
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

11-15-2019 10:30 AM 

Bioluminescence resonance energy transfer (BRET) - based Bioluminescence resonance energy transfer (BRET) - based 

nanostructured biosensor for detection of glucose nanostructured biosensor for detection of glucose 

Eugene Hwang 
The University of Western Ontario 

Supervisor 

Zhang, Jin 

The University of Western Ontario 

Graduate Program in Biomedical Engineering 

A thesis submitted in partial fulfillment of the requirements for the degree in Master of 

Engineering Science 

© Eugene Hwang 2019 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biochemical and Biomolecular Engineering Commons, and the Biomaterials Commons 

Recommended Citation Recommended Citation 
Hwang, Eugene, "Bioluminescence resonance energy transfer (BRET) - based nanostructured biosensor 
for detection of glucose" (2019). Electronic Thesis and Dissertation Repository. 6782. 
https://ir.lib.uwo.ca/etd/6782 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/286340651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/241?utm_source=ir.lib.uwo.ca%2Fetd%2F6782&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/233?utm_source=ir.lib.uwo.ca%2Fetd%2F6782&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6782?utm_source=ir.lib.uwo.ca%2Fetd%2F6782&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

 

Abstract 

Bioluminescence resonance energy transfer (BRET) is a distance dependent, non-radiative 

energy transfer, which uses a bioluminescent protein to excite an acceptor through resonance 

energy transfer. In this thesis, BRET technology is incorporated into a sensor comprised of a 

recombinant protein and quantum dots. The recombinant protein, which includes the 

bioluminescent protein, Renilla luciferase (Rluc), is used as the donor molecule and 

cadmium tellurium quantum dots as the acceptor molecules. Separating the donor-acceptor 

pair is a recombinant protein, glucose binding protein, which changes conformation upon 

binding glucose and brings the pair closer together, thus allowing BRET to occur. 

Optimization of the BRET sensor was investigated by evaluating different ratios of the donor 

and acceptor, changes in the bioconjugation process, and different glucose concentrations. 

The intensity of bioluminescence is a function of the ratio between the quantum dots to 

protein, which ranges from 1:6 to 0.0156:1, EDC ratio to quantum dots, conjugation time, 

and concentration of glucose ranging from 2 μM to 0.1 M. In addition, the performance of 

the sensor on a solid substrate was evaluated. This sensor promises to offer an alternative to 

traditional blood glucose sensing. 
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  Summary for Lay Audience  

Type 1 diabetes is a disease characterized by loss of blood glucose control due to 

autoimmune destruction of pancreatic beta islet cells. Modern treatment requires the use of a 

blood glucose meter, often requiring the pricking of the finger. Constant pricking is a 

detriment to the quality of life to these patients and may lead to decreases in patient 

adherence. The goal of this project is to develop a non-invasive alternative to measuring 

blood glucose by utilizing tears. A newly designed sensor using a technology known as 

bioluminescence resonance energy transfer (BRET) has been developed with the hopes that it 

may replace traditional glucose sensing methods. BRET occurs when a light emitting protein 

transfers light energy to another light emitting protein. The second protein will then emit its 

own light, which can then be measured. The newly designed sensor uses quantum dots in the 

place of a second protein due to unique properties that make them suitable for glucose 

sensing. The sensor components are separated by a glucose binding protein, which changes 

conformation upon binding glucose. Therefore, the amount of light emitted by the quantum 

dot will correspond to whether glucose has bound the sensor. Testing of the sensor revealed 

that a 0.3125:1 ratio of the protein to quantum dots to be ideal. In addition, the sensor could 

detect variations of glucose levels ranging between 2 µM to 0.1 M, which is sufficient to 

detect levels of glucose in both tear samples and blood samples. The sensor was also tested 

while deposited on a solid substrate. The results indicate the sensor may be promising as an 

alternative to traditional blood glucose sensing.  
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Chapter 1  

1 Introduction 

1.1 Glucose sensors in diabetes 

Type 1 diabetes is a metabolic disorder characterized by loss of blood glucose control due 

to the autoimmune destruction of insulin-producing beta islet cells. This loss of blood 

glucose control can lead to a variety of complications due to hyperglycemia. Many diabetic 

patients are at increased risk of cardiovascular and neurovascular disease. Careful and 

accurate monitoring of blood glucose is essential for patients with type 1 diabetes in order 

to reduce the risk of hypoglycemia and other related complications [1]. Traditional blood 

glucose monitoring techniques utilize a blood glucose meter. These meters require the 

pricking of the patient’s finger to obtain a small blood sample [2]. This method is a 

detriment to the quality of life to these patients, as constant pricking throughout the day is 

often painful and inconvenient. Constant pricking may decrease patient adherence to 

treatment, therefore current efforts have focused on the development of a non-invasive 

means of glucose monitoring [3]. 

Recent works have investigated the measurement of changes in blood glucose as they 

related to changes in other related chemical and physical properties of the body. For 

example, changes in other body fluids such as urine [4,5], sweat [6–8], and tears [9,10] 

have provided new avenues to assess changes in blood glucose in a non-invasive manner. 

Due to significantly lower values of glucose in related body fluids, methods with increased 

sensitivity need to be developed in order to accurately measure glucose levels. 

The most popular traditional glucose biosensors are based on glucose interactions with 

enzymes such as glucose oxidase (GOx) [11]. Also known as enzymatic amperometric 

sensors, these sensors use immobilized GOx to oxidize glucose which forms hydrogen 

peroxide [12]. The hydrogen peroxide is oxidized at a catalytic, platinum anode where the 

electrode can recognize the number of electron transfers. The electron flow is proportional 

to the number of glucose molecules present in the medium [13]. 



2 

 

Glucose biosensors are designed to be used for point-of-care testing and are easily operated 

by outpatients [14]. However, the American Diabetes Association recommends that the 

accuracy of such biosensors should be less than 5% of the measured value, which many 

devices fail to achieve. Therefore, along with the benefit of a non-invasive alternative, a 

more accurate biosensor version could prove to be of significant value. 

Traditional biosensors are limited in their signal capture efficiency of a biological 

recognition event. Therefore, the use of nanomaterials in biosensors has become more 

popular. Due to their lower detection limits, ability to immobilize an increased quantity of 

bioreceptor units at a reduced volume, and ability to act as a transduction element, 

nanomaterials are very promising for use in biosensors [15]. 

Methods with increased sensitivity have been explored, particularly using fluorescence 

resonance energy transfer (FRET). However, such methods require the use of an external 

energy source which is difficult to implement within a biological environment [16]. 

Therefore, bioluminescence resonance energy transfer (BRET) has been explored as an 

alternative that does not require an external energy source and are therefore not limited in 

their applicability in biological settings [17–19]. 

 

1.2 Resonance energy transfer 

Bioluminescence resonance energy transfer-based sensors offer a high degree of sensitivity 

and reliability in a procedure that is both easy to perform and relatively inexpensive. BRET 

sensors utilize bioluminescence generated from a luciferase enzyme found in the sea pansy 

in order to donate energy to a fluorescence molecule that will emit a measurable quantity 

of fluorescence [17–19]. This system can be used to monitor an easily detectable light 

signal in real time with a high degree of sensitivity. BRET sensors are a less invasive and 

easier to perform modification of fluorescence resonance energy transfer which requires 

an external light source to initiate the fluorescence transfer [16]. No longer requiring an 

external light source has made BRET attractive for use in biological systems. Limitations 

of a fluorescence-based sensor include 
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tissue autofluorescence and photobleaching. Background emission from tissue, otherwise 

known as autofluorescence, was found to be a limiting factor in the sensitivity of reporters 

[20–22]. Research has reported significantly higher autofluorescence levels in fluorescent 

reporters when compared to bioluminescent reporters 

[21,23]. Chemiluminescent resonance energy transfer (CRET) is a related technique that 

relies on the oxidization of a chemiluminescent compound which will excite an 

acceptor fluorophore [24,25]. There are a limited number of studies done using CRET, 

therefore its efficacy and biocompatibility have not been adequately proven [26,27]. Thus, 

the use of bioluminescent reporters has become increasingly attractive in biological 

applications.  

BRET is a natural phenomenon involving the non-radiative energy transfer between a 

bioluminescent donor molecule and a fluorescent acceptor molecule. When the 

bioluminescent donor, typically an oxidative luciferase enzyme, emits 

bioluminescent energy, this excites the fluorescent acceptor and increases its emission 

[22,28]. This is referred to as resonance energy transfer and only occurs when the two 

proteins are within 10nm (Figure 1.1) [23]. The changes in ratio of the acceptor to donor 

emissions are monitored which are useful in studying protein-protein 

interactions (PPI) since the mechanism depends on distance [16,22].  

 

Figure 1.1: Schematic of a NanoLuc (NLuc) based BRET (BRETn) design. Nluc is 

the donor fluorophore and Venus is the acceptor fluorophore. Nluc and Venus are 

fused to their respective proteins of interest (X and Y). BRET signal is 

detected when the proteins are in close proximity. Reprinted by permission from 

Springer Nature [23]. Copyright 2016. 
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FRET and, by extension, BRET, is a distance dependent mechanism. The efficiency of the 

energy transfer (E) is defined as the quantum yield of the energy transfer transition [29]. 

The efficiency depends on the distance between the donor and acceptor, usually up to 10 

nm. In addition, the emission spectrum of the donor should overlap with the acceptor’s 

absorption spectrum. The donor emission dipole moment and the acceptor absorption 

dipole moment should be relatively oriented [30,31]. The efficiency is calculated using 

equation (1.1):  

 𝐸 =
𝑅0

6

𝑅0
6+𝑟6 (1.1) 

Where r is the distance between the donor and acceptor and R0 is the Förster distance of 

the donor acceptor pair which is the distance where E = 50%.  

The Förster distance is given by equation (1.2):  

 𝑅0 = 0.21[𝜅2𝑄𝐷𝑛−4𝐽(𝜆)]
1

6 (1.2) 

Where J(λ) is the spectral overlap between donor emission and acceptor absorption, QD is 

the quantum yield of the donor, n is the refractive index of the medium, and κ2 is an 

orientation factor related to the relative orientation of the donor emission and acceptor 

absorption dipole moments.  

Many limitations must be taken into consideration when constructing a BRET sensor 

system. Conventional BRET systems utilize bioluminescence proteins as donor molecules 

and organic dyes as acceptor molecules. However, suitable BRET pairs utilizing organic 

dyes are often limited due to narrow emission wavelengths of the dyes [22]. In order to 

increase the flexibility of the acceptor molecule, quantum dots have been incorporated in 

the place of organic dyes. Quantum dots offer a wealth of advantages, in particular, a 

tunable emission wavelength. Therefore, the challenges of constructing a BRET sensor 

system can be overcome using inorganic nanomaterial as acceptor molecules.  
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1.3 Bioluminescent proteins 

There exists a variety of bioluminescence donors, many of which are derived from 

naturally occurring enzymes in animals such as the firefly or the sea pansy. Among the 

different donors, each has clear advantages and disadvantages in certain applications. 

Therefore, certain donors are considered for certain tasks according to their properties. 

Commonly used bioluminescence donors include the luciferases, a class of oxidative 

enzymes, which catalyze the oxidative decarboxylation of luciferin. Luciferins are light-

emitting compounds that generate bioluminescence upon undergoing oxidation, which 

results in the emitting of light upon decaying from an excited state to its ground state. Upon 

oxidation of the luciferin in the presence of oxygen, carbon dioxide, oxyluciferin (III) and 

light are released [32]. 

1.4 Quantum dots 

Quantum dots (QD) are light-emitting semiconductor nanocrystals with optical and 

electrical properties. Applications for QDs range from bioanalytical assays, live cell 

imaging, fixed cell and tissue labeling, biosensors and in vivo animal imaging [33]. The 

fluorescence properties of QDs are determined by the core materials and the shell layer, 

which removes surface defects and prevents nonradiative decay [34]. The optical property 

of QD is a result of the quantum confinement effect of semiconductor materials. The 

quantum confinement effect refers to the size and composition dependent properties of the 

semiconductor gap energy. Nanocrystals smaller than the Bohr excitation radius have 

quantized energy levels which depend directly on the size of the nanoparticle. This allows 

the development of fluorescence emitters with precisely tuned emission wavelengths. For 

example, cadmium selenide (CdSe) has a bandgap of 1.7 eV (corresponding to 730nm light 

emissions). Through the altering of the nanocrystal diameter from 2 to 7nm, the QD can be 

tuned to emit between 450 to 650nm. Altering the composition of the core material can 

also change the emission wavelength. Thus, QDs have the benefit of being tuned to produce 

a vast array of fluorophores with the same material [35]. 
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Typically, BRET sensors utilize fluorescent proteins [19,20,36–38] or organic dyes 

[39,40] as acceptors. However, recent studies report the use of nanoparticles such as 

quantum dots (QD) to be effective. QDs have the advantage of adjustable 

emission depending on size, superior brightness, high photostability, and multiplexing 

[41,42]. Fluorescent semiconductor quantum dots were previously limited in their 

application for in vivo imaging due to requiring excitation from an external source of light 

[20–23]. QDs can be excited by a broad range of wavelengths, from UV to the visible 

region. Therefore, they are able to be excited by virtually all bioluminescent proteins that 

are currently being used in BRET sensors [22]. In addition, their emission 

spectra are particularly narrow and tunable by size, thereby demonstrating excellent 

separation from the emission peak of bioluminescent proteins. QDs are also characterized 

by superior brightness and photostability, which are ideal traits for use as BRET acceptor 

molecules. QDs are also exceptionally resistant to photo and chemical degradation, feature 

large effective Stokes shifts, and boast high molar extinction coefficients that exceed 

organic dyes by 10-50 times [32]. Due to a high molar extinction coefficient, QDs can 

absorb 10-50 times more photons than organic dyes at the same excitation photon flux [43]. 

QDs are significantly more resistant to photobleaching, therefore, they are well-suited for 

continuous tracking studies over a long period of time [44]. Due to having a longer excited 

state lifetime, QDs will continue to emit light for long enough that background 

autofluorescence emission is over before QD emission ends [44]. The large Stokes shifts 

(measure of distance between excitation and emission peaks) of QDs can be used to 

improve detection sensitivity. Organic dyes with small Stokes shift are buried by strong 

tissue autofluorescence, whereas QD signals with large Stokes shift are easily detected 

above the background [42]. Tunable emission spectra are highly desirable for tracking 

multiple parameters such as in multiplexing. QDs are attractive in this regard because their 

broad absorption profiles allow simultaneous excitation of multiple colors [42]. 

Although not normally biocompatible, QDs can be modified through surface 

functionalization with hydrophilic ligands such as thiols, amine or carboxyls [45]. In 

addition to mediating solubility of the QDs, the ligands serve as a point of chemical 

attachment for biomolecules. For BRET sensors, these ligands can be utilized to conjugate 

the QDs to bioluminescent proteins or any such proteins [46].  
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When compared to organic dyes, multiple QDs are able to interact with a single BRET 

donor molecule. For example, for a single donor-dye acceptor pair, the FRET efficiency 

would be 22%. Increasing the number of acceptors to five increases the efficiency to 58% 

[32]. 

Cadmium telluride (CdTe) are well established and high-quality quantum dots which 

consists of II/VI semiconductors. The ability to synthesize CdTe with different capping 

ligands or encapsulated give them great potential for biological probes and optoelectronic 

devices [47]. Through the aqueous solution preparation method, QDs can be synthesized 

to be more biocompatible in addition to improved water stability [48,49]. 

1.5 Hypothesis 

Bioluminescence resonance energy transfer is an ideal method for the detection and 

measuring of low concentration analytes such as glucose in tears. The challenge in the 

traditional BRET sensor design requires very narrow and specific BRET pairs. We 

propose the construction of a BRET-based biosensor using a BRET pair that is very 

flexible. In this novel BRET construct, the traditionally used BRET acceptor has been 

replaced with quantum dots. Cadmium tellurite quantum dots with an emission 

wavelength of 580nm will be conjugated to a glucose binding protein which is already 

conjugated to Renilla luciferase. Renilla luciferase will emit at 480nm in order to excite 

the quantum dots. The glucose binding protein will change conformation upon binding 

glucose and will bring the BRET pair closer together, thereby increasing the emission of 

the quantum dots. 

1.6 Thesis objectives and motivation 

Bioluminescence resonance energy transfer sensors offer a high degree of sensitivity and 

reliability in a procedure that is both easy to perform and relatively expensive.  BRET 

sensors are more biocompatible and easier to perform modification of fluorescence 

resonance energy transfer which requires an external light source to initiate the 

fluorescence transfer. No longer requiring an external light source has made BRET 

attractive for use in biological systems, which may be susceptible 
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to tissue autofluorescence and photobleaching. Recent works have explored the potential 

of measuring other bodily fluids, which have a strong correlation to blood glucose levels.  

BRET sensors utilizing a nanomaterial-based acceptor such as quantum dots have only 

been recently explored. Therefore, the motivation of this thesis is to explore the potential 

of a bioluminescent protein and quantum dot pair for use in a BRET sensor. In this study, 

the interaction between the two and how they can be effectively implemented into a BRET 

system will be investigated. 

The objective of this thesis is to integrate inorganic nanomaterial and bioluminescence 

proteins into a non-invasive means of measuring blood glucose. The intent is to construct 

a BRET sensor utilizing quantum dots as the donor molecules and bioluminescent enzymes 

as the acceptor molecules and evaluate their performance in vitro. The proposed senor will 

use the luciferase from Renilla reniformis (emission wavelength λcm = 480nm) and 

incorporate it into a recombinant protein with glucose binding protein (GBP). The 

recombinant protein will be conjugated to CdTe quantum dots (emission wavelength λcm = 

565nm). 

The GBP acts as a separator of the donor and acceptor, keeping them at a distance from 

each other. Due to the distance dependent relationship of the donor-acceptor pair, the 

BRET emission will be weak [50]. However, when GBP binds glucose, it will change 

conformation, thereby shortening the distance between the donor-acceptor pair and 

increasing the BRET emission (Figure 1.2). 
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Figure 1.2: Schematic of the proposed BRET sensor. Quantum dots (QD) are used 

as the acceptor and Renilla luciferase (Rluc) as the donor. GBP separates the donor-

acceptor pair and will change conformation upon binding glucose, thereby 

increasing the BRET emission intensity. 

This study will lay the foundation for the use of inorganic nanomaterial in BRET sensors 

for the detection of small molecules relevant to human disease, particularly using quantum 

dots to offer an alternative and more sensitive means of monitoring concentrations of small 

molecules in the body. The following are sub-objectives in order to achieve the main 

objective: 

 Synthesize and modify cadmium tellurite quantum dots with carboxylic groups in 

order to increase hydrophilicity and biological compatibility. Modifications enable 

the quantum dots to be conjugated to the protein 

 Construct a recombinant plasmid containing the glucose binding protein, Renilla 

luciferase and His-tag protein, then transform into E. coli for rapid expansion. 

Extract and purify the target protein using a His-trap column. 

 Bioconjugate the recombinant protein onto the CdTe 

 Investigate optimizations of the construction of the sensor, particularly the protein 

to quantum dot ratio, the bioconjugation process, and concentration of glucose. 

 Evaluate the performance of the biosensor when applied to a solid substrate. 
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1.7 Thesis overview 

Chapter 2: Literature review 

This chapter focuses on reviewing applications and techniques of biosensing, particularly 

involving quantum dots. In addition, techniques for glucose biosensing will be reviewed. 

Chapter 3: Experimental methods 

This chapter will describe the experimental procedures for synthesizing the different 

components of the biosensor. Procedures for synthesizing water-soluble cadmium tellurite 

quantum dots, construction of the recombinant plasmid, extraction and purification of the 

protein, conjugation of the protein and quantum dots are discussed in this section. In 

addition, characterization methods are discussed, such as the sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence emission spectra.  

Chapter 4: Biosensor evaluation and optimization 

The biosensor performance is evaluated. Optimization of the performance is evaluated 

through investigating changes in protein to quantum dot ratio, the bioconjugation process, 

and concentration of glucose present. 

Chapter 5: Biosensor evaluation on solid substrate 

Performance of the biosensor on a solid substrate is evaluated. The process by which the 

solid substrate is synthesized and also the conjugation process of the biosensor onto the 

substrate is discussed. 

Chapter 6: Summary and future work 

Conclusion and future of the sensor. Outlining how some aspects can be improved and its 

relevance compared to current work. 
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Chapter 2  

2 Literature review 

This chapter provides a literature review on the following aspects; (1) bioluminescence 

proteins in BRET sensors; (2) BRET phenomena and design; (3) quantum dots in BRET 

sensors. Different bioluminescent proteins are described based on their applicability in 

BRET sensors. In addition, the foundations and parameters for defining the BRET 

phenomena are described in detail. Then, BRET sensors utilizing quantum dots that have 

been previously developed are highlighted. 

2.1 Bioluminescence proteins 

FRET and, to an extent, BRET have typically utilized fluorescent proteins for both donor 

and acceptor molecules. Due to the need for external light to stimulate the fluorescent 

proteins, bioluminescent proteins have become increasingly attractive for use in 

resonance energy transfer-based sensors. Bioluminescent proteins do not require an 

external light source, only requiring a substrate, which is oxidized to produce light. 

Therefore, bioluminescent proteins have become more widespread in their use as 

reporters or donor molecules for BRET systems when measuring protein-protein 

interactions and small molecule concentrations[51].  

There exists a variety of bioluminescence donors, many of which are derived from 

naturally occurring enzymes in animals such as the firefly or the sea pansy. Among the 

different donors, each has advantages and disadvantages in certain applications. 

Therefore, certain donors are considered for certain tasks according to their properties. 

This section aims to highlight some of the differences between bioluminescence donors 

and how they can be applied in BRET constructs.  
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Table 1: Summary of bioluminescent proteins 

Name Size (kDa) 
Emission 

(nm) 
Substrate 

Aequorin 22 469 Coelenterazine 

Bacterial luciferase 

(Lux) 

α subunit: 40 

β subunit: 35 
490 

FMNH2 

long-chain aliphatic 

aldehyde 

Firefly luciferase (Fluc) 61 562 D-luciferin 

Renilla luciferase (Rluc) 36 480 Coelenterazine 

Gaussia luciferase 

(Gluc) 
19.9 480 Coelenterazine 

Vargula luciferase 

(Vluc) or 

Cypridina luciferase 

62 460 
Vargulin (Cypridina 

luciferin) 

Metridia luciferase 24 480 Coelenterazine 

Nano luciferase (Nluc) 19 460 Furimazine 

2.1.1 Aequorin 

First discovered in the jellyfish Aequorea victoria, aequorin is a 22 kDa photoprotein that 

emits blue light at 469 nm upon binding its substrate, coelenterazine [52,53]. Given its high 

sensitivity for calcium, aequorin is most often used to detect calcium concentration from a 

single cell by expressing it using recombinant aequorin [54–56]. Typically, aequorin is 

recombined with polyols to increase its stability [56]. Addition of coelenterazine to the 

medium allows it to passively diffuse into the cell, and aequorin emits blue light with 

intensity proportional to the calcium levels within the cell [53]. However, aequorin has a 

low light quantum yield compared to other bioluminescent proteins. Furthermore, its 

substrate, coelenterazine, has been shown to be unstable and have poor biodistribution [57].  
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2.1.2 Bacterial Luciferase 

Bacterial luciferase (Lux) consists of two subunits: alpha, which is 40 kDa, and beta, which 

is 35 kDa; it emits blue light, which peaks at 490 nm [58,59]. Lux is an ATP-dependent 

luciferase and requires oxygen and NADPH as cofactors, in order to work on its substrate: 

long-chain aliphatic aldehydes and flavin mononucleotide (FMNH2) [58,59]. It is most 

often used as a bacterial reporter, more specifically in luminous bacteria for autonomous 

bioluminescence oxidation reaction [59]. The long-chain aliphatic aldehydes have shown 

to be able to freely diffuse through the cell membrane and have high binding affinity for 

Lux [58]. Like aequorin, Lux demonstrates poor light quantum yield as well as poor 

thermostability [60]. Furthermore, studies are limited to luminous bacteria due to the 

cytotoxicity of aldehydes [61]. 

2.1.3 Firefly Luciferase 

Firefly luciferase (Fluc), the first luciferase to be discovered, is a 61 kDa protein that emits 

blue light at 562 nm when exposed to its substrate, D-luciferin [62–64]. Similar to Lux, 

Fluc is ATP-dependent and requires the presence of co-factors, oxygen and magnesium, in 

order to complete its reaction with D-luciferin [63–65]. Since its discovery, Fluc has been 

used in various fields as a biosensor through recombination with another protein of interest 

and as ATP sensor, taking advantage of its ATP-dependency [66–68]. Fluc demonstrates 

high light quantum yield making it superior in comparison to Lux and aequorin [64]. 

Nonetheless, disadvantages involving Fluc as well as D-luciferin has emerged. Although 

D-luciferin had been presumed to have good biodistribution given its ability to cross the 

blood-brain barrier and blood-placental barrier, recent studies have discovered its low 

tissue permeability, which results in heterogenous biodistribution [57,69,70]. Furthermore, 

D-luciferin has low affinity for Fluc, which may result in false negative signals [57]. 

Moreover, Fluc and D-luciferin only gives a single imaging signal limiting studies to a 

single molecular event or a single population of cells [57]. Finally, the large size of Fluc 

may lead to steric hindrance when used as a recombinant protein [65]. 
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2.1.4 Renilla Luciferase 

Renilla luciferase (Rluc), first discovered in sea pansy, Renilla reniformis, is a 36 kDa 

protein that emits blue light at 480 nm when worked with its substrate, coelenterazine [71–

73]. Rluc is often used as a marker for gene expression in mammalian cells and as a 

biosensor when recombined with a protein of interest [72,74]. As it originates from non-

mammalian cells, the gene sequence for Rluc includes codons that are uncommon in 

mammalian cells, which limits Rluc expression in the cells [71]. Furthermore, Rluc has 

shown to have low enzymatic turnover and quantum yield when compared to Fluc [73,75]. 

In addition, the problem of instability and poor biodistribution of coelenterazine remains 

[57]. 

2.1.5 Gaussia Luciferase 

Gaussia luciferase (Gluc) is similar to Rluc due to having an emission peak at 480 nm, 

ATP-independence, and bind the same substrate, coelenterazine [65,73,75]. Gluc is smaller 

than Rluc at 19.9 kDa and originates from Gaussia princeps, thus eliminating the problem 

of uncommon codons [75]. Gluc has been used as a bioluminescent label for in vitro 

hybridization assay as well as a biosensor through recombination with another protein of 

interest [65,76]. Gluc is naturally secreted by the cells, which allows for it to be detectable 

in cell medium [75,77]. It has also been characterized to be more sensitive compared to 

Fluc and Rluc [77]. Despite its sensitivity, quantum yield remains low and is accompanied 

by problems involving coelenterazine [57,73,78]. 

2.1.6 Vargula Luciferase 

Vargula luciferase (Vluc), also known as Cypridina luciferase, is a 62 kDa protein that 

emits blue light at 460 nm when worked with its substrate, vargulin, also known as 

cypridina luciferin [79–81]. Similar to Rluc, Vluc has been used as a marker for gene 

expression in mammalian cells as well as a biosensor when recombined with another 

protein of interest [80,82]. Also, similar to Gluc, Vluc is also naturally secreted by cells, 

and it is detectable in cell medium [82]. One advantage of Vluc over other luciferases is its 

glow-type bioluminescence compared to flash-type exhibited by other luciferases [81]. 

Previously, Vluc has been shown to be difficult to express and purify from bacterial 
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systems; however, the issue has been successfully addressed by using a truncated derivative 

of Vluc, which shows higher degree of expression and purification while retaining its 

enzymatic activity [81]. 

2.1.7 Metridia Luciferase 

Like Rluc and Gluc, Metridia luciferase also emits blue light at 480 nm, is ATP-

independent, and works on the same substrate, coelenterazine [73,76,83]. Smaller than 

Gluc but bigger than Rluc, Metridia luciferase is 24 kDa protein [83]. Similar to all 

luciferase, Metridia luciferase has been used as a biosensor by recombining it with another 

protein of interest [83]. Metridia luciferase is also naturally secreted by cells similar to 

Vluc and Gluc [76]. In addition, its low molecular mass serves as an advantage in 

recombination [83]. However, Metridia luciferase demonstrates low quantum yield, and 

the disadvantages of coelenterazine discussed before stays relevant [57,73]. 

2.1.8 Nano Luciferase 

Nano Luciferase (Nluc) is a recently developed luciferase that uses furimazine as a 

substrate to emit blue light at 460 nm [84–86]. It is the one of the smallest luciferases to be 

characterized at 19 kDa and has the one of the brightest bioluminescence to date [84,86]. 

Not many studies using Nluc has been published compared to other bioluminescent 

proteins as the molecule is fairly new; the published studies typically use Nluc as a 

biosensor through recombination with their protein of interest [86,87]. Nluc exhibits glow 

type bioluminescence, similar to Vluc, with long half-life of approximately 2 hours [84,86]. 

Furthermore, furimazine has shown to exhibit lower background noise when compared to 

coelenterazine. 

2.2 BRET phenomena/design 

Originally observed in marine animals, such as the sea pansy Renilla reniformis, BRET is 

a nonradiative energy transfer from a bioluminescent donor to a fluorescent acceptor. 

While the acceptor has traditionally employed the use of yellow fluorescent protein (YFP) 

when paired with Rluc, recent research has investigated the use of quantum dots as a 

suitable replacement for YFP [22,42,44,47,89–92]. When the donor is in close proximity 
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to the acceptor, the energy that results from catalytic degradation of a substrate, such as 

CTZ, is transferred from the donor to the acceptor, therefore inducing two light emissions. 

One light emission at 480nm corresponds to the donor and in the case of YFP, the second 

emission at 530nm corresponds to the acceptor. Therefore, the presence of both emissions 

indicates the coexpression of the donor and acceptor in close proximity [93]. 

The transfer of energy from donor to acceptor is only able to take place within 1-10nm 

which is also the distance for protein-protein interactions in the physiological environment. 

Therefore, observing a BRET signal indicates that in a system placed to monitor protein-

protein interactions, such an interaction has occurred [94]. The design of the BRET partners 

should meet the following requirements: (1) the distance between the donor-acceptor pair 

should be less than 10 nm; (2) there should be spectral overlap between the donor emission 

and the acceptor excitation wavelengths; (3) the dipoles of the donor and acceptor should 

be aligned in order to maximize transfer of resonance energy through nonradiative dipole-

dipole coupling; and (4) higher donor quantum output results in increased energy transfer 

to the acceptor therefore the donor quantum output should be greater than the energy loss 

due to decay [94–97]. 

Photoluminescent QDs are rapidly becoming popular choices for use in biomedical 

applications such as labeling, bioimaging, and biosensing. QDs are particularly appealing 

due to their high photostability, continuous absorption spectra, and size-dependent 

fluorescence [98–102]. QDs are typically synthesized as hydrophobic and therefore 

require a number of modifications in order to be suitable in biological environments. 

Modifying QDs to be suitable for solubility in water results in a decreased quantum yield 

and therefore requires surface modifications [88,103]. There exist three strategies to 

make QDs water soluble: ligand exchange, silanization, and encapsulation.   

In ligand exchange, the original hydrophobic coating is replaced by a water-soluble 

bifunctional molecule. Once attached to the QD surface, a hydrophilic tail makes the QDs 

able to bioconjugate, usually with other surface groups such as thiol, amine and carboxyl 

[104].  
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Silanization is an extension of ligand exchange where the QD is coated in a silica shell, 

which is non-toxic, chemically inert and optically transparent. The silica shell protects the 

QD from oxidization and provides a matrix, which enhances stability in the environment. 

The silica is biocompatible and can be functionalized for bioconjugation [105–107].  

Encapsulation utilizes different carriers such as amphiphilic polymers, polymeric 

microbeads, and liposomes [108–110]. These coating molecules have hydrophobic and 

hydrophilic units, therefore can interact strongly with the QD surface and the aqueous 

outside environment [108]. Liposomes are particularly popular due to their porous 

spherical structure and high loading capacity [109,111]. However, they are limited due to 

susceptibility to temperature and pH changes [112].  

There are two primary approaches to bind biomolecules onto the surface of QDs. Non-

covalent which is mediated by interactions between the biomolecules and the QD surface, 

and covalent linking which is achieved through chemical reactions of molecular surface 

groups [110,113].  

Non-covalent binding is achieved through two types of interactions; electrostatic 

interaction between oppositely charged molecules and high affinity secondary 

interactions. QDs are negatively charged on the surface, therefore can be electrostatically 

coupled to positively charged proteins [110,114]. High affinity secondary interactions are 

interactions between functional groups on the surface of the QD and the biomolecule. 

Biotin-avidin is a commonly utilized combination, though limited by the increased size of 

the product [114,115]. The interaction between His-tagged biomolecules and Ni-NTA is 

widely used in bioconjugation and often used for developing a QD probe for performing 

Western blot analyses [114,115].  

Covalent binding involves the reaction between functional groups on QDs and 

biomolecules. Crosslinkers can be used to bind the molecules. Zero-length crosslinkers 

such as 1-ethyl-3-(3-dimethylami-nopropyl) carbodiimide  (EDC) are used because they 

will not add any more atoms [116]. Carboxylic functionalized QDs are among the most 

popular due to the abundance of free amine groups on proteins, which they can conjugate 
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with [117]. The most popular method utilizes EDC which mediates the formation of an 

amide bond between the carboxyl on QDs and amines on biomolecules [116,118]. 

Quantum dots cores consist of various metal complexes which have raised questions 

about their application in a biological setting [119]. This concern is commonly resolved 

by adding organic coatings such as methoxy-polyethylene glycol (PEG) to the surface in 

order to increase biocompatibility [120]. Commonly used quantum dots include CdTe 

and CdSe and all of these metals are known to be toxic to humans when exposed upon 

degradation of the quantum dots [121–124]. There is lack of biocompatibility data for 

quantum dots and little research done on the effect on humans. Part of the reason can be 

attributed to the various factors related to physicochemical properties of quantum dots 

like size, charge, concentration, outer coating and mechanical stability [125,126]. Various 

studies have found adverse effects due to quantum dots [127] and some have found little 

to no adverse effects, given some modifications [128,129]. Studies have determined that 

quantum dots have a significantly long half-life and the degradation of fluorescent 

particles taking almost 12 weeks in the liver [120,130]. This uncertainty in terms of 

biocompatibility warrants further investigation, particularly in human subjects. 

 

2.3 Quantum dots in BRET sensors 

Quantum dots have been reported for their distinct advantages when used as acceptors in 

BRET sensors. Quantum dots have the distinct advantage of an adjustable emission based 

on their size, which can be controlled during their synthesis. In one particular study, the 

emission of the quantum dots could be adjusted by adjusting the feeding ratio of 

indium/zinc [46]. By increasing the amount of indium compared to zinc, the emission 

wavelength could be increased (Figure 2.1). The quantum dot emission can also be 

adjusted by varying the refluxing period during synthesis. Tunable emissions are 

particularly attractive for BRET sensors because the flexibility of the quantum dots 

allows them to be paired with a variety of bioluminescent proteins. Different types of 

bioluminescent proteins have varying emission wavelengths; therefore, it is advantageous 

for quantum dots to adjust their emissions in order to align with the protein emission. 
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QDs have been used with a variety of donor molecules such as Rluc [22,131,132], Fluc 

[51,133], and Nluc [134] for developing biosensors and biomarker assays in addition to 

in vitro and in vivo imaging [132]. 

 

Figure 2.1: Photoluminescence spectra under irradiation of a UV lamp (12 W, 

365nm) of Ag:ZnInSe QDs at different In/Zn feeding ratios 0-50% from left to right. 

All samples are left to react for 4h. Reprinted (adapted) with permission from [46]. 

Copyright 2000 American Chemical Society. 

2.3.1 Quantum dot-based BRET sensors for detecting biomolecules 

Carboxylated quantum dots (Qd-625) were conjugated to a DNA probe (Qd-D-P) while 

oligonucleotide probes were conjugated to Rluc (Rluc-P). The sensing scheme uses the 

two antisense oligonucleotide sequences which will anneal adjacent to each other in a head-

to-head fashion when the target is present (Figure 2.2) The maximum BRET signal was 

obtained by optimizing the spacing between the Rluc-P and Qd-D-P when hybridized to 

the target. Optimization was done using oligonucleotide targets, which create various 
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separation distances. The optimal separation distance was found to be 15 nucleotides. 

Hybridization time between labeled probes and target was studied and found the optimal 

time to be 5 and 35 minutes. In conclusion, an on-type, BRET-based sensing platform 

incorporating Rluc and QD with a 5-minute detection time of a nucleic acid target in 

vitro was developed. The method was also determined to be highly sensitive (detection 

limit of 0.54 pmol) and selective against mismatch targets [135].  

 

Near-infrared region optical detection of apoptotic cells was achieved using BRET-

coupled annexin V-functionalized quantum dots. A recombinant protein 

with Rluc and annexin V was conjugated to glutathione 

coated CdSeTe/CdS QDs (Figure 2.3A). Annexin V recognizes phosphatidylserine (PS)  

on the outer monolayer of the membrane of apoptotic cells and binds to it in the presence 

of Ca2+ ions (Figure 2.3B). The QDs act as a probe for detecting apoptotic cells with a peak 

emission at 830 nm and a high quantum yield of 61% in aqueous solution. This method 

was presented as a simple, rapid, and efficient method for synthesizing a BRET-induced 

NIR emission probe and with its low phototoxicity could prove to be useful in highly 

sensitive detection of apoptotic cells in vivo and in vitro [136].  

Figure 2.2: Schematic of BRET based on-type sensing system. The Rluc-P and Qd-

D-P hybridized to the target in head-to-head fashion permitting BRET between 

Rluc and Qd. Reprinted from [135], with permission from Elsevier 
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A general BRET homogenous immunoassay was developed for the determination of small 

molecules. This assay is based on QDs and Rluc which produce variable energy transfer in 

the presence of different concentrations of free fluoroquinolones (FQs). In the absence of 

free FQs, QDs conjugated to norfloxacin (QD-NOR) are recognized by a single-chain 

variable fragment (scFv), which is conjugated to Rluc, and are able to produce an energy 

transfer (Figure 2.4A). Otherwise, the presence of Free FQs prevents the Rluc and QDs 

from producing and energy transfer (Figure 2.4B). Similar results for cross-reactivity to 

seven representative FQs were found when compared to an enzyme-

Figure 2.3: A) Synthetic method for the preparation of recombinant protein 

(HisRLuc-annexin V)-conjugated QDs (annexin V-Rluc-QDs). B) Schematic 

representation for the binding of annexin V-RLuc-QDs to PS on plasma membrane 

of apoptotic cells in the presence of Ca2+ ions. Reprinted with permission from 

[136]. Copyright 2017 John Wiley and Sons 
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linked immunosorbent assay (ELISA). The LOD of the QD-BRET immunoassay was 

2.54 ng/L with a linear range which covers 4 orders of magnitude (0.023 to 25.60 ng/ml). 

The use of QDs enables the flexibility of more choices for donor substrates given the wider 

excitation range of the QDs. The authors noted that by replacing the target of interest, 

the immunosensor could be used with a variety of other small molecules and could open 

up the possibility of multiplex detection using different QDs [92].  

 

Figure 2.4: A) In the absence of free FQs, QD-NOR is recognized by scFv-Rluc and 

the Rluc and QDs are in close proximity; energy is released from the substrate and 

transferred to the QDs via BRET. B) In the presence of free FQs, the scFv-Rluc 

binds to the free FQs and the distance between the Rluc and QDs is too far to 

realize energy transfer. Reprinted (adapted) with permission from [126]. 

Copyright 2016 American Chemical Society. 
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In one particular study, CdSe/ZnS core-shell quantum dots (QD705) were 

conjugated to Nluc (Figure 2.5). This construct was used to image tumors by conjugating 

it to cyclic arginine-glycine-aspartic acid (cRGD) peptides, which were selected due to 

having strong affinity for integrin αvβ3 , which are known to be expressed on various tumor 

types. When intradermally injected into the hind paw of a mouse, the popliteal lymph 

nodes could be visualized by bioluminescence at 5 minutes post injection (p.i.) without any 

background signal. To demonstrate tumor-targeting capabilities, the sensor was injected 

into mice with integrin expressing U87MG human glioblastoma cell tumors. After 

2 hours, p.i. organs were harvested and ex vivo imaging found a noticeably visible signal 

in the tumors injected with QD-Nluc-cRGD. When compared to traditional fluorescence 

techniques, bioluminescence demonstrated higher sensitivity due to the distance dependent 

relationship of BRET components. Using the BRET conjugate, the tumor to background 

ratio was exceptionally high (>85) [134].  

2.3.2 QD-based BRET sensor used in bioimaging in vivo  

BRET-QD nanoparticles were applied to in vivo lymphatic imaging in mice. QD655 

covalently linked to Luc8 protein, an eight-mutation variant 

of Rluc, were intracutaneously injected into 10 weak old normal athymic female mice at 

different sites, the chin, ear and paws. After 5 minutes, the imaging was carried out (Figure 

2.6). Using BRET-QD655 has the advantage over traditional bioluminescence imaging 

(BLI) in that NIR light emission is more favorable in tissue penetration. All lymph nodes 

Figure 2.5: QD-Nluc-cRGD conjugate. Chemical communications by Royal Soceity of 

Chemistry (Great Britain). Reproduced with permission of ROYAL SOCIETY OF 

CHEMISTRY. 
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were visualized when injected with BRET-QD655 constructs and since there is no 

excitation light, the BRET signal more accurately represents the concentration of the 

quantum dots in the lymph nodes, leading to better quantitative imaging [137].  

 

The use of QD nanoparticles as a tool for non-invasive investigation of mammalian 

spermatozoa was explored. CdSe/ZnS QD nanoparticles with emission wavelengths of 655 

nm were conjugated to nona-Arginine R9 peptide, which facilitates cellular internalization. 

The QDs were linked to RLuc and used to label boar spermatozoa and were assessed for 

changes in sperm motility, viability, and fertilizing potential. In vitro assays concluded no 

adverse effect of the BRET-QD on the spermatozoa. The results suggest the strong 

potential for a novel imaging technique for tracking BRET-QD labeled spermatozoa to 

better understand sperm migration within the female genital tract [138]. 

BRET coupled near infrared quantum dots were used as a highly sensitive near-infrared 

optical detector of epidermal growth factor receptors expressed on cancer cells. His-tagged 

Rluc recombinant protein (HisRluc·GB1) were conjugated to glutathione-coated 

CdSeTe/CdS QDs (GSH-QDs) to form conjugated QDs (GB1·Rluc-QDs). The 

Figure 2.6: BRET lymphatic images of different lymphatic basins. BRET-QD655 

were injected at all four paws (a), the ear and forepaw (b), the chin (c), or five 

different sites (d: both forepaws, both ears and chin). Copyright 2011 John Wiley 

and Sons 
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recombinant protein consists of a luciferase enzyme and immunoglobulin-binding domain 

(GB1) of protein G. The GB1 domain allows the GB1·Rluc-QDs to bind the Fc moiety of 

immunoglobulin G which is then used as a molecular imaging probe using NIR 

fluorescence and BRET-coupled NIR emission. In order to detect EGFRs on cancer cells, 

anti-EGFR monoclonal antibodies were conjugated to the GB1·Rluc-QDs (Figure 2.7). 

The detection sensitivity of EDGRs by BRET-coupled NIR emission of the GB1·Rluc-

QDs was found to be over three times higher than NIR fluorescence of the QDs. Therefore 

the conjugation of the antibody with GB1·Rluc-QDs have proven successful in performing 

BRET-based highly sensitive NIR imaging of EGDRs in living cells [91]. 

 

Figure 2.7. Prepared BRET-coupled NIR-QDs (GB1·Rluc-QDs) using glutathione-

capped QDs (GSH-QD). BRET-coupled NIR emission from antibody conjugates 

with GB1·Rluc-QDs occurs in the presence of coelenterazine (CTZ). Reprinted 

(adapted) with permission from [129]. Copyright 2018 American Chemical Society. 
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Chapter 3  

3 Experimental methods 

3.1 Recombinant plasmid construction 

The recombinant plasmid was constructed using the mglb gene from E. coli k-12 connected 

by a six amino acid linker to the Rluc gene cloned from the plasmid pRL-null (Promega, 

Inc). These encode for wild-type glucose binding protein (GBP) and Renilla luciferase, 

respectively. Primers for GBP were designed for cloning (forward 5’ 

TATACATATGAATAAGAAGGTGTTAACCCTGTCTGC 3’; reverse 5’ 

GCTGGATCCTTTCTTGCTGAATTCAGCCAGGTTG 3’). These primers were 

introduced at the restriction site Nde I and BamH I, respectively. A six amino acid linker 

SGGGGS was inserted after the BamH I site in order to separate the GBP and Rluc.  The 

primers for Rluc are also follows: (forward 5’ 

AAAGGATCCAGCGGTGGTGGTGGTAGCATGACTTCGAAAGTTTATGATCCAG 

3’; reverse 5’ TGTGCTCGAGTTGTTCATTTTT GAGAACTCGCTC 3’). The reverse 

primer for Rluc was introduced at the restriction site Xho I. Therefore, the GBP gene is 

located upstream of the fusion protein.  

The PCR products were digested with their related restriction enzyme and the plasmid 

pET32a (Novagen, Inc) was used to clone and express the recombinant gene. The digested 

DNA inserts were ligated into the related MCS (multiple cloning site) in pET32a. A six-

histidine tail was added to the GBP-Rluc recombinant protein for use in purifying the 

protein. The pET32a-GBP-Rluc plasmid was transformed into E. coli BL21 cells for rapid 

expansion. The DNA sequence of the recombinant plasmid was confirmed by DNA 

sequencing (Robarts Research Institute, Western University). 

3.2 Recombinant protein extraction and purification 

3.2.1 Bacterial culture 

The bacteria were cultured on an agar plate until colonies were visible. A 5 mL starter 

culture of Luria-Betrani (LB) broth containing 100 µg/mL ampicillin was inoculated with 

the bacteria and grown overnight at 37°C. The culture was then used to inoculate 800 mL 
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of LB broth containing 100 µg/mL and left to grow at 37°C. When the culture achieved an 

OD600 of 0.375, isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to the culture 

to a final concentration of 1mM in order to induce expression of GBP-Rluc. The culture 

was then left to grow for four hours at 21°C on a shaker at 200RPM. 

3.2.2 Protein extraction and purification 

The bacteria culture was centrifuged at 9 000 RPM for 5 minutes at 4°C. The supernatant 

was discarded and the pellet was suspended in binding solution, which is comprised of 

20mM Tris/HCl, 500mM NaCl, 5mM imidazole at pH 7.4. The solution was then sonicated 

on ice using 15-second bursts followed by 30 seconds of rest for 30 cycles using a Mandel 

Scientific Q500 sonicator.  

The solution was then centrifuged at 8 000 RPM at 4°C for 30 minutes. The supernatant 

was collected and filtered using a cellulose acetate membrane syringe filter (VWR, Inc.) 

with a pore size of 0.45µm. 

The protein solution was purified using His-trap HP columns (GE Lifesciences. Inc.) by a 

syringe pump. The column is equilibrated using binding solution and the supernatant is 

loaded into the column at a rate of 0.3mL/min. The column is washed with 10 column 

volumes of binding solution afterwards. In order to elute the protein from the column, and 

increasing gradient of imidazole is used to wash out the column. The concentrations of 

imidazole used are as follows: 40mM, 60mM, 80mM, and 120mM. Each concentration of 

imidazole is used at 10 column volumes at a rate of 0.5mL/min to wash the column starting 

from the lowest concentration. The imidazole used to wash out the column were then 

collected in order to be used to identify the concentration in which the protein was eluted. 

The gradient of concentrations was run in sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (10% SDS-PAGE) in order to verify that the target protein was purified 

and the relative concentration in each solution. Samples were prepared in 1:1 solution with 

SDS running buffer and boiled for 5 minutes. The samples were run alongside PageRulerTM 

Prestained Protein Ladder (ThermoFischer Scientific). The gel was run at 120V for 34 
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minutes, then stained using Coomassie Blue for 40 minutes. Destaining took place 

overnight using distilled water. 

Upon verification of the presence of purified protein in each of the imidazole samples, the 

solutions were concentrated using an Amicon Ultra centrifugal filter (ultra-15, MWCO 

10kDa, Millipore Inc.) and collected in one tube. The concentration of the protein was 

determined by bicinchoninic acid assay (BCA) using bovine serum albumin as the 

standard. The concentration was then adjusted to the desired amount by either centrifuging 

to a lower volume or increasing the volume. 

3.3 Cadmium tellurite quantum dot synthesis 

Cadmium tellurite quantum dots (CdTe QDs) were prepared using a one-pot synthesis 

method [139]. In a three-necked flask, 0.4mmol Cd(CH3COO)2·2H2O was dissolved in 60 

mL of deionized water. After 10 minutes, 36µL TGA was added into the solution and 

stirred for 5 minutes. Then 0.08mmol Na2TeO3 was dissolved in 50mL of deionized water 

and added to the above solution. After 3 minutes of stirring, 160 mg of NaBH4 was added 

to the solution and the pH was adjusted to 11 using 1M NaOH. The solution was refluxed 

at 100°C with a condenser under open-air conditions. The desired photoluminescent 

emission spectra was acquired by controlling the reaction time. In order to achieve the 

spectra required for this particular project, the reaction was ended at 2 hours. The quantum 

dots were then washed twice with ethanol and dissolved in deionized water. 

 

3.4 Protein and quantum dot bioconjugation 

Bioconjugation was mediated by 1-ethyl-3-(3-dimethylami-nopropyl) carbodiimide 

(EDC). Varying ratios of the TGA stabilized CdTe, EDC and protein were used in order to 

determine the most ideal amounts of each. The total reaction time was also varied. The 

baseline ratios used are as follows: 10 µL of 2µmol/L CdTe, 10 µL of 20mmol/L EDC and 

50 µL of 0.1 mmol/L recombinant protein in 80µL PBS. After the conclusion of the 

reaction, Amicon Ultra centrifugal filters (MWCO 100kDa, Millipore Inc.) were used to 

remove free particles from the solution.  
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3.5 Solid substrate synthesis 

A well-aligned zinc oxide (ZnO) nanorod array was grown on PDMS film. 0.01M zinc 

acetate dehydrate was dissolved in 100 mL ethanol as a seed solution. The seed solution 

was dropped on a PDMS substrate repeatedly followed by heat treatment at 100°C for 1 

hour. The film was ten immersed in a mixed solution of 0.025M zinc nitrate hexahydrate 

and 0.025M hexamethylenetetramine in 200 mL of distilled water. After 3 hours of heating 

at 90°C, the ZnO nanorod array was grown on the PDMS (Figure 5.1) [140]. 

Figure 3.1: Illustration of the two-step method for fabricating nanocomposite coated 

ZnO nanorod array on PDMS 
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3.6 Conjugation of sensor onto substrate 

CdTe QDs were conjugated to the ZnO nanoarray using EDC at a ratio of 10 000 to 1 QD. 

The substrate was then washed to remove all free particles and leftover EDC. The protein 

was then separately conjugated to the CdTe also using EDC at a ratio of 10 000 to 1 QD. 

The sample was incubated for 1 hour, then washed of any residual particles. 5µL of 1mM 

CTZ was added to the substrate and measured in the fluorescence spectrophotometer 

immediately. Unless otherwise stated, all samples were incubated with 3μL of 2μM of 

glucose solution for 5 minutes prior to the addition of CTZ. 

3.7 Bioluminescence measurement 

Measurement of the BRET signal of the biosensor was done after the sample was 

incubated with 2µM of 10mM glucose for 5 minutes. Then 5µM of 1mM CTZ was added 

to the sensor solution immediately before initiating the fluorescence spectrophotometer. 

The spectrophotometer was set to read fluorescence intensity every 10 nm of wavelength 

with a time of 0.5 seconds between each reading. Due to the concentration of protein 

required, each test was repeated two or three times and the best representation was 

selected to be presented. 

3.8 Characterization methods 

Molar concentration of the quantum dot solutions was calculated using UV-vis 

spectrometry. The determination of the concentration relies on Beer’s Law using the 

extinction coefficient ε (105 cm-1 M-1). For CdTe, ε = 10043 (D)2.12, where D is the 

diameter of the quantum dots (nm). Using Beer’s Law, the concentration can be 

calculated using equation (2): 

 𝜆 = 𝜀 ∗ 𝐶 ∗ 𝐿  (2) 

Where C is the concentration of QDs in mol/L, and L is the path length (cm) [141]. 
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The concentration of the GBP-Rluc protein in solution was determined using a Micro 

BCATM Protein Assay Kit (ThermoFisher Scientific). The solution concentration was 

then adjusted to the desired concentration using 10mM PBS. 
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Chapter 4 

4 Homogenous biosensor evaluation and optimization 

4.1 Characterization 

Verification of the extraction of the purified protein was completed through SDS-PAGE. 

Rluc and GBP are ~36kDa and ~33kDa respectively. Taking into account the 6x His-tag 

and linker, the predicted molecular weight of the recombinant protein is ~71kDa. SDS-

PAGE performed on the protein solution purified through the His-trap HP columns 

revealed ~71kDa bands, thereby confirming the success of the purification process 

(Figure 3.1). 

 

Figure 4.1: SDS-PAGE characterization of the recombinant protein, GBP-Rluc 

purified through His-trap HP columns. 1) PageRulerTM Prestained Protein Ladder. 

2) Rluc only (~36kDa), 3) Unpurified protein sample, 4) Purified recombinant 

protein sample (~71kDa) 
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TEM imaging of the CdTe QDs determined the average particle size to be 10 ± 3nm 

(Appendix, Figure 1). Photoluminescence with an excitation wavelength of 480nm 

determined that the CdTe emission peak is centered at 580nm 

4.2 Protein to quantum dot ratio 

During the bioconjugation process, the ratio of the protein and quantum dots were varied 

in order to determine the ideal ratio. The most ideal ratio will ideally allow both the 

luciferase and QDs to show strong emission peaks in the emission spectra. The luciferase 

emission peak would be observed near 480nm and the quantum dot emission peak would 

be observed near the 580nm region. When synthesizing the quantum dots, the emission 

peak was carefully set by setting the time of refluxing to 2 hours. The emission peak of the 

quantum dots and luciferase were then verified individually using the fluorescence 

spectrophotometer. Due to initial findings indicating the protein emission being 

significantly higher than the QD, the ratio of QD was significantly increased. 

GBP-Rluc purified from E. coli was conjugated to QDs synthesized using a one-pot 

synthesis method. EDC was used at a molar ratio of 100 EDC to 1 QD and allowed to 

conjugated for 1 hour. Results indicate a significant decrease in the intensity of the 

bioluminescence emitted by the Rluc with increasing concentrations of QDs. No 

discernible peak is observed for the luminescence emitted by the quantum dots despite 

significant increases in the ratio of QDs to protein. This is due to the high intensity of the 

bioluminescence masking the quantum dot emission. Therefore, the amount of 

bioluminescent protein was reduced even further in an effort to be able to see the quantum 

dot emission (Figure 4.1). In the emission spectra of decreasing protein to quantum dot 

ratios, the tail end of the spectra is observed to becoming longer with a increasing ratio of 

quantum dots. The presence of increased quantum dots in relation to protein demonstrates 

an observable effect in the bioluminescence of the protein.  
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The ratio between the protein to quantum dot was adjusted even further in an effort to be 

able to observe a second peak of intensity emitted by the quantum dots. Results indicate 

the peak is not observable despite drastically reducing the bioluminescence emission 

(Figure 4.2). Despite no discernable peak observable in the wavelength pertaining to the 

quantum dots, the bioluminescence of the protein was decreased considerably. Further 

experiments used a ratio of 0.0625:1 to ensure a sufficient amount of bioluminescence but 

also in the hopes of being able to observe the quantum dot peaks by adjusting other 

properties of the sensor. 
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Figure 4.2: Bioluminescence using various ratios of protein to quantum dots 

from 6.25:1 to 0.0625:1. 
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4.3 EDC to quantum dot ratio 

EDC to quantum dot ratio is important to maintain at a ratio, which allows for the most 

efficient conjugation between the QDs and protein to occur. However, it is important to 

note that too high of a ratio of EDC to QD may result in aggregation and precipitation of 

the sensor components [44]. The results indicate that the ratios of EDC to QD from 

10000:1, 500:1, and 250:1 result in a similar bioluminescence emission. However, using 

a ratio of 100:1 resulted in significantly increased bioluminescence emission when 

compared to other ratios (Figure 4.3). 
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Figure 4.4: Bioluminescence for homogenous sensor samples conjugated using 

varying ratios of EDC to quantum dots. Ratios range from 10 000:1 to 100:1 

4.4 Conjugation time 

Conjugation time is important to control due to the balance between the QD and protein 

conjugation and the protein conjugating with other protein. Having an increased 

conjugation time resulted in a significantly higher protein emission and a lower QD 

emission. The ideal conjugation time would allow enough of the QD and protein to 

conjugate, while keeping the amount of protein conjugating to each other at the minimum. 

The conjugation of the homogenous sensor was tested at times of 30 minutes, 1 hour, 2 

hours, 4 hours, and 6 hours. As the time of conjugation increases, the bioluminescence 

emission intensity also decreases (Figure 4.4). The increase in conjugation time leads to a 

increase in interactions between proteins which lead to aggregation and decreased 

bioluminescence. 
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Figure 4.5: Bioluminescence for homogenous sensor samples conjugated for varying 

lengths of time. Time ranges from 30 minutes to 6 hours. 

4.5 Evaluation of the homogenous BRET sensor with 
increasing glucose concentration 

In order for the sensor to be applicable in physiological conditions, the sensor should 

demonstrate a quantifiable difference when there are varying concentrations of glucose 

present in the medium. The performance of the sensor under varying concentration of 

glucose was evaluated using a 5:16 protein to quantum dot ratio, 100:1 EDC to quantum 

dot ratio and 1 hour of incubation time. Increasing the glucose concentration resulted in a 

significantly lower emission of the luciferase.  

Results indicate a significant decrease in bioluminescence intensity for increases in glucose 

concentration (Figure 4.5). This is due to increases in BRET events as glucose 

concentration increases. An increase in glucose concentration results in bioluminescence 
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being absorbed by the quantum dots, thereby decreasing the measured bioluminescence 

intensity. 

 

4.6 Evaluation of the decay in bioluminescence in the 
homogenous BRET sensor with a fixed glucose 
concentration 

The decay of the bioluminescence by the protein was evaluated using different 

concentrations of glucose over a fixed period of time after adding the CTZ. The initial 

spectrum was measured immediately after the addition of CTZ and following spectra was 

measured immediately following the conclusion of the measurement of the spectrum before 

it. The total time for measuring each spectrum was 10 seconds. Testing was done to 

evaluate how rapidly the bioluminescence of the protein will decay for a set period of time 

and whether the emission spectra of the sensor would show a discernable peak for the 
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quantum dots. Results indicate significantly larger decay in bioluminescence during earlier 

time intervals for all concentrations of glucose used (Figure 4.6). Considering the large 

decay observed within a short period of time after adding the CTZ, all future testing should 

seek to measure the fluorescence as soon as possible in order to obtain strong 

bioluminescence.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

Figure 4.7: Decay of bioluminescence in 10s intervals for a protein to quantum ratio 

of 0.0312:1 in glucose concentrations of (A) 2 µM, (B) 100 µM, (C) 1550 µM, (D) 

3000 µM, (E) 6500 µM, and (F) 10 000 µM. 
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The effect of filtering the sensor solution was evaluated, in addition to the effect of 

adding glucose to the filtered solution. Results indicate a significant decrease when the 

sensor solution is unfiltered or filtered through a centrifugal filter. For the solution 

containing a ratio of 0.0312:1 and 0.0156:1, there exists a significant difference when 

glucose is added to the filtered solution compared to the other two conditions (Figure 

4.7). Without filtering the sensor solution, free GBP and potentially free QDs remain 

which results in an increased bioluminescence emission. Filtering the solution for future 

studies could prove to be effective in removing any bioluminescence that does not come 

from the conjugated BRET sensor. 
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Figure 4.8: Bioluminescence of sensor when unfiltered, filtered, and with glucose 

added for ratios of (A) 0.0625:1, (B) 0.0312:1, and (C) 0.0156:1. 
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The lack of a discernable peak for the QDs is not an indication that BRET did not occur. 

It may be possible that the band gap of the QDs may be too large and requires too much 

energy to become excited. In the future, QDs with smaller band gaps could be chosen to 

increase the possibility of BRET occurring in the sensor. The intensity required from the 

bioluminescence in proportion to the QD emission may be so large that the QD emission 

is undetectable when compared to the tail end of the bioluminescence peak. 

4.7 Conjugation of sensor onto a solid substrate 

TEM imaging of CdTe QDs decorated with ZnO nanoarray (ZnO-CdTe QD) was used to 

determine the diameter of the ZnO nanoarray (Figure 5.2). It was estimated to be 230 ± 

10nm and the average particle size of CdTe QDs is around 10 ± 3nm (Appendix, Figure 

1). 

 

Figure 4.9: TEM micrograph of CdTe decorated with ZnO nanoarray (courtesy of 

Dr. Yi Chen). 

SEM micrograph of the solid sample was used to determine the length of each nanorod. 

Each nanorod was estimated to be 3.0 ± 0.2μm (Figure 5.3A). The photoluminescence of 

the CdTe QDs and ZnO-CdTe QD was measured using an excitation wavelength of 

480nm. The maximum emission of CdTe QDs modified with thioglycolic acid (TGA) is 
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centered at 617nm, while the emission of ZnO-CdTe QDs had a red shift to 620nm 

(Figure 5.3B). 

  

Figure 4.10: (A) SEM micrograph of CdTe decorated ZnO nanorod (courtesy of Yi 

Chen); (B) Photoluminescence of CdTe QDs and CdTe decorated ZnO nanorods 

(courtesy of Yi Chen) 

Addition of 2µM of 10mM glucose then 5µM of 1mM CTZ to the solid substrate resulted 

in an observable increase in photoluminescence intensity peak around 480nm. The 

emission peak corresponds to the peak emission of Rluc; therefore, the protein was 

successfully conjugated to the solid substrate. The quantum dot emission was not 

verifiable; however, it may have been too low to detect (Figure 5.4). 
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Figure 4.11: Normalized fluorescence emission of ZnO nanorod array on PDMS 

film conjugated with quantum dots (CdTe) and recombinant protein (GBP-Rluc) 

using EDC. 

4.8 Refinement of conjugation process 

Conjugation of the sensor onto the ZnO nanorod array may require different ideal 

conditions such as conjugation time, EDC to QD ratio, and such. Therefore, more testing 

is required to fully optimize the sensor on a solid substrate. The concentration of EDC to 

be used during the conjugation of both the CdTe and the recombinant protein should be 

adjusted to find the ideal ratio. The concentration of the CdTe per area of the solid substrate 

should also be adjusted accordingly. 
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Chapter 5 

5 Discussion 

The results show an ideal ratio of components to be used during the conjugation process. 

When comparing ratios of an increasing concentration of quantum dots compared to the 

recombinant protein, the bioluminescence decreased significantly. As the ratio of 

quantum dots increases, there is a larger ratio of acceptor molecules compared to donor 

molecules. Therefore, more of the bioluminescence emitted by the recombinant protein is 

absorbed by the quantum dots, which leads to a decrease seen in the bioluminescence 

intensity found at 480nm. From these results, it is concluded that BRET is occurring 

between the recombinant protein and the quantum dots, and allows us to select a ratio of 

protein to quantum dots to be used in further experiments. The fluorescence readings did 

not show a discernable peak from the quantum dots, however, it was concluded that the 

intensity of the bioluminescence from the recombinant protein was masking the quantum 

dot emission. Despite adjusting the ratio of the donor and acceptor, the quantum dot 

emission could not be observed, therefore the ratio selected for further experiments was 

0.0625:1. Using a ratio of 0.0625:1 ensured a sufficient amount of bioluminescence but 

also was chosen in the hopes of observing the quantum dot emission when adjusting other 

factors. 

The ratio of EDC to quantum dots for the purposes of bioconjugation was adjusted to find 

the ideal concentration of EDC to use. Using an excess amount of EDC may result in 

aggregation and precipitation of the sensor components [142], therefore the ratio was 

adjusted to avoid such an event. The ratio of 100:1 EDC to quantum dots was found to 

have the highest intensity of bioluminescence, which was concluded to be the result of 

the most efficient conjugation without the loss of bioluminescence due to protein 

aggregation or precipitation.  

Conjugation time was varied to determine the ideal reaction time to achieve the most 

efficient bioconjugation. The conjugation time is important to control, otherwise allowing 

component to react for too long may lead to aggregation and precipitation of sensor 

components [142]. A conjugation time of 30 minutes yielded the highest 
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bioluminescence, thereby indicating the most efficient conjugation with the least amount 

of sensor component precipitation.  

The integral finding was the results about the change in bioluminescence as glucose 

concentration is increased. Increasing glucose concentration resulted in a decrease 

bioluminescence. This indicates a BRET reaction which is evident by the decrease in 

bioluminescence which can be attributed to absorption of the bioluminescence light 

energy by the quantum dots. An increase in glucose concentration allows for more of the 

glucose binding protein to change conformation and allow the BRET pair come into close 

enough distance to initiate an energy transfer. Sensors to detect glucose, which have been 

developed in the past, have utilized fluorescent proteins as acceptors or fluorescent 

protein as donors instead of bioluminescent protein. In the present, there does not exist a 

sensor for detecting glucose that combines the biocompatibility of light emitting enzymes 

from animals and functionalized quantum dots.  

The sensor, when conjugated to the ZnO nanorod array, exhibited characteristic peaks of 

emission at 480nm and 565nm. These peaks indicate the successful conjugation of the 

sensor onto the substrate, as well as the incidence of a BRET event. Zinc oxide has a 

known emission peak at about 380nm [143], which can be observed in the 

photoluminescence spectra, however the spectra does not completely capture the peak. 

Chapter 6 

6 Summary and future works 

As the number of diabetes patients increases worldwide, the demand for a non-invasive 

and accurate method for detecting glucose increases. The measurement of different body 

fluids has been explored. Tear glucose in particular shows promise due to its strong 

correlation with blood glucose based on previous research. Due to the low concentrations 

of glucose in tears, FRET and by extension, BRET has been employed to measure these 

concentrations in part due to the extremely sensitive nature of the techniques. Due to the 

external energy requirement of FRET, BRET is the ideal choice due to its biocompatibility 

and lack of drawbacks presented by requiring an external energy source. The combination 



47 

 

of BRET and a glucose binding protein has not been extensively reported on. Therefore, 

we have a developed a BRET sensor incorporating glucose binding protein and quantum 

dots in order to measure low concentrations of glucose. Upon binding of the glucose 

binding protein, it will change conformation, bringing a bioluminescent protein and the 

quantum dots close enough to trigger BRET. Quantum dots were chosen due to having 

unique optical properties and proven effectiveness in BRET constructs. They are an 

excellent alternative to organic dyes and further evidence continues to build up in favor of 

their advantages.  

Trends regarding the bioluminescence were observed in the results. Firstly, decreasing the 

ratio of protein to quantum dot resulted in decreased bioluminescence. Secondly, an 

increased concentration of quantum dots has an observable, negative effect on the intensity 

of the bioluminescence. Thirdly, for varying concentrations of EDC, only low ratios of 

EDC to quantum dots had any observable effect on the intensity of the bioluminescence. 

A ratio of 100:1 EDC to quantum dots significantly increased the bioluminescence 

intensity when compared to other ratios. In addition, conjugation time had a significant 

impact on the bioluminescence intensity. Increasing conjugation times resulted in 

significantly lower bioluminescence intensity. Further, for increasing concentrations of 

glucose added in to the homogenous sensor, bioluminescence intensity decreased. 

Moreover, tests performed to measure the decay of the bioluminescence intensity over time 

demonstrated that intensity decreased significantly faster at earlier time points than later 

time points. Therefore, tests regarding bioluminescence intensity should be performed and 

measured immediately after the addition of CTZ. Finally, filtering the sensor after the 

conjugation procedure had a significant effect on the bioluminescence intensity. 

Trends observed in bioluminescence indicate that the construct is particularly sensitive to 

small changes in components used to synthesize the sensor. However, once the ideal ratios 

of each component are found, the sensor will provide consistent results to increase its 

applicability in the task of measuring blood glucose levels. 

Experiments regarding the deposition of the sensor onto a ZnO nanorod array were able to 

demonstrate successful deposition. Bioluminescence was observed when CTZ was added 
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to the substrate, therefore it can be concluded that the protein had successfully conjugated 

to the functionalized quantum dots on the surface of the ZnO nanorod array. Further testing 

will be required to optimize the conjugation of the BRET pair and increase the 

bioluminescence. 

The development of a BRET sensor utilizing nanomaterials to detect glucose is a novel 

design and has not been investigated before. This sensor construct promises to be a simple 

and non-invasive method through implementation with a transducer to monitor glucose 

concentrations in tears to output an accurate reading of blood glucose. This construct 

utilizes quantum dots synthesized in a simple and facile process and combines them with 

biocompatible proteins to detect glucose concentrations as low as  

The results indicate difficulty in identifying a BRET signal as a result of energy transfer 

between the protein and the quantum dots. Further findings led to the conclusion that BRET 

is occurring, however the emission from the quantum dots is too low to detect when 

compared to the high intensity of the Rluc bioluminescence. Futures studies should focus 

on utilizing quantum dots with a smaller band gap, thereby requiring less energy from the 

bioluminescence to excite. Therefore, increased quantum dot emission could potentially be 

observed. 

In the future, different luciferases could be implemented in place of Renilla luciferase such 

as Nano luciferase, a smaller variant which has been proven to be robust and highly 

sensitive.  Its size has proven to a valuable asset in the bioconjugation process. In addition, 

due to the non-specific nature of the bioconjugation process, other binding proteins could 

potentially replace the glucose binding protein. This could lead to applications of the sensor 

for detecting other small molecules besides glucose. Finally, optimizations in order to 

improve the performance of the sensor in a solid substrate can be implemented. Such 

optimizations may include the amount of EDC to be used for conjugated both the CdTe 

and the recombinant protein, and the specific concentration of CdTe to be used per area of 

the solid substrate. 
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Appendices 

1. Characterization of CdTe QDs 

CdTe QDs were characterized using TEM imaging by my colleague, Dr. Yi Chen, a pos-

doc fellow in our group (Figure 1). Photoluminescence of the CdTe QDs was observed 

using an excitation wavelength of 480nm and the peak excitation was observed at 580nm 

(Figure 2). 

  

Figure 1. TEM micrograph of CdTe QDs. Average particle size is estimated to be 

around 10 ± 3nm. 



66 

 

 

Figure 2. Photoluminescence emission spectra of CdTe QDs excited by excitation 

wavelength of 480nm.  

2. Initial bioluminescence testing 

The photoluminescence spectra of the TGA coated CdTe QDs refluxed for 2 hours show a 

strong emission peak at 580nm. These QDs were chosen in order to make sure the peaks 

of the QD and the protein do not overlap but are not too far that the signal of the protein 

will decay before reaching it. Increasing the reflux time shifts the emission spectra of the 

quantum dots to longer wavelengths due the increasing size of the CdTe QDs, which are a 

consequence of quantum confinement.  

The photoluminescence spectra of the recombinant protein was found to have a large peak 

centered at 480 nm. This is expected because Renilla luciferase has been well documented 

to emit light within this region. The photoluminescence spectra of the recombinant protein 

bioconjugated to the CdTe QDs was found have a strong peak at 480 nm, however a 
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broader tail is observed in the region after 480 nm, which corresponds with the QD 

emission. The quantum dot emission is not strong enough to display a peak when compared 

to the luciferase emission, therefore this results in a broader tail. 

Bioluminescence intensity was tested using two samples with identical ratios of GBP-Rluc 

to QD, conjugation time, and EDC concentration. The only difference being that one 

sample was filtered through an Amicon Ultra centrifugal filters (MWCO 100kDa, 

Millipore Inc.). This was to verify the solution was indeed filtered of free particles. The 

results indicate a significant decrease in bioluminescence upon filtering due to the filtering 

of free GBP-Rluc and QD particles (Appendix 1) 

400 450 500 550 600 650

0

200000

400000

600000

800000

1000000

1200000

1400000

In
te

n
s
it
y
 (

a
.u

.)

Wavelength (nm)

 Unfiltered

 Filtered

Figure 3: Bioluminescence intensity for two samples using identical conditions except for 

one sample is filtered and the other left unfiltered. 
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