigable Key-Value
Store. In SIGMOD, pages 79–94, 2017.

[7] J. González, M. Bjørling, S. Lee, C. Dong, and Y. Ronnie Huang. Application-Driven
Flash Translation Layers on Open-Channel SSDs. In NVMW, 2016.

[8] J. Gray. Disk Architecture Directions: Put Everything In the Disk Controller. In
NASD, 1998.

[9] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong. An Efficient
Design and Implementation of LSM-tree Based Key-value Store on Open-channel
SSD. In EuroSys, pages 16:1–16:14, 2014.


	Abstract
	1 Introduction
	2 Architecture
	3 Design Space
	3.1 Interface
	3.2 Mapping
	3.3 Journaling

	4 Conclusion
	References

