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Abstract
Speech quality estimation for pathological voices is becoming an increasingly im-

portant research topic. The assessment of the quality and the degree of severity of a

disordered speech is important to the clinical treatment and rehabilitation of patients.

In particular, patients who have undergone total laryngectomy (larynx removal) pro-

duce Tracheoesophageal (TE) speech. In this thesis, we study the problem of TE

speech quality estimation using advanced signal processing approaches. Since it is

not possible to have a reference (clean) signal corresponding to a given TE speech

(disordered) signal, we investigate in particular the non-intrusive techniques (also

called single-ended or blind approaches) that do not require a reference signal to

deduce the speech quality level.

First, we develop a novel TE speech quality estimation based on some existing

double-ended (intrusive) speech quality evaluation techniques such as the Perceptual

Evaluation Speech Quality (PESQ) and Hearing Aid Speech Quality Index HASQI.

The matching pursuit algorithm (MPA) was used to generate a quasi-clean speech

signal from a given disordered TE speech signal. Then, by adequately choosing the

parameters of the MPA (atoms, number of iterations,...etc) and using the resulting

signal as our reference signal in the intrusive algorithm, we show that the result-

ing intrusive algorithm correlates well with the subjective scores of two TE speech

databases.

Second, we investigate the extraction of low complexity auditory features for the

evaluation of speech quality. An 18-th order Linear Prediction (LP) analysis is per-

formed on each voiced frame of the speech signal. Two evaluation features are ex-

tracted corresponding to higher order statistics of the LP coefficients and the vocal
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tract model parameters (cross-sectional tubes areas). Using a set of 35 TE speech

samples, we perform forward stepwise regression as well as K-fold cross validation to

select the best sets of features that are used in each of the regression models. Finally,

the selected features are fitted to different support vector regression models yielding

high correlations with subjective scores.

Finally, we investigate a new approach for the estimation of the quality of TE

speech using deep neural networks (DNNs). A synthetic dataset that consists of 2173

samples was used to train a DNN model that was shown to predict the TE voice

quality. The synthetic dataset was formed by mixing 53 normal speech samples with

modulated noise signals that had a similar envelope to the speech samples, at different

speech-to-modulation noise ratios. A validated instrumental speech quality predictor

was used to quantify the perceived quality of speech samples in this database, and

these objective quality scores were used for training the DNN model. The DNN

model was comprised of an input layer that accepted sixty relevant features extracted

through filterbank and linear prediction analyses of the input speech signal, two

hidden layers with 15 neurons each, and an output layer that produced the predicted

speech quality score. The DNN trained on the synthetic dataset was subsequently

applied to four different databases that contained speech samples collected from TE

speakers. The DNN-estimated quality scores exhibited strong correlation with the

subjective ratings of the TE samples in all four databases, thus it shows a strong

robustness compared to those speech quality metrics developed in this thesis or those

from the literature.
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Summary for Lay Audience
Speech quality estimation is a multi-dimensional perceptual phenomenon that en-

compasses attributes such as clarity, pleasantness, and naturalness of speech. There

is a necessity to estimate the quality of pathological voices due to its clinical impor-

tance, especially for people who have undergone total laryngectomy (larynx removal).

Speech coming out of people who undergo such surgery is called Tracheoesophageal

(TE) speech. This thesis aims to assess the quality of TE speech using speech quality

metrics that incorporate digital signal processing and machine learning algorithms.

In the first contribution of this study, a novel TE speech quality estimation metric

is developed using intrusive techniques. Intrusive techniques are those methods that

need a clean reference audio signal to measure the quality of the signal that is being

evaluated. The obtained automated model is found to have high similarity in terms

of performance to the subjective human evaluation of speech audio signals.

In the second part of this study, the use of non-intrusive metrics that do not need a

clean reference signal to evaluate the quality of speech signals is investigated. Linear

prediction features from the speech signal are fed to a stepwise regression model

to predict the quality of the speech records. Moreover, another machine learning

algorithm, support vector regression (SVR) is used to extract the quality evaluation

metrics from these prediction coefficients. The obtained quality metrics are found to

be highly correlated with individual subjective scores.

Finally, the third part of this study investigates the use of artificial deep neural

networks (DNN), a state-of-the-art machine learning technique, in predicting the

quality of TE speech records. The DNN-estimated quality scores exhibited a strong

correlation with the subjective ratings of the TE samples in all four databases, thus it
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shows strong robustness compared to those speech quality metrics developed in this

thesis or those from the literature.
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Chapter 1

Introduction

1.1 General Introduction

Speech communication plays a vital role in our lives and disorders affecting speech

communication can have significant impact on psychological, physical, and financial

well-being. Speech and voice disorders are categorized according to their causes,

syndromes and treatment. These can occur due to physiological or psychological dis-

orders, accidents, misuse of voice, or surgery affecting the vocal folds. In addition, a

variety of diseases and medical complications can cause speech and voice abnormali-

ties. Early identification of the speech and/or voice disorder, followed by proper in-

tervention and monitoring are crucial for recuperation and improved quality of life [1].

Clinicians and researchers working with persons with speech/voice disorders employ

evidence-based assessment and treatment strategies, and strive to demonstrate posi-

tive and objective outcomes associated with their interventions [2]. Figure 1.1 shows

clinical setting for disordered speech quality measurement. Typically, speech/voice

1



Figure 1.1: Clinical setting for disordered speech quality measurement

disorders are assessed through different modalities including perceptual, acoustic,

aerodynamic, and endoscopic imaging techniques [3]. With the advent of relatively

inexpensive personal computers, low cost analysis software, and increased availability

of digital audio recording systems, acoustic assessment has become an increasingly

popular option for tracking intervention outcomes. Advancement is being made on

the improvement of acoustic analysis algorithms that are more robust for analysing

disordered voices [4, 5, 6, 7]. This thesis concentrates on the perceptual and acous-

tic methods of disordered speech quality assessment. Novel acoustic and perceptual

features are proposed for a class of disordered speech.
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Figure 1.2: Different stages in human speech production process.

1.2 Human Speech Production System

Linguistically, speech is the ability to express thoughts and feelings through artic-

ulation of sounds. Speech production is the process that translates brain thoughts

into hearble speech. It involves many organs, muscles and intermediate complex pro-

cesses. Roughly speaking, speech is produced through three major stages (levels):

conceptualization, formulation, and articulation [8]. In the first stage, called also

conceptual preparation, the human intention to generate a speech links the desired

concept to the particular spoken words to be expressed [9]. The second stage (called

formulation) allows to create a linguistic form for the desired message to be spoken.

This includes grammatical, phonetic and morpho-phonological encoding [9]. The last

stage in the speech production process is the articulation which is the mechanical

execution of the linguistic form generated from the formulation stage, see Figure 1.2.

Articulating a speech involves organs such as the lungs, glottis, larynx, tongue, lips,

jaw and other parts of the vocal apparatus. These organs can be grouped into three

main parts which acts to produce the pulmonary pressure, the phonation and the

vowels and consonants, see Figure 1.3.
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1.2.1 Pulmonary Pressure

The lungs provide the main source of excitation (energy source) in the speech pro-

duction process. When exhaling air, the volume of the chest cavity is reduced which

causes the lung air pressure to increase. This increase in pressure causes air to flow

through the trachea (also called windpipe) into the larynx [10].

1.2.2 Phonation

The air flow generated by the pulmonary pressure is made audible when set into

vibration by the activity of the larynx. The larynx, composed of muscles, ligaments

and cartilages, controls the function of the vocal folds (also called vocal chords). The

vocal folds are two membranes (two masses of ligament) stretching horizontally from

the posterior to the interior of the larynx. The opening between the two vocal folds

is called the glottis. The vocal folds are typically 15 mm long in men and about

13 mm in women. By means of various muscle contractions, the vocal folds can be

varied in length and thickness and positioned in various configurations [11] . These

contractions cause a change in the characteristics of the quasi-periodic airflow which

result in a change of the waveshape of the glottal air pulses, including their duration

and amplitude, which lead to changes in perceived pitch and loudness. The perceived

pitch is the physical aspect corresponding to the fundamental frequency, denoted F0,

of the speech signal generated by the vocal folds vibration.
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Figure 1.3: Human speech production system anatomy [12].

1.2.3 Vowels and Consonants

The sound produced by the larynx is further shaped (or modified) when passing

through the vocal tract. The vocal tract consists of two main parts: the nasal cavity

and the oral cavity. The oral cavity extends from the larynx to the lips while the

nasal cavity is coupled to the oral cavity through the velum. The oral cavity consists

of the tongue, teeth, lips and jaws which are known as the articulators. Altering these

articulators resuls in different shapes of the oral tract which allows different filtering

of the phonation sound [10]. Further details about the mathematical modelling of the

acoustic speech production are detailed in the next section.
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Figure 1.4: Engineering model of speech production.

1.3 Acoustic Theory of Speech Production

The acoustic characteristics of speech are usually modelled as a sequence of source,

vocal tract filter, and radiation characteristics [10]. Depending on their state, the

vocal folds provide excitation, which can be periodic or aperiodic, to the vocal tract.

Voiced sounds, such as vowels, are produced when the vocal folds vibrate and provide

periodic source excitation. When the source of excitation is aperiodic (e.g. random

noise) the produced sound is unvoiced. The vocal tract acts as a filter that spectrally

shapes the input excitation provided by the vocal folds to produce various sounds.

This sound is further filtered by the effect of sound radiation at the level of the lips.

These three stages define the engineering model of speech production, see Figure 1.4.

The vocal tract can be modelled as an acoustic tube with resonances, called for-

mants, and antiresonances. Moving the articulators of the vocal tract alters the shape

of the acoustic tube which results in changes in the frequency response (i.e. changes

in the formants as well). The wavesound generated by the larynx is considered as

an input to the acoustic tube where certain frequencies are attenuated while others
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(near formants) are amplified. In general, the acoustic tube corresponding to the

vocal tract is often taken as a chain of cylinders with different cross sectional areas

(tubes connected in series). Note that this is a simplified model and the actual vocal

tract involves much more complex shapes and configurations.

1.4 Tracheoesophageal Disordered Speech

Some patients are diagnosed with laryngeal cancer which often requires the surgical

removal of the whole larynx or part of it. Removal of the entire larynx is termed total

laryngectomy. In these circumstances, the speech production system is gravely dam-

aged due to the removal of one of its important organs, which is the larynx. Therefore,

alternative methods for voice generation are required. In a tracheoesophageal punc-

ture procedure (surgery), a hole is created between the trachea and the esophagus

(the tubal pathway between the throat and the stomach). The trachea is, subse-

quently, brought forward to the front of the neck and the individual will subsequently

exhale and inhale from the neck. Further, because the larynx is decoupled from the

upper trachea, the residual trachea is brought forward to the anterior midline neck

where an open airway will exist for the remainder of the individual’s life. A voice

prosthesis is inserted into the puncture which keeps food out of the trachea but lets

air into the esophagus for tracheoesophageal (TE) speech. Since early works by [13]

this technique has became the international standard for voice restoration after total

laryngectomy.

The speech produced by the TE voice production mechanism has often a lower

quality compared to normal speech since the sound source is abnormal and contains
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different anatomical asymmetries. TE speech is, generally, characterized by lowered

frequency, normal or slightly greater than normal intensity, and because of access

to the large volume of pulmonary air, generally normal temporal features (rate of

speech) when compared to normal speakers [14]. However, the overall sound quality

of TE speech is best described as highly aperiodic, rough, and noisy. Additionally,

depending on the surgery and the length of treatment time with a speech pathologist,

considerable variability across TE speakers does exist [15, 16].

1.5 Disordered Speech Quality Estimation

Disordered speech quality can be asssessed through perceptual (also termed subjec-

tive) and acoustic (also labeled as objective) measurements. Subjective perception of

speech quality is a complex psychoacoustic phenomena that incorporates the inter-

action of many processes within human audition. The topic of speech quality per-

ception is widely researched in telecommunications, audio recording & broadcasting,

and architectural acoustics fields [18]. For example, in telecommunications, the Mean

Opinion Score (MOS) is used to benchmark new transmission/reception or speech

coding/decoding technologies [19]. In this subjective testing procedure, a panel of

listeners rate the quality of speech sample under test on an integer scale of 1 (“bad"

quality) to 5 (“excellent" quality), and the average of these ratings is reported as the

perceived quality of the test speech sample. In the realm of subjective assessment of

disordered speech/voice, the term auditory-perceptual evaluation is commonly used

[20], and two of the more standard subjective assessment procedures include the GR-

BAS (Grade, Roughness, Breathiness, Asthenia, Strain) scale and the CAPE-V. In the

8



Figure 1.5: Tracheoesophageal Speech Production [17]
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GRBAS procedure, the clinician rates the perceived quality along the Grade, Rough-

ness, Breathiness, Asthenicity, and Strain dimensions on a scale of 0–3 [21]. More

recently, the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) has been

developed by the Special Interest Group (SIG3) of the American Speech-Language-

Hearing Association as a standard clinical protocol for voice quality assessment[22].

The CAPE-V protocol specifies six quality features to be evaluated consistently and

these are: overall severity, roughness, breathiness, strain, pitch and loudness (see Ap-

pendix A for a sample CAPE-V form). Karnell et al. (2007) published a preliminary

report comparing the reliability of clinician-based auditory-perceptual judgments us-

ing the CAPE-V to those made with the GRBAS voice rating scheme. Karnell et al.

found that both scales resulted in high interrater reliability while suggesting that the

CAPE-V may offer “more sensitivity to small differences within and among patients

than the GRBAS scale" [23].

While subjective measurements of disordered speech quality are preferred because of

“greater intuitive meaning and shared reality among listeners" [20], they are influ-

enced by factors such as listener experience, listeners’ understanding of the rating

scale, and the type of voice sample [20] all of which affect the reliability of subjec-

tive scores. In contrast to subjective voice quality estimation schemes, the objective

methods use an algorithm, which replaces the listener panel, to compute the quality

score from a given speech sample. Objective methods assesses speech quality through

the use of physical characteristics of the speech signal and appropriate computational

models [18]. Acoustic analysis methods have been used clinically to differentiate nor-

mal from abnormal voices, to evaluate the relative effectiveness of different treatment

approaches, and to track progress in voice therapy.

10



Criteria Mildly Moderately Severely Score
Deviant Deviant Deviant /100

Overall
X 63Quality

Roughness X 30
Breathiness X 55

Strain X 88
Pitch X 25

Loudness X 60
Average 53.5Score

Table 1.1: Example of the Consensus Auditory Perceptual Evaluation-Voice (CAPE-
V) scale score sheet.

There exist many approaches to the acoustic measurement of voice function. The

most common are the time-based perturbation measures such as jitter and shimmer

and their variants [24, 25]. Jitter and shimmer are acoustic characteristics of voice

signals, and they are quantified as cycle-to-cycle variations of fundamental frequency

and waveform amplitude, respectively. Fundamental frequency is determined physi-

cally by the vocal fold vibrations per second, and jitter represent the variations that

occur in the fundamental frequency. The high amount of jitter is a consequence of

erratic vibratory patterns due to loss of control of the vibratory system. It results

in a voice with roughness that is usually perceived in the recordings of pathological

voices. Therefore, a reliable estimation of jitter can be used to discriminate between

healthy and dysphonic speakers [5]. There are three commonly used metrics to quan-

tify jitter: absolute jitter, period (relative) jitter and Relative Average Perturbation
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(RAP) jitter. Absolute jitter is the cycle-to-cycle variation of fundamental frequency,

i.e the average absolute difference between consecutive periods:

Relative jitter =
1

n−1
∑n−1

i=1 |Ti − Ti−1|
1
n

∑n−1
i=1 Ti

, (1.1)

where Ti is the length of the ith cycle in ms and n is the number of cycles in the

speech signal. Relative jitter is the average absolute difference between consecutive

periods divided by the average period. RAP jitter is defined as, the average absolute

difference between a period and the average of it and its two neighbours divided by

the average period [24]. Shimmer, on the other hand, is an acoustics characteristic

of voice signals that represents the cycle to cycle variation of waveform amplitude.

Amplitude perturbations are similar to the frequency perturbation measures in the

way that they attempt to quantify the short-term instability of the speech signal. The

values of jitter and shimmer above a certain threshold are considered being related

to pathological voices, which are usually perceived by humans as breathy, rough or

hoarse voices.

The acoustic features such as jitter and shimmer are based on the assumption

that the patient is attempting a relatively steady pitch and loudness production.

Therefore, voice samples used for perturbation analyses are typically sustained vowels.

However, in many clinical applications, it is important to analyse the speech quality

in the case of continuous (connected) speech signal for different reasons. For instance,

time-based acoustic measures such as jitter and shimmer rely on exact demarcation

of the cycle-to-cycle boundaries in the acoustic waveform. This boundary detection is

generally not reliable for non-periodic voices that characterize dysphonic individuals
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[26, 27]. Also, sustained vowel-based measurements do not take into account some

highly relevant vocal function attributes such as voice onset and termination, voice

breaks, and variations in pitch and amplitude. In fact, several studies have found

that measurements obtained from continuous speech may better predict voice quality

than measurements from sustained vowels [28, 29, 30, 31]. For instance, Parsa et al.

[5] found that using jitter as a classification index resulted in an accuracy of only 68%

on a database of 53 normal 175 pathological talkers.

Relatively few studies have investigated the effectiveness of extracting acoustical

features from continuous speech samples. The author [32] extended the Harmonic-

to-Noise-Ratio (HNR) concept to continuous speech and reported a 5.6% error rate

in classifying pathological talkers. Qi et al. [32, 33] proposed an SNR estimation

technique based on Linear Prediction (LP) modelling and reported a correlation of

0.78 between subjective quality ratings and LP-based SNR. This algorithm has been

extended in [34] to incorporate long-term bi-directional prediction to alleviate short-

comings of the previous algorithm. LP modelling-based measures, such as spectral

flatness ration and pitch amplitude, have been used for sustained vowel data [35, 5]

and for continuous speech data [36]. Recent investigations of disordered speech have

used acoustic spectral and cepstral based measures that can be applied effectively to

connected speech samples across a wide range of dysphonia severity [37]. It has been

found that these techniques provide a better correlation with subjective ratings of

dysphonia for both sustained vowel and connected speech, compared to traditional

time-based acoustic methods [38, 39, 5, 40]. In particular, the Cepstral Spectral In-

dex of Dysphonia (CSID)1 has been put forth as an objective treatment outcomes
1CSID is a cepstral/spectral-based acoustic measure contained within the clinically-available

Analysis of Dysphonia in Speech and Voice (ADSV) program.
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measure of dysphonia severity [41]. The CSID is computed as the linear combination

of means and standard deviations of cepstral peak prominence and the ratio of low

frequency to high frequency energy, calculated across the sentence or the sustained

vowel [41]. Recently, Peterson et al. [42] examined the validity of CSID in predict-

ing the voice quality ratings for a variety of disorders. The results of their study

indicated robustness of the CSID with respect to the dysphonia severity and some

diagnostic categories. However, the study revealed as well some shortcomings of the

CSID method. Although a correlation coefficient of 0.81 − 0.83 between perceived

(subjective) and CSID estimated ratings was obtained for the sustained vowel sam-

ples, only a correlation of 0.66 − 0.67 was observed between perceived (subjective)

and CSID estimated ratings when considering connected speech. Moreover, as can be

observed in Fig. 1.6, the predictability of CSID is sensitive to the change across the

diagnostic categories tested.

The traditional acoustical techniques for the analysis of continuous speech samples

(including the CSID) are generally based on the segmentation procedure to identify

voiced, unvoiced and silent speech periods. To avoid this segmentation, it is possible to

consider non-stationary analysis techniques [36, 43, 44]. Umapathy et al. [36] used the

Matching Pursuit Algorithm (MPA) with Gabor dictionary to extract several features

such as: octaves, energy capture ratio, length and frequency ratio. These time-

frequency approaches were also applied to predict the quality of tracheoesophageal

(TE) speech samples [45]. TE speech contains much more noise due to the neck

breathing and irregular vocal fold vibrations. Although the results in [45] showed a

modest correlation of 0.63 between the predicted and perceived speech quality ratings,

this correlation was significantly better compared to traditional acoustic measures
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Figure 1.6: Perceived versus CSID-estimated severity ratings for connected speech
by diagnostic category, unilateral vocal fold paralysis (UVFP), adductor spasmodic
dysphonia (ADSD),primary muscle tension dysphonia (PMTD), benign vocal fold
lesions (BVFLs) [42].

such as jitter, HNR parameters and linear prediction features.

1.6 Thesis Scope

Speech quality measurements are typically used to characterize the abnormality of

voice. These measurements are utilized to assess the degree of voice disorder sever-

ity and to monitor the progress over the course of voice therapy. While subjective

judgments of speech quality are the “gold standard" they are often time-consuming

and resource-intensive. Objective speech quality measures – those that are computed

from the raw acoustic data and correlate highly with subjective quality ratings – are

therefore highly attractive, due to their efficiency and reliability. In addition, it is
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also desirable that the objective measures are computed on connected natural speech

samples to reflect their “real world" applicability. There is scope for improvement

in the performance of current state-of-the-art objective measures used in clinical set-

tings (e.g. the cepstral/spectral index of dysphonia) in terms of their correlation with

subjective quality ratings of connected speech. This thesis therefore aims to develop

and validate a novel and robust objective speech quality metric computed from con-

nected speech samples. The proposed methodology incorporates aspects of speech

production and perception models and the objective metric so derived is anticipated

to outperform the current clinically available speech quality estimation tools.

1.7 Thesis Contributions

The thesis provides a novel non-intrusive estimation scheme for disorder voice that

is based on an intrusive algorithm. Our idea consists of generating a reconstructed

(i.e.,an approximation) of the voice/speech signal by running an adaptive time-frequency

algorithm, Matching Pursuit (MP) [46], using a given number of iterations on the orig-

inal disordered speech sample. The resulting reconstructed signal is then used as a

reference signal for the intrusive algorithm, a process that results in the generation

a quality score. The score is then used as our feature for disordered voice quality

estimation. We consider the use of either the Perceptual Evaluation Speech Quality

(PESQ) [47], which is the standard intrusive algorithm in telecommunication, or the

Hearing Aid Speech Quality Index (HASQI) [48], used in the hearing aid industry, to

perceptually compare the generated reference signal with the original degraded signal

and extract a quality score. Both approaches are compared and studied using two
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experimental databases of 24 and 35 speech samples obtained from patients who had

undergone total laryngectomy and used tracheoesohageal (TE) voice. The results

obtained show that our proposed estimation scheme perform significantly better than

conventional acoustical measures used in voice quality research. This work has been

published in [49].

As a second contribution, our goal is to propose acoustical features which are easily

extracted (computationally simple) from a given speech signal. A novel low complex-

ity algorithm to estimate the degree of severity of disordered TE speech is presented.

The proposed algorithm uses features which are computed from 32- ms voiced frames

of the speech signal. First, the voiced frames of the acoustical speech signals are

extracted using the simple autocorrelation method [14] and the corresponding pitch

estimation per voiced frame is obtained. A 18-th order LPC analysis, based on the

Levinson-Durbin algorithm, is performed on each voiced frame of the speech. Then,

we extract two groups of acoustical features: statistical features and vocal tract-based

features. The group of statistical features consists of higher order statistics (central

moments: mean, standard deviation, skewness and kurtosis) which are extracted from

the LPC coefficients, cepstral coefficients and the LPC residual signal. The averages

of each of these moments are computed along with the pitch average over all voiced

frames yielding a total of 14 quality features. The second group of vocal tract-based

features consists of predicting the model for the speech production system that gen-

erated the disordered speech at hand. This is done by calculating 16 cross sectional

areas which are obtained from the LPC coefficients and 49 acoustical feature are ex-

tracted. A database of 35 TE speech samples is used to train and validate a linear

regression model that combines all these features. Stepwise linear regression is first
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used to prioritirize the most signficant features and then K-folds cross validation is

used to reduce the number of features down to 20. The obtained set of features is used

to train a model using support vector machines. The obtained model showed that the

proposed speech quality estimation approach performs well with a correlation with

subjective scores in the range between 0.81 and 0.86. This work has been published

in [50].

As a third contribution, our goal was to develop a TE speech quality estimator that

is robust across a number of different TE datasets collected at different conditions.

We proposed a new approach for the estimation of the quality of TE speech using

deep neural networks (DNNs). First, a synthetic dataset that consists of 2173 samples

was used to train a DNN model that was shown to predict the TE voice quality. The

synthetic dataset was formed by mixing 53 normal speech samples with modulated

noise signals that had a similar envelope to the speech samples, at different speech-

to-modulation noise ratios. A validated instrumental speech quality predictor was

used to quantify the perceived quality of speech samples in this database, and these

objective quality scores were used for training the DNN model. The synthetic dataset

was divided into three subsets representing training, cross validation, and test datasets

that contained respectively 70%, 15%, and 15% of the whole dataset. The DNN

model was comprised of an input layer that accepted sixty relevant features extracted

through filterbank and linear prediction analyses of the input speech signal, two

hidden layers with 15 neurons each, and an output layer that produced the predicted

speech quality score. The DNN trained on the synthetic dataset was subsequently

applied to four different databases that contained speech samples collected from TE

speakers. The DNN-estimated quality scores exhibited strong correlation with the
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subjective ratings of the TE samples in the four databases, with correlation values

reaching up to 0.8 and exceeding the performance of most existing TE speech quality

estimators from the literature.

1.8 Thesis Outline

This thesis is organized as follows:

Chapter 2 provides the necessary background and preliminary material corre-

sponding to the signal processing tools used throughout the paper.

Chapter 3 introduces a novel disordered speech quality estimation scheme using

the Matching Pursuit algorithm. After an introduction, Section 3.2 recalls the full

reference speech quality estimation method. We particularly dicuss the Perceptual

Evaluation of Speech Quality (PESQ) and the Hearing Aid Speech Quality (HASQI)

algorithms. In Section 3.3 the adaptive time-frequency matching pursuit algorithm is

explained and discussed. Section 3.4 presents our approach to the disordered speech

quality estimation that combines the Matching Pursuit algorithm with a full reference

perceptual quality estimator. Finally, Section 3.5 presents some experimental results

that validate the approach on TE speech databases.

Chapter 4 is devoted to speech quality feature extraction using acoustical analy-

sis. Section 4.2 discussed the background on Linear Prediction analysis and different

methods for regression and model fitting. In Section 4.3, we present the algorithm

for pitch estimation and voiced/unvoiced frames extraction from a disordered speech

signal. Then, in Section 4.4, we present different features which are extracted from

a linear prediction analysis on the voiced frames of the speech signal. Section 4.5
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presents different models which are fit to a TE speech database and shows a high

correlation value with subjective scores.

Chapter 5 presents a novel speech quality estimation using deep neural networks

(DNNs). Section 5.2 recalls the deep learning method. Section 5.3, presents the

methodology that we followed to generate a DNN model capable of predicting the

speech quality without requiring a reference signal. We present in Section 5.4 the

obtained experimental results which showed the robustness and the high performance

of the proposed DNN-based algorithm.

Chapter 6 summarizes the findings of this thesis and presents some possible

future directions for research.
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Chapter 2

Background and Preliminaries

2.1 Signal Processing Tools

In this section we present some signal processing tools used throughout the thesis.

2.1.1 Forward Stepwise Regression

Forward Stepwise Regression (FSR) is an approach of Stepwise Regression (SR) fitting

model that uses an automatic procedure to choose the predictive variables. There

exist other approaches for SR as backward and bidirectional elimination. The FSR

is, typically, used when a large group of variables exists in order to provide a first

screening of the candidate variables. It consists of the following steps:

• Start with no candidate variable in the model.

• By using a model fit criterion, the addition of each variable is tested.

• The variable whose inclusion gives the most statistically significant improvement
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of the fit is chosen.

• Stop the process when none of the remaining variables are significant.

2.1.2 K-folds cross-validation

K-folds cross-validation is an approach that combines measures of fitness in prediction

to derive a more accurate estimate of model prediction performance. Like other cross-

validation approaches, K-folds cross-validation consists of dividing the sample data

into complementary subsets, performing the analysis on one subset (called a training

set) and validating the analysis on the other subset (called a validation set).

This technique can be performed in several steps

• The sample is randomly partitioned into K-equal sized subsamples.

• A single subsample is retained for validation data and K − 1 subsamples are

used as training data.

• The procedure is repeated K-times, with each of K subsamples used precisely

once as validation data.

• The average of K-result can be used as a single estimation.

One of the advantages of this method is that all observations are used for both training

and validation and each observation is used for validation exactly once.

2.1.3 Mean Squared Error

The Mean Squared Error (MSE) is a risk function that assesses the quality of a

predictor or an estimator. It measures the average of the squares of the error between
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the observed values and the predicted ones. The MSE is always non-negative, and

values closer to zero are better. Consider a sample of n data points, the MSE of a

predictor that maps the observed values vector Y to the predicted values scalar Ŷ is

given as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2. (2.1)

2.1.4 Linear Prediction

Linear Prediction (LP) is a very powerful tool for estimating the parameters of speech

models. The speech production system can be modelled as input-filter-ouput model

where the vocal tract acts as a time-varying filter. If one takes a small enough speech

segment, it is resonable to assume that the vocal tract model is a linear time-invariant

filter (constant transfer function). In linear prediction analysis, it is assumed that

current speech samples are approximated by a linear combination of past speech

samples which translates to an autoregressive model [51] in the signal processing

community. The predictor coefficients are the weighting coefficients used in the linear

combination of past speech samples and are derived by minimizing the sum of squared

differences between the actual speech samples and the predicted ones. In this thesis

we will focus on forward linear prediction technique where the term forward will be

ommited for simplicity.

Suppose we wish to predict the value of the speech sample x(n) using a linear

combination of p most recent past samples. The estimate has the following form:

x̂(n) =

p∑
i=1

ai,px(n− i). (2.2)
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The integrer p is called the prediction order and the coefficients ai,p are referred

to as the p-th order linear prediction coefficients (see Figure 2.1 for a block diagram

illustration of the LP). If the order of the LP analysis is understood from the context,

the coefficients ai,p are called linear prediction coefficients for short. The estimation

error, also called the residual signal, is defined as follows:

ep(n) := x(n)− x̂(n). (2.3)

The linear prediction coefficients are computed by minimizing the following mean

square error:

EP =
+∞∑
n=0

e2p(n). (2.4)

Usually, linear prediction analysis is executed on short duration speech signals

(called frames) which are obtained by windowing the data, i.e. multiplying the speech

signal by a Hamming or similar time window. If we assume the speech segment to be

multiplied by a window of length N which is zero outside the interval 0 ≤ n ≤ N −1,

then the mean square error reads:

EP =
N−1∑
n=0

e2p(n). (2.5)
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Figure 2.1: An illustration of the linear prediction process.

2.1.5 Pearson correlation

Pearson’s correlation, also known as the Pearson Product-Moment Correlation, is

defined as the ratio of the covariance of two variables X and Y representing a set

of numerical data, normalized to the square root of their variances. It has a value

between −1 and +1, where −1 is total negative linear correlation, 0 is no linear corre-

lation, and −1 is total positive linear correlation. Consider a set of two-dimensional

data points [x1, · · · , xN ] and [y1, · · · , yN ], the covariance between two variables X

and Y is defined as

cov(X, Y ) =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ), (2.6)

with x̄ = 1
N

∑N
i=1 xi, ȳ = 1

N

∑N
i=1 yi. Thus the Pearson correlation of two variables X

and Y is defined as the following

τxy =
cov(X, Y )√

cov(X,X)cov(Y, Y )
(2.7)
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2.1.6 Spearman rank correlation

The Spearman rank correlation, denoted ρspear, which is computed in a manner similar

to ρ but with the original data values replaced by their ranks.

2.1.7 Sigmoidal mapping function

Sigmoidal mapping function was used and once the objective values were mapped, a

new Pearson correlation (termed ρsig) was computed and used as the third perfor-

mance criteria [52]. The sigmoid mapping is given by:

Y =
α0

1 + exp(−(α1X − α2))
(2.8)

where α0, α1 and α2 are the fitting parameters, X represents the predicted quality

score, and Y the mapped predicted quality score. Lastly, the root square mean error,

denoted RMSE, between the subjective and objective quality scores was used as our

fourth performance criteria.

2.1.8 Higher-Order-Statistics

We refer by the term higher-order statistics (HOS) to functions which use the third

or higher power of a sample. Examples of HOS are the third and higher moments,

as used in the skewness and kurtosis, whereas the first and second moments, as

used in the arithmetic mean (first), and variance (second) are examples of lower-

order statistics. Despite the fact that HOS is significantly less robust than lower-

order statistics due to the higher powers, the HOS has several uses, especially, in

the estimation of shape parameters, such as skewness and kurtosis. The skewness is
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a measure of the asymmetry of the probability distribution of a real-valued random

variable about its mean. Its value can be positive or negative, or undefined. In case

of a unimodal distribution, positive skew commonly indicates that the tail is on the

right side of the distribution, and negative skew indicates that the tail is on the left.

In a similar way, kurtosis is a descriptor of the shape of a probability distribution.

The interpretation of the kurtosis depends on the its used particular measure. Given

a real vector x = {xk}1≤k≤K , where K is the dimension of x, we define its HOS (

skewness and kurtosis) as follows:

γx =
1
K

∑K
k=1(xk − µx)3

σ3
x

,

κx =
1
K

∑K
k=1(xk − µx)4

σ4
x

.

with µx and σx define the mean and standard deviation, respectively, and can be

expressed as the following

µx =
1

K

K∑
k=1

xk,

σx =

√√√√ 1

K

K∑
k=1

(xk − µx)2,

2.1.9 The ITU-T P.862 standard

The Perceptual Evaluation of Speech Quality (PESQ) is an intrusive objective method

for speech quality estimation. It has been widely used in telephony [47]. Different
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versions of the algorithm have been standardized since the first recommendation ITU-

T P.861 (PSQM) in 1997. The wideband version is the ITU-T P.862 standard. The

general schematic of the algorithm is given in Figure 2.2. 

Reference  
signal 

Perceptual Model 

Score 

 
 

Time align 
and 

equalize 
 Cognitive model 

Degraded 
signal 

Perceptual model 

 - 

Figure 2.2: Block diagram of the Perceptual Speech Quality Evaluation (PESQ)
computational procedure.

The PESQ algorithm is quite complex because it is composed of many steps. A

high-level description of the important stages is as follows:

• Preprocessing: the first stage of the PESQ algorithm is the preprocessing,

alignment and equalization. Here, both the degraded and original (reference)

signals are aligned to the same constant power level and the same time (sup-

port)1.

– The level alignment algorithm proceeds as follows. First, filtered versions

of the original and degraded signal are computed. Next, an average value

of the squared filtered original speech samples and filtered degraded speech

samples are computed. Finally, different gains are calculated and applied

to align both the original and degraded speech signal to a constant target
1PESQ assumes that the subjective listening level is a constant 79 dB SPL at the ear reference

point.

28



level resulting in the scaled versions of these signals.

– The time alignment routine provides time delay values to the perceptual

model to allow corresponding signal parts of the original and degraded files

to be compared. This alignment process takes a number of steps. First,

an envelope-based delay estimation is applied on the entire original and

degraded signals. Next, the original signal is divided into a number of

subsections known as utterances. Then, an envelope-based delay estima-

tion is applied on utterances and the delay to nearest sample is identified

using fine correlation/histogram-based algorithm. Finally, the utterances

are split and the time intervals are realigned to search for delay changes

during speech.

• Psychoacoustic domain: At this stage, both the degraded and original signals

are transformed to the psychoacoustic domain using the perceptual model. This

transformation is necessary to calculate the distance (comparison) between the

two signals. First, the acoustic signals are mapped to the time-frequency domain

using a short-term fast Fourier transformation (FFT) with a Hann window of

size 32 ms with a 50% frame overlap. Next, the frequency axis is converted

to the Bark scale [53]. The Bark scale can be interpreted as the perceived

frequency scale within the human hearing system. In fact, the perceived change

in frequency is not linear to the actual frequency change of the ear. Lower

frequencies tend to have a finer resolution (in terms of the perception of sounds)

than higher frequencies. After converting the frequency axis to the Bark scale,

the intensity axis is warped to the loudness scale (Sone) using Zwicker’s law

[54].
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• Comparison: once the two signals (degraded and original) are mapped to the

psychoacoustic domain, they can be subtracted to obtain the disturbance den-

sity for each time-frequency cell. The disturbance densities are then conditioned

accordingly to take into account the fact that small differences (distortions) are

inaudible in the presence of loud signals (masking effect). The disturbance val-

ues are then averaged to yield the final PESQ score which ranges between −0.5

to 4.5.

2.1.10 The Hearing Aid Speech Quality Index (HASQI)

Kates and Arehart [48] have developed an objective measure (index) of speech quality

estimation, named the Hearing Aid Speech Quality Index (HASQI). Although HASQI

was originally developed to evaluate the effect of distortions introduced by hearing

aids on the quality of the speech perceived by a hearing impaired listener, it has

also been reported have valid applications on the performance of listeners without

hearing loss, even for perception of non-speech sounds [55, 56]. The authors also have

recently proposed a new version for the HASQI, [57] which includes computational

efficiency and accuracy indices for both normal-hearing (NH) and hearing-impaired

(HI) listeners.

The index mainly captures the effects of four components, divided into two indices:

noise and nonlinear distortion (called the nonlinear index) and linear filtering and

spectral changes (called the linear index), see Figure 2.3.

The nonlinear index computes the time-frequency representations for both the original

and degraded speech signals using a basic cochlear model. It combines the cepstral

correlation with a vibration correlation term.
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Figure 2.3: Diffrent types of indices used in the HASQI process.

• The cepstral correlation is computed by taking the cross-correlation of the

cepstral sequences for the reference and degraded signals. The nonlinear index

using just the cepstral correlation is a MMSE third-order regression fit to the

combined NH and HI subject ratings for the noise and distortion stimuli and is

given by

Qcc = c3, (2.9)

where c is the cepstral correlation.

• The vibration correlation is computed by taking the cross-correlation of

the segmented basilar membrane (BM) vibration signal for the reference and

degraded signal. It measures changes of the signal over time (temporal fine
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structure) while ignoring any long-term spectral change. The nonlinear index

using just the vibration correlation is a MMSE third-order regression fit to the

combined NH and HI subject ratings for the noise and distortion stimuli and is

given by:

Qvc = v3, (2.10)

where v is vibration correlation.

• Cepstral correlation × vibration correlation Kates and Arehart [48] found

that the product of the square of the cepstral correlation index times the BM

vibration index is the most accurate combination of the first-order and second-

order terms and cross products, and is given by

QNonlin = c2v, (2.11)

In the case of the linear index, the time-frequency representations are averaged

across time and the index provides how large the differences are between the long-term

average spectra (LTAS) of the test signal and the reference signal while ignoring the

short-term differences in signal modulation and temporal fine structure. This linear

index is a MMSE linear regression that is fit to the combined NH and HI listener

ratings for the linear filtered stimuli, and is given by

QLinear = 1− 0.579σ1 − 0.421σ2, (2.12)

where σ1 is the standard deviation of the differences in the spectral shape and σ2 is

the standard deviation of the differences in the spectral slope. The HASQI index is,
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therefore, a multiplicative combination of the nonlinear and linear indices

QCombined = QNonlin ×QLinear, (2.13)

and is limited to lie between 0 and 1, with 0 indicating the poorest voive/speech

quality predicted by the algorithm and 1 indicating perfect quality score.

Remark 1. It has been shown that the multiplicative index is monotonic in its two

constituent components and has no free parameters. Moreover, the multiplicative

index is, in the absence of noise and distortion, identically the linear index, and in

the absence of linear filtering is identically the nonlinear index.

2.2 The ITU-T P.563 Standard

In this research, we propose to integrate speech production-based features with speech

perception-based features into one single voice quality estimation model. Our ap-

proach is built on the non-intrusive quality measure standardized by the Interna-

tional Telecommunication Union (ITU) for telephony-related applications (ITU-T,

P.563, [44]).

A schematic of the main functional blocks of the ITU-T P.563 standard is given in

Fig. 2.4. As shown in Fig. 2.4, the speech sample under test is first passed through a

preprocessing stage wherein level normalization, intermediate reference system (IRS)

filtering, and voiced/unvoiced segmentation operations are performed. The processing

then branches off to three parallel algorithm blocks which extract several features

from the preprocessed speech signal that are later combined to produce the objective

speech quality index.
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Figure 2.4: ITU-T P.563 schematic diagram.

The first of these three blocks employs LP analysis to model the variations in the

voice production system (vocal tract). In particular, the voiced sections of the speech

are modelled as a series of tubes with different lengths and cross-sections varying

over time [58]. As shown in Fig 2.5, the first stage of the modelling consists of pitch

extraction using the hybrid temporal/spectral method proposed by Gray et al. [59].

In the second stage, and for each pitch cycle, the vocal tract is modelled as eight tube

sections whose section areas are calculated using the LP analysis. These eight section

areas are averaged to model the cavity articulators: rear, middle and front cavities.

It is worth pointing out that the vocal tract parameters are only calculated for the

voiced part of the speech signal. In addition, higher order statistics (viz. skewness

and kurtosis) of the LP coefficients and their cepstra are computed. This set of

statistical measures, the vocal tract quality parameters, and the tracked section size
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changes, are combined with others in the mapping module (perceptional weighting)

of the P.563 to estimate the speech quality.

Figure 2.5: Pitch synchronous vocal tract model and LPC analysis [44]

The second main P.563 algorithm block encompasses LP-based reconstruction of

a quasi-reference signal which, along with the original distorted signal, is given to

an intrusive perceptual model as shown in Fig 2.6. The quasi-reference signal is

generated by extracting LP coefficients from the input speech signal on a frame-

by-frame basis, modifying these LP coefficients to conform to natural vocal tract

constraints, and synthesizing the speech frames using the modified LP coefficients.

The perceptual speech quality model incorporates a computational model for human

audition and quantifies the perceptually-relevant differences between the input speech

and the quasi-reference speech samples. The speech perception modeling part of the

P.563 standard is based on another ITU-T standard, the ITU-T P.862 [47].

Finally, the third block generates a number of distortion-specific parameters such

as temporal and amplitude clipping, interruptions and mutes, estimated low SNR

for background noise, segmental noise, robotisation, and unnatural male and female

speech. The final quality score is estimated by a linear, perceptually-weighted, com-

bination of all these parameters [44]. Different weighting coefficients are chosen for
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Figure 2.6: Full-reference quality assessment model in P.563 [44].

different classes of signal degradations to improve the speech quality estimation ac-

curacy.

2.3 TE speech databases

In this section we describe the TE speech datasets used throughout the thesis. These

datasets are collected at different times, different conditions and contain different

number of TE samples. These datasets were collected and evaluated by researchers

at the School of Communication Sciences and Disorders at Western University after

obtaining ethics approval from the University’s health sciences research ethics board.

The speech samples were recorded from adult males between the ages of 45-65

years. All had undergone total laryngectomy and TE puncture voice restoration and

all were at least one-year postsurgery at the time of their participation. All recordings

were gathered in a sound-treated environment at a sampling rate of 44.1kHz with 16-

bit quantization. For datasets D1, D3 and D4, the second sentence of a standard
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reading (The Rainbow Passage), "The rainbow is a division of white light into many

beautiful colors" was extracted from the full recording from all speakers and used

for acoustic and perceptual measurements. For the dataset D2, on the other hand,

the first sentence of the Rainbow Passage, “When the sunlight strikes raindrops in

the air, they act as a prism and form a rainbow" was extracted. The statistics of

these reference datasets are given in Table 2.1. Speech quality is a multi-dimensional

perceptual phenomenon that encompasses attributes such as clarity, pleasantness,

naturalness, etc [60].

Dataset Measure (scale) Samples Minimum Maximum Mean Standard Deviation
D1 severity (0-100) 24 19.6 90.85 54.77 22.41
D2 quality (0-100) 19 34.83 77.99 59.15 12.29
D3 severity (0-100) 20 14.51 88.186 47.96 20.33
D4 quality (1-10) 35 1.74 7.53 4.97 1.75

Table 2.1: Statistics of the subjective scores for the three reference TE speech
datasets.

For the auditory-perceptual phase of the study, the TE speaker samples were

played back to a group of naive listeners who had no prior exposure to TE speech.

The signals were played back in a randomized order and the listeners were instructed

to rate the overall perceived severity/quality on a visual analog scale. The average of

listener ratings were then used as the final subjective score.

2.4 Conclusion

We presented some of the important signal processing and statistical analyses tools

that are needed throughout the thesis. We also presented the standard ITU-T P.563

that is used as a non-intrusive algorithm for speech quality estimation in telecommu-
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nication. Our developed algorithms in the next two chapters will be inspired from

some of the building blocks of the ITU-T P.563 but tuned, optimized and tailored for

the clinical applications related to TE speech quality estimation.
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Chapter 3

Disordered speech quality estimation

using the matching pursuit algorithm

3.1 Introduction

This chapter propose a novel non-intrusive estimation scheme for disordered speech

quality that is based on the standard intrusive PESQ [47] and HASQI [48] algo-

rithms. Our idea consists of generating a reconstructed (i.e., an approximation) of

the voice/speech signal by running a matching pursuit algorithm [46], using a given

number of iterations on the original degraded sample. The resulting reconstructed

signal is then used as a reference signal for the intrusive algorithm, a process that

results in the generation of a quality score. The score is then used as our feature for

disordered voice quality estimation. Our approach is tested on the TE speech datasets

described in Section 2.3. High correlation values (compared to the state-of-the-art

algorithms) are obtained for two datasets while moderate correlations are obtained
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for the other two datasets. The results presented in this chapter are based on our

work in [50].

3.2 Quasi-Reference Perceptual Speech Quality Es-

timation

In this section we present the essential ingredients of the proposed methodology for

TE speech quality estimation based on the matching pursuit algorithm. The overall

idea consists of generating a quasi-clean reference signal extracted from the degraded

speech signal using the matching pursuit algorithm that will be described in Section

3.2.1. The extracted quasi-reference signal is then fed (along with the original de-

graded signal) to the state-of-the-art intrusive speech quality evaluation algorihtms

PESQ and HASQI described in Sections 2.1.9 and 2.1.10, respectively.
 

 
 

 Intrusive 
algorithm 

 

 

Matching Pursuit 

 Algorithm  

 
Quality score    

Disordered  
Speech 

Figure 3.1: Schematic of the proposed quasi-reference intrusive speech quality esti-
mation algorithm .
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3.2.1 Matching Pursuit Algorithm

The matching pursuit algorithm (MPA) provides a way to expand, or represent, a

signal in terms of any time-limited functions, or atoms, called dictionary [46]. The

time-frequency atoms are a family of functions that are well localized in both time

and frequency. The matching between the input and dictionary elements are used to

select elements of the representation adaptively. The signal decomposition is based

completely on the particular dictionary and the matching criterion. The best ele-

ment is chosen at each step. After a number of decomposition, the original signal,

denoted x(t), can be represented to some arbitrary resolution by a series of expansion

coefficients. The approximated signal reconstructed, at the n−iteration, from these

expansion coefficients is given by

x̂n(t) =
n−1∑
i=0

αihγi(t), (3.1)

where xn is the input signal, n is the number of iterations, αi represents the expansion

coefficients and hγi is the time-frequency atoms.

For instance, consider the Gabor dictionary [61]

D =

{
hγ(t) ,

1√
a
h

(
t− b
a

)
ej2πft

}
, (3.2)

where h(t) = π−
1
4 e−

t2

2 represents the Gaussian window (Figure 3.2) and γ is the

index set γ = {a, b, f} = {scale,translation,frequency} ∈ R+ × R2. A Gabor atom

can be seen, simply, as an atom that uses the Gaussian function. The family of

time-frequency atoms can be generated by scaling, translating and modulating a
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Figure 3.2: Illustration of the Gaussian window with different values of a and b.

single window function. The scale, location and frequency can all be independently

adjusted, thus, providing large flexibility compared to the wavelet transform analysis.

Selection criterion used to select dictionary elements on any given iteration is based

on the magnitude of the inner product of the input x(t) and the dictionary elements,

< x(t), hγ(t) >=
1√
a

∫ ∞
0

x(t)h

(
t− b
a

)
e−j2πftdt. (3.3)

For each iteration, the atom hγ(t) maximizing the above inner product is retained.

The residual approximation error at the i-th iteration is given recursively byRi+1x(t) =

Rix(t)− < x(t), hγ(t) > hγ(t). The algorithm further approximates the residue

Ri+1x(t) by selecting another best atom hγ′ from the dictionary. This process is

repeated for a given number of iterations n to produce the following signal decompo-
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sition

x(t) = x̂n(t) +Rnx(t), R0x(t) = x(t) (3.4)

x̂n(t) =
n−1∑
i=0

〈Rix(t), hγi(t)〉hγi(t) (3.5)

An illustration example of the procedure is shown in Figure 3.3 where we can see

the original signal with (at top left) the right top first time-frequency atom used to

decompose it. The first residual signal is represented in the bottom plot.

3.2.1.1 Energy Capture Ratio (ECR) feature

The Energy Capture Ratio (ECR) is a simple speech quality estimation feature that

was proposed in [43] based on the matching pursuit algorithm. It is defined at the

n-th iteration by

ECR =

∑n−1
i=0 α

2
i

E
, (3.6)

where E is the energy of the original signal x(t); assumed finite, and αi = 〈Rix(t), hγi(t)〉.

Theoretically, if we run the MPA for an infinite number of iterations and also using

a large enough dictionary of atoms then one would have

lim
n→∞

n−1∑
i=0

α2
i = E, (3.7)

or, equivalently, the signal x(t) has been fully reconstructed using infinite linear

combinations of atoms. This feature will be also used and compared against the

proposed speech quality features of this chapter.
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Figure 3.3: Illustration of the matching pursuit algorithm. a) Input (original) signal b)
The used time-frequency atom c) Residual signal after removal of energy represented
by the time-frequency atom.)

3.2.2 Proposed speech quality estimation features

In this section, we discuss the newly proposed speech quality estimation features de-

rived using the MPA algorithm, the perceptual speech quality estimator (PESQ) and

the hearing aid speech quality index (HASQI) discussed in the previous subsections.

Our derived features are based on the following observation: the closeness of the

approximation signal x̂n(t) to the original signal x(t) is dependent on the number of

iterations n – more atoms are required to model the transients and nonstationary
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Figure 3.4: Energy capture ratio for normal and disordered speech samples.

portions of the input signal. Since disordered voice/speech signals are generally char-

acterized by greater degree of nonstationarity, a greater number of atoms are required

for reconstruction. This phenomenon is displayed in Figure 3.4, where the closeness of

reconstruction, measured by the Energy Capture Ratio (ECR) [36], is plotted against

the number of atoms for a normal clean speech signal and a “white noise" disordered

voice sample. It is clear that normal speech can be approximated to 99% using 1100

atoms, while the disordered sample requires more than 8300 atoms for the same level

of reconstruction. Stated differently, the reconstructed signal using N atoms will be

closer to the original input if it is normal speech, and farther if it is abnormal. Based

on the above discussion, we propose the following speech quality features:
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3.2.2.1 MPA-PESQ feature
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Figure 3.5: An original speech sample from the first Database D1.
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Figure 3.6: Reconstruction of the speech data sample in Figure 3.5 using the MPA
at different iterations.

The reconstructed signal, using the MPA, is used as the quasi-reference input to

the speech perception model of the ITU-T P.862 standard, which will return a high

quality score for normal voice samples (due to the “closeness" of the original and quasi-

reference inputs) and a lower quality score for disordered voices (due to the increased

“distance" between the original and quasi-reference inputs). At this stage the issue

that remains to be investigated is the search for the most appropriate or best number
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of iterations to be used on a degraded speech signal to generate a “good" or suitable

reference signal from the reconstruction algorithm. As discussed above, as the number

of iterations of the MPA increases, the difference between the reconstructed and the

original voice samples tends to decrease. Figure 3.6 shows the difference between the

original degraded signal and the reconstructed signal when running the MPA using

an increasing number of iterations (1000, 10000, 20000 and 40000). As expected, as

the number of iterations increases, the difference between the reconstructed and the

original samples tends to decrease. Of course, in our application, it is useless to fully

reconstruct the degraded voice signal using a large number of iterations. Also, a very

low number of iterations would be insufficient as we will end up with non-modelled

speech components (see the entry on the far left of Figure (3.6)). Our idea consists

in finding an optimal number of iterations which allow us to reconstruct the coherent

components of the degraded voice signal while leaving the non-coherent noisy-like

components in the residual signal. When the number of atoms is 20000 and more, we

can see that the residual signal does not contain any more speech-like components

and only white noise-like components are present. Of course, going up to 40000 atoms

we see that the original signal is almost reconstructed and only white-noise is present

in the residual. This will not serve us in our application to highly disordered voice

samples, as we are looking to avoid modelling all the distortions which are likely

to be at high frequencies. As a first intuition, the best number of iterations would

be something between 10000 and 20000. Later on, we will increase the number of

iterations in an effort to provide the best possible correlation for our database. Thus

our voice quality estimation method consists of two stages:

• Generate a quasi-reference signal using the MPA from the given disordered voice
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Figure 3.7: Schematic of the MPA-PESQ quality feature.

signal.

• Use the obtained quasi-reference signal along with the original disordered voice

signal, in combination with a perceptual speech quality assessment algorithm

such as the PESQ.

3.2.2.2 MPA-HASQI feature

Similarly to the MPA-PESQ feature, the reconstructed voice signal, using the MPA,

can be used as the quasi-reference input to the hearing-aid speech quality index

HASQI. Doing so will also return a high quality score for normal voice and a lower

quality score for a disordered sample. Note that the original HASQI scale ranges from

between 0 and 1:, in our experiments, we found that the interval of the output for the

MPA-HASQI feature depends strongly on the number of iterations used in the MPA.

48



 

 
Hearing Aid 

Speech Quality 
Index (HASQI) 

 
 

Matching Pursuit 

 Algorithm MPA 

 

MPA-HASQI    
Disordered  

Speech 

Figure 3.8: Schematic of the MPA-HASQI quality feature.

3.2.2.3 Residual Rate Feature (RRF)

Here we present a third speech quality estimation feature that is extracted from the

rate of decrease of the ECR feature. In fact, one can write

ECR = 1−
∑∞

i=n α
2
i

E︸ ︷︷ ︸
r(n)

, (3.8)

where the residual energy ratio r(n) clearly satisfies the two properties

r(0) = 1, (3.9)

lim
n→∞

r(n) = lim
n→∞

∞∑
i=n

α2
i = 0. (3.10)

As argued in [36], any portion of a good quality speech signal will be modeled in

fewer iterations compared to a poor quality voice sample. Therefore, it is expected

that the rate of decrease of the residual energy ratio function against the number of

iterations for a good quality voice signal will be larger than its counterpart for a lesser

quality sample.
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Figure 3.9: Derived matching pursuit features ECR and RRF based on the energy
capture of the original and reconstructed signal.

As an approximation, we assume that the residual energy ratio function is modeled

by an exponential function decaying at a constant rate, thus

r(n) ∼ r̂(n) := e−kn, (3.11)

for some k > 0. The constant rate k will be characterizing the voice signal, i.e.,

different speech signals will have different rates. The greater the value of k, the

better the voice quality represented. Therefore, the rate k can be taken as a new

quality feature

RRF = k. (3.12)

Now, we compute the value of k for a given speech signal. Using each number of

iterations n = nmin + j ·h, j ∈ {0, 1, · · · , N} where N and h are some positive integer

numbers, we execute the MPA and compute the residual energy ratio r(n). Then,
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using linear regression (least-mean square method) we find the best scalar k > 0



log(r(nmin))

log(r(nmin + h))

...

log(r(nmin + (N − 1)h))

log(r(nmax))


' −k



nmin

nmin + h

...

nmin + (N − 1)h

nmax


(3.13)
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Figure 3.10: Logarithm of the residual energy ratio (solid) and its corresponding
linear approximation (dashed) obtained by a least-mean square method.

In Figure 3.10 we provide the plot of the logarithm of the residual energy ratio

log(r(n)) for two different signals that vary in quality (a clean voice sample and

a white noise sample) against the number of iterations of the MPA. We also plot
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the best linear approximation log(r̂(n)) for both signals. As it is expected that the

absolute value of the slope of the linear approximation is larger for the good quality

signal (RRF = 54 · 10−2) compared to the poor quality signal (RRF = 12 · 10−2).

Therefore, RRF can be considered as a correlate to speech quality. Although we have

considered this quality feature in our work, it should be noted that it requires several

runs of the MPA algorithm (at different iterations) before we can estimate the rate

of decrease RRF.

3.3 Evaluation Method

In order to validate our proposed method for the non-intrusive voice quality estima-

tion, we have tested our proposed objective quality features on the four databases

described in Section 2.3. The MPA was implemented using the dictionary of Ga-

bor atoms. We were motivated by studies which suggest that the Gabor dictionary

of Gaussian functions can be a suitable atoms’ basis to run the MPA on connected

voice/speech samples [36, 45]. We have also run several tests using different other

dictionaries such as Daubechies wavelets but the correlation results reported were

moderate compared to the Gabor dictionary. The data were downsampled to 16 kHz

and then analyzed. We evaluated the performance of our proposed algorithms using

Pearson’s correlation coefficient [62] which measures the linear dependence between

the objective measures and the subjective voice quality ratings. Spearman rank cor-

relation and sigmoidal mapping function were used too.

In order to understand the variations of our voice quality features MPA-PESQ

and MPA-HASQI with respect to the number of iterations, we run our algorithms
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on the four databases and computed the linear correlation coefficient as a function

of the number of iterations for MPA-PESQ, MPA-HASQI and ECR features. As

shown in Figure 3.11 , the maximum of correlations using the MPA-PESQ and MPA-

HASQI features was obtained for a number of iterations ranging around to 18000-

22000. Interestingly, the optimal numbers of iterations, which give the best correlation

coefficient, for all databases (except D and D3 which shows moderate correlations)

almost match. Note that, for the ECR feature, it seems that the best achieved

correlation was reached at a lower number of iterations around 1000. This confirms

the results reported by MacDonald et al. [45] for the ECR feature. Therefore, in the

subsequent investigations, we have fixed the number of iterations at 20000 for the

MPA-PESQ and MPA-HASQI algorithms while we chose the number of iterations to

be equal to 1000 for the ECR feature.

3.4 Results

Metric ρ ρspear ρsig RMSE
VB 0.24 0.23 -0.33 0.36
HNR -0.10 -0.10 -0.15 0.55
CPP -0.26 -0.28 0.27 0.50
CPPs -0.43 -0.41 -0.19 0.55

ITU-T P.563 -0.21 -0.27 -0.19 0.56
ECR -0.42 -0.53 - 0.43 0.50

MPA-PESQ -0.77 -0.77 -0.79 0.32
MPA-HASQI -0.71 -0.70 -0.71 0.36

RRF 0.60 0.50 0.60 0.34

Table 3.1: Correlation values for different objective metrics for database D1.

For comparison purpose, Tables 3.1, 3.2, 3.3, 3.4 show the obtained results, for
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Figure 3.11: Correlation results for the voice samples of the all TE speaker databases
D1, D2, D3, and D4

databases D1, D2, D3, and D4, when considering different objective speech qual-

ity algorithms. In particular, we have chosen to compare the performance of our

algorithm (MPA-PESQ and MPA-HASQI ) against: voice breaks (VB), harmonics-

to-noise-ratio (HNR), cepstrum peak prominence (CPP), smoothed cepstrum peak

prominence (CPPs), telephony standard ITU-T P.563, energy capture ratio (ECR)

[50].

Figures 3.12, 3.13, 3.14 and 3.15 show the plots of the subjective ratings on the
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Metric ρ ρspear ρsig RMSE
VB 0.16 0.19 -0.18 0.43
HNR 0.39 0.33 0.20 0.40
CPP 0.30 0.31 0.30 0.40
CPPs 0.38 0.42 0.38 0.30

ITU-T P.563 0.50 0.44 0.51 0.27
ECR 0.57 0.62 0.57 0.24

MPA-PESQ 0.21 0.20 0.23 0.50
MPA-HASQI 0.36 0.44 0.42 0.25

RRF 0.49 0.56 0.49 0.39

Table 3.2: Correlation values for different objective metrics for database D2.

Metric ρ ρspear ρsig RMSE
VB 0.37 0.27 0.38 0.35
HNR -0.51 -0.50 -0.20 0.51
CPP -0.10 -0.14 -0.13 0.50
CPPs -0.40 -0.22 -0.32 0.51

ITU-T P.563 -0.26 -0.22 -0.32 0.50
ECR -0.47 -0.44 -0.47 0.35

MPA-PESQ -0.47 -0.40 -0.40 0.43
MPA-HASQI -0.51 -0.51 -0.40 0.39

RRF -0.42 -0.34 -0.47 0.40

Table 3.3: Correlation values for different objective metrics for database D3.

Metric ρ ρspear ρsig RMSE
VB 0.23 0.27 -0.10 0.37
HNR 0.10 0.01 0.11 0.48
CPP 0.54 0.52 0.51 0.30
CPPs 0.02 0.06 0.10 0.40

ITU-T P.563 0.02 0.12 0.02 0.43
ECR 0.46 0.35 0.46 0.30

MPA-PESQ 0.86 0.75 0.87 0.20
MPA-HASQI 0.83 0.70 0.86 0.20

RRF 0.65 0.63 0.68 0.34

Table 3.4: Correlation values for different objective metrics for database D4.
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Figure 3.12: Subjective severity score for database D1 and MPA-PESQ feature and
MPA-HASQI feature.

X-axis against the objective ratings on the Y-axis for the two TE speech databases.

These results show that our proposed MPA-PESQ and MPA-HASQI algorithm has

a superior performance in measuring the quality compared to the other objective

metrics. As it can be observed from the obtained results, the MPA-PESQ provides a

correlation of 0.77 and 0.89 for D1. For D4, the correlation values are 0.75 and 0.87.

Likewise, MPA-HASQI ranges from 0.70−0.71 for D1 and ranges from 0.70−0.86 for

D4. The proposed algorithm has shown a superior performance as the MPA-PESQ

went up to a range of 0.75 - 0.87, and 0.70−0.86 for MPA-HASQI, respectively, when

using a number of iterations that equals 20000.
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Figure 3.13: Subjective quality score for database D2 and MPA-PESQ, MPA-HASQI
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Figure 3.14: Subjective severity score for databaseD3 and MPA-PESQ, MPA-HASQI
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Figure 3.15: Subjective quality score for database D4 and MPA-PESQ, MPA-HASQI

3.5 Discussions

From a scientific viewpoint, it is necessary to provide some logical justification for the

results obtained. More precisely, there is, up to now, no theoretical proof as to why

the correlation obtained using MPA-PESQ or MPA-HASQI is maximal at certain

number of iterations. We have plotted in the variations of the MPA-PESQ and MPA-

HASQI scores against the number of iterations for all the samples from all databases,

see Figures 3.16, 3.17. Interestingly, the results show that we have a maximum spread

between the maximum obtained score and the minimum obtained score; further, this

was reached at iterations very close to the number of iterations for the maximum

correlation. We believe that this observation may lead to an explanation specific to

the above paradigm. In fact, as we have a maximum spread between the scores of

the voice samples assessed, there will be a better distinction between the quality of
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the samples within a given databases and, therefore, a better correlation with the

subjective quality ratings.
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Figure 3.16: MPA-PESQ feature for the voice samples of the all TE speaker database
with respect to the number of iterations of the MPA. The maximum score and mini-
mum score samples are plotted in bold.

Moreover, it should be noted that the correlation results reported for D3 are

moderate and this could be explained by many factors. First, it could be that the

optimal choice of the dictionary of atoms for MPA for this database is not Gabor

atoms, future extensive investigations maybe carried out to focus on the choice of

the best atom given a dataset. Second, our logical assumption that distortions and
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Figure 3.17: MPA-HASQI feature for the voice samples of the all TE speaker database
with respect to the number of iterations of the MPA. The maximum score and mini-
mum score samples are plotted in bold.

degradations in the TE speech sample are always modelled in the last iterations of

the MPA algorithm might be not 100 percent true for some TE speakers. Finally,

the instrusive algorithm PESQ and HASQI are not ideal and are often optimized and

trained for some particular speech types. Therefore, the errors involved in the use of

TE speech samples with the PESQ and HASQI might affect the final quality score.
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3.6 Conclusion

In this chapter, we have proposed a new, non-intrusive perceptual estimation method

for the quantification of disordered voice quality. Using the MPA and the Gabor dic-

tionary of Gaussian time-frequency atoms, a reference sample signal was reconstructed

from a given disordered voice sample. The traditional and widely used intrusive PESQ

and HASQI standards were then used to predict the perceptual difference between

the reference and degraded voice samples. The final score obtained is then used as

an estimation of the subjective quality rating of disordered voice samples, in this

case, those provide by TE speakers. The proposed technique was purposely tested on

TE voice samples due to the fact that these samples are characterized by consider-

able levels of "noise" associated with the voice signal generated. The obtained scores

were then correlated with quality ratings obtained from normal hearing listeners via

auditory-perceptual evaluation methods. Our results showed a good correlation be-

tween the predicted and actual speech quality ratings using the proposed method.

This correlation was significantly better than that achieved by conventional acoustic

measures currently used in speech-language pathology at both research and clinical

levels.
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Chapter 4

Low Complexity Disordered Speech

Quality Estimation

4.1 Introduction

Voice and speech quality estimation is an important topic of research with many

applications in telecommunication and biomedical engineering. We called it Low

Complexity Disordered Speech Quality Estimation LCDSQE, because the acoustic

features extracted are simply based on LP analysis and do not require advanced tools

such as PESQ and HASQI. Also the regression model is linear and simple to imple-

ment compared to deep learning model for example. In this chapter, our goal is to

propose acoustical features which are easily extracted (computationally simple) from

a given speech signal and which are shown to correlate well with subjective scores

of TE speech. First, the voiced frames of the acoustical speech signals are extracted

using the autocorrelation method [63] and the corresponding pitch estimation per
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voiced frame is obtained. The voiced frames of the speech are evaluated using an

18-th order LP analysis based on the Levinson-Durbin algorithm. Speech quality fea-

tures are extracted by computing the average over all frames of high order statistics

(mean, standard deviation, skewness and kurtosis) of the LP coefficients, the cep-

stral coefficients and the LP residual signal. Furthermore, a vocal tract model has

been extracted for each voiced frame by computing the parameters of an acoustical

tube formed by interconnecting 18 uniform cross sectional tubes. The vocal tract pa-

rameters yielded extra speech quality features. Finally, the extracted speech quality

features have been used to train and test different support vector machine models on

the dataset D4 (described in Section 2.3) that contains 35 TE speech samples.

4.2 Speech quality evaluation method

Here our proposed approach for extracting speech quality features from disordered

speech signals consists of three main stages. First, preprocessing is conducted to

detect voiced and unvoiced speech frames. We use a temporal approach based on

the autocorrelation method. Then, LP analysis is performed to extract the LP coef-

ficients, the cepstral coefficients and the residual signal from each frame marked as

voiced by the first preprocessing stage.

LP 
Analysis 

Vocal Tract 
Parameters (VTP) 

Quality Score 

Pitch 
Estimation and 
Voiced Frames 
Extraction 

Quality Score 
High Order 

Statistics (HOS) 

Disordered Speech   
 
    

 

Regression 
Model

Regression 
Model

Figure 4.1: The proposed speech quality algorithm.
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The LP coefficients are used to derive a vocal tract model by calculating the

reflection and the cross sectional areas of the acoustic tube model which provides

the first group of acoustic features. Besides, higher order statics are obtained from

LP analysis coefficients and residual signal which constitute the second group of

acoustical features. Each group of features is used in a regression-based mapping to

provide quality scores for the disordered speech signals. The schematic of the proposed

method for speech quality estimation is depicted in Figure 4.1. The different stages

listed above are detailed in the next subsections.

4.2.1 Pitch Period Estimation and Voiced Frames Extraction

Pathological speech signals are different in terms of their pitch period estimates.

It is suggested that inclusion of pitch average estimates in computational models

for voice quality may help improve the accuracy of these models. In non-intrusive

speech quality measurement algorithms, such as the ITU standard P.563 and the

Low-Complexity Nonintrusive Speech Quality Assessment (LCQA) proposed in [64],

pitch is used as a feature for quality assessment. We use the autocorrelation method

to provide an estimate of the pitch length for the frames marked as voiced. The

speech signal is divided into 20-ms frames with 50% overlap using the Hann window.

The autocorrelation function is then calculated and normalized for each 20-ms frame.

The current n-th speech frame is marked as voiced when the second maximum peak

of the normalized autocorrelation exceeds 0.5. This extraction method is summarized

in Fig. 4.2. The corresponding pitch length T (n) is obtained by computing the time

distance from the origin to the peak.
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Figure 4.2: Pitch period estimation and voiced frames extraction method using the
autocorrelation method.

4.2.2 Linear Prediction Analysis

As the degree of severity of dysphonia becomes higher, the speech signal tends to

have more and more aperiodic, irregular and noncoherent components. This has been

observed in [65] for pathological voices in sustained vowels. The linear prediction (LP)

analysis performed in [65] has been used to derive high order statistics (skewness and

kurtosis) from the LP residual signal from each frame of the sustained vowel signal.

Since continuous pathological voices may contain voiced and/or unvoiced frames, we

propose to perform the LP analysis only on voiced frames. In fact, voiced frames are

quite quasi-periodic signals which suggests to use an Auto Regressive (AR) filter to

model the production of each speech frame.

The Levinson-Durbin algorithm is used to derive an 18th-order all pole LP model

for each 20-ms frame marked as voiced by the preprocessing done in Section (4.2.1).

The model is characterized by a set of 18 LP coefficients {ai(n)}1≤i≤18 where n denotes

the frame number.

4.2.2.1 Cepstral Coefficients

Cepstral coefficients are the coefficients of the inverse Fourier transform representation

of the log magnitude of the spectrum of the signal. Once LP coefficients are obtained,

it is possible to directly extract cepstral coefficients from them. Assume we want to
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extract p < 18 cepstral coefficients from the obtained 18 LP coefficients {ai(n)}1≤i≤18

then we use the following formula:

ci(n) = ai(n) +
i−1∑
l=1

l

i
cl(n)ai−l(n), 2 ≤ i < p (4.1)

where c1(n) = rxx(0) representing the maximum autocorrelation of the n-th frame

of the speech signal. In this work we extracted p = 5 cepstral coefficients per frame.

4.2.2.2 LP Residual

LP residual may bring information on the abnormal behaviour of the speech pro-

duction system (vocal folds, vocal tract, turbulence noise...etc) which could be used

for disordered speech quality assessment [65]. LP residual represents the error be-

tween the original signal and the synthesized (estimated) signal using the derived LP

coefficients. The residual of the LP analysis for the n-th voiced frame is obtained as

en(k) = xn(k)−
18∑
i=1

an(i)xn(k − i) (4.2)

where xn(k) represents the value of the original signal at the k-th sample of the

n-th frame. Once the LP analysis has been performed on each voiced frame of the

speech signal, we derive different quality features as detailed in Section 4.2.4

4.2.3 Vocal Tract Modelling

This speech assessment block focuses on the speech production system. The human

voice production system is composed of an air pressure source (lungs), a modulator
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(vocal folds) and a resonating system (vocal tract). Airflow created by the lungs

excites the vocal chords to generate either a voiced sound or an unvoiced sound (also

called voiceless sound). During voiced sounds, a low-frequency (quasi-periodic) sound

is generated. The vocal tract acts as a filter that shapes the spectral content of the

sound. Controlled contractions and relaxations of the vocal tract muscles change the

shape of the vocal tract, and thus its resonant frequencies, to produce the different

voiced sounds. During unvoiced sounds, a turbulent, aperiodic excitation is created

by forcing air through a constriction in the vocal tract, for example when the upper

teeth are placed on the lower lip.

In [58], vocal tract models are used to design a non-intrusive speech quality as-

sessment method that was later implemented in the ITU-T P.563 standard used in

telecommunications [44]. The idea is to model the vocal tract as a set of acoustic

tubes (with uniform cross-section area) arranged in a series configuration, see Figure

4.3. Each tube has a different section area that changes over time. The idea is to

use LP model coefficients to extract the reflection coefficients and the tube section

areas for voiced speech frames. The number of tubes is equal to the order of the LP

(number of LP coefficients). In [44], the vocal tract is modelled as eight concatenated

acoustic tubes which is suitable for narrowband signals sampled at around 8 kHz.

In our work, we model the vocal tract using a series of 18 acoustic tubes (LP order

equals 18) which is suitable for wideband signals associated with disordered speeche.

Note that although TE speech is produced by patients with no vocal tract since the

larynx is completely removed, here our intention is to model how good the TE speech

is produced. Therefore, since good speech is naturally produced by normal people

(with vocal tract), this justifies our approach in using a vocal tract model to extract
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TE speech quality features.

For each voiced frame of the signal, the reflection coefficients are calculated from

the LP coefficients using the following recursion:

ri(n) = αi,i(n), 1 ≤ i ≤ 18 (4.3)

αi−1,l(n) =
αi,l(n)− ri(n)αi,i−l(n)

1− ri(n)2
, 1 ≤ l < i (4.4)

such that α18,i = ai(n) corresponding to the i-th coefficient for the LP model of the

n-th frame. Once the reflection coefficients {ri(n)}1≤i≤18 are extracted, the cross

section areas can be computed using the recursion [44]:

Si(n) =
1 + ri(n)

1− ri(n)
Si+1(n), i = 18, 17, · · · , 1. (4.5)

The cross section area S18 can be obtained by letting S19 = 1.

4.2.4 Features Extracted

Based on the above LP analysis and vocal tract modelling, we derive two groups

of features which will allow us to assess the speech quality of our disordered speech

samples.

4.2.4.1 Higher Order Statistics

High order statistics (HOS) analysis has been used in classification of pathological

voices [66] and in robust voice activity detection [67] with very promising results. It

has the advantage of not requiring a periodic or quasiperiodic voice signal to permit
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Figure 4.3: Illustration of the vocal tract uniform-cross-sectional-area tube model
[58] Top: true cross-section shapes of the vocal tract sketched at different locations.
Bottom: a simplified uniform-cross-sectional-area tube model (with 8 tubes) of the
vocal tract. In this work we consider a tube model with 18 acoustic tubes

.

a reliable analysis.

In this work, we derive 12 HOS for each frame of the speech signal by con-

sidering the 4 HOS (mean, variance, skewness and kurtosis) of the LP coefficients

{ai(n)}1≤i≤18, the cepstral coefficients {ci(n)}1≤i≤5 and the LP residual signal {ei(n)}1≤i≤N

where N is the number of speech samples within one frame and n is the corresponding

frame index. The 12 HOS statistics are averaged across all the voiced frames to yield

the features HOS1,...,HOS12 which are defined according to Table 4.1.

To this group of features, we add the HOS13 feature which is computed by taking

the average of the different pitch lengths T (n) for all the voiced speech frames. Also

the number of voiced frames is taken as a quality feature and denoted HOS14.

To illustrate the dependence of these high order statics on the speech quality, we

consider the mean value of the LP coefficients, denoted µa(n), for the n-th frame.
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Mean Variance Skewness Kurtosis
µx σx γx κx

LP coefficients HOS1 HOS2 HOS3 HOS4
CP coefficients HOS5 HOS6 HOS7 HOS8
LP residual HOS9 HOS10 HOS11 HOS12

Table 4.1: High-order statistics (HOS) features.
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Figure 4.4: Average value of LP coefficients for each voiced TE speech frame.

The transfer function of the all poles LP model, for a given frame is given by

Hn(z) =
1

1 +
∑18

i=1 an(i)z−i
. (4.6)

Therefore, one has

µa(n) =
1

18

18∑
i=1

an(i) =
1−Hn(1)

18Hn(1)
. (4.7)

This implies that the mean of the LP coefficients µa(n) will increase as the value of

the DC-gain Hn(1) decreases. For disordered TE speech samples, it is observed that
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the voiced segments of the speech produced by TE patients will tend to have a gain

attenuation (lower values of Hn(1)) as the quality of the speech signal gets worse (see

Figure 4.4). Therefore, the average of µa(n) across all frames is likely to be inversely

proportional to the overall quality of the speech.

4.2.4.2 Vocal Tract Parameters

The second group of speech quality features is based on the vocal tract modelling done

in Section 4.2.3. To extract speech quality features from the instantaneous vocal tract

tubes model we use the idea that, due to the removal of the larynx, TE speech can be

thought to have an “imperfect" speech production system that mimics an abnormal

vocal tract configuration. In this work we wanted to extract as many voice features

as possible. We consider the maximum, minimum and average of each cross section

area along the whole speech which results in 18 × 3 = 54 different features. These

features were assigned the labels VTP1,...,VTP54 and are defined as follows:

VTPi = max
n

(Si(n)) (4.8)

VTPi+18 = min
n

(Si(n)) (4.9)

VTPi+36 = avgn(Si(n)) (4.10)

for i ∈ {1, · · · , 18}. The extracted features are then fed to different models which are

fitted and compared using advanced regression analysis performed on a TE disordered

speech database as detailed in the next section.
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4.3 Speech database

To train the different regression models, we use dataset D4 (described in Section 2.3)

which is a database of 35 tracheoesophageal (TE) speech recordings. The motivation

behind choosing D4 over the other datasets we have, is the fact that this dataset

contains the largest number of TE speech samples. This is important to train a fairly

good regression model and to be able to divide the dataset into training and test

datasets. The other TE speech datasets are left to test the robustness of the obtained

regression model against other TE speech samples collected at different times. Note

that optimally, we would need to collect a larger dataset to train an accurate model;

however this exceeds the scope of the thesis.

4.4 Results and discussions

The features extracted from the vocal tract modelling (VTP1, · · · , VTP54) and from the

higher-order statistics (HOS1, · · · , HOS14) are used to train different regression models.

First, for each group of features, forward stepwise regression (FSR) [68] is performed

to prioritize the features within the group. Initially no predictors are included in the

model. Then, as a first step, we check all the possible models with one predictor

against the coefficient of determination R2 (R squared)

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − ȳ)2

(4.11)

where the yi’s are the subjective scores (true observations), ŷi’s are the estimation

scores and ȳ is the mean value of the yi’s data. Then, the feature that gives a model
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with the highest R2 is retained. The second step consists in checking all the models

with two features by adding another feature to the previously selected feature. This

procedure is repeated until we select all the available features. Note that the FSR

algorithm stops also if, otherwise, the value of R2 reached 1 where in this case the

remaining features are discarded. Finally, we obtain a natural ordering of the features

by their importance. These results are provided in Table 4.2.

For example, if we want to use a model with 3 HOS features then the best set of

3 features (from the set of 14 features) is HOS5, HOS9, HOS11. Similarly, a model with

3 VTP features would contain VTP5, VTP20 and VTP4. Note that the FSR algorithm

has stopped after selecting 34 features (out of 54 features) because the value of R2

reached 1 and the addition of any other features will not bring further information.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.5: Feature selection from the HOS statistics group

Then, we use K-folds cross validation method [69] to select the best set of features

that guarantees the lowest prediction error (test error). This allows to avoid the prob-
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R2 Added HOS
feature

0.1469 HOS11
0.260 HOS9
0.435 HOS5
0.473 HOS2
0.546 HOS13
0.560 HOS10
0.657 HOS1
0.679 HOS3
0.708 HOS6
0.731 HOS7
0.744 HOS4
0.761 HOS12
0.772 HOS14
0.803 HOS8

R2 Added VTP
feature

0.382 VTP5
0.480 VTP20
0.560 VTP4
0.663 VTP38
0.712 VTP18
0.739 VTP24
0.762 VTP8
0.783 VTP22
0.804 VTP21
0.831 VTP35
0.860 VTP34
0.870 VTP54
0.878 VTP28
0.886 VTP36
0.893 VTP50
0.900 VTP51
0.926 VTP46
0.939 VTP14
0.947 VTP17
0.965 VTP33
0.973 VTP7
0.980 VTP6
0.983 VTP26
0.988 VTP37
0.990 VTP53
0.991 VTP1
0.993 VTP39
0.994 VTP23
0.998 VTP9
0.999 VTP3
0.999 VTP49
0.999 VTP52
0.999 VTP47
1 VTP2

Table 4.2: Forward stepwise regression results.
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Model Selected Features

HOS Statistics Linear HOS1, HOS2, HOS3, HOS4, HOS5, HOS6, HOS7, HOS9,
HOS10, HOS11, HOS12, HOS13

Gaussian HOS5, HOS9, HOS11

VTP Parameters Linear VTP4, VTP5, VTP8, VTP18, VTP20, VTP21, VTP22, VTP24
VTP34, VTP35, VTP38, VTP54

Gaussian VTP4, VTP5, VTP20, VTP38

Table 4.3: Selected features for each model.
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Figure 4.6: Feature selection from VTP Parameters group

lem of overfitting. For each number of selected features (obtained from the FSR), we

use a 7-fold cross validation by training and testing support vector machines regres-

sion models [70] with two different kernel functions: linear and Gaussian. Fig. 4.5

and Fig.4.6 plot the out-of-sample mean square error (MSE) for each cross-validated

model resulted from the selected features for the HOS predictors group and the VTP

predictors group, respectively. From these figures we can determine the set of features

from each group that minimizes the out-of-sample MSE. These sets of features are
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given in Table 4.3 for each group and each kernel function.

Table 4.4: Correlation values of the proposed objective metrics.

Metric
Correlation Correlation

(training dataset) (test dataset)

HOS-Linear 0.89 0.78

HOS-Gaussian 0.78 0.63

VTP-Linear 0.93 0.84

VTP-Gaussian 0.98 0.70

Figure 4.7: Scatter plot of subjective scores against the objective scores derived from
the VTP parameters-based model.

Once, the sets of features are selected, each set of features is used to train a model

(linear or Gaussian). The data set consists of 35 recordings and is divided into two

separate groups. The first group contains 25 recordings and serves as a training set to

train the regression model, while the other 10 recordings are used to test the prediction
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capabilities of this regression model. The performance of our proposed algorithms is

evaluated using Pearson’s correlation coefficient. Table 4.4 shows the results obtained

Figure 4.8: Scatter plot of subjective scores against the objective scores derived from
the HOS statistics-based model.

from the proposed objective metrics. Applying support vector regression (SVR) with

linear kernel to the selected HOS features yields a correlation of 0.89 with the training

dataset samples, while gives 0.78 correlation with the test dataset. Using the SVR

technique with a Gaussian kernel to get an objective model for the selected HOS

features has a slightly weaker performance in terms of prediction capabilities and

overfitting avoidance. The correlation values are 0.78 and 0.63 for the training and

the test datasts respectively. Applying SVR model with a linear kernel to the vocal

tract VTP features led to a better performance in terms of overfitting avoidance and

bias minimization. The correlation values for the traininig and the test datasets were

0.93 and 0.84. Changing the kernel to Gaussian has increases the training correlation
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to 0.98 while decreasing the testing correlation to 0.70. Fig. 4.8 shows the scatter

plot of objective scores against subjective scores for the each of VTP- and HOS-

based metrics. These results suggest that an SVR model with linear kernel would

perform better than an SVR model with Gaussian kernel although the latter uses

less number of features as shown in Table 4.3. Also, the VTP-based models have

performed slightly better than the HOS-based features which shows that features

extracted from the vocal tract modelling (speech production system) consist of good

predictors for disordered speech.

The obtained correlation results for the proposed algorithms are much better than

the correlation obtained from previously proposed features in the litterature such as

the Harmonicto-Noise-Ratio (HNR), Cepstral Peak Prominence (CPP), the ITU-T

recommendation P.563 amongst others, see Table 4.5. However, the obtained corre-

lation values when using these regression models for the other TE speech databases

were moderate. This can be explained by the fact that the number of samples (in

D4) used to train the models is not enough to capture all the different TE speech

distortions and inconsistencies. Also, the fact that the datasets were collected at

different conditions, rated by different listeners for different speech quality measures,

greatly affects the discrepancies between the acoustical features of each dataset.

4.5 Conclusion

This chapter introduces a new nonintrusive algorithm, with low computational com-

plexity, suitable for disordered speech quality estimation. Using an 18-order LP

analysis applied to voiced frames of the acoustic speech signal, we derived up to
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Algorithm Correlation

D
1

HOS-Linear -0.48
HOS-Gaussian -0.46
VTP-Linear -0.49

VTP-Gaussian -0.56

D
2

HOS-Linear 0.41
HOS-Gaussian 0.47
VTP-Linear 0.53

VTP-Gaussian 0.60
D
3

HOS-Linear -0.64
HOS-Gaussian -0.37
VTP-Linear -0.56

VTP-Gaussian -0.50

D
4

HOS-Linear 0.85
HOS-Gaussian 0.73
VTP-Linear 0.90

VTP-Gaussian 0.91

Table 4.5: Comparison of the correlation values obtained using different quality esti-
mation methods.

14 high-order statistical (HOS) based features and 54 vocal tract parameters (VTP)

based features. We used a set of 35 TE speech samples to train different support

vector regression models after performing features selection using forward stepwise

regression and K-folds cross validation. The obtained models are shown to be able to

predict the quality scores of the subjective scores with a correlation coefficient than

ranges from 0.78 to 0.98 for the training dataset and from 0.63 to 0.84 for the test

dataset. The obtained results of this work suggest that the HOS and VTP features,

which are extracted from a simple LP analysis of the acoustic speech signal, can be

a cheap alternative to the more complex existing non intrusive algorithms for quality

estimation of pathological speech. However, given the small number of TE speech

samples used to train the regression models, the proposed low complexity approach
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did not correlate well when tested with other TE speech datasets.
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Chapter 5

Deep Learning-Based Quality

Assessment for Tracheoesophageal

Speech

5.1 Introduction

In this chapter we aim to develop a non-intrusive speech quality estimation algorithm

optimized for TE speech samples which is computationally simple and robust across

databases. Deep neural networks (DNN) drew a massive amount of attention in the

recent years. DNNs are employed in many applications such as autonomous vehicles,

image processing, natural language processing (NLP), and automatic speech recog-

nition (ASR) [71]. In this chapter we propose a speech quality estimation algorithm

that exploits the advances in deep learning (DL) to apply it to a group of suitably

extracted features that are shown to correlate well with disordered speech quality.
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More specifically, we extract 154 acoustic speech quality features which are cut down

to 60 features and then used as inputs to a deep neural network with three layers.

The neural network is trained using a newly generated dataset by artificially adding

different noise levels to an existing normal quality speech dataset. Then, the HASQI

algorithm of [48] is used to provide objective scores for the generated dataset which

is used for the training of the neural network. Once the neural network is trained,

it is validated on our four TE speech datasets described in Section 2.3 and shows a

high correlation values with subjective scores.

5.2 Speech Quality Evaluation Method

Objective voice and speech quality evaluation methods are classified into two main

categories: intrusive and non-intrusive. For intrusive methods, the evaluation algo-

rithm needs access to a high quality reference signal, in order to infer the quality of the

signal under test. However, in disordered speaker populations such as those who pro-

duce TE speech, a clean reference signal is unavailable. Our proposed speech quality

estimation method in this chapter is based on the extraction of different features from

the speech recordings and then mapping the extracted features to a predicted qual-

ity score using a DNN. The proposed features are classified into four groups: linear

prediction-based higher order statistics (HOS), vocal tract parameters (VTPs), Mel

Frequency Cepstrum Coefficients (MFCCs), and Gammatone Frequency Cepstrum

Coefficients (GFCCs). The extraction algorithms of these features are detailed in the

following subsections.

82



5.2.1 Linear Prediction-Based Higher Order Statistics

Following our work in Chapter 4, we first used the autocorrelation method to pro-

vide an estimate of the pitch period for the frames marked as voiced. The speech

signal was divided into 20-ms frames with 50% overlap using the Hann window. The

autocorrelation function was then calculated and normalized for each 20-ms frame.

The current speech frame was marked as voiced when the second maximum peak of

the normalized autocorrelation exceeded 0.5. The corresponding pitch period length

was then obtained by computing the temporal distance from the origin to the peak.

The Levinson-Durbin algorithm [72] was then used to derive an 18th-order all pole

LP model for each 20-ms voiced frame. Once the LP coefficients were obtained, we

directly extracted five cepstral coefficients from them and the corresponding LP resid-

ual signal. Finally, for each voiced frame, we extracted 12 high order statistics (HOS)

corresponding to 4 HOS (mean, variance, skewness and kurtosis) for each LP coef-

ficients, cepstral coefficients and LP residual. The 12 HOS statistics were averaged

across all the voiced frames to yield the final feature set. To this group, we added two

additional features: 1) the average of the pitch lengths and 2) the number of voiced

frames yielding a total of 14 features.

5.2.2 Vocal Tract Parameters

The second group of voice and speech quality features was based on a vocal tract

modelling similar to [44]. The idea is to model the vocal tract as a set of acoustic tubes

(with a uniform cross-section area, see Fig. 4.3) arranged in a serial configuration,

and to extract the reflection coefficients and the tube sectional areas for voiced speech

frames using the LP coefficients. We modelled the vocal tract using a series of 18
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acoustic tubes (LP order equals 18) which is suitable for wideband signals associated

to disordered samples. For each voiced frame of the signal, the reflection coefficients

were calculated from the LP coefficients which allowed for computation of the cross-

sectional areas. Then, we considered the maximum, minimum and average of each

cross section along the whole speech which resulted in 18× 3 = 54 different features.

5.2.3 Mel Frequency Cepstrum Coefficients (MFCCs)

MFCC is defined as the real cepstrum of a windowed short-time signal derived from

the FFT of that speech signal [73]. This group of features was extracted from trans-

forming the short-term disordered speech spectra into the nonlinear mel scale [74]

using the formula

m = 2595 log10(1 + f/100). (5.1)

The mel scale, is a perceptual scale of pitch values judged by listeners to be equal

in distance from one another. The input speech signal was framed into 256 samples

each, with each frame partitioned using a Hamming window and transformed to the

frequency domain using the Fast Fourier Transform (FFT). The narrowband spectra

were processed by the triangular melscale filterbank which can be expressed as:

Hm(k) =


0 fk < f(m− 1)

(fk−f(m−1))
(f(m)−f(m−1)) f(m− 1) ≤ fk ≤ f(m)

(f(m+1)−fk)
(f(m+1)−f(m))

f(m) < fk ≤ f(m+ 1)

(5.2)
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where f(·) is the list of mel linearly spaced frequencies, m is the filter number, fk is

the frequency at FFT bin k. The mel filter bank was constructed such that there are

13 linearly spaced and 27 logarithmically spaced filters spanning the 13 − 6854 Hz

frequency range. MFCCs were then derived by computing the log of the mel-filtered

spectrum and applying the discrete cosine transform (DCT).

5.2.4 Gammatone Frequency Cepstrum Coefficients (GFCCs)

GFCCs are mainly used in computational auditory sense analysis (CASA) studies to

transform signals into the time-frequency (T-F) domain. The Gammatone filterbank

has a better performance in modeling the auditory filterbank than the mel filterbank;

hence, cepstral coefficients extracted using the Gammatone filter bank have a better

speech recognition performance than MFCCs [9]. In GFCC, the equivalent rectangu-

lar bandwidth (ERB) scale is used. The impulse response of the Gammatone filter is

given by,

g(t) =
atn−1 cos (2πfct+ ϕ)

e2πbt
(5.3)

where fc is the filter center frequency, φ is the phase of the carrier, a is the amplitude,

n is the filter order, b is the filter bandwidth, and t is the time in seconds. The value of

the filter order and carrier phase were set to be n = 4, b = 1.019 ERB, φ = 0. Laplace

transform and the impulse invariance method were applied to transform the impulse

response of the Gammatone filter into a discrete time equivalent filter. Extracted

digital filters were applied to the framed speech to extract the energies of the filter

banks. GFCCs were then computed by applying DCT to the log of gammatone

filtered spectra.
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5.3 Deep Learning

Deep learning is a machine learning method that uses a cascade of multiple layers

for feature extraction and transformation. We considered the DNN architecture for

the deep learning which consists of an artificial neural network (ANN) with multiple

hidden layers between the input and output layers. The neurons of the DNN layers are

trained (learned) using the input data only and therefore, do not require any human

intervention. In this work, we used the hyperbolic tangent function (also called the

symmetric sigmoid function) as the the neural transfer function for all the neurons of

the hidden layers. It is explicitly defined by

tanh(x) =
e2x − 1

e2x + 1
∈ (−1, 1). (5.4)

For the last output layer, we applied the pure linear transfer function. After calculat-

ing the error function, backward propagation was applied through the neural network

from the output layer to the input layer to modify the network weights using the

Levenberg-Marquardt optimization algorithm [75, 76]. The Levenberg-Marquardt al-

gorithm is similar to quasi-Newton algorithms that guarantees an almost second-order

training speed without having to compute the Hessian matrix. In fact the Hessian

can be approximated as follows

H ' J>J (5.5)
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and the corresponding gradient vector is

g = J>e (5.6)

where J is the Jacobian matrix that contains first derivatives of the network errors

with respect to the weights and biases, and e is a vector of network errors. The

Levenberg-Marquardt algorithm uses these approximations of the Hessian matrix and

the gradient vector in the following Newton-like update rule:

xk+1 = xk − (J>J + µI)−1J>e (5.7)

where µ is an adaptive tuning parameter such that for µ = 0 the algorithm reduces

to the Newton’s method, and when µ is large it reduces to the gradient descent

with a small step size. During the training, µ is decreased after each successful step

(reduction in performance function) and is increased only when a tentative step would

increase the performance function. In this way, the performance function is always

reduced at each iteration of the algorithm.

5.4 Methodology

This research aims to utilize the DNN to generate a non-intrusive model that is used

to predict TE voice quality. It is noted that deep learning training usually requires a

large number of samples to be trained accordingly and predict the quality of a signal

from a given set of input features. However, since generating a dataset of thousands

of TE speech samples would require an immense time and effort and might be even
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Figure 5.1: Proposed algorithm for disordered speech quality estimation. The DNN
network is pre-trained using a custom synthetic dataset and then is used to map the
extracted speech features (MFCC, GFCC, HOS, VTP) into a quality score.

impossible to find a sufficient number of samples, we adopted a different approach in

this work. Indeed, our idea is to generate an artificial dataset of disordered speech

signals from an existing normal speech dataset that is corrupted using speech-type

noise and then scored using a validated objective quality index, viz. the Hearing Aid

Speech Quality Index (HASQI) [48]. This generated dataset will be used to select

the appropriate subset of features and to train the given DNN network. Once the

features are selected and the DNN network is trained, the obtained algorithm can be

used to assess the quality of the TE speech samples.

5.4.1 Artificial Subjective Dataset

First we considered a dataset of 53 clean (normal) speech signals. The sentence

(from the Rainbow Passage1) is “When the sunlight strikes raindrops in the air, they

act like a prism and form a rainbow. The rainbow is a division of white light into

many beautiful colors. These take the shape of a long round arch". All recordings
1The “Rainbow Passage" was developed by speech scientists and contains all of the sounds and

sound combinations found in the English language.
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were gathered in a sound-treated environment at sampling rate of 44.1 kHz with

16-bit quantization. Next, in order to create the perceptual attribute of roughness,

the clean dataset is corrupted, at different SNR levels, by two types of speech-like

noise: the MNRU [77] noise and the speech-shaped noise of [78], see Figure 5.2. The

Quality score 
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Figure 5.2: We have generated an artificial disordered speech dataset (2173 samples)
using clean normal speech samples and speech like noise. The HASQI metric was then
used to predict the perceived quality of each deliberately distorted speech signal. We
compared between two types of speech like noise: speech shaped noise (SNN) and the
Modulated Noise Reference Unit (MNRU) noise.

modulated noise reference unit (MNRU) noise is described in [77], and the output

function is defined as follows:

y (i) = x (i)
[
1 + 10−Q/20N (i)

]
(5.8)

where x (i) is the input signal, y (i) is the output signal, N (i) is white Gaussian

noise, and Q is defined as the ratio, in dB, of speech power to modulated noise power.

To generate different speech samples with varying degradations for each available
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clean signal, we varied the value of Q between −5 and 35 dB resulting in 41 noisy

speech samples corresponding to each clean speech sample. This yielded a total of

53×41 = 2173 disordered samples. For comparative purposes, and following the same

procedure as discussed above, we also considered the generation of a second dataset

using the additive colored noise reported in the literature [78]. More specifically, the

noise specifications were set according to the long-term average speech spectrum data

from Table 2 in [78] and will be referred to as speech shaped noise (SSN) throughout

the paper.
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Figure 5.3: The HASQI [48] values for the two artificially generated speech datasets.
At each SNR, the HASQI values were computed for each of the 53 normal speech
samples.

The two generated databases were then evaluated using the HASQI and the ob-

tained scores served as the target scores during the feature reduction and DNN train-

ing processes. It is pertinent to note here that the HASQI is the product of two

indices: noise and nonlinear distortion index (called the nonlinear index), and linear

filtering and spectral change index (called the linear index). The nonlinear index com-

putes the time-frequency representations for both the original and degraded speech

signals using a basic cochlear model. It combines a cepstral correlation term with
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a vibration correlation term. The linear index is obtained by averaging the time-

frequency representations across time, which quantifies the differences between the

long-term average spectra (LTAS) of the test signal and the reference signal while

ignoring the short-term differences in signal modulation and temporal fine structure

[48]. Figure 5.3 depicts the distribution and range of HASQI values for the 53 speech

samples at each SNR, for both types of corrupting noise. The statistics of the two

synthetic datasets are given in Table 5.1. It is clear that we have chosen the SNR

range to cover almost the whole spectrum of HASQI score which is between 0 and 1.

This will allow to train a more accurate DNN network for the evaluation of the TE

speech quality.

Dataset Minimum Maximum Mean Standard Deviation
Synthetic MNRU 0.019 0.944 0.407 0.281
Synthetic SSN 0.005 0.926 0.429 0.270

Table 5.1: Statistics of the HASQI scores for the two synthetic datasets.

5.4.2 Feature Selection and Reduction

Overfitting can be caused by a unreasonable higher dimensionality of the feature vec-

tor. In such situations, the extracted speech quality features must be reduced (in

number) before being fed to the neural network to avoid overfitting. The aforemen-

tioned feature extraction methods were applied to the speech samples to estimate the

speech characteristics. The extracted speech features included 60 GFCC features,

26 MFCC features, 54 VTP features, and 14 HOS features. First, forward stepwise

regression (FSR) [68] is performed to prioritize the features within the group. Ini-

tially no predictors are included in the model. Then, at a first step, we check all
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the possible models with one predictor against the coefficient of determination R2

(R-squared) and the feature that gives a model with the highest R2 is retained. The

second step consists in checking all the models with two features by adding another

feature to the previously selected feature. This procedure is repeated until we se-

lect all the available features. Note that the FSR algorithm stops also if, otherwise,

the value of R2 reached 1 where in this case the remaining features are discarded.

Finally,we obtain a natural ordering of the features by their importance. Then, we

use K-folds cross validation method [69] to select the best set of features that guar-

antees the lowest prediction error (test error). This allows to avoid the problem of

overfitting. For each number of selected features (obtained from the FSR), we use

a 7-folds cross validation by training and testing support vector machine regression

model with a linear kernel function. Figure 5.4 plot the out-of-sample mean square

error (MSE) for each cross-validated model resulted from the selected features for the

two synthetic datasets. From this figure we can determine the set of features that

minimizes the out-of-sample MSE. In particular, we cut down the number of features

from 154 features to 60 features consisting of 18 GFCC features, 16 MFCC features,

16 VTP features, and 10 HOS features by minimizing the out-of-sample mean square

error (MSE) for the SMNRU synthetic dataset. Although, the synthetic SSN dataset

minimizes the error at a lower number of features, we have chosen the same number

of features for the future investigations to keep the comparison fair.

5.4.3 Deep Neural Network (DNN) Training

The DNN used in this work consisted of a 60 feature input layer, 2 hidden layers of

15 neurons each, and one neuron output layer that represented the perceived quality.
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Figure 5.4: Out-of-sample mean square error during the feature reduction process.
A total of 60 features is a reasonable choice that optimizes the out-of-sample MSE
while guaranteeing the smallest number of features possible.

The Levenberg-Marquardt method was used as the optimization algorithm, sigmoid

function was used as the activation function in the hidden layers and the tanh func-

tion was used at the output layer. The two noisy speech datasets (SSN and SMNRU

synthetic datasets) were used for training the two diferent neural networks. Each

dataset was randomly partitioned into three subsets: train, validation and test sets

containing 70%, 15%, 15%, respectively, of each of the synthetic datasets. As the

original normal speech database contained samples from 53 diferent speakers (both

male and female), speaker dependency is not an issue and random partitioning was

deemed appropriate. The prediction model training was iterated 60,000 times, and

early stopping was enabled if the error on the validation dataset increases after reach-

ing a minimum. Standard regularization, which modifies the performance function by

adding a term containing the average sum of squares of network weights and biases,

was applied. Dropouts were not utilized during the training phase. Fig.5.5 shows the

plot of the true quality scores obtained by HASQI against the objective (predicted)
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scores for all the samples of the datasets. The correlation values for all the datasets

were about 0.99 (SMNRU) and 0.91 (SSN).
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Figure 5.5: DNN training results for both artificially generated datasets.

5.5 Results

5.5.1 TE speech dataset

In this research, different TE speech databases are used to test the performance of

the presented model. Four databases, denoted D1, D2, D3 and D4 were collected

and evaluated by researchers at the School of Communication Sciences and Disorders

at Western University after obtaining ethics approval from the University’s health

sciences research ethics board. The speech samples were recorded from adult males

between the ages of 45-65 years. All had undergone total laryngectomy and TE

puncture voice restoration and all were at least one-year postsurgery at the time of

their participation. All recordings were gathered in a sound-treated environment at a
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sampling rate of 44.1kHz with 16-bit quantization. The second sentence of a standard

reading (The Rainbow Passage), "The rainbow is a division of white light into many

beautiful colors" was extracted from the full recording from all speakers and used

for acoustic and perceptual measurements. For the auditory-perceptual phase of the

study, the TE speaker samples were played back to a group of naive listeners who

had no prior exposure to TE speech. The signals were played back in a randomized

order and the listeners were instructed to rate the overall perceived severity/quality

on a visual analog scale. The average of listener ratings were then used as the final

subjective score.

5.5.2 Evaluation and Performance

The previously trained DNN model was used to estimate the ratings for these 4

databases of TE speaker recordings. The prediction model was iterated 60,000 times.

To assess the performance of the proposed speech quality estimation algorithm as well

as to compare with existing methods from the literature, four performance criteria

were used [79]. First, the linear relationships between predicted quality scores and

subjective ratings were quantified via the Pearson correlation, denoted ρ. Second, the

ranking capability of the objective metrics was characterized by the Spearman rank

correlation, denoted ρspear, which is computed in a manner similar to ρ but with the

original data values replaced by their ranks. Next, a sigmoidal mapping function was

used and once the objective values were mapped, a new Pearson correlation (termed

ρsig) was computed and used as the third performance criteria [52]. The sigmoid
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mapping is given by:

Y =
α0

1 + exp(−(α1X − α2))
(5.9)

where α0, α1 and α2 are the fitting parameters, X represents the predicted quality

score, and Y the mapped predicted quality score. Lastly, the root square mean error,

denoted RMSE, between the subjective and objective quality scores was used as our

fourth performance criteria.

Tables 5.2, 5.3, 5.4 and 5.5 show the obtained results, for databases D1, D2, D3

and D4 respectively, when considering different objective speech quality algorithms.

In particular, we have chosen to compare the performance of our algorithm (DNN-

SSN and DNN-SMNRU speech modulation noise reference unit) against: voice breaks

(VB), harmonics-to-noise-ratio (HNR), cepstrum peak prominence (CPP), smoothed

cepstrum peak prominence (CPPs), telephony standard ITU-T P.563, energy capture

ratio (ECR)[49], matching pursuit-based algorithm (MPAPESQ)[49] and matching

pursuit-based algorithm (MPAHASQI). Figures 5.6-5.7-5.8-5.9 show the plots of the

subjective ratings on the X-axis against the objective ratings on the Y-axis for the 4

TE speech databases. These results show that our proposed DNN-SMNRU algorithm

has a superior performance in measuring the quality compared to the other objec-

tive metrics, including the DNN-SSN algorithm. The obtained correlations ranged

between 0.72− 0.8 for SMNRU based DNN and 0.45− 0.55 for the SSN based DNN.

This suggests that the MNRU is an effective noise generation scheme to mimic TE

speech signal quality and could be used to generate artificial datasets for training

more complex DNN architectures.
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Metric ρ ρspear ρsig RMSE
VB 0.24 0.23 0.33 0.30
HNR -0.10 -0.01 0.15 0.55
CPP -0.26 -0.28 0.27 0.50
CPPs -0.43 -0.41 -0.19 0.55

ITU-T P.563 0.21 0.27 0.19 0.56
ECR -0.42 -0.53 0.61 0.23

MPA-PESQ -0.77 -0.77 0.79 0.22
DNN-SMNRU -0.72 -0.72 -0.71 0.20
DNN-SSN -0.55 -0.56 0.55 0.34

Table 5.2: Correlation values for different objective metrics for database D1.

Metric ρ ρspear ρsig RMSE
VB 0.16 0.19 0.18 0.34
HNR 0.40 0.33 0.36 0.56
CPP 0.30 0.31 0.30 0.51
CPPs 0.40 0.42 0.38 0.57

ITU-T P.563 0.50 0.44 0.51 0.56
ECR 0.57 0.62 57 0.24

MPA-PESQ 0.21 0.16 0.23 0.59
MPA-HASQI 0.36 0.44 0.42 0.25
DNN-SMNRU 0.75 0.74 0.76 0.24
DNN-SSN 0.55 0.53 0.62 0.26

Table 5.3: Correlation values for different objective metrics for database D2.

5.6 Discussion

Since the TE speech production model differs from the normal speech production

process, we have attempted to synthesize artificial TE speech datasets through the

application of the MNRU type noise (standard ITU-T P.810) with the aim of generat-

ing samples that have similar “rough" and “noisy" perception as TE speech sentences.

It is noted that the deployment of the standard ITU-T P.810 to modulate with clean

speech samples led to the formation of a database that is similar in terms of per-
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Metric ρ ρspear ρsig RMSE
VB 0.37 0.27 0.40 0.50
HNR -0.51 -0.50 -0.10 0.51
CPP -0.10 -0.14 -0.13 0.50
CPPs -0.40 -0.21 -0.14 0.51

ITU-T P.563 -0.26 -0.22 -0.32 0.50
ECR -0.47 -0.44 -0.47 0.50

MPA-PESQ -0.47 -0.40 -0.40 0.48
DNN-SMNRU -0.79 -0.78 -0.81 0.36
DNN-SSN -0.68 -0.63 -0.69 0.39

Table 5.4: Correlation values for different objective metrics for database D3.

Metric ρ ρspear ρsig RMSE
VB 0.23 0.27 0.0.15 0.37
HNR 0.10 0.01 0.01 0.51
CPP 0.54 0.52 0.51 0.30
CPPs 0.02 0.12 0.02 0.43

ITU-T P.563 0.02 0.12 0.02 0.43
ECR 0.46 0.40 0.46 0.33

MPA-PESQ 0.86 0.75 87 0.20
MPA-HASQI 0.75 0.65 0.80 0.20
DNN-SMNRU 0.73 72 0.74 0.20
DNN-SSN 0.43 0.37 0.44 0.35

Table 5.5: Correlation values for different objective metrics for database D4.

formance to the TE speech. That was clear based on the obtained high correlation

between the subjective and objective scores of the presented metric when applied to

real (experimental) TE speech datasets. In fact, by considering different levels of

MNRU noise, we were able to simulate different levels of TE speech quality without

explicitly deriving the actual TE speech production model, one that may be complex

and difficult to implement. The use of MNRU type noise to mimic the TE speech

distortion gave better correlation compared to the use of the additive SNN type noise.

The MNRU noise is multiplicative and provides a distortion that is perceptually sim-
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Figure 5.6: Subjective severity score for database D1 and predictive quality score
based on SMNRU and SSN.

ilar to TE speech.

Besides, we have utilized the deep learning algorithm to obtain the objective

scores from the acoustic features of the TE speech samples. The neural network

consisted of only two hidden layers to avoid the effect of overfitting and, thus, enhance

the predictability of the presented objective metric. The presented model can be

enhanced and increase the depth of the neural network by collecting more TE speech

samples that can be used to directly train the neural network. The deep neural

networks have the advantage that they do not need a set of features to be applied

as the neural network can be applied to the speech samples directly. In order to

be able to apply the neural networks to the TE speech, a larger number of speech

99



0 0.2 0.4 0.6 0.8 1

Predicted quality score based DNN-SMNRU

20

30

40

50

60

70

80

S
u

b
je

c
ti
v
e

 q
u

a
lit

y
 s

c
o

re

D2

data

fitted curve

0.1 0.2 0.3 0.4 0.5

predicted quality score based DNN-SSN

20

30

40

50

60

70

80

S
u

b
je

c
ti
v
e

 q
u

a
lit

y
 s

c
o

re

D2

data

fitted curve

Figure 5.7: Subjective severity score for database D2 and predictive quality score
based on SMNRU and SSN.

samples will need to be collected to train the deep neural network. It is worth

mentioning that Adam and SGD optimizers were investigated, but these optimizers

did not show a statistical difference in performance from the Lavenberg-Marquardt

optmizer. Lavenberg-Marquardt optimizer was preferred over other optimizers due

to its better performance with small datasets such as the datasets presented in this

researcher.

The proposed MNRU-based disordered speech synthesis approach, although cor-

relates well with the subjective scores of the TE datasets at hand, can be improved

if a more accurate TE speech synthesis model is derived. Future work will be carried

out to investigate different disordered speech synthesis algorithms in order to synthe-
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Figure 5.8: Subjective quality score for database D3 and predictive quality score
based on SMNRU and SSN.

sis disordered speech signals that are as close as possible to a real TE speech signal.

This would pave the way to train larger and more accurate DNN networks for TE

speech quality estimation.

It is noted that the combined model includes 18 features from GFCC and 16 fea-

tures from MFCC despite the fact that GFCC and MFCC perform the same function

of mimicking normal cochlear performance. In order to investigate the difference be-

tween the MFCC and GFCC performance, each feature was normalized according to

the equation:

X̂ =
X(i)−m

N
. (5.10)

where X(i) is the number of the feature, m is the mean of the total number of
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Figure 5.9: Subjective severity score for database D4 and predictive quality score
based on SMNRU and SSN.

features, N is the total number of features which is 26 in the case of MFCC and 60

in the case of GFCC, and X̂ is the new number of the feature.

Fig 5.10 shows the scatter plot of normalized MFCC and normalized GFCC. This

figure is to show why it is necessary to incorporate both of the MFCC and GFCC

coefficients in the combined model. The figure shows that MFCC and GFCC figures

are distributed across the spectrum, and MFCC coefficients give information about

the high frequency components of the speech signal. On the other hand, GFCC

coefficients have higher representation at low frequencies. The vertical line separates

between the filter energies coefficients on the left and the delta coefficients on the

right. It is noted that for lower frequency bands, GFCCs were selected to be more

representing the quality than the MFCCs, with the latter more concentrated at the
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Figure 5.10: Normalized MFCC and GFCC coefficients.

high frequencies.The energy coefficients are the averaged energies in the filter bands

across all the frames, while the delta coefficients are the first derivatives of the energy

coefficients. For the delta coefficients, the MFCC delta coefficients were not selected

at low frequencies. There were MFCC and GFCC selected delta coefficients at the

high frequencies. It is clear from the figure that the delta coefficients at the mid band

do not have an impact on the quality of the TE speech.

As mentioned earlier in the introduction, the PESQ metric has a high correlation

value with TE speech subjective quality scores. However, this metric has a high

computational cost, and the signal has to be processed in a complex way to estimate

the objective quality.
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5.7 Conclusion

The objective of this project aimed to develop a non-intrusive objective method to

evaluate the quality of TE speech using DNNs as a supervised learning method. Two

databases of 2173 training samples each were developed by modulating a dataset

that contains 53 clean speech samples with 35 noise signals (at different SNR levels)

that were generated following the standard ITU-T P.810 and the Speech Shape Noise

approach to mimic the TE speech noise. These training datasets were evaluated by

HASQI, and then these obtained scores served as targets for the training network.

The input features extracted from the TE speech database included features of GFCC,

MFCC, VTP, and HOS. The size of the feature input vector was reduced from 154

features to 60 features according to their correlation with the subjective scores. This

trained DNN network had about 0.99 correlation value for the training, cross vali-

dation, and test databases. When the obtained DNN-based metric was applied to

the experimental TE speech databases, it was found that the correlation between the

subjective and objective scores correlation averaged value was about 0.75 for our four

considered TE speech databases. This correlation value is higher than other objec-

tive measurements that are currently used or investigated in the previous chapter.

Moreover, compared to the metrics derived in the previous chapters, this DNN-based

algorithms shows a strong robustness property since it is validated on the four TE

speech datasets.
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Chapter 6

Conclusion

6.1 Summary

The purpose of this thesis was to develop a speech quality estimator tailored for

the evaluation of the quality level of TE voice recordings. This objective is highly

recommended in clinical applications to aid with the development of treatments for

TE patients.

The first single-ended algorithm developed in this thesis was based on existing

double-ended speech quality estimators such as the PESQ and the HASQI used in

telecommunication and hearing-aids fields, respectively. Our idea was to generate

an artificial reference signal using the matching pursuit algorithm which allowed to

remove the incoherent parts from the disordered speech signal. Although this pro-

posed approach was promising and correlates very well with some TE databases, it

did not correlate sufficiently well with other TE databases. This can be explained

by the fact that some TE speech distortions are difficult to separate from the coher-
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ent speech parts using the atomic decomposition of the matching pursuit algorithm.

Another plausible explanation is the fact that errors might be due to the PESQ and

HASQI algorithms which were tuned and optimized for other applications. Moreover,

the obtained MP-PESQ or MP-HASQI algorithm was relatively complex in terms of

computational cost.

In an attempt to reduce the computational cost, we have investigated the use

of statistical features extracted using low complexity algorithms such as the linear

prediction analysis. The extracted features were trained using different regression

models and showed promising results when correlated with subjective databases of

TE speech. However, despite the simplicity of this type of algorithms, we were not

able to obtain robustness across the different TE databases.

Next, we have studied the use of the deep neural networks to train model capable

of predicting the TE speech quality. Since training these DNN models would require

large datasets, we have opted for the generation of a large artificial database of noisy

speech samples. This database was scored using the HASQI algorithm and then used

to train the DNN. The obtained DNN was then used to predict the quality of the

TE speech across different databases and the obtained results suggest that this DNN-

based algorithm is robust and performs well for the TE speech quality evaluation.

6.2 Future Directions

Based on the study presented in this work, a number of recommendations exist for

future work:

• This work focused on the objective assessment of quality of TE speech. Al-
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though intelligibility and quality are two correlated attributes, a future study

should focus on the objective assessment of the intelligibility of TE speech.

• Future researches should collect a large dataset of TE speech. This will lead to

higher accuracy in the estimation of TE speech quality.

• Future work should be investigated to re-tune the parameters HASQI or PESQ

algorithms in order to improve the robustness of the MPA-PESQ and MPA-

PESQ algorithms. Also, further investigations on the role of the selected match-

ing pursuit dictionary should be carried out across different TE speech datasets.

• The size of the DNN (number of layers) was limited due to the limitation of the

dataset’s size. Increasing the size of the training datasets will lead to imple-

menting a deeper neural network and it will allow estimate the quality directly

from the running speech samples.
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Appendix A

CAPE-V
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Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V)

Name:_____________________________ Date:___________

The following parameters of voice quality will be rated upon completion of the following tasks:
1.  Sustained vowels, /a/ and /i/ for 3-5 seconds duration each.
2.  Sentence production:

a. The blue spot is on the key again. d.  We eat eggs every Easter.
b. How hard did he hit him? e.  My mama makes lemon muffins.
c. We were away a year ago. f.   Peter will keep at the peak.

3.  Spontaneous speech in response to:  "Tell me about your voice problem." or "Tell me how your voice is functioning."

Overall Severity                                                                                                          C      I              /100
                     MI             MO     SE

Roughness                                                                                                              C      I              /100
 MI             MO     SE

Breathiness                                                                                                             C      I              /100
 MI             MO     SE

Strain                                                                                                             C      I              /100
 MI             MO     SE

Pitch (Indicate the nature of the abnormality):                                
                                                                                                            C      I              /100

 MI             MO     SE

Loudness (Indicate the nature of the abnormality):                                
                                                                                                            C      I              /100

 MI             MO     SE

__________                                                                                                             C      I              /100
 MI             MO     SE

__________                                                                                                             C      I              /100
 MI             MO     SE

COMMENTS ABOUT RESONANCE: NORMAL OTHER (Provide description):                               

                                                                                                                                                            

ADDITIONAL FEATURES (for example, diplophonia, fry, falsetto, asthenia, aphonia, pitch instability, tremor,
wet/gurgly, or other relevant terms):

Clinician:                                   

Legend:C = Consistent I = Intermittent
MI = Mildly Deviant
MO =Moderately Deviant
SE = Severely Deviant

SCORE
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