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Δ9-tetrahydrocannabinol 
exposure during rat pregnancy 
leads to symmetrical fetal growth 
restriction and labyrinth-specific 
vascular defects in the placenta
Bryony V. natale1,2, Katarina N. Gustin2, Kendrick Lee9,10, Alison C. Holloway  4, 
Steven R. Laviolette5,10, David R. C. natale  1,2,3* & Daniel B. Hardy  6,7,8,9,10*

1 in 5 women report cannabis use during pregnancy, with nausea cited as their primary motivation. 
Studies show that (-)-△9–tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in 
cannabis, causes fetal growth restriction, though the mechanisms are not well understood. Given the 
critical role of the placenta to transfer oxygen and nutrients from mother, to the fetus, any compromise 
in the development of fetal-placental circulation significantly affects maternal-fetal exchange and 
thereby, fetal growth. The goal of this study was to examine, in rats, the impact of maternal Δ9-THC 
exposure on fetal development, neonatal outcomes, and placental development. Dams received a daily 
intraperitoneal injection (i.p.) of vehicle control or Δ9-THC (3 mg/kg) from embryonic (E)6.5 through 22. 
Dams were allowed to deliver normally to measure pregnancy and neonatal outcomes, with a subset 
sacrificed at E19.5 for placenta assessment via immunohistochemistry and qPCR. Gestational Δ9-THC 
exposure resulted in pups born with symmetrical fetal growth restriction, with catch up growth by post-
natal day (PND)21. During pregnancy there were no changes to maternal food intake, maternal weight 
gain, litter size, or gestational length. E19.5 placentas from Δ9-THC-exposed pregnancies exhibited a 
phenotype characterized by increased labyrinth area, reduced Epcam expression (marker of labyrinth 
trophoblast progenitors), altered maternal blood space, decreased fetal capillary area and an increased 
recruitment of pericytes with greater collagen deposition, when compared to vehicle controls. Further, 
at E19.5 labyrinth trophoblast had reduced glucose transporter 1 (GLUT1) and glucocorticoid receptor 
(GR) expression in response to Δ9-THC exposure. In conclusion, maternal exposure to Δ9-THC 
effectively compromised fetal growth, which may be a result of the adversely affected labyrinth zone 
development. These findings implicate GLUT1 as a Δ9-THC target and provide a potential mechanism 
for the fetal growth restriction observed in women who use cannabis during pregnancy.

Over the last decade, cannabis use has progressively increased in pregnant women, in part due to the perception 
that its usage poses no risk in perinatal life1,2. In the United States, the rates of self-reported or screened cannabis 
use in pregnant mothers (18–24 years) varies from 6 to 22%, with some women admitting to daily use2,3. Of great 
concern is that cannabis use in pregnancy is more prevalent in young, urban, socially disadvantaged women4,5. 
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Three systematic reviews and meta-analyses have validated the relationship between maternal cannabis use and 
both low-birth weight and adverse neurodevelopmental outcomes6–10. These studies, however, are confounded by 
sociodemographic factors and that cannabis is often accompanied by use of other drugs6–10. To address the intrin-
sic limitations of those clinical studies, animal experiments have demonstrated that exposure of pregnant rodent 
dams to Δ9-THC, the major psychoactive component of cannabis, leads to placental dysfunction and low birth 
weight offspring11,12. This is alarming as the concentration of Δ9-THC in cannabis has steadily increased (from 
3 to 22%) over the last two decades, and animal studies indicate that Δ9-THC crosses the placenta with 10–28% 
of maternal concentrations detected in the fetal plasma, and 2–5 times higher concentrations in fetal tissues13,14.

To date, the underlying molecular mechanisms for Δ9-THC-induced placental insufficiency are not com-
pletely understood. The molecular targets of action for Δ9-THC in the placenta are the two G-coupled cannabi-
noid receptors, CB1R and CB2R, which are part of the endocannabinoid system that plays a role in fertilization, 
embryo implantation, and early placentation15,16. In mouse, intraperitoneal injection (i.p.) of 3–5 mg/kg Δ9-THC 
both cause reduced fetal birthweight12,17–19. At 5 mg/kg, fetal demise12 was reported, with altered placenta devel-
opment further described12,18. Specifically, placentae from exposed dams had an overall reduction in CB1R and 
CB2R expression in association with impaired placental angiogenesis, narrowing of maternal sinusoids and 
increased trophoblastic septa diameter in the labyrinth zone, while the junctional zone exhibited disordered 
spongiotrophoblast and fewer glycogen cells12,18. Conversely, the 3 mg/kg Δ9-THC dose did not lead to alter-
ations in maternal behavior or physical measures17,19 and yielded Δ9-THC serum concentrations (8.6–12.4 ng/
ml Δ9-THC) that are at the lower end of the range of that reported (i) in cannabis smokers (13–63 ng/ml from a 
7% Δ9-THC content cigarette) 0–22 hours post inhalation, and (ii) in aborted fetal tissues (4–287 ng/ml) from 
pregnant cannabis smokers20–22.

Fetal growth restriction can result from impaired placenta development23–25 and the association between 
intrauterine growth restriction (IUGR) and the subsequent development of type 2 diabetes, obesity and metabolic 
syndrome (MetS) is often referred to as the “fetal origins hypothesis”26–29. Compromised nutrition and metab-
olism, in development, induce adaptations suited for survival short-term, but can become maladaptive if there 
is a ‘mismatch’ to the predictive postnatal environment, leading to long-term metabolic disease in adulthood30. 
Clinical reports suggest that after fetal growth restriction, there is often a period of post-natal catch-up growth, 
which significantly increases the risk of metabolic disorders31–34. The pregnant rat is an excellent model in which 
to study fetal growth restriction, reciprocating both post-natal catch-up growth and the onset of MetS35–38. As 
such, the aim of the current rat study was to use a dose of Δ9-THC that reports serum Δ9-THC concentrations 
that are within range of cannabis smokers20–22 with no reported fetal demise in order to investigate whether 
maternal exposure would lead to fetal growth restriction and post-natal catch-up growth. Given that maternal 
nicotine exposure during gestation results in fetal growth restriction associated with placental insufficiency25, we 
sought to investigate whether structural or vascular defects in the placenta might also be occurring. Moreover, 
as fetal growth restriction can occur via impaired transport of key nutrients to the fetus39–45, we further charac-
terized the effects of Δ9-THC on the expression of the placental glucose transporter (GLUT1) and its upstream 
regulator, the glucocorticoid receptor (GR).

Results
Δ9-THC exposure in the rat does not affect maternal weight or food intake. Pregnant rat dams 
received either daily doses of vehicle or Δ9-THC (3 mg/kg i.p.) from embryonic day 6.5 (E6.5) through E22. To 
evaluate maternal outcomes, gestational length, average food intake, pregnancy weight gain, litter size and live 
birth index were measured. In agreement with previous rodent studies12,19,46,47, daily administration of Δ9-THC 
to pregnant dams had no effect on maternal weight gain during pregnancy, or maternal food intake (Table 1). In 
addition, Δ9-THC (3 mg/kg i.p.) did not alter gestational length, litter size or live birth index similar to previous 
studies with maternal Δ9-THC exposure (Table 1)46,47.

Maternal Δ9-THC exposure results in symmetrical IUGR. To determine the effect of Δ9-THC 
exposure on neonatal outcome, assessments included pup weight, and organ to body weight ratio (hallmarks of 
growth restriction) along with survival to post-natal day (PND)4. A small for gestational age (SGA) birth is <10th 
percentile for gestational age, or more than 2 standard deviations below the mean, while Intrauterine Growth 
Restriction (IUGR) refers to a reduction in expected fetal growth48, thus, not all IUGR births are SGA48–51.  
Further, growth restriction can be asymmetric, meaning there is first a restriction of weight, followed by length 

Maternal/Neonatal Outcome Measures Vehicle Δ9-THC p-value

Gestational Length (days) 21.6 ± 0.33 22 0.37

Average Food Intake: days 12–14 (g/day) 22.9 ± 0.7 19.1 ± 2 0.28

Average Food Intake: days 18–20 (g/day) 30.3 ± 1 27.4 ± 0.1 0.06

Pregnancy Weight Gain: GD6-GD22 (g) 118.2 ± 20 103.9 ± 11 0.56

Litter Size (n) 13.3 ± 0.6 11 ± 0.3 0.14

Live Birth Index (%) 100 96.7 ± 3 0.37

Pup Weight (g) 7.01 ± 0.11 6.6 ± 0.1 0.001

Survival to PND4 (%) 100 100 1

Table 1. Maternal and neonatal outcome measurements.

https://doi.org/10.1038/s41598-019-57318-6
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with a “head sparing” effect51. This is the most common form of IUGR, and is seen with pre-eclampsia, hyper-
tension and uterine pathologies51,52. Symmetric growth restriction affects all growth parameters and affects the 
fetus in a uniform manner and can result in permanent neurological consequences. Symmetric growth restric-
tion is more often the result of genetic causes, intrauterine infections and maternal alcohol use51,52. At birth, the 
pups from Δ9-THC exposed pregnancies were growth restricted and weighed significantly less than the vehicle 
control pups (p = 0.001; Table 1). Moreover, in the Δ9-THC group, 2 out 8 dams had one pup that was small for 
gestational age (SGA) (<2 STD of mean body weight) while the vehicle group had none. Building on a previous 
study that identified that exposure to cannabis smoke lead to impaired fetal organ development53, PND1 neo-
nates were sacrificed to examine organ-to-body weight ratios and Δ9-THC pups exhibited a ~25% decrease in 
both liver-to-bodyweight ratio and brain-to-bodyweight ratio (p < 0.01), indicating symmetrical IUGR (Fig. 1). 
However, the reduced fetal size of the pups from the Δ9-THC exposed pregnancies did not affect survival to 
PND4 (Table 1).

Pups from Δ9-THC exposed pregnancies experience post-natal catch-up growth. As we have 
previously demonstrated that post-natal catch up growth in the rat exacerbates the incidence of MetS54–56, the 
pups were evaluated to see if they might be at increased risk. At PND21, pups from the Δ9-THC exposed preg-
nancies had exhibited catch-up growth with no significant difference in weight, liver to weight ratio or brain to 
weight ratio (Fig. 1).

Placental weights increased at E19.5, with reduced fetal to placental weight ratio. To explore 
whether changes in placental structure and composition may underlie the fetal growth restriction observed, a 
cohort of vehicle and Δ9-THC exposed pregnant dams were sacrificed at E19.5 and fetal and placental weights 
were evaluated. Similar to PND1, the litter size at E19.5 was not altered between vehicle and Δ9-THC exposed 
dams (Table 2), nor was the number of reabsorptions significantly different (Table 2). The fetal weights in both 
treatment groups were the same, suggesting that the overall growth restriction identified at birth, takes place after 
E19.5. The fetal to placental weight ratio can be used as a measure of placental efficiency57,58. The placentae from 
Δ9-THC exposed pregnancies were significantly larger than the placentae from vehicle control exposed dams 
(p < 0.001), causing the fetal to placental weight ratio to be reduced (p < 0.05, Table 2).

Figure 1. Exposure to 3 mg/kg Δ9-THC during gestation leads to symmetrical fetal growth restriction followed 
by postnatal catch-up growth. (A) birth weight, (B) liver:body weight ratio at birth, and (C) brain: body weight 
ratio at birth. (D) body weight at 3 weeks, (E) liver:body weight ratio at 3 weeks, and (F) brain: body weight 
ratio at 3 week. Mean ± SEM, average weight/litter, N = 8 dams/group, Significance; Student’s t-test (*P < 0.05, 
**P < 0.001).

Fetal/Placental Outcome 
Measures Vehicle Δ9-THC p-value

Litter Size 8.2 ± 1.7 8.8 ± 2.1 0.82

Number of Reabsorptions 0.25 ± 0.25 2.2 ± 1.03 0.11

Fetal Weights (g) 1.7 ± 0.11 1.9 ± 0.1 0.17

Placental Weight (g) 0.46 ± 0.02 0.58 ± 0.02 0.0009

Fetal:Placental Weight Ratio 3.66 ± 0.14 3.19 ± 0.12 0.02

Table 2. Fetal and placental outcome measurements at E19.5.

https://doi.org/10.1038/s41598-019-57318-6
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Structure and composition of trophoblast cells of the junctional zone were unaltered in pla-
centae from Δ9-THC exposed pregnancies. To determine whether structural changes in the placenta 
contributed to the increase in placental weights, histological assessment of the placental layers was performed. 
There was no change in the relative size of the junctional zone (Fig. 2A) between the vehicle treated controls 
and Δ9-THC exposed groups. Furthermore, histological analysis revealed no difference in the junctional zone 
composition of glycogen trophoblast (Gly-T) or spongiotrophoblast (Sp-T) populations (Fig. 2B) that make up 
this layer. It is worth noting that while 3 mg/kg Δ9-THC i.p. in the rat did not alter these populations, in mice, 
pregnancy exposure of 5 mg/kg Δ9-THC i.p. reported junctional zone disorganization with reduced glycogen 
trophoblast and the spongiotrophoblast populations12. It is possible that the higher dose of Δ9-THC may be more 
toxic to the junctional zone trophoblast and that 3 mg/kg allows for junctional zone specific trophoblast survival, 
though it must be considered that it could be a difference between species.

Given that Gly-T in the junctional zone store glycogen and storage can be altered in placentae that are func-
tionally abnormal, we examined whether there was a greater accumulation of glycogen or aldohexoses in the 
placenta, as observed in other models of placental insufficiency59. PAS staining was performed on serial placental 
sections without and with diastase treatment to assess for the levels of total aldohexoses vs aldohexoses without 
glycogen, respectively. In the junctional zone of Δ9-THC placentae, diastase treatment confirmed that glycogen 
accumulated normally in glycogen trophoblast and that there was no difference in total aldohexoses between 
vehicle and treated placentae (Fig. 2C).

Figure 2. Exposure to 3 mg/kg Δ9-THC during gestation has no measurable effect on junctional zone size 
or composition at E19.5. (A) Percentage of junctional zone area of total placenta. (B) Analysis of the glycogen 
trophoblast (Gly-T) and spongiotrophoblast (Sp-T) complement of the junctional zone. (C) Percentage of PAS 
staining in Gly-T in junctional zone. For junctional zone, 6-images/placenta were taken at 10x. Graphs present 
mean ± SEM.

https://doi.org/10.1038/s41598-019-57318-6
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Larger labyrinth layer, with a reduction in EPCAM+ labyrinth progenitors in placentae from 
Δ9-THC exposed dams. Histological assessment of the placental layers revealed that the relative area of 
the labyrinth layer was increased in the placentae from Δ9-THC exposed dams (p < 0.05; Fig. 3A). It has been 
shown in the rat placenta that proliferation is highest in the labyrinth at E10-11 and has dropped to a basal 
level by E1660. At E19.5, proliferating cells are much less likely to be observed; however, as proliferation can be 
altered in response to placenta stress61, it was evaluated to see whether, the rate of proliferation, albeit low, was 
changed. The increased size was neither attributed to an increase in proliferation, as the number of Ki67+ nuclei 
was not altered (Fig. 3B), nor the number of sinusoidal trophoblast giant cells (S-TGCs) as there was no differ-
ence between treatment groups (Fig. 3B). Interestingly, the EPCAM+ trophoblast progenitor cells that give rise 
to the differentiated trophoblast of the labyrinth layer appeared fewer in the placentae exposed to Δ9-THC, and 
qPCR assessment, confirmed that Epcam expression was reduced (p = 0.04600) in response to exposure (Fig. 3C). 
To further investigate this finding and to determine if syncytiotrophoblast, which differentiate from EPCAM+ 
trophoblast precursors, were affected, we assessed the expression of Gcm1 by qPCR. Interestingly, Gcm1 expres-
sion was not altered by Δ9-THC exposure (Supplemental Fig. 1).

Following gestational Δ9-THC exposure, rat placentae exhibit vascular defects. The labyrinth 
zone is the site of maternal-fetal exchange and alterations in vascular development are critical and can con-
tribute to fetal growth restriction. To explore whether the fetal growth restriction observed in Δ9-THC pups 
could be attributed to placental insufficiency, the fetal capillary network and maternal blood sinusoids within 
the labyrinth layer (herein referred to as fetal and maternal blood spaces, respectively), were assessed62–65. The 
assessment included: area of blood spaces as a percentage of the field of view; maternal to fetal blood space ratio 
and the perimeter to area ratio, all indicators of surface available for nutrient exchange. The maternal blood space 
area was increased (p < 0.0001) in response to Δ9-THC exposure, with the perimeter/area ratio of the maternal 
blood spaces reduced (p < 0.05; Fig. 4A). Furthermore, the fetal blood space area was reduced (p < 0.001) in the 
placentae from Δ9-THC exposed dams, with an increased fetal perimeter to area ratio (p < 0.05; Fig. 4B,D). 
Collectively, the maternal/fetal blood space ratio was increased in the labyrinth zone of Δ9-THC placentae 
(p < 0.0001; Fig. 4C).

With fetal blood space altered, components that contribute to blood space formation, structure, integrity and 
function were further evaluated. It is well established that pericytes associate with endothelial cells and wrap 
around the walls of the fetal capillaries in the placenta. In addition to providing structural support, they, along 

Figure 3. Exposure to 3 mg/kg Δ9-THC during gestation leads to increased labyrinth layer area at E19.5 
compared to vehicle treatment, however with no associated increases in cell proliferation nor number of 
S-TGCs. (A) Percentage of labyrinth layer area of total placenta and representative images showing Iso-Lectin 
B4 staining in labyrinth. (B) Analysis of numbers of Ki67+ nuclei and S-TGC nuclei in the labyrinth layer. 
(C) Quantification of Epcam mRNA in rat placenta at E19.5 by qPCR (graph) and assessment of EPCAM 
protein expression by IHC in labyrinth layer. For labyrinth area, 6-images/placenta were taken at 10×, while 
for Ki67, S-TGC and Epcam assessment, 6-images/placenta were taken at 40×. Graphs present mean ± SEM. 
Significance; Student’s t-test (*P < 0.05). Scale bars = 500 uM in (A), 150 uM in (C).
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with trophoblast and fetal endothelial cells contribute to the extracellular matrix (ECM) of the placenta and are 
suggested to play a role in vascular remodeling and maturation66. Immunohistochemistry (IHC) revealed that 
α-SMA+ labyrinth pericyte area was increased (p < 0.05; Fig. 5A) in the placentae from Δ9-THC exposed dams, 
when compared with vehicle treated controls. Collagen IV, an ECM component, was increased (p < 0.05; Fig. 5B), 
while laminin, another ECM component, was not significantly altered (Fig. 5C). Notably, there was increased PAS 
staining in the labyrinth zone of Δ9-THC placentae (p < 0.01) but given that diastase treatment did not affect this 
PAS staining, this is not attributed to an increase in glycogen storage (Fig. 5D). Likely, the increased PAS staining 
was reflective of changes to components of the ECM/basement membrane.

Δ9-THC exposure results in reduced GLUT1 and GR in vivo. The placenta adapts its nutrient trans-
port system in response to the maternal environment. Glucose is the primary nutrient required for the growth 
of both the placenta and the fetus. The fetus is dependent on glucose uptake from maternal circulation across 
the interhemal membrane of the placenta by members of the facilitated glucose transporter family (GLUTs). 
GLUT1 is the primary glucose transporter and is highly expressed in the placenta throughout both rodent and 
human pregnancy45,67–69. As the primary glucose transporter, GLUT1 is regularly evaluated in several models of 
IUGR64,68,70–72. Thus, upon observation of fetal growth restriction and altered placental blood spaces in placen-
tae from Δ9-THC pregnancies, the expression of GLUT1 was evaluated. GLUT1 was not altered in the junc-
tional zone of placentae from Δ9-THC exposed dams; however, it was significantly reduced in the labyrinth layer 
(p < 0.05; Fig. 6A,B). A transgenic glucocorticoid receptor deficient mouse study has previously demonstrated 
that reduced placental GR expression is accompanied by a decrease in GLUT1, resulting in growth restricted 
pups73. As Δ9-THC has been shown to interact with glucocorticoid receptor (GR)74,75, and GR-signaling medi-
ates GLUT1 expression73,76, GR expression was evaluated in both placental zones. Interestingly, GR positive nuclei 
were reduced in the labyrinth layer of Δ9-THC placentae (p < 0.05), but not the junctional zone (Fig. 6C,D).

Δ9-THC exposure in human trophoblast results in reduced GLUT1 and GR, in vitro. It is of para-
mount importance, when using animal models to study human pregnancy related pathology, to evaluate whether 
observations are of relevance to the human. BeWo cells were derived from a human choriocarcinoma and are well 
published as a model of human villous trophoblast77–79, and have been used as an in vitro model to examine the 
effects of Δ9-THC on placental function12,80–82. Thus BeWo cells were cultured with and without 15 µM Δ9-THC 
or its inactive metabolite, 11-COOH-THC, to explore the direct effects of Δ9-THC on GLUT1 expression. 15 µM 

Figure 4. Exposure to 3 mg/kg Δ9-THC during gestation leads to increased maternal blood space to fetal blood 
space ratio in the labyrinth zone at E19.5 compared to vehicle treatment. (A) Percentage of maternal blood 
area and maternal blood space perimeter/area ratio in labyrinth zone. (B) Percentage of fetal blood area and 
fetal blood space perimeter/area ratio in labyrinth zone. (C) Maternal blood space to fetal blood space ratio in 
labyrinth zone. (D) Representative images of fetal blood spaces identified by Iso-Lectin B4 staining. 6-images/
placenta were taken at 40×. Graphs present mean ± SEM. Significance; Student’s t-test (*P < 0.05, **P < 0.01, 
***P < 0.001 ****P < 0.0001). Scale bar = 100 uM.
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was chosen as the experimental dose based on studies, which determined equivalent doses to those found in the 
serum of cannabis users and did not affect cellular viability in BeWo cells12,80,82,83. Treatment with Δ9-THC led to 
decreases in the steady-state mRNA levels of GLUT1 and GR (p < 0.05), while the metabolite (11-COOH-THC) 
at an equimolar concentration, had no effect (Fig. 7A,B).

Discussion
Epidemiological studies link perinatal cannabis use with low birth weight outcomes, though little is known about 
whether Δ9-THC alone underlies the fetal growth restriction observed6–10. While this is not the first study to 
show that 3 mg/kg Δ9-THC causes fetal growth restriction, we do believe that it is the first study in rats to demon-
strate that this dose leads to symmetrical IUGR with post-natal catch up without any compromise to maternal 
outcomes. This is of significance as IUGR with post-natal catch up is a strong predictor of long-term metabolic 
disease53,84, thus, this may explain why Δ9-THC rat offspring exhibit long-term glucose intolerance85 and adverse 
neurobehavioural outcomes47,86–88. Further, building on the mouse study showing that at 5 mg/kg i.p. Δ9-THC 
placental pathology included both the junctional zone and the labyrinth layer, the current study in rat demon-
strates that a lower dose of 3 mg/kg i.p. induces only a labyrinth-specific alteration in maternal and fetal blood 
space with decreased labyrinth expression of the glucose transporter, GLUT1. Collectively, we believe that this 
model in the rat may prove useful for additional metabolic and placenta studies, as there is no fetal demise.

Increased placental weight has been observed in cannabis users and in mice exposed to cannabis smoke during 
pregnancy53,89, therefore it is possible that it is the Δ9-THC in cannabis that contributes to this reported increase, 
though it is worth noting that 5 mg/kg Δ9-THC i.p. led to decreased placental weights in the mouse12. This could 
be attributed to the noted loss of junctional zone trophoblast subtypes at that dose and may identify a population 
of trophoblast that are more susceptible to Δ9-THC. As the body of Δ9-THC and cannabis research gets larger, 

Figure 5. Exposure to 3 mg/kg Δ9-THC during gestation leads to increased pericyte and collagen area 
in the labyrinth zone at E19.5 compared to vehicle treatment. (A) Percentage of αSMA+ pericytes area 
and representative IHC for aSMA staining in labyrinth zone. (B) Percentage of collagen IV staining and 
representative IHC for collagen IV staining in the labyrinth. (C) Percentage of laminin staining and 
representative IHC for laminin staining in the labyrinth. (D) Percentage of PAS staining and representative 
PAS images in the labyrinth. 6-images/placenta were taken at 40x, graphs represent mean ± SEM, Significance; 
Student’s t-test (*P < 0.05, ***P < 0.001). Scale bars in (A–C) = 120uM; in (D) = 30 uM.
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it will be important to recognize that dose, delivery method and species may contribute to differential results 
between studies.

Like other models of placental insufficiency that identify changes in the relative size of placental layers64,65,90, 
this study identifies that placentae from pregnancies exposed to Δ9-THC exhibited changes in the labyrinth 
layer, but not in the junctional zone. While proliferation at E19.5 was not the cause for the increased area of the 

Figure 6. Exposure to 3 mg/kg Δ9-THC during gestation leads to decreased GLUT1 and GR exclusively in 
the labyrinth zone at E19.5 compared to vehicle treatment. (A) Percentage of GLUT1 area and representative 
IHC for GLUT1 in the labyrinth layer of placentae from vehicle and Δ9-THC exposed dams. (B) Percentage of 
GLUT1 area junctional zone. (C) Percentage of GR area and representative IHC for GR in the labyrinth layer 
of placentae from vehicle and Δ9-THC exposed dams. (D) Percentage of GR area in the junctional zone. For 
labyrinth layer, 6-images/placenta were taken at 40x, while for junction zone 6-images/placenta were taken at 
10x. Graphs present mean ± SEM, Significance; Student’s t-test (*P < 0.05). Scale bars = 30 uM. Arrows indicate 
positive staining for GR in (C).

Figure 7. Δ9-THC decreases GLUT1 and GR in human BeWo trophoblast cells. Real-time qPCR of human 
BeWo cells treated with either vehicle, 15 µM Δ9-THC, or 15 µM 11-COOH-THC for 24 hours. Total RNA 
was extracted and reverse-transcribed to cDNA and normalized to GAPDH. All values were expressed as 
mean ± SEM (N = 6/group). Significant differences between treatment groups determined by 1-way ANOVA. 
Different letters represent means that are significantly different from one another according to Tukey’s post test 
(*P < 0.05, **P < 0.001).
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labyrinth layer from these pregnancies, there is the possibility that there was proliferation of trophoblast and 
endothelial cells at an earlier time in gestation, which may have contributed to the altered size. The increased 
area of the fetal blood space-associated α-SMA+ pericytes and the maternal blood space of the labyrinth may 
contribute to the larger labyrinth size in the placentae from Δ9-THC exposed dams. Those factors contributing 
to the labyrinth size likely also contribute to the increased placental weight. Further contributing to the heavier 
placental weight, it remains possible that the decidual zone was also larger (not assessed in the current study).

The decreased fetal blood space and increased maternal blood space created a 60% higher maternal to fetal 
blood space ratio in the placentae from Δ9-THC exposed pregnancies, suggestive of impaired nutrient trans-
port91. The changes in the ratio of maternal to fetal vascularity could be attributed to an overall defect in blood 
vessel formation given pregnant women who used cannabis at least once per month exhibited less expression of 
CD31 in the placenta, a marker of endothelial cells and thereby, indirectly, angiogenesis12,91. Moreover, treatment 
of pregnant mouse dams with 5 mg/kg i.p. also demonstrated narrow blood vessels and lower CD31 expression 
in the placenta, suggesting Δ9-THC may impair blood vessel formation18. Our current study identifies compro-
mised blood vessels at only 3 mg/kg i.p. and revealed pericytes and collagen deposition as potential contributors. 
The fetal blood space, while reduced in area exhibit increased fetal blood space perimeter/area ratio. Pericytes 
stabilize the endothelial lined fetal vasculature as they deposit basement membrane matrix66. Thus, it is notewor-
thy that the area of both pericytes and Collagen IV staining in the labyrinth of Δ9-THC exposed pregnancies 
was increased. Whether this implies that the vasculature in these placentae is hyper mature is not known. It is 
important to consider that the increased pericytes and collagen may contribute to the reduced fetal blood space 
observed. However, the underlying mechanisms promoting disproportionately higher maternal to fetal blood 
area in the labyrinth zone are elusive. It is tempting to speculate that the higher ratio in the placentae from 
Δ9-THC exposed dams could be a reflection of a lack of development of extensive branching of the fetal capillary 
network into the maternal blood spaces. As a result, the maternal blood spaces would appear smaller in vehi-
cle controls where normal branching had occurred when compared to placentae from Δ9-THC exposed dams. 
This could be a result of aberrant signaling between trophoblast, pericytes and endothelial cells in the labyrinth. 
Angiogenic signals, including Pdgfb and Vegfa are produced by these cells and are essential for development of 
the fetal capillary network in the labyrinth92–94. The specific roles of each cell type and how they interact is not well 
understood; however, it is likely to be important in understanding phenotypes like the one observed in this study.

Placental glucose transport is critical for proper fetal development and elegant studies in the human placenta 
have demonstrated that glucose transporter proteins (including GLUT1) facilitate a net glucose transfer from 
maternal circulation to the fetus95,96. In human pregnancy, GLUT1 is the primary placental glucose transporter, 
while both Glut1 and Glut3 mediate glucose transport in the late gestation rodent placenta. Given its localization 
at the site of maternal-fetal exchange in both the rodent and human, it is not surprising that fetal over-growth 
is associated with higher placental GLUT1 expression, while lower expression is linked to fetal growth restric-
tion68,97–99. Our studies revealed that exposure to Δ9-THC during gestation led to ~35% lower placental GLUT1 
expression in the labyrinth layer of the E19.5 rat placenta. The decrease in GLUT1 at this time point was con-
comitant with a decrease in the fetal to placental weight ratio but preceded the symmetrical growth restriction 
observed at parturition. Other models of placental insufficiency-induced fetal growth restriction have observed 
similar decrease in labyrinth expression of GLUT164. Previous in vivo studies have reported that Δ9-THC and 
other cannabinoids can alter glucose transport in the brain and adipose, however, to our knowledge, this study 
is the first to report a decrease in the placental glucose transporter, GLUT1100,101. Further, we demonstrated that 
GR, which is critical for the expression of placental GLUT1, was decreased specifically in the labyrinth layer of 
the Δ9-THC rat placenta73–75. Importantly, acute glucocorticoid elevation results in increased GR expression, 
however prolonged exposure leads to decreased GR (reviewed in102). As Δ9-THC is reported to increase circu-
lating cortisol/corticosterone levels103–106, we speculate that chronic maternal exposure to Δ9-THC may lead to 
increased maternal glucocorticoid release and ultimately decreased GR and GLUT1 expression. Future studies 
are warranted in trophoblast cells to further implicate this direct relationship. Alternatively, Δ9-THC has also 
been shown to bind the glucocorticoid receptor and therefore, may also act to cause a decrease in GR expression 
over time75. This theory is supported by our findings in human BeWo cells, in which Δ9-THC had direct effects 
to decrease steady-state levels of both GR and GLUT1 mRNA, whereas its metabolite, THC-COOH did not. 
Therefore, the Δ9-THC-induced decrease in GLUT1 may underlie the previously observed effects of Δ9-THC to 
decrease glucose transport in BeWo cells107. Further studies are warranted to examine whether GR and GLUT1 
expression is impaired in other fetal and neonatal organs. To confirm the functional role of diminished placental 
GLUT1 with Δ9-THC-induced fetal growth restriction, rescue experiments with over-expression of placental 
GLUT1 will be required to determine whether placental insufficiency and adverse neonatal outcomes could be 
reversed.

Based on the results in this study, the reduction in fetal growth are likely attributable to impaired placental 
function, however, as Δ9-THC has been shown to cross the placenta, it is worth considering that Δ9-THC bind-
ing to the CB1R/CB2R in the fetal liver and brain may also have an impact12,82,100,108. The current study is limited 
in its scope and independent studies will need to be conducted to evaluate the post-natal onset of MetS along with 
an in-depth evaluation of the placenta vascular pathology. The placenta assessment did not examine the timing 
of the onset of Δ9-THC, or the effect of Δ9-THC on interhemal membrane thickness, endothelial population, 
nor the expression of the cannabinoid receptors. An assessment of each of these factors, while beyond the scope 
of this study would significantly contribute to our global understanding of the effect of Δ9-THC on the placenta.

In summary, while clinical studies examining cannabis use in pregnancy on placental outcomes are con-
founded by socioeconomic status and other drug use, we have demonstrated that Δ9-THC alone during preg-
nancy can lead to placental insufficiency resulting in symmetric fetal growth restriction. Importantly, this 
can occur without alterations to fetal viability, litter size, or maternal weight gain. Moreover, we have identi-
fied that defects in fetal blood space area and GLUT1 expression specifically in the labyrinth zone, the site of 
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maternal-fetal exchange, likely underlies these defects in placental function. Given the strong links between 
placental-insufficiency, induced fetal growth restriction and metabolic disease risk, there is a great impetus to 
examine the short and long-term effects of gestational Δ9-THC exposure on the fetus/placenta and the affected 
offspring, respectively84. This is especially urgent considering the greater legal access to cannabis, rising Δ9-THC 
concentrations, and the perception by pregnant women that cannabis use poses no risk to the fetus109,110. As such, 
targeting the education of cannabis use during pregnancy among young, urban, socioeconomically disadvantaged 
women will be critical.

Materials and Methods
Animals and experimental paradigm. All procedures were performed according to guidelines set by the 
Canadian Council on Animal Care with approval from the Animal Care Committee at The University of Western 
Ontario. Pregnant female Wistar rats (250 g) were purchased from Charles River (La Salle, St. Constant QC), 
shipped at E3, and left to acclimatize to environmental conditions of the animal care facility for three days. For 
the entire experimental procedure, dams and offspring were maintained under controlled lighting (12:12 L:D) 
and temperature (22 °C) with ad libitum access to food and water82. Dams were randomly assigned to receive a 
daily dose of vehicle (1:18 cremophor: saline i.p.) or Δ9-THC (3 mg/kg i.p) from E6.5 to E22 (N = 14 total, N = 8 
dams/group which delivered and N = 6 dams/group for E19.5 analysis). This dose and route of injection has been 
safely used during rat pregnancy in several studies12,17,19,25 and has also been demonstrated to not to alter mater-
nal bodyweight, male-female ratio, or litter size19. Δ9-THC treatment was initiated at E6.5 in this design since 
administration of the drug at earlier stages of pregnancy can induce spontaneous abortions111.

Maternal body weight and food consumption were monitored daily for the duration of the study to assess 
pregnancy weight gain, as previously described112. Dams were allowed to deliver normally. At birth (postnatal day 
1; PND1), pups were weighed and sexed, and litters were culled to 8, preferentially selecting 4 male and 4 female 
offspring, to ensure uniformity of litter size between treated and control litters. For each dam, gestation length, 
litter size, birth weight and the number of stillbirths were recorded. From these data the live birth index ([# of live 
offspring/# of offspring delivered]*100), and the proportion of pups, which were small for gestational age were also 
determined. At birth, liver and brain weights for culled pups were measured to calculate liver to bodyweight and 
brain to bodyweight ratios as an assessment of growth restriction. The remaining pups were used to calculate the 
percent survival to PND4 (as an indicator of neonatal health) and were sacrificed at 3 weeks to determine liver to 
bodyweight and brain to bodyweight ratios as indicators of postnatal catch-up growth.

At E19.5, a cohort of dams (N = 6 per group) was sacrificed for the determination of litter size, placental 
weight, fetal weight, and fetal:placental weight ratio. The number of resorptions/litter was also assessed. Placentae 
from both experimental cohorts were collected and fixed in 4% paraformaldehyde, followed by processing, 
embedding in paraffin and sectioning for histochemical analysis. In addition, placentae from both experimental 
cohorts were flash frozen in liquid nitrogen for RNA analysis.

Immunohistochemistry. All histology was performed on 7 μm sections. All assessments (unless otherwise 
indicated) were performed on randomly selected slides from a minimum of 3 placentae per treatment group. 
Semi-quantitative assessment was performed blinded and repeated by a second person. Images were taken using 
an EVOS XL microscope (Life Technologies, USA). Staining was semi-quantitively assessed by measuring the 
area of positive stain as a fraction of the total tissue area as previously described64,90, unless otherwise specified.

Labyrinth and junctional zone size. Iso-Lectin B4 staining was performed as previously published64,90 
and visualized as per manufacturer’s protocol, using DAB (DAKO, USA). Images were taken at low (4x objective) 
magnification and merged using Photoshop™ to show the entire placenta. Iso-Lectin B4 binds basement mem-
brane under the fetal endothelial cells that line the fetal blood space; thus, positive staining highlights the laby-
rinth zone. Using Image J, manual measurement of the areas of the labyrinth layer (as defined by the Iso-Lectin 
staining) and the junctional zone (as defined by parietal trophoblast giant cells, differentiating junctional zone 
from maternal decidua) was calculated64,65,90. The sizes of the junctional and labyrinth zones are reported as the 
percentage of the total placenta area.

Placental composition. As a measure of junctional zone composition, glycogen and spongiotrophoblast 
assessment was performed using hematoxylin and eosin (H&E) stained images (10x objective). For each placenta, 
the respective areas of glycogen trophoblast and spongiotrophoblast were presented relative to junctional zone 
area. Within the labyrinth, as an assessment of placental vasculature, slides stained for Iso-Lectin B4 were used 
to assess maternal and fetal blood space with 6-images/placentae taken at high magnification (40x objective). 
All Iso-Lectin-positive blood spaces were identified as fetal capillaries, which are referred to as fetal blood space, 
while all Iso-Lectin negative blood spaces with an associated S-TGC (as identified by their large nuclei) were iden-
tified as maternal blood space; area and perimeter of both fetal and maternal blood space were measured using 
Photoshop/Image J, with area represented as a percentage of each field of view. Supporting the fetal capillaries are 
the pericytes, identified by αSMA and extracellular matrix components, including collagen and laminin. αSMA 
(ab5694; 1:200), Collagen IV (Abcam ab6585; 1:200) and Laminin (Abcam 11575; 1:200) immunohistochemical 
staining in the labyrinth was assessed using images (10x objective) with the area of positive staining presented as 
a percentage of the field of view. Sinusoidal Trophoblast Giant cells (S-TGC) line the maternal blood spaces. Thus, 
the area of S-TGC nuclei was measured and all positive nuclei with an area equal to or larger than the smallest 
S-TGC nuclei were counted as a positive S-TGC. The same technique was used to assess number of Ki67 (Abcam 
16667; 1:100) positive nuclei, as a measure of proliferation. GLUT1 (Abcam ab652; 1:300) and, GR (Proteintech 
24050-1-AP; 1:200) immunohistochemical staining was performed with labyrinth and junctional zone assess-
ment. Junctional zone assessment used images (10x objective), with the number of positive nuclei counted for 
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each GR image and area of positive stain measured for each GLUT1 image. Labyrinth assessment was performed 
in the same manner, however, 6 images/placenta were used (40x objective) so that clustered nuclei were not mis-
counted, as positive nuclei in the labyrinth had much closer proximity to one another than in the junctional zone. 
While PAS staining is used as a measure of glycogen and/or aldohexose content in the glycogen trophoblast of the 
junctional zone, in the labyrinth it more commonly identifies extracellular matrix. Staining was performed as per 
manufacturer’s protocol (Sigma, USA), both with and without diastase treatment on serial sections. 6-images/ 
placenta were taken (40x objective) in both the labyrinth and junctional zone, and positive staining was measured 
and presented as a percentage of area of field of view.

Cell Culture and Δ9-THC treatment. To confirm that the effects of Δ9-THC on placental GLUT1 and 
GR expression were a direct effect, we tested the effects of Δ9-THC exposure on human BeWo cells in vitro. 
The BeWo cells have been widely used as an in vitro model for drug (i.e. Δ9-THC) studies12,80,113. As previously 
described82, cells (passages 8–18) were cultured in 75-cm2 flasks in F-12K Nutrient medium (Gibco) with 10% 
fetal bovine serum (Gibco) and 1% Penicillin/Streptomycin at 37 °C in 5% CO2 in air.

To test the effect of Δ9-THC on GLUT1 and GR expression, BeWo cells were plated on a 12-well plate 
with 2 × 105 cells per well in 1 mL of F-12K Nutrient medium and allowed to attach for 24 hours as previously 
described82. Briefly, following the 24-hour incubation period, media was removed and replaced with treatment 
media containing 15 μM of Δ9-THC (dissolved in final concentration of 0.1%(v/v) ethanol, Cayman Chemicals, 
Ann Arbor, MI) or 0.1%(v/v) ethanol (vehicle control). The 15 µM dose of Δ9-THC was chosen based on previous 
pharmacokinetic studies which determined equivalent doses to those found in the serum of cannabis users80,83. 
Additionally, BeWo cells were treated with 15 μM 11-COOH-THC (Sigma-Aldrich), the main metabolite of THC, 
to assess its potential effects on GLUT1 and GR expression. The 24-hour time-point allowed for detection of 
changes in the steady-state mRNA levels of placental target genes, as previously published82.

RNA isolation and real-time PCR analysis. As we have previously published82, total RNA was 
extracted from frozen E19.5 placenta and BeWo cells using TRIzol reagent (Invitrogen) and chloro-
form (Sigma-Aldrich) in a standard TRIzol/chloroform extraction protocol as described by the manufac-
turer. Following precipitation, total RNA was collected from the pellet and dissolved in DEPC-treated water. 
Deoxyribonuclease I, Amplification Grade (Invitrogen) was added to the RNA to digest contaminating single- 
and double-stranded DNA. Four micrograms of RNA were reverse-transcribed to cDNA using random hex-
amers and Superscript II Reverse Transcriptase (Invitrogen). Primer sets directed against human GLUT1 
(Forward; 5′-GGACCTTCGATGAGATCGCT-3′ and Reverse; 5′-TCTTGTCACTTTGGCTGGCT-3′) and 
GR (Forward; 5′-GGACCACCTCCCAAACTCTG-3′ and Reverse; 5′-GCTGTCCTTCCACTGCTCTT-3) 
gene targets of interest were designed through National Center for Biotechnology Information’s primer 
designing tool and generated via Invitrogen Custom DNA Oligos. For rat placental real-time PCR analy-
sis, primer sets were targeted against Epcam1 (Forward; 5′-CGCAGCTCAGGAAGAATGTG-3′ and Reverse; 
5′-TGAAGTACACTGGCATTGACG-3′) and Gcm1 (Forward; 5′-CCCCAACAGGTTCCACTAGA-3′ and 
Reverse; 5′-AGGGGAGTGGTACGTGACAG-3′). Quantitative analysis of mRNA expression was performed 
via RT-PCR using fluorescent nucleic acid dye SsoFast EvaGreen supermix (BioRad) and BioRad CFX384 Real 
Time System. The cycling conditions were 95 °C for 10 min, followed by 43 cycles of 95 °C for 15 sec and 60 °C 
for 30 sec and 72 °C for 30 sec. The cycle threshold was set so that exponential increases in amplification were 
approximately level between all samples. Relative fold changes were calculated using the comparative cycle times 
(Ct) method, normalizing all values to the geometric mean of the housekeeping gene, human GAPDH (Forward; 
5′-AGGTCCACCACTGACACGTT-3′ and Reverse 5′GCCTCAAGATCATCAGCAAT-3′) or rat Gapdh 
(Forward; 5′-TAAAGAACAGGCTCTTAGCACA-3′ and 5′-AGTCTTGGAAATGGATTGTCTC-3). GAPDH 
was determined as a suitable housekeeping gene using algorithms from GeNorm, Normfinder, BestKeeper, and 
the comparative ΔCt method to place it as the most stable housekeeping gene from those tested (e.g. β-actin, 18 S 
ribosomal RNA)114–117. Given all primer sets had equal priming efficiency, the ΔCt values for each primer set were 
calibrated to the average of all control Ct values, and the relative abundance of each primer set compared with 
calibrator was determined by the formula 2ΔΔCt, in which ΔΔCt was the normalized value82.

Statistical analyses. All statistical analyses were performed using GraphPad Prism 8 software. Results were 
expressed as means of normalized values ± SEM, and the threshold for statistical significance was set as P < 0.05. 
A sample size of 7–8 offspring (i.e., litter is the statistical unit) was used for all in vivo experiments, as this pro-
vided enough statistical power to detect significant differences in outcome measures. All cell culture experiments 
were performed in biological replicates of 3, where each replicate represents an independent experiment using a 
different frozen cell stock or passage number. For all maternal, fetal, and neonatal outcomes, IHC, and real-time 
PCR, Student’s unpaired t-tests were performed to assess significance (P < 0.05).
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