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Abstract

The limited spectral resource for wireless communications and dramatic proliferation of

new applications and services directly necessitate the exploitation of millimeter wave (mmWave)

communications. One critical enabling technology for mmWave communications is multi-

input multi-output (MIMO), which enables other important physical layer techniques, specif-

ically beamforming and antenna array based angle of arrival (AoA) estimation. Deployment

of beamforming and AoA estimation has many challenges. Significant training and feedback

overhead is required for beamforming, while conventional AoA estimation methods are not fast

or robust. Thus, in this thesis, new algorithms are designed for low overhead beamforming,

and robust AoA estimation with significantly reduced signal samples (snapshots).

The basic principle behind the proposed low overhead beamforming algorithm in time-

division duplex (TDD) systems is to increase the beam serving period for the reduction of

the feedback frequency. With the knowledge of location and speed of each candidate user

equipment (UE), the codeword can be selected from the designed multi-pattern codebook, and

the corresponding serving period can be estimated. The UEs with long serving period and low

interference are selected and served simultaneously. This algorithm is proved to be effective in

keeping the high data rate of conventional codebook-based beamforming, while the feedback

required for codeword selection can be cut down.

A fast and robust AoA estimation algorithm is proposed as the basis of the low overhead

beamforming for frequency-division duplex (FDD) systems. This algorithm utilizes uplink

transmission signals to estimate the real-time AoA for angle-based beamforming in environ-

ments with different signal to noise ratios (SNR). Two-step neural network models are designed

for AoA estimation. Within the angular group classified by the first model, the second model

further estimates AoA with high accuracy. It is proved that these AoA estimation models work

well with few signal snapshots, and are robust to applications in low SNR environments. The

proposed AoA estimation algorithm based beamforming generates beams without using refer-

ence signals. Therefore, the low overhead beamforming can be achieved in FDD systems.

With the support of proposed algorithms, the mmWave resource can be leveraged to meet

challenging requirements of new applications and services in wireless communication systems.

Keywords: MIMO, beamforming, codebook, overhead, AoA estimation, neural network
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Lay Summary

The exploitation of communications based on new range of frequency is helpful to meet

the requirement of new applications and services. Multi-input multi-output (MIMO) technique

is developed in high-frequency communications, which enables other important physical layer

techniques, including beamforming and antenna array based angle of arrival (AoA) estimation.

However, challenges exist in the deployment of beamforming and AoA estimation. Significant

training and feedback overhead is required for beamforming, while conventional AoA estima-

tion methods are not fast or robust. Thus, in this thesis, new algorithms are designed for low

overhead beamforming, and robust AoA estimation with reduced signal samples (snapshots).

The signal for transmission from each user equipment (UE) to the base station is not always

available in time-division duplex (TDD) systems. Therefore, the low overhead beamforming

is designed by increasing the beam serving period for the reduction of the feedback frequency.

With the knowledge of location and speed of each candidate UE, the corresponding serving

period can be estimated. UEs with long serving period and low interference are selected and

served simultaneously. This algorithm is proved to be effective in keeping the high data rate of

conventional beamforming, while the feedback required for beams generation can be reduced.

Achieving a fast and robust AoA estimation is the most important part for the low overhead

beamforming design in frequency-division duplex (FDD) systems. The AoA of the signal

with noise from a UE can be used as the direction of beamforming to this UE, while the AoA

should be both fastly and correctly estimated for the cases with high frequent beam changing

requirement. Two-step neural network models are designed for AoA estimation, which are

proved to work well with few signal snapshots, and are robust to applications in low signal

to noise ratio (SNR) environments. The proposed AoA estimation based beamforming can

determine the directions of downlink beams with uplink transmission signals. Therefore, no

extra signals for beams generation are required, and the low overhead beamforming can be

achieved in FDD systems.
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Chapter 1

Introduction

1.1 Overview of Communications with Large Scale Antenna
Array

Nowadays, the limited spectral resource for wireless communications can hardly satisfy the

capacity requirements of emerging applications and services. The resource in high frequency

band has already been explored for a long time [1], which pushes forward the development

of millimeter wave (mmWave) communications. The frequency band in mmWave communi-

cations ranges from 30 to 300 GHz, the high carrier frequency leads to the small wavelength,

while the wavelength is always considered to be proportional to the space between adjacent

antennas in antenna array design. Therefore, on the antenna array for mmWave signals trans-

mission, the intervals among adjacent elements are smaller, and large numbers of antennas

can be packed on a small-size antenna array. It makes the large scale antenna array (antenna

array with plenty of elements) transmission become possible at both transmitter and receiver

in the wireless communications. The large scale antenna arrays play important roles in many

applications such as radar, navigation, remote sensing, vehicular communications and biomed-

ical imaging as shown in Fig. 1.1. They also promote the development of communications in

multiple input multiple output (MIMO) systems.

In cellular communications, the large scale antenna arrays, which are always equipped at

the BS, make it possible to separate UEs using the same frequency/time resource by spatial

selectivity. Beamforming is a widely utilized technology to make full use of spatial domain re-

source, which is designed based on large scale antenna arrays. It can improve the sum data rate

1
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Figure 1.1: The applications using large scale antenna arrays.

and energy efficiency in multiuser systems by interference reduction in spatial domain [4][5].

However, the whole channel state information (CSI) is required in beamforming algorithms

design, which is obtained by sending preambles or reference signals. The frequency/time re-

source for these signals and their corresponding feedbacks are viewed as overhead for beam-

forming, in the whole CSI-based beamforming, huge resources are required as overhead [6]. In

order to reduce the overhead of beamforming, angle-based beamforming and codebook-based

beamforming algorithms are explored. Both of them are viewed as part CSI-based beamform-

ing, which generate beams with a part of channel features such as angle of departure (AoD)

and multipath delay [7].

The angle-based beamforming utilizes the AoD of the dominant paths to determine the

beams design. In downlink angle-based beamforming, the angle of arrival (AoA) of uplink



1.1. Overview of Communications with Large Scale Antenna Array 3

paths from UEs can be viewed as the AoD of the corresponding downlink paths due to the

angle reciprocity in both time-division duplex (TDD) and frequency-division duplex (FDD)

systems, when the time elapse between uplink and downlink signals can be neglected [8][9].

The extra uplink signals for AoA estimation are always in need, although AoA changes slower

than channel matrix in mmWave channel, it still brings significant overhead. In conventional

codebook-based beamforming algorithms, the estimation for AoA and CSI are not required

any more. Instead, the training signals are necessary for suitable codeword selections, and

both training and feedback signals should be considered as overhead, the amount of which is

decided by the number of codewords for selection and the changing rate of channel. In all,

for both angle-based and codebook-based beamforming, although the amount of overhead is

reduced compared with the whole CSI-based beamforming, to make a further reduction is still

a challenge.

The large scale antenna arrays are also helpful in applications with requirement for localiza-

tion. In conventional localization methods, the fingerprinting is widely used in indoor scenar-

ios, but this method is not adaptive to changing environments [10]. The environment-adapted

localization can be achieved by location dependent parameters detection, which includes time

difference of arrival (TDoA), time of arrival (ToA), AoA, received signal strength (RSS) or the

combination of them. These parameters are detected by multiple reference nodes or anchor

nodes, and the time-costing synchronization step is required for each time of localization [11].

In cellular system with single base station (BS), the requirement for multiple reference nodes

is unrealistic. In this case, the large scale antenna arrays employed at the BS can be considered

to achieve the single-anchor based localization, which means that the location information of

user equipment (UE) can be obtained by uplink array signal processing at single receiver.

To specify the single-anchor based localization method with large scale antenna array, for a

UE location detection based on the receiving multipath signal with line of sight (LoS) path, the

ToA of the first arriving path can be utilized to calculate the straight-line distance from the UE

[12]. At the same time, the AoA of LoS path can be extracted from the receiving array signal

vector. The conventional antenna array based AoA estimation methods, such as the Estima-

tion of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Multiple SIgnal

Classification (MUSIC) methods, cannot work well in environments with large noise [15]. Be-
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sides, these methods can only provide high resolution AoA estimation with a large number of

snapshots [13], for the cases such as estimating AoA for critical automotive applications, when

only a limited number of snapshots are available in each time of estimation, the unignorable

error may be made. To conclude, these conventional AoA estimation methods cannot achieve

the requirement for fast and robust AoA estimation. Hence, based on few snapshots, achieving

the high accuracy AoA estimation in low SNR environments is still a challenge.

1.2 Thesis Motivations

The mmWave large scale antenna array system is widely utilized in different scenarios, tech-

niques such as beamforming and single-anchor based localization are designed with the help

of antenna arrays. The large overhead for beamforming and the slow AoA estimation with low

robustness in single-anchor based localization are pointed out as challenges in the last section.

The work in thesis is motivated by the aforementioned challenges in order to achieve better

performance in different applications with large scale antenna arrays.

Significant overhead for beamforming: In different beamforming algorithms, the informa-

tion of channel is always required for beam generation. For both the whole CSI-based beam-

forming, and the part CSI-based beamforming including angle-based and codebook-based

beamforming, the CSI or channel features should be estimated with less error, in order to

make an appropriate beamforming design to UEs. The high quality CSI or channel features

are obtained from multiple reference signals or training/feedback signals, which is viewed as

overhead for beamforming and consumes plenty of transmitting resource. Therefore, the con-

tradiction exists between the required overhead for high quality beamforming and the sacrifice

of transmission signals, which brings a motivation for the research work on the high data rate

and low overhead beamforming.

Non-robust AoA estimation: Due to the fact that the conventional subspace-based AoA esti-

mation algorithms require numerous snapshots to formulate reliable signal and the noise sub-
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spaces [14], these methods only work well with a large number of snapshots or in environments

with high signal to noise ratio (SNR). However, the requirement for AoA estimation exists in

environments with low SNR while only few snapshots are available, the aforementioned meth-

ods should be evaluated as non-robust methods for these cases (not robust to large noise and

few snapshots use cases). As a result, it remains a problem to achieve accurate AoA estimation

for applications in low SNR environments with only few snapshots.

1.3 Research Objectives

The objectives of this thesis are dealing with the challenges mentioned in the last section, which

can be generally described as reducing the overhead in beamforming, and designing a robust

AoA estimation method. To be mentioned that, in downlink beamforming, due to the differ-

ence between TDD and FDD systems, which is the availability of uplink signal in the downlink

transmission. Therefore, the reduction of beamforming overhead can be discussed in TDD and

FDD systems, respectively.

Low overhead beamforming in TDD systems: In TDD systems, the uplink transmission

is not available all the time. Therefore, the beams should be ensured to adapt to UEs for the

period between two times of uplink transmission. It can be found that the longer the period is,

the less frequently the beams change, and the lower overhead required for beamforming when

the overhead for each time of beam change is fixed. As a result, the objective of cutting down

the beamforming overhead can be transformed into the long serving time connection beam-

forming design in TDD systems.

Low overhead beamforming in FDD systems: Different from TDD systems, in FDD sys-

tems, the uplink transmission is always available while transmitting the downlink signals.

Therefore, for the beamforming design in FDD systems, the aim is to obtain channel fea-

tures complying with reciprocity from uplink transmission signals directly without utilizing

reference signals. Therefore, the downlink beams can be regenerated frequently while the low
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overhead objective can be achieved.

Robust AoA estimation: In the environment with any SNR, the received array signal should

be decided by the AoA of the dominant paths signal. The neural network is mentioned to have

the function that classifies objects into groups according to their hidden features. Therefore,

the neural network design becomes the objective, it should work to achieve the high accuracy

AoA estimation with different SNR and small numbers of signal snapshots.

1.4 Technical Contributions of the Thesis

The main contributions of this thesis are summarized as follows:

• The multi-pattern codebook is designed in Chapter 3. In the cellular wireless communi-

cations system, it assumes that the candidate UEs with similar linear speed are in need of

service in the serving space. Their angular speeds change with the straight-line distances

to the BS, and the path loss is also distance related. In this chapter, the serving space

is divided into zones according to the straight-line distances. UEs with similar distance

to the BS are allocated into the same zone. A specific pattern codebook is designed to

adapt to the UEs in a zone, where the beams are generated with the same beamwidth in

spatial frequency domain and with fixed beam gain.

• Two UE selection algorithms are proposed in Chapter 4 based on the multi-pattern code-

book design. With the AoA and straight-line distance information detected at the BS, the

zone for all candidate UEs are specified and serving beams can be initialized firstly for

both UE selection algorithms, then the UEs served with low interference are selected for

a long serving time beamforming service in TDD systems. Two UE selection algorithms

are designed as ultra low overhead oriented and large connection oriented, separately,

which can be adaptive to different use cases.

• Two-step neural network models are designed to achieve the fast and robust AoA estima-

tion in Chapter 5. In the propagation channel with single dominant path from the BS to
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each UE, the proposed model can provide AoA estimation with high accuracy based on

few snapshots in the low SNR environments. Besides, the proposed neural network mod-

els estimate AoA by signals with arbitrary transmitted symbols. Therefore, the uplink

transmission signals can be utilized for AoA estimation, which can avoid the overhead

required for sending reference signals in conventional beamforming algorithms, while

the high sum data rate is kept in FDD systems.

1.5 Thesis Outline

The rest of the thesis is organized as below:

In Chapter 2, a literature survey starts from the introduction to the mmWave communica-

tions and multi-input multi-output (MIMO) communications based on the large scale antenna

array system. Then the principles and procedures of conventional AoA estimation methods are

detailed, in order to make performance comparisons with the novel method in Chapter 5. At the

same time, some widely used neural network structures proposed are surveyed for the neural

network structure selection. After that, the frame structures for TDD and FDD systems shown

in 3GPP TS 36.211 are compared to prove the requirement of separate beamforming designs

in two kinds of systems. Finally, different kinds of beamforming methods are introduced and

compared.

In Chapter 3, the straight-line distance based zoned serving space and the propagation

model in mmWave channel are firstly introduced in the multiuser MIMO system. Then the

multi-pattern codebook design is proposed with the concept basis of spatial frequency domain.

The beamwidth and beam gain are adaptive to candidate UEs in different zones. In the simula-

tion work, the influence of three kinds intra-zone interference are compared.

Two UE selection algorithms are put forward in Chapter 4 on the basis of multi-pattern

codebook design. In the system introduced in the last chapter, two UE selection algorithms are

designed based on location information, one of them is ultra low overhead oriented algorithm,

and the other one is large connection oriented algorithm. Simulation work makes compar-

isons among two UE selection algorithms based beamforming and a conventional beamforming
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method with regard to their UEs connection ratio, sum data rate performance and the number

of cumulative feedback bits required.

In Chapter 5, the application of two-step neural network based AoA estimation in FDD

systems beamforming is presented. With the defination of uplink and downlink signals in

simplified channel model, the structure of neural network model for uplink signal AoA estima-

tion is firstly detailed. With the estimated AoA, the codeword selection can be employed for

downlink beamforming. The simulation work shows the AoA estimation accuracy of the novel

algorithm is improved compared with MUSIC algorithm with few snapshots in low SNR envi-

ronments, and the higher sum weighted data rate (SWR), which is a parameter defined to reflect

both the performance of sum data rate (SR) and the percentage of signal used as overhead for

beamforming, can be achieved.

Finally, all the contributions presented in the previous chapters are concluded in Chapter 6,

while the future plan for research is discussed in this Chapter as well.



Chapter 2

AoA Estimtion and Beamforming Design
in mmWave MIMO System

The antenna array based AoA estimation and beamforming methods have been researched for

a long time in mmWave MIMO systems. In this chapter, several kinds of mmWave MIMO

systems are introduced firstly. Then the conventional antenna array based AoA estimation

methods are detailed. Due to the difference of TDD and FDD systems, some partial CSI

beamforming methods are reviewed as the basis of low overhead beamforming designs.

2.1 mmWave Band Communications

2.1.1 Characteristics of mmWave Band Communications

In the enabling technologies explored for the fifth generation (5G) mobile system, mmWave is

developed as one dominant technology. It shows potentials to provide significantly rise on user

throughput, spectral and energy efficiency. Also, the mmWave communication shows increase

on the capacity of mobile networks with the joint capabilities of the huge available bandwidth

in the mmWave frequency bands [16]. This section starts from the definition of mmWave

communications. After that, the parameters for mmWave applications are compared, and a

path loss model in mmWave transmission is detailed. In the end, the problem brought by the

high carrier frequency is given, while the corresponding solving method is mentioned.

For the definition of mmWave communication, it spans a wide frequency range from 30

GHz to 300 GHz. Especially for outdoor applications in 5G cellular mobile systems, many

9
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Table 2.1: Summary of Reported Outdoor mmWave Channel Measurement Campaigns

Carrier

frequency

Service

site

Radio frequency

bandwidth

Max Tx-Rx

distance

Target

applications

28 GHz
Urban (street) 5 kHz 1.5 km Point-to-point

Orchard 5 kHz 0.9 km Point-to-point

Suburban 18 MHz 6 km LMDS

Dense urban 800 MHz 500 m Cellular/Backhaul

38 GHz

Urban

moderately

dense

800 MHz 930 m Cellular

73 GHz
Urban

(campus)
800 MHz 200 m

E-band mobile

/cellular backhaul

81-86 GHz
Urban

(street canyon)
5 GHz 685 m E-band radio

research interests can be found on the frequency bands in the 28-38 GHz and 70-90 GHz range

[17]. This frequency band range can be further divided to adapt to different target applications.

As shown in Table 2.1, part of the summary of reported measurement campaigns for charac-

terization of outdoor millimeter wave propagation channels is given [17], which includes the

information of service sites, radio frequency (RF) bandwidth, maximum Tx-Rx distance and

target applications for transmission with different carrier frequencies.

Path loss is one of significant problems arisen by the high frequency carrier of mmWave

communications. As mentioned in [18], the equation for close-in (CI) path loss model is

PL ( f , d) = F ( f , d0) + 10nlog10

(
d
d0

)
+ χσ, (d > d0) , (2.1)
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F ( f , d0) = 20log10

(
4π f d0 × 109

c

)
. (2.2)

In this model, the predefinitions are required for the reference distance d0(m) and carrier fre-

quency f (GHz). The model named as CI model or close-in optimized (CI-opt) model with

different values for d0. When d0 = 1m, the model is simply CI model, while the CI-opt model

can be called when the optimized d0 is selected based on f . n and χσ are viewed as path loss

exponent (PLE) and shadowing parameter, respectively. d(m) is the Tx-Rx distance, σ is the

standard deviation for zero-mean Gaussian random variable χσ, in mmWave transmission, σ

for NLoS paths is much higher than that of LoS path, which means the signals transmitted

from NLoS paths suffer from more severe path loss than the ones transmitted from LoS path.

The specific value for n, χσ and the range for d can be determined based on the selection of d0

and f . c represents the speed of light in Eq. (2.2). In 3GPP/ITU [19], the path loss model is

rewritten in the form of

PL ( f , d) = F ( f , d0) + 10nlog10

(
d
d0

)
+ χσ, (d > d0)

= 20log10

(
4πd0×109

c

)
+ 20log10 ( f )

+ 10nlog10

(
d
d0

)
+ χσ

= C + 20log10 ( f ) + 10nlog10

(
d
d0

)
+ χσ

where C = 20log10

(
4πd0 × 109

c

)
, (2.3)

The drawback of mmWave transmission can be proved that when d and d0 are fixed values,

the channel path loss increases with the rising carrier frequency f . However, in large scale

antennas array design, the distance between adjacent antennas is inversely proportional to f ,

which means that more antennas can be packed on an antenna array in high frequency band

transmission, this is helpful to improve the transmitting power gain to overcome the problem

of path loss. In the next section, the development of MIMO system will be explored with

mmWave signal.
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2.1.2 MIMO in mmWave Communications

As mentioned in the last section, the high frequency carrier in mmWave communications makes

the utilization of antenna arrays with plenty of elements become common. In this section,

different types of antenna arrays are shown firstly. After that, the definitions for different

systems using large scale antenna arrays are introduced and compared.

The large scale antenna arrays can be classified into planar arrays and linear arrays accord-

ing to their geometrical configurations [2]. As shown in Fig. 2.1, commonly the planar array

structures are the rectangular or square array with equal space between adjacent elements in

columns and rows, while the circular arrays are also viewed as planar arrays, they are equipped

with the antenna elements arranged in concentric circles. As one of the advantages, the planar

arrays can achieve beam steering in both the azimuth and elevation planes. Besides, the circu-

lar arrays is mentioned to be able to scan in the minimum change of beamwidth azimuthally.

However, the utilization of planar arrays brings high cost and complexity because of the com-

plicated array arrangement. Compared with planar arrays, linear arrays are much simpler. The

antenna elements in this kind of arrays are uniformly arranged in a line. Therefore, with lin-

ear phase shifters, the main antenna lobes beam steering of linear arrays are obtained in single

plane. The linear arrays conform to a Vandermonde structure, which makes the receiving signal

precessing to be less challenging than that of some planar arrays. Therefore, the linear arrays

are still used in many research works.

In MIMO systems, more than one antennas are equipped at both the transmitting side and

receiving side. The conventional MIMO system mentioned in [20] is fully digital, which means

all signal processing work are finished in baseband. Therefore, when the large scale antenna

array is employed at any side in transmission, a large number of RF chains are required, which

leads to the unaffordable energy consumption and cost in hardware. As a result, a fully analog

architecture can be utilized to reduce the number of RF chains required. The phase shifter are

employed to adjust signal to achieve an array gain, which process can be explored as analog

beamforming. In Fig. 2.2 and Fig. 2.3, the signal process with fully digital architecture and

fully analog architecture are shown respectively.
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Figure 2.1: Different types of array antenna geometries.
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Figure 2.3: The architecture of fully analog MIMO system.
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Figure 2.5: The MU-MIMO system architecture.
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As defined in [16], compared with single input single output (SISO) systems, which only

have single antenna equipped at both the transmitter and the receivers, MIMO systems use

multiple antennas at both sides. MIMO offers higher capacity and reliability. Also, in terms of

the multiplexing, diversity and array gains, the MIMO channels have considerable advantages

over SISO channels.

MIMO systems have two basic configurations, which can be divided into the single user

MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) systems, which are shown in Fig. 2.4

and Fig. 2.5, respectively. Linear antenna array is considered in both systems. Single active

UE is served or scheduled in a transmission time interval (TTI) in SU-MIMO systems, while

the large scale antenna arrays are equipped at both transmitter and receiver. In this kind of

system, the single UE transmission means that all time-frequency resource are allocated to one

terminal, which means the diversity in spatial domain is ignored. Compared with SU-MIMO,

in MU-MIMO systems, the same time-frequency resource are reused by multiple UEs. The

multi-UE diversity is considered in spatial domain, which brings large gains compared with

SU-MIMO, especially in the cases that channels are spatially correlated.

Except from the advantage of the spatial diversity usage, compared with SU-MIMO sys-

tems, single antenna can be employed by each UE in MU-MIMO systems. In this case, the

expensive equipment is just needed at the BS, which results in a large cost reduction.

In the comparison between SU-MIMO and MU-MIMO systems, last but not least, a rich

scattering is seldom required in MU-MIMO systems because they are relatively less sensitive

to the propagation environment. This feature may be beneficial to reduce the complexity of

channel estimation in MU-MIMO systems.
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2.2 AoA Estimation in MIMO System

2.2.1 Receiving Signal Model with Uniform Linear Array

 

Plane Wave 

𝜃 

dsin𝜃 

d 

2 1 3 N 

Figure 2.6: Plane wave arrives at ULA with AoA θ.

The uniform linear array (ULA) with N elements is employed to receive signals. As shown

in Fig. 2.6, the distance between adjacent antennas is d, the plane wave is assumed to hit the

antenna array with an angle θ. The angle θ is the AoA of the receiving signal plane wave,

which is measured clockwise from the vertical line of the antenna array. In this section, the

model of receiving signal vector on a ULA for AoA estimation is detailed.

In Fig. 2.6, a time delay (i − 1) τ can be found for the signal received at the ith(i = 1, · · · ,N)

element of the array antenna compared with the first element. Therefore, the signal at the ith
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element in the time domain is expressed as

xi (t) = x (t − (i − 1) τ) = e j2π f t · e− j2π f (i−1)τ, (2.4)

where j represents the imaginary unit of a complex number, f is the carrier frequency, x is the

transmitted signal. The time delay between adjacent antennas τ is

τ =
d sin θ

c
=

d sin θ
fλ0

. (2.5)

λ0 is the corresponding wavelength for the carrier frequency f . Substitute τ in Eq. (2.4) with

Eq. (2.5)

xi (t) = e j2π f t · e− j2π f (i−1) d sin θ
fλ0

= e j2π f t · e− j2π(i−1) d sin θ
λ0

= e j2π f t · e− j(i−1)ψ

. (2.6)

ψ = 2πd sin θ
λ0

is only decided by the AoA of signal on a specific antenna array with a fixed carrier

frequency, it is seen as a new expression of AoA in the following equations for simplification.

Considering the Additive White Gaussian Noise (AWGN) in the channel for transmission, the

receiving signal vector with size N × 1 at the antenna array can be written as

y (t) =



1

e− jψ

e− j2ψ

...

e− j(N−1)ψ


x (t) +



n1 (t)

n2 (t)

n3 (t)
...

nN (t)


. (2.7)

When M signals are received at the antenna array simultaneously with different AoA
[
ψ1, ψ1, · · · , ψM

]
,

the receiving signal vector model at ULA is

y (t) =
M∑

m=1
α (ψm) xm + n (t)

= Ax (t) + n (t)
, (2.8)
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where α (ψm) =
[
1, e− jψm , · · · , e− j(N−1)ψm

]T
is defined as steering vector for the mth signal,

[·]T represents the transpose of a matrix or vector, A =
[
α (ψ1) , α (ψ2) , · · · , α (ψM)

]
. x (t) =[

x1, x2, · · · , xM
]T

represents all the transmitting signals, and n (t) = [n1 (t) , n2 (t) , · · · , nN (t)]T

is the noise vector. y (t) is the temporal sample of array receiving signal for the time instant t

(snapshot t). A large number of temporal samples taken in the period with unchanged A are

helpful for improving the AoA estimation accuracy.

2.2.2 Conventional AoA Estimation Methods

The antenna array based AoA estimation methods can be divided into the subspace methods

and non-subspace methods [22]. it is mentioned that compared with subspace methods, some

non-subspace methods, such as the maximum likelihood methood, have computational inten-

sive searching step and have poor performance in terms of estimation resolution. The MUSIC

algorithm and ESPRIT algorithm belong to subspace methods, both of them are popular and

widely utilized. In this section, the principles and procedures of MUSIC and ESPRIT algo-

rithms are detailed, while their estimation resolution are compared in the cases with different

numbers of signal snapshots, and in manifold SNR environments.

The main idea of MUSIC algorithm is to separate the signal space and noise space accord-

ing to the orthogonality, the separation is achieved by the eigendecomposition step operated on

the average array covariance matrix of the receiving signal. As the algorithm for comparison

with the novel algorithm in the thesis, the MUSIC algorithm is detailed as follows.

In the MUSIC AoA estimation algorithm, the number of antennas in the receiving array

should be ensured to be larger than the number of signals, i.e. N > M. The whole algorithm

can be divided into four steps:

• Construct the average array covariance matrix based on the receiving signal vector;

According to the receiving signal vector defined in Eq. (2.8), the matrix can be expressed

as

R̄yy = E
[
yyH

]
= AE

[
x1x1

H
]

AH + σ2
nI, (2.9)

where [·]H represents the conjugate transpose of a matrix or vector, σ2
n represents the
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noise variance, E [·] is the expectation operator based on multiple signal snapshots.

• Obtain the eigenvalues and eigenvectors of correlation matrix by eigendecomposition,

resort eigenvalues and eigenvectors;

After the operation of eigendecomposition, N eigenvalues and their corresponding eigen-

vectors can be obtained. Sort the eigenvalues from the largest value to the smallest value,

at the same time change the order of eigenvectors. The reordered matrix for eigenvectors

is [v1, v2, · · · , vM, vM+1, · · · , vN].

• Form N−M eigenvectors with the smallest eigenvalues into the matrix of noise subspace;

The matrix of noise subspace is Vn = [vM+1, · · · , vN], it satisfies

[vM+1, · · · , vN]⊥
[
α (ψ1) , α (ψ2) , · · · , α (ψM)

]
⇒ αH (ψm) VnVH

n α (ψm) = 0, (m = 1, · · · ,M)
, (2.10)

Eq. (2.10) means the signal space, which is represented by the steering vectors of signal

components are orthogonal to the noise subspace eigenvectors.

• Scan the range of angle to create spatial spectrum, the angles located at peaks of spatial

spectrum are the estimated AoA θ̂m (m = 1, · · · ,M).

With the matrix of noise subspace, the MUSIC spatial spectrum can be generated by the

steering vectors scanning in the range of angle as below

P (ψ) =
1

αH (ψ) VnVH
n α (ψ)(

ψ = 2π sin θ
λ0

, θ ∈ [−90◦, 90◦]
), (2.11)

By locating the peaks of the spatial spectrum, the AoA of the signals can be estimated.

Fig. 2.7 gives an example of MUSIC spatial spectrums. Comparing different curves, the

influence of SNR and snapshots can be found. 8 antennas are employed on the receiving

array, and the AoA for two signals are estimated at the same time, for which the AoA are fixed

as -30 degrees and 30 degrees. It shows that the spikes are becoming more definite with the

increase of SNR, while the performance rises sharply with more available snapshots.
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Figure 2.7: The MUSIC spatial spectrums for two signals AoA estimation with different SNR
and numbers of snapshots.

The ESPRIT algorithm decomposes an antenna array with N sensors into two identical

subarrays, Ne elements are equipped at each subarray, while the distance between two subarrays

is known. It is the objective of this algorithm that estimating AoA by calculating the operator

ϕe for the rotation from signal on one subarray to that on the other one.

Suppose that Ne = N − 1 for each subarray, and the distance between two subarrays is d.

Matrixes of steering vectors for both subarrays are part of A for the whole antenna array, which

is

A1 =



1

e− jψ1

...

e− jNeψ1

· · ·

· · ·

· · ·

· · ·

1

e− jψM

...

e− jNeψM


, A2 =



e− jψ1

e− j2ψ1

...

e− j(Ne+1)ψ1

· · ·

· · ·

· · ·

· · ·

e− jψM

e− j2ψM

...

e− j(Ne+1)ψM


. (2.12)

It can be noticed that A2 = A1fT , where fT is a diagonal matrix decided by ψ of each path
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of signal. The expression of fT is

fT =



e− jψ1 0 · · · 0

0 e− jψ2 · · · 0
...

...
. . .

...

0 0 · · · e− jψM


, (2.13)

When the subarray distance and the carrier frequency of each signal are known, the AoA

of each signal can be calculated from fT . However, the matrix of steering vectors of subarrays

cannot be recovered from receiving signals directly, hence, fT cannot be obtained. In the ES-

PRIT algorithm, based on the fact that the steering vectors in matrix A span the same subspace

as Vs = [v1, · · · , vM], therefore, the signal subspace Vs is utilized to generate the matrixes of

eigenvectors for A1 and A2, which are represented by V1 and V2, respectively. There exists an

invertible matrix T to achieve the transform from A1, A2 to V1 and V2, which brings

V1 = A1T

V2 = A2T = A1fT T
, (2.14)

the relationship between V1 and V2 is

V1 = V2T−1f−1
T T, (2.15)

[·]−1 represents the inverse of a matrix. Record F−1
T = T−1f−1

T T, therefore, V1 = V2F−1
T , i.e.

V2 = V1FT . fT is a diagonal matrix of the eigenvalues of FT . With FT , fT can be obtained, and

the AoA of signals can be calculated.

On the basis of the aforementioned principles, the ESPRIT algorithm can be achieved by

the following steps:

• Construct the input correlation matrix R̄yy based on the receiving signal vector, find its

signal subspace Vs by eigendecomposition;

• Extract signal subspaces of subarrays V1 and V2 from Vs;

• Estimate matrix FT based on the least square criterion, and for the model V2 = V1FT ,
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the estimated FT is F̂T =
(
VH

1 V1

)−1
VH

1 V2;

• The diagonal matrix for the eigenvalues of F̂T is the estimated f̂T , the estimated AoA of

signals in degrees are obtained by θ̂m = −180
π

sin−1
(

arg(e− jψm)λ0

2πd

)
, (m = 1, · · · ,M).

 

Figure 2.8: The comparison of MUSIC algorithm and ESPRIT algorithm with different SNR
and increasing numbers of snapshots.

In Fig. 2.8, The root mean square error (RMSE), which is defined as Eq. (2.16), is com-

pared between MUSIC algorithm and ESPRIT algorithm in the environment with low and

high SNR (−5dB and 25dB) SNR and with different numbers of snapshots. Nep times of ex-

periments are done to calculate each point in the figure to prevent the influence of abnormal

results. The number of antennas in the whole array is 8, while 7 antennas are allocated to

each subarray. Similar performance can be found for both of the algorithms with any SNR or

number of snapshots, while the low RMSE, which means the high estimation resolution can be

provided by two algorithms in high SNR environments with only several snapshots. However,

with low SNR, more snapshots are required for high estimation resolution. Therefore, the high



24 Chapter 2. AoA Estimtion and Beamforming Design in mmWaveMIMO System

resolution AoA estimation is still an open issue in low SNR environment with few snapshots.

RMS E =

 1
MNep

Nep∑
n=1

M∑
m=1

(
θm −

_

θm

)2


1/2

, (2.16)

2.2.3 Applications of Neural Network in AoA Estimation

Many research works are focusing on the neural network based high resolution AoA estimation

methods, in order to achieve accurate AoA estimation for different cases. The convolutional

neural network (CNN), radial basis function neural network (RBFNN) and the multi-layer

perceptron (MLP) based neural networks are three kinds of popular neural network models

which have been studied for a long time. Many papers can be found about their applications in

AoA estimation.

The structure of the CNN model for beam based AoA estimation designed in [23] is shown

in Fig. 2.9. It can be found that the CNN model is consisted of convolutional layers, sub-

sampling layers and fully-connected layers. The convolutional layers are used to extract the

high-level features such as edges, from the input nodes. In this model, each convolution plane

is connected to one or more subsampling planes. In fact, the subsampling layers are always

set after convolutional layers, which are designed to downsample the output of convolutional

layers. The fully-connected layer is utilized as the output layer of this model. The CNN model

designed in [23] is mentioned to be capable to select the suitable radiation beams without the

knowledge of the source signals number, while the signals are received from different direc-

tions. The input covariance matrix defined in Eq. (2.9) is utilized to generate input matrix Xin,

while the output Yout are the beams indices selected for each signal. In this AoA algorithm,

although ranges of the selected beams can always cover the directions of signals, the estimation

resolution is not high for it is limited by the coverage of beams in angle domain.

The RBFNN models are utilized with relatively fixed structure, so the number of neurons

in hidden layer is very important for the performance of model [24]. The model is named

as this because the radial basis function is used in the hidden layer of model. It is said that

the RBFNN with enough hidden neurons can approach to functions with any resolution. To
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Figure 2.9: The structure of a CNN model.

be mentioned that the input nodes shown in Fig. 2.10 for this model should be the vectored

covariance matrix, while the output nodes are the AoA of signals. The mapping function of

RBFNN in hidden layer is given in Eq. (2.17)

Yout = F (Xin) =

L∑
l=1

wlφ (‖bl−Xin‖), (2.17)

where φ (x) is the radial basis function of x, and ‖·‖ represents the 2-norm operation. L is the

number of neurons in the hidden layer, wl represents the weight of hidden neurons, while the bl

is the center vector for the radial basis function, which is usually determined through K-means

clustering. The radial basis function φ (x) is usually assumed to be un-normalized Gaussian

function, which is

φ (x) = e
−x2

2σ2 , (2.18)

where σ denotes the standard deviation of radial basis function. In fact, due to the simple
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structure of RBFNN, the AoA estimation error of this model can hardly be low enough.
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Figure 2.10: The block diagram representation of the RBFNN.

The MLP neural network is a kind of multi-layer and nonlinear neural network [25]. Com-

monly a MLP neural network is consisted of multiple layers, which include an input layer,

hidden layers and an output layer. Nonlinear activation functions can be selected for each

fully-connected layer (FCL) neuron, after the activation layer (AL) these neurons are con-

nected with the neurons in the next layer. Multiple hyperparameters are needed for the MLP

model structure design, including the number of hidden layers, the number of neurons for each

layer, the activation functions selection, and so on. These predefined hyperparameters make

the MLP neural network design become flexible, in order to satisfy any kinds of input-output

mapping requirements. The structure of MLP neural network model is shown in Fig. 2.11.

Many MLP neural network based AoA estimation algorithms have been proposed to provide

high resolution results, while the large potential still can be found for both high resolution and

robust estimation by MLP neural network model due to its high flexibility.
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Figure 2.11: The structure of MLP neural network.

2.3 FDD/TDD Communications

2.3.1 Frame Structures for FDD/TDD

#0 #1 #2 #3 #19#18

One radio frame, Tf = 307200Ts = 10 ms

One slot, Tslot = 15360Ts = 0.5 ms

One subframe
 

Figure 2.12: Frame structure type 1.

In this section, the frame structures for TDD systems and FDD systems are compared to prove

the requirement of separate beamforming designs for different systems. The frame structure

type 1 is defined for FDD scenario in 3GPP TS 36.211 [21], which is shown Fig. 2.12. For both
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full duplex and half duplex FDD, 10 subframes, 20 slots, or up to 60 subslots are available for

both uplink and downlink transmissions in each 10ms interval. Compared with the half-duplex

FDD systems, the full-duplex FDD has fewer restrictions, it can transmit and receive signal at

the same time.

One slot, 

Tslot=15360Ts

GP
UpPT

S
DwPTS

One radio frame, Tf = 307200Ts = 10 ms

One half-frame, 153600Ts = 5 ms

30720Ts

One 

subframe, 

30720Ts

GP
UpPT

S
DwPTS

Subframe #2 Subframe #3 Subframe #4Subframe #0 Subframe #5 Subframe #7 Subframe #8 Subframe #9

                                                                                                

Figure 2.13: Frame structure type 2 (for 5 ms switch-point periodicity).

Frame structure type 2 is only applicable to TDD systems. As shown in Fig. 2.13, the

frame structure is similar to that of FDD systems, for each 10ms radio frame, 10 subframes

are equally divided, each of which can be further split into two slots. The signals cannot

be transmitted and received simultaneously, therefore, it is mentioned that this type of frame

structure can support two kinds of switch-point periodicities for the conversion of uplink and

downlink signals, one subframe is required for the downlink pilot time slot (DwPTS), uplink

pilot time slot (UpPTS) and guard period (GP). The smallest downlink-to-uplink switch-point

periodicity is 5ms, which is much higher than the coherence time of mmWave channel even

if the UEs are moving in a low speed. Here the coherence time is the period over which

the channel impulse response (channel matrix) is considered to be unchanged. When carrier

frequency f = 38GHz, UE moving speed v = 5m/s, the coherence time Tco is

Tco =
0.423
v f /c

≈ 0.63ms < 5ms, (2.19)

here c = 3×108 is the speed of light. Therefore, the uplink signal is not always available in

each coherence time, which means the beams can hardly be selected for downlink transmission

adaptively. Based on the difference of frame structures for TDD and FDD systems, it can be
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concluded that the most significant difference between two systems is the availability of uplink

signal during the downlink transmission. Due to this difference, the beamforming algorithms

should be designed separately to adapt to different systems.

2.4 Beamforming in MIMO System

2.4.1 Types of Beamforming

With the development of massive MIMO system, the beamforming technique is explored based

on the large scale antenna array for its advantage of large power gain. In MU-MIMO system,

the beamforming design can not only improve the link quality, but also reduce the influence of

interference [26].

In many beamforming methods, the transmitting beamformers are designed with the as-

sumption of available full CSI. However, in practise, the transmitters with larger scale antenna

arrays can only obtain partial CSI, such as the AoD of paths, based on the feedback in TDD

systems communications or the channel reciprocity in FDD systems communications [27].

The codebook based beamforming and angle based beamforming are two kinds of partial CSI

beamforming methods which are widely explored.

2.4.2 Codebook based Beamforming

The codebook based beamforming works to improve transmitting power and reduce interfer-

ence by the perfect selection of codewords, which are generated based on the codewords from

a codebook. Here the codebook is defined as a matrix consisted of vectors for precoding

(beams generation). The beam training step is always required to find out the best transmit-

ting/receiving beams for UEs, which should be suitable to their CSI. In the beam training step

for regular codebook based beamforming, the beams using all codewords as precoders are

transmitted, after which the indices of codewords brings large power gain and small interfer-

ence are feedbacked for the beams generation in the data transmission. This kind of training
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process is called exhaustive search training, this training method is conceptually straightfor-

ward. However, because of the large number of candidate codewords in the codebooks for

mmWave communication, the overall search time is prohibitive, and a large amount of resource

is wasted as the training and feedback overhead.

To reduce the overhead for the beam training step while keeping the advantage of perfect

codeword selection, the hierarchical codebook is designed in [28], which is utilizing codewords

from several layered codebooks for training, the beams generated by codewords from different

layered codebooks have diverse beamwidth and power gain. The principle of the hierarchical

codebook is to train beams generated by codewords from the lowest layer to the highest layer.

Not all of the codewords are needed to be trained in each layered codeword because the training

range on the angle domain is narrowed by the selected codeword range in the last layer. Two

basic criteria should be satisfied to design the hierarchical codebook, which are:

1. The beam coverage union generated by all the codewords in each codebook should be

able to cover the whole angle domain;

2. The coverage of each beam generated by a codeword from a non highest-layer codebook

should be covered by the coverage union of a couple of codewords in the next layer.

The hierarchical codebook is designed for the codeword selection at both the transmitting

side and receiving side, for the two sides the designing principles are totally the same. For the

cth (c = 1, . . . ,C − 1) layer codebook, the range of beams generated by Cw adjacent codewords

in the (c + 1)th layer should cover the beamwidth of a codeword in the cth layer. The highest-

layer codebook is firstly designed with N codewords, which number is equal to the number of

antennas. Each codeword can be expressed as

w (C, in) = α (N,−1 + (2in − 1)/N) , (in = 1, . . . ,N) , (2.20)

α(N, sin θ) =
1
√

N

[
1, e jπ sin θ, . . . , e jπ(N−1) sin θ

]T
. (2.21)

The number of layers C = logCw
(N). For the codewords in the layer c = logCw

(N) − k, where

k = 1, 2, . . . , logCw
(N) − 1, the codewords can be generated by the following steps
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1. The elements in w (c, 1) can be uniformly divided into L = C
f loor( k+1

2 )
w groups, each group

is wl (c, 1) = [w (c, 1)](l−1) N
L +1:l N

L
, (l = 1, . . . , L) ;

2. If k is odd, set NL = L/2; else, NL = L. wl (c, 1) is set as

wl =

 e− jl N−L
N πα

(
N
L ,−1 +

L(2l−1)
N

)
, l = 1, . . . ,NL

0 N
L ×1, l = NL + 1, . . . , L

; (2.22)

3. w (c, in) = w (c, 1) ◦
√

Nα
(
N, 2(in−1)

Cw
c

)
, (in = 2, 3, . . . ,Cw

c) .

4. Normalize w (c, in).

Where ◦ represents entry-wise product. An example of the hierarchical codebook is shown

on Fig. 2.14. A multi-sectional search beamforming algorithm is proposed in [28] utilizing

the hierarchical codebook. When the hierarchical codebooks utilized at the transmitting side

and the receiving side are totally the same, it requires 2logCw
N bits for the training, and other

2logCw
N bits for the feedback for each receiver in order to select suitable codewords for both

precoding and receiving. For the application of hierarchical codebook in the MU-MIMO sys-

tem, a large scale antenna array serves multiple single-antenna UEs in the downlink, therefore,

logCw
N bits are needed for downlink training and uplink feedback, separately, which means

2logCw
N are used for the perfect precoding codeword selection of a UE. It can be found that

the large number of antennas at the transmitting side brings large overhead for codewords se-

lection.

The SWR oriented beamforming designed based on the hierarchical codebook further re-

duces the overhead for codebook based beamforming while the SR is partly sacrificed [29][67].

This algorithm also searches the suitable codeword for a UE from the lowest layer to the high-

est layer. However, the SWR is considered in the algorithm design, which is the parameter

reflects both the influence of overhead and SR. In the training process, when the SWR is esti-

mated to reduce with the further training, the training step stops and the best codeword in the

current layer codebook is selected.
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Figure 2.14: Hierarchical codebook for analog beamforming.

2.4.3 Angle based Beamforming

Angle based beamforming makes full use of the AoD of dominant paths in the transmission

channel. As a partial CSI based beamforming, getting the angle information of paths is much

easier than obtaining the full CSI information. In TDD systems, the uplink pilot signal can be

utilized to estimate the downlink CSI directly due to the channel reciprocity; While in FDD

systems, for the cases that the carrier frequencies of uplink and downlink channels are not far

away from each other, the AoA estimated for the uplink paths can be viewed as the AoD for

the corresponding downlink paths, when the time elapse between uplink and downlink signals

can be neglected [9][30].

With the AoD information of dominant paths, the angle based beamforming can be de-

signed to increase the power gain in the required directions, while reduce the power gain in

the interference directions. The beamforming design can be applied on both analog and digital

parts. The angle based analog beamforming vector for the mth UE with AoD θm is

wm
A(N, sin θm) =

1
√

N

[
1, e jπ sin θm , . . . , e jπ(N−1) sin θm

]T
. (2.23)
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Figure 2.15: The comparisons among hybrid beamforming with N = 8 of (a) AoD of interfer-
ence UE is −15◦ (b) AoD of interference UE is −38◦.
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Compared with the analog beamforming design, the digital beamforming considers not only

the AoD of the aim UE, but also that of other UEs. Therefore, the estimated AoD matrix

H = [α (N, sin θ1) , α (N, sin θ2) , · · · , α (N, sin θm)]H should be utilized for digital beamforming

design. The zero forcing (ZF) digital algorithm is widely used in digital precoder design, which

is chosen as an example [8]

WZF = HH
(
HHH

)−1
. (2.24)

However, in the applications with large scale antenna arrays, the size of matrix H is too large to

apply the digital beamforming in a limited time. The hybrid beamforming is designed to face

this challenge, it utilizes both analog and digital beamforming at the same time. This means

the ZF algorithm can work on the dimension-reduced AoD matrix in this example, which is

WAZF = HH
A

(
HAHH

A

)−1
, (2.25)

HA = HWA, (2.26)

where WA =
[
w1

A,w
2
A, · · · ,w

M
A

]
is the matrix of analog beamforming vectors for M UEs. It

is the fact that compared with analog beamforming, the digital beamforming is designed based

on all UEs AoD vector, i.e. for a specific aim UE with fixed AoD, the difference on the AoD of

interference UEs brings different digital beamforming design, while the analog beamforming

for this UE is always the same. Fig. 2.15 compares the hybrid beamforming design for an aim

UE with fixed AoD, while the interference UE has different AoD. The totally different beam

patterns (power gain and beamwidth) prove our conclusion. We can also find that the hybrid

beamforming can work to reduce interference to other UEs with any dominant path AoD with

flexibility. However, this may reduce the power of signal to the aimed UE.

2.5 Chapter Summary

This chapter starts from the introduction to the mmWave channel and the MIMO system in

mmWave communicatons. Except from the configurations of antenna arrays and two kinds

of signal preprocessing methods with MIMO, the SU-MIMO and MU-MIMO systems are
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detailed as well. After that, the antenna array based AoA estimation is review in the second

section. The receiving signal model is introduced at first, based on that the procedures of AoA

estimation by MUSIC and ESPRIT algorithms are shown step by step, the numerical results

for the performance of MUSIC and ESPRIT algorithms with diverse SNR and snapshots are

given, which show the challenge in conventional AoA estimation explicitly. Then the neural

networks with different structures and used to be mentioned in AoA estimation methods design

are discussed to compare their characteristics. In Section 2.3 and 2.4, the frame structures of

TDD and FDD systems are compared to prove the necessity of separated beamforming designs

in different systems. Then in the last section, some low overhead partial CSI beamforming

methods including the codebook and angle based beamforming, are introduced and compared.



Chapter 3

Multi-Pattern Codebook based Low
Overhead Beamforming in TDD mmWave
MIMO System

In TDD systems, the downlink angle based beamforming requires extra uplink feedback to esti-

mate AoA information, which increases the overhead for beamforming and leads to a sacrifice

of symbols for data transmission. In this chapter, the multi-pattern codebooks are utilized to

provide beams with pattern-controlled beamwidth and beamforming gain in spatial frequency

domain, which works as the fundamental of long serving period beamforming with low feed-

back cost.

3.1 Introduction

In fulfilling the expectations of the 5G wireless systems, mmWave communications have at-

tracted extensive research interests due to the available bandwidth and extremely high data rates

promised [20]. Due to the short wavelength of mmWave band, a large number of antennas can

be packed into a given small space hence massive MIMO technique with increased array gain

becomes feasible [31]. However, mmWave communications face numerous challenges. One

of the biggest challenges is the high free-space path loss resulting from high carrier frequency

[32]. Thanks to massive MIMO, large scale antenna arrays can be employed to overcome the

high path loss through beamforming [33]. Besides, reduced channel coherence time caused by

high carrier frequency becomes the other challenge in mmWave massive MIMO system [34].

36
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This is because the mmWave beamfoming need to be designed as fast as possible within the

coherence time to keep up with channel changes [32]. However, in TDD systems, the uplink

signal can hardly be available within each coherence time, which introduces high signalling,

feedback and pilot overhead. Such huge overhead leads to a decrease in performance, particu-

larly data throughput, which motivates us to design new mmWave beamforming schemes with

low overhead.

To address the large overhead problem, different beamforming schemes have been proposed

recently. The codebook based RF beamforming scheme has been employed in IEEE 802.11ad

[35], which utilizes the sequential downlink-uplink (SDU) sector sweep combination method

to reduce the beam training overhead. Furthermore, authors in [32] put forward a sequential

downlink-downlink (SDD) sector sweep combination scheme to extend the applying scerario

of [35] to MU-MIMO system. In addition, paper [36] proposes a fast beam training method

which can be adapted to different modulation patterns, to reduce the training overhead.

However, the previous studies select codewords based on accurate channel information,

which incurs high complexity due to the high dimensional of channel matrix in massive MIMO.

Moreover, the channel effects on the transmitted signal changes substantially beyond the chan-

nel coherence time [37]. As a result, channel information has to be updated frequently in

updating the serving beams. Compared with accurate channel acquisition, it is easier to obtain

angular information of UEs [38]. Besides, angle domain based massive MIMO transmitter can

reduce training overhead and improve channel estimation accuracy compared to the beamspace

approach [39]. On top of that, compared with accurate channel information, angular informa-

tion shows low changing speed. In TDD systems, the CSI for the uplink channel can be viewed

as that for the downlink channel within a limited time delay, due to the channel reciprocity

[40]. It means the AoA for the LoS path detected by the uplink signal, which is more stable

compared with AoA of other paths, can be considered as the AoD of the corresponding path

in the downlink. Therefore, it is unnecessary to frequently update serving beams for LoS path

AoA based beamforming, this beamforming method is referred as angle based beamforming

for short in the following content.

The overhead of angle based beamforming is decided by the beams changing frequency

and the overhead required for each time of beam changing. The beam changing frequency
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can be estimated with a special codebooks design. For UEs with similar moving speed in a

large serving space, different angular speeds, which are defined as the changing rates of AoA

for LoS paths, and the path loss of these UEs, varies with the distances from UEs to the BS.

To serve UEs with different distances, serving beams with diverse patterns should be utilized

based on the multi-pattern codebooks design [44], in order to provide beams with adaptable

beamforming gain and beamwidth. The serving space is zoned according to the distance to BS,

each zone should be served by a specific pattern of codebook. Therefore, with the knowledge

of speeds and location information of UEs, the selected beam serving time can be estimated. To

achieve the low overhead beamforming objective with multi-pattern codebooks, the algorithms

for location estimation based UE selection with low overhead should be designed, which will

be introduced in the next chapter.

In this chapter, the multi-pattern codebooks design is utilized in angle based beamforming

to reduce the beamforming overhead in zoned serving space. Three kinds of intra-zone in-

terferences are introduced, and simulation work shows that UEs in the same zone and served

with beams generated by the same or adjacent codewords from a predifined codebook suffer

from more serious interference, compared with the UEs only affected by non-adjacent beam

interference. This fact is considered in the UE selection algorithms design in the next chapter.

The rest of this chapter is organized as follows. In Section 3.2, the multi-zone serving space,

the signal propagation model and the downlink receiving signal model are introduced. After

that, the multi-pattern codebooks designed for angle based beamforming in different zones are

detailed in Section 3.3. In the Section 3.4, the simulation result is presented and discussed.

Finally, the conclusion is given in Section 3.5.

3.2 System Model

3.2.1 Multi-zone Serving Space

In this section, we consider a single-cell multi-user massive MIMO system where a BS is

located at the cell center. It is assumed that all UEs retain their moving speed without changes

on their directions during one beam serving period. The angular speed of UEs is negatively
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correlated to the distance between UEs and the BS, i.e. for a fixed linear speed, the angular

speeds of far UEs are smaller than that of near UEs. In order to control the serving time of

beams, the serving area is assumed to be a circle and is divided into Y zones with respective

ranges, was shown in Fig. 3.1. From this figure, we can see that UEs in different zones have

different maximum angle changes θ under the same moved distance d0. Therefore, the beams

of different zones have different patterns, which represented by beamwidth and power, and

requires different numbers of antennas to generate.

The system model is shown in Fig. 3.2. The antennas of BS is divided into Y subarrays. In

each zone, a ULA of Nl ∈ [N1,N2 · · · ,NY] antennas at BS is used to serve Kl ∈ [K1,K2 · · · ,KY]

single-antenna UEs. As shown in Fig. 3.2, each RF chain is able to transmit from all subarrays

[41]. We assume that there are Kc UEs in the whole serving area, where Kc ≥ K1 + · · · + KY .

 

UE1 

UE2 

Figure 3.1: Beams with different patterns for UEs in two zones.
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Figure 3.2: BS model with multi-antennas subarrays.

3.2.2 Propagation Model

In this section, with the serving space divided into multi-zones, we have to consider the distance

influence of UEs to the signal model. As detailed in chapter 2, after the equation simplification,

the CI free-space reference distance model written in 3GPP/ITU for signal attenuation can be

expressed as

PL ( f , d) = 10nlog10

(
d
d0

)
+ 20log10 ( f ) + χσ + C, (3.1)

where d0 = 1 is the reference distance chosen in the CI close space environment, this choice of

d0 can provide high parameter stability and model accuracy. d (d > d0) is the distance between

transmitter and receiver, its range can be larger than 500 meters in UMa environments. When

reference distance d0 is set, C is a constant in the model and C = 20log10

(
4πd0×109

c

)
= 32.4dB.

n denotes the PLE, χσ is the zero-mean Gaussian random variable in decibels with a standard

deviation σ, which represents the large-scale signal fluctuations about the mean path loss over

distance and frequency. As the result, the channel gain of a receiving signal can be simply

calculated by the Tx-Rx distance d when the carrier frequency f is selected.
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3.2.3 Downlink Signal Model

We assume a multipath channel system in mmWave band. The space between two adjacent

antenna elements of a subarray ∆d is assumed to be half of the wavelength λ0, thus there

exists a high correlation between antennas. Also, the space between adjacent subarrays is

assumed to be much larger than the wavelength, where independent scatters are presented

for each subarray. As a result, the channels among different subarrays are independent. To

make use of all subarray antennas, the fully-connected structure is chosen [42], where the

transmitted signals are combined before transmission. A specific zone is chosen for each UE

based on its distance before transmission, UEs in the same zone are served by the same subarray

and frequency carrier. Since those for UEs in different zones are different, only intra-zone

interference exists in the system. The downlink channel vector for the UE k (k ∈ [1, · · ·,Kl]) in

lth (l ∈ [1, · · ·,Y]) zone is shown as follows [43]

hl,k =

√
Nl

Npath
γl,k,1α(θl,k,1) +

√
Nl

Npath

Npath∑
n=2

γl,k,nα(θl,k,n), (3.2)

where Nl is the number of antennas of the lth subarray. Npath represents the number of paths,

γl,k,n denotes the channel gain for each path, γl,k,n =
√

PLl,k,n ( f , d). α(θl,k,n) is the normalized

array steering vector, θl,k,n denotes the AoD of nth ray, among which the θl,k,1 denotes the AoD

of the LoS path. α(θl,k,n) can be expressed as

α(θl,k,n) =
1
√

Nl
[1, e jπ sin θl,k,n , · · ·, e jπ(Nl−1) sin θl,k.n]

T
. (3.3)

In each zone, more than one UEs are served using the same time/frequency resource. There-

fore, the received signal of the kth UE in lth zone includes the useful signal and the intra-zone

interference, which can be expressed as

yl,k =
√

pl,khl,kfl,kxl,k +

Kl∑
m=1,m,k

√
pl,mhl,kfl,mxl,m + nl,k, (3.4)

where the pl,k and xl,k represent the transmitting power and the transmitted signal to the kth

UE, respectively. The transmit power is uniformly distributed to the K UEs, which means
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P =
Y∑

l=1

Kl∑
k=1

pl,k. fl,k is the kth vector of analog beamforming matrix Fl = [fl,1, fl,2, . . . , fl,Kl]. nl,k is

the noise of the kth UE with mean zero and variance σ2
n. The signal to interference and noise

ratio (SINR) of the UE can be expressed as

S INRl,k =

∣∣∣√pl,khl,kfl,k

∣∣∣2
Kl∑

m=1,m,k

∣∣∣√pl,mhl,kfl,m

∣∣∣2 + nl,k

, (3.5)

and the SR of selected UEs can be expressed as follows

S R =

Y∑
l=1

Kl∑
k=1

log2
(
1 + S INRl,k

)
. (3.6)

3.3 Multi-Pattern Codebook Design

3.3.1 Spatial Frequency based Multi-Pattern Codebook Design

As mentioned before, because of the same linear speed, the distance between a UE and BS

is negatively correlated to angular speed and positively correlated to the path loss [37]. It

means that the codebooks for different zones should be able to provide beams with different

beamwidth and maximum power to promote UE fairness among UEs in all zones. While the

beams in the same codebook, which serve UEs in a specific zone, should be able to provide

small intra-zone interference service. Based on these requirements, in this section, a spatial

frequency based orthogonal codebook design is introduced [44].

3.3.1.1 Codebook Design for the Same Zone UEs

The definition for spatial frequency scaling factor [44] in the zone l is ∆vl = 1/(Nl∆d). The

spatial frequency index with respect to the angle θl,k,1, is defined as

al,k =
sin θl,k,1

λ0∆vl
=

Nl sin θl,k,1

2
. (3.7)
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From Eq. (3.7), we can find that the spatial frequency indexes in [−Nl/2,Nl/2] can be totally

mapped to the angle domain of [−π/2, π/2]. Therefore, the array steering vector in Eq. (3.3)

can be rewritten as

α(al,k) =
1
√

Nl
[1, e j2πal,k/Nl , · · ·, e j2π(Nl−1)al,k/Nl]

T
. (3.8)

The codebooks for the analog beamforming are designed in the same form with array steering

vectors. The beams generated based on one codebook should satisfy two requirements

1. Beams generated based on codebook for zone l are uniformly distributed in the spatial

frequency domain.

2. Low intra-zone interference.

The first requirement means that there should always exists one suitable beam to serve UEs

with any index in the spatial frequency domain, hence the beams can serve all directions UEs

in angle domain. Besides, there should exist solutions to avoid the high intra-zone interference

caused by the simultaneous usage of beams generated by one codebook.

To meet the two requirements, the spatial frequency based codebook for zone l is designed

as follows

fl,m =
1
√

Nl
[1, e j2πcl,m/Nl , · · ·, e j2π(Nl−1)cl,m/Nl]

T
, (3.9)

cl,m =

±0.5,±1.5, · · ·,±Nl−1
2 , i f Nl mod 2 = 0

0,±1, · · ·,±Nl−1
2 , i f Nl mod 2 = 1,

(3.10)

where m ∈ [1,Nl]. Therefore, cl,m = m − (Nl + 1)/2, which means the antenna number of

subarray l decides the number of beams generated by the codebook for this zone. In the spatial

frequency domain, these beams are uniformly distributed and orthogonal to each other [44].

The power of beams on all values of spatial frequency axis is analyzed to identify the shape

of beams. For array steering vector α(a), where a ∈ [−Nl/2,Nl/2], we assume that the mth

beam is chosen to do the beamforming. Therefore, the power pattern of mth beam in lth zone
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can be shown as follows [44]

β(cl,m − a) =
∣∣∣α(a)Hfl,m

∣∣∣2
=

∣∣∣∣∣∣∣ 1
Nl

Nl−1∑
nl=0

e
j2πnl

Nl
(cl,m−a)

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣e
jπ (Nl−1)

Nl
(cl,m−a)

Nl
×

sin(π(cl,m − a))

sin(π (cl,m−a)
Nl

)

∣∣∣∣∣∣∣∣
2

=
sin2(π(cl,m − a))

N2
l
sin2(π (cl,m−a)

Nl
)
,

(3.11)

from Eq. (3.11), it can be seen that β(cl,m − a) is a periodical function with period Nl. Also,

the range of variable (cl,m − a) for the mth beam in one codebook is [−Nl + m − 1/2, m − 1/2 ].

Therefore, the beams in one codebook are cyclic shift to each other in spatial frequency domain.

The Fig. 3.3 gives an example for beam pattern in l zone with Nl = 8. In Fig. 3.3, the red

line, obtained by connecting all crossed point of main lobes, represents the minimum value

of power can be provided by beams. It shows that there always exists a suitable beam for a

UE with power larger than the red line value. When the serving beam is selected, the beams

generated by the remaining codewords in the codebook can be divided as the adjacent beams

and non-adjacent beams. The distance on spatial frequency axis between two adjacent crossed

points is regarded as the beamwidth of a beam, so all the beams in one codebook have the same

beamwidth with regard to this axis.

The distance between the main lobes center of two adjacent beams is

cl,m+1 − cl,m = 1,m ∈ [1,Nl − 1], (3.12)

the half range of main lobe is decided by the nearest zero point a0 to the cl,m, which is

a0 = arg min
a

∣∣∣cl,m+1 − a
∣∣∣

s.t. β
(
cl,m+1 − a

)
= 0

a ∈ [−Nl/2,Nl/2]

a , cl,m+1.

(3.13)
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It is clear that a0 = cl,m+1 ± 1, hence the half range of a beam main lobe on spatial frequency
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Figure 3.3: An example for beams pattern in one codebook.

axis is equal to the distance between two main lobes centres. It means that the adjacent beams

always have overlap on their main lobes, which brings high interference to both of them. There-

fore, adjacent beams should not be chosen together in order to prevent performance reduction

caused by high intra-zone interference. To be mentioned that, the first and the last beams gen-

erated by a codebook should be viewed as adjacent beams because of their cyclic shift feature.

3.3.1.2 Codebook Design for UEs in Different Zones

Because of the angular speed and path loss of UEs vary among zones, codebooks with different

patterns should be designed to adapt UEs in different zones. The beam pattern is represented

by the beamwidth and beam power. As for the beamwidth, due to the uniform distribution of
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beams in spatial frequency domain, the average beamwidth is negatively correlated to Nl, so the

codebook with large Nl is suitable for the UEs in outer zones with low angular speed. As for

the beam power, it is assumed that h, γ and d represent the channel vector, channel gain at the

spatial frequency index a and the LoS distance from the BS to the detecting point, respectively.

The power of beam can be shown as

Pbeam =
∥∥∥hHfl,m

∥∥∥2
= Nlγ

2
∥∥∥α(a)Hfl,m

∥∥∥2
∝

Nl

d
. (3.14)

We can find that the beam power increases with Nl. As a result, the subarrays with large

numbers of Nl should be allocated to generate codebooks for outer zones.

3.4 Performance Evaluation

3.4.1 System Parameters

The parameters for simulation work are shown in Table 3.1 [45]. The minimum number of

subarray antennas is 4, which is the minimum number of antennas to serve more than one UEs

without using adjacent beams. We assume that the UEs are evenly distributed in the serving

area. Therefore, the UE density ρ = Kc/S sum can be viewed as a fixed value in the serving area

S sum. The range of one zone should be decided based on the UE capacity of the zone, and the

way used to decide the edge of zones, is shown as follows

Kl

Kc
=

Cl

Csum
⇒

ρS l

ρS sum
=

Nl

Nsum

⇒

(
r2

l − r2
l−1

)
R2 =

Nl

Nsum

⇒ rl =

√
NlR2

Nsum
+ r2

l−1 ,

(3.15)

where Csum and Cl represent the sum UE capacity and UE capacity for zone l, respectively.

l ∈ [1, 2, · · ·, L], L is the number of zones. For each zone, the UE capacity is represented

by the number of subarray antennas Nl. Nsum is the sum antennas number of all subarrays, i.e.



3.4. Performance Evaluation 47

Nsum = N1 +N2 + · · ·+NL. Kl and Kc represent the number of UEs in zone l and the sum number

of candidate UEs, which are positively correlated to the coverage area of zones. Therefore, the

edge of zone l, represented by rl, can be decided by Nl and rl−1. When the distance from a UE

to the BS is too small, sharp change on AoA may happen frequently. Besides, r0 should be set

to be larger than d0. Therefore, we set r0 = 1.

Table 3.1: Simulation Parameters for Beamforming Design in TDD Systems

Cell radius R (m) 200
Range of AoD/AoA (−π/2,π/2)
Carrier frequency f (GHz) 38
System bandwidth B (MHz ) 800
Noise density n0 (dBm/Hz) -174
Duplex mode TDD
Number of zones Y 6
BS antennas Nl 4, 8, 16, 32, 64, 128 ULA
Edge of zones r(m) 25, 44, 67, 98, 140, 200
UE antennas 1
Path loss exponent 1.9 for LoS, 2.7 for NLoS
Large scale signal standard deviation σ (dB) 3.5 for LoS, 10.5 for NLoS
Number of served UEs Ks 50

3.4.2 Numerical Results

In this section, the simulation work compares the SR of UEs in three situations with all three

kinds of interference (same beam, adjacent beam and non-adjacent beam interference), two

kinds of interference (adjacent beam and non-adjacent beam interference) and one kind of in-

terference (only non-adjacent beam interference). In the simulation work in both this chapter

and next chapter, the UEs served at the same time are only affected by intra-zone interfer-

ence, while the UEs in different zones utilize different frequency resource, and no inter-zone

interference exists. From Fig. 3.4, it can be found that while the same numbers of UEs are

served, the same beam interference have the most significant influence to bring the UEs data

rate reduction. The interference power from adjacent beams to a served UE is much lower than

that caused by the same beam reuse. However, when both the same beam interference and

adjacent beam interference, which are high power interference compared with non-adjacent
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beam interference, do not exist in the downlink data transmission, the UEs SR can be highly

improved. Therefore, the UEs served at the same time should be selected to avoid the high

power interference.

 

Figure 3.4: The sum data rate comparison for cases with different kinds interference.

3.5 Chapter Summary

This chapter introduces the multi-pattern codebooks design in order to adapt to the beamform-

ing requirements in the multi-zone environment. In one specific zone, the codewords providing

orthogonal beam patterns in spatial frequency domain are designed to prevent intra-zone inter-

ference, while in different zones, codebooks with changing patterns can be selected to generate

beams with suitable beamwidth and power. The downlink transmission signals to UEs in dif-

ferent zones are divided in frequency domain, while the spatial domain based interference

reduction should be achieved by beamforming for UEs in the same zone. It is proved in the
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simulation work that for the served UE of the same zone, when the interference from the reuse

of the same codeword and the interference caused by forming adjacent beams can be avoided,

the average SR can witness a significant increase. Such a conclusion puts forward require-

ments for the served UEs selection at the same time. In the next chapter, different UE selection

methods will be proposed to satisfy systems with different requirements.



Chapter 4

UE Selection Designs for Low Overhead
Beamforming in TDD mmWave MIMO
System

With the multi-pattern codebook based beamforming in zoned serving space designed in the

last chapter, in this chapter, two kinds of UE selection algorithms are proposed, which are ultra

low overhead oriented algorithm and large connection oriented algorithm, respectively. With

advantages in different aspects, two UE selection algorithms make the proposed low overhead

beamforming adaptive to different use cases.

4.1 Introduction

In order to meet the high data rate expectation of 5G wireless systems, mmWave communica-

tions become critical because of their large available bandwidth [20]. The short wavelength of

mmWave communication allows plenty of antennas to be packed into a limited space, which

enables the feasibility of the massive MIMO [31]. By exploiting the large scale antenna array,

narrow beams can be generated to fully utilize the spatial domain resources and enhance the

overall capacity. However, to fully exploit the use of beamforming, accurate CSI is required

at the transmitter side [46] resulting in a large overhead for training and feedback information

in FDD mmWave massive MIMO systems [47] [48]. As mentioned in the last chapter, due to

the reduced coherence time associated with high carrier frequencies [49], the CSI should be

estimated more frequently to keep pace with the channel variation, which also leads a larger

50
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overhead for beamforming.

The overhead caused by channel estimation for beamforming can be divided into the down-

link training overhead and the uplink feedback overhead. A training preamble is utilized to

obtain the CSI, which is measured by the downlink channel vector at the user side [50]. Many

effective methods are proposed to reduce the training overhead in [47], [35], [51] and [52],

and the weighted sum rate is defined to evaluate the performance of the system with overhead

due to the downlink training of the beamforming [52]. In order to reduce the uplink feedback

overhead proportion in the data transmission, two approaches are considered in recent studies.

One method is to reduce the number of bits in one feedback period directly [53], [54], [55].

Generally, the number of bits in the feedback overhead is proportional to the number of antenna

elements [54]. To reduce the influence of the large scale antenna array, an antenna grouping

based feedback reduction technique is designed for FDD-based massive MIMO systems in

paper [53]. In paper [55], a low feedback beamforming scheme is proposed to mitigate the

severe interference in diverse mobility cases. In particular, for current emerging research on

the angle-based beamforming [39], the feedback overhead can be reduced because UEs only

need to report their angle information instead of CSI. The angle quantization-based schemes

are able to make a further reduction on the feedback overhead [54]. Therefore, angle-based

beamforming is considered in our work.

The other approach is to reduce the frequency of feedback in a specific period. In [56], the

feedback is divided into a long-term part and a short-term part to transmit the location related

information and the fast-fading component, respectively. The feedback frequency for the long-

term part can be relatively low. In angle-based beamforming, the beam generation is decided

by the AoD from the BS. Compared with the change of CSI in the mmWave band, the AoD

changes much slower. A concept called beam coherence time is defined to evaluate the stability

of AoD in [57], which is much longer than the channel coherence time. Therefore, angle-based

beamforming only needs to feedback AoD in every beam coherence time. In the previous work,

both beam coherence time, channel coherence and beamwidth design are decided by the linear

speed of user when the carrier frequency is fixed. However, UEs moving with the same linear

speed may have different angular speeds due to their changing distance from the transmitter

to the receiver. Hence, compared with the linear speed, angular speed, which represents the
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speed of angular variation, is much more suitable to be considered in beamwidth design for

environments with a large radius of serving space. Nevertheless, few of previous works takes

angular speed into consideration.

Based on the beamforming in zoned serving space with multi-pattern codebooks design

introduced in the last chapter, and the influence of different types of intra-zone interference

shown in the simulation work before, in this chapter, two UE selection algorithms are pro-

posed to satisfy different use cases requirements, which are ultra low feedback and large UE

connection, respectively. For both of the algorithms, each UE is required to feedback signal

with one bit information for LoS path AoA and ToA estimation initially, based on the AoA

and ToA information, UEs without the same or adjacent beam interference are selected. After

that, the ultra low feedback oriented algorithm selects UEs that minimum beam serving time

estimated can meet the requirement of a threshold to be served for a period, a new turn of UE

selection will start after that period. While for the large connection oriented algorithm, these

UEs are served directly without further selection, after each time interval predefined, UEs mov-

ing out of the selected beam serving range are disconnected according to their one bit feedback

for codeword reselection, and a new UE selection will start when the required serving period

is satisfied or the connection ratio is lower than a predefined threshold.

As shown in the simulation work, for UEs with the same moving speed, the large connec-

tion oriented UE selection algorithm always outperforms the ultra low feedback oriented UE

selection algoithm with regard to the percentage of connected UEs simultaneously and the SR

of UEs, while for the cumulative feedback calculated in a period of time, the reverse is true.

Therefore, two algorithms can be utilized to adapt to different use cases.

The rest of this chapter is organized as follows. In Section 4.2, the way to obtain the

location information (AoA and ToA) of UEs is firstly introduced, then the procedures of two

UE selection algorithms with the aid of location information are detailed. In Section 4.3, the

simulation results are presented and discussed. Finally, the conclusions are given in Section

4.4.
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4.2 Location-Aided UEs Selection Methods Design

4.2.1 Location Estimation based on AoA and ToA Measurement

The location information of UEs can be determined by their AoA and distance to BS, both of

them can be detected by one training bit of uplink signal. In [58], the AoA of the LoS path

from a UE can be detected by MUSIC method. As mentioned in [15], the high-resolution

MUSIC algorithm can only be achieved with the premises of large numbers of snapshots and

high SNR. When the transmitting power for UEs is not high enough, plenty of snapshots are

required to reduce the influence of noise. The MUSIC based AoA estimation resolution with

different numbers snapshots in changing transmitting power will be discussed in the simulation

part.

In addition, the distance from a UE to the BS can be detected by estimating ToA [59].

Therefore, according to the estimation of AoA and ToA, UEs can be divided into different

zones and served by suitable beams.

4.2.2 UE Selection Methods for Different Use Cases
4.2.2.1 Ultra Low Feedback Oriented UEs Selection

To serve UEs with low feedbacks while avoiding the adjacent interference, in this section, we

propose a ultra low feedback oriented UE selection algorithm. The algorithm can be divided

into four steps:

1. Allocate UEs to different zones according to d and record their minimum time tedge mov-

ing from current locations to the edges of zones;

2. Select codewords for UEs by their AoA θ at the BS, calculate their real minimum serving

period tmin;

3. Sort UEs who satisfy the minimum serving period threshold T requirement according to

tmin;

4. Choose UEs without the same beam or adjacent beam interference.
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Algorithm 1 Low Feedback Oriented UEs Selection Algorithm
Require: Kc: number of candidate UEs; d: distance of UEs to the BS; θ: AoA of UEs at BS in

spatial frequency domain; Y: number of zones; L: range of zones; N: number of antennas
for each zone; vt: UE speed; T : threshold for serving period;

Ensure: tmin: real minimum serving period for selected UEs; c: spatial frequency index of
codewords for selected UEs ; K(l): selected UEs in zone l;

1: Initialize K(1 : Y),∆K(1 : Y), tedge as null;
2: Step 1: Allocate UEs to different zones, record number of UEs in each zone with their

edge time and distances.
3: for k = 1 to Kc; l = 1 to Y do
4: if d(k) ∈ L(l) then
5: K(l) = K(l) + 1;
6: Update tedge,d;
7: end if
8: end for
9: Step 2: Calculate the minimum time of UEs serving by one beam, record beam indexes.

10: for l = 1 to Y;k = 1 to K(l) do
11: c (k, l) = argmin

c(k,l)∈F(l)
(c (k,l) − θ (k, l))

12: left(k, l) = |angle(c(k, l) − 0.5) − angle(θ(k, l))|;
13: right(k, l) = |angle(c(k, l) + 0.5) − angle(θ(k, l))|;
14: tmin(k, l) = min(left(k, l)/(vt∗d(l, k)),
15: right(k, l)/(vt∗d(l, k)), tedge(k, l));
16: end for
17: Step 3: Select UEs satisfying serving period requirement, sort by the real minimum serv-

ing period from long to short.
18: ∆K(1 : Y) = 0;
19: for l = 1 to Y;k = 1 to K(l) do
20: if tmin(k, l) < T then
21: ∆K(l) = ∆K(l) + 1;
22: delete tmin(k, l),c(k, l);
23: end if
24: sort(tmin(; , l), downorder)
25: Update c;
26: end for
27: K(1 : Y) = K(1 : Y) − ∆K(1 : Y);
28: Step 4: Disconnect with the UEs bring the same or adjacent beam interference.
29: ∆K(1 : Y) = 0;
30: for l = 1 to Y;k = 2 to K(l) do
31: mmin = min(|c(k, l) − c(1 : k, l)|);
32: mmax = max(|c(k, l) − c(1 : k, l)|);
33: if |mmin| < 2|| |mmax| > N(l) − 1 then
34: ∆K(l) = ∆K(l) + 1;
35: Delete tmin(k, l) and c(k, l)
36: end if
37: end for
38: K(1 : Y) = K(1 : Y) − ∆K(1 : Y);
39:
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Here d is a vector represents distances of LoS paths from UEs to the BS, which is calculated

by d = TLoS ×c, where TLoS is the ToA vector of LoS paths for candidate UEs, c is the speed of

light. The real minimum serving period array, tmin, means the time of UEs spending on getting

out of the beam serving space in the shortest distance. Due to the tmin of the selected UEs are

all longer than or equal to the threshold T , therefore, the threshold T can be utilized as the

period for uplink feedback. The algorithm is detailed in Algorithm 1. To be mentioned that,

the function angle in step 2 is shown as follows

angle(c(k, l))=arcsin(2c(k, l)/N (l) ). (4.1)

It can be found that the UEs selected by this algorithm are the ones with longest tmin and no the

same beam or adjacent beam interference.

4.2.2.2 Large Connection Oriented UEs Selection

To adapt to the high connection use case [60] in the real environment while keeping the long

serving time advantage, a large UE connection oriented algorithm is proposed to select UEs.

This algorithm can also be applied by four steps:

1. Allocate UEs to their corresponding zones according to d, and for the kth UE in zone l,

find the serving beam index cl,k from the codebook l based on θl,k;

2. Choose UEs without the same beam or adjacent beam interference as the initialized UEs;

3. At the end of the predefined interval ∆t, UEs who move out of their corresponding beam

serving range are found and disconnected based on the uplink feedback;

4. Use a threshold of connection ratio Per or serving period T to decide the time for a new

serving circle.

In order to know whether the UEs which have not moved out of their original zones still in

the serving range of original beams or not, a matrix consisted of three codeword vectors is

designed in Eq. (4.2),

Cl,k = [f (ṽ1,Nl) , f (ṽ2,Nl) , f (ṽ3,Nl)] , (4.2)
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f (v,Nl) =
1
Nl

[
1, e j2πv/Nl , · · · , e j2π(Nl−1)v/Nl

]T
, (4.3)

where ṽ1 = cl,k−1, ṽ2 = cl,k and ṽ3 = cl,k +1, which means the matrix includes the codewords of

the serving beam and its adjacent beams. Due to the reciprocal channel in TDD systems, such

characteristic can be utilized to specify the location of UEs. When a short serving interval ∆t is

finished, only slight changes take place at the location of served UEs. Therefore, the kth served

UE in zone l feedbacks one bit signal to the BS, which is used for LoS path ToA detection, and

beamformed by the already selected codeword vector and corresponding adjacent codeword

vectors contained in Cl,k, in order to replace the time-comsuming AoA detection step with

large number of signal snapshots requirement. The new suitable codeword index ṽnc for the UE

with channel vector hl,k can be calculated by Eq. (4.4) [61],

nc = arg max
16 j63

∣∣∣∣f(ṽ j,Nl

)H
hl,k

∣∣∣∣ . (4.4)

At the end of each interval ∆t, if ṽnc = cl,k, i.e. the UE is still in the beam serving range, the

BS will continue to serve it in the next ∆t period. Otherwise, the BS should disconnect the

UE. Therefore, within the beam serving time, one bit is used for feedback with a period of ∆t.

A new UE selection starts when the percentage of serving UEs is lower than the predefined

threshold Per or the serving time satisfies threshold T .

4.3 Performance Evaluation

The simulation work in this section starts from the comparison of MUSIC based AoA estima-

tion resolution with different numbers of snapshots or transmitting power. After that, ∆t, which

is a parameter for the large connection oriented UEs selection method is specified for different

speeds scenarios. Then the UE selection percentage, the SR and the cumulative feedback are

compared between two UE selection algorithms. At the same time, the SR and the cumulative

feedback are compared among two proposed algorithms and the multi-sectional codebooks

searching algorithm proposed in [28]. This algorithm employs beam training method to se-

lect suitable codewords for UEs, it is designed based on hierarchical codebooks introduced in
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chapter 2 and can always select codewords from the highest layer of hierarchical codebooks.

For each zone, a hierarchical codebook with multiple layers is designed. It can be proved that

when the number of antennas is fixed, the highest layer of hierarchical codebook has the same

design as the proposed multi-pattern codebook.

Most parameters for simulation work are shown in Table 3.1. What to be mentioned is that

the number of candidate UEs Kc for UE selection is 100.

4.3.1 Numerical Results
4.3.1.1 MUSIC based AoA Estimation

 

Figure 4.1: AoA estimation resolution based on different numbers of snapshots with diverse
transmitting power.

We use MUSIC method to estimate the AoA of LoS paths based on the uplink signal from

UEs to the BS, the signal is reciprocal to the downlink signal defined in Eq. (3.4). The high
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resolution AoA should be available for accurate codeword selection. Due to the minimum

beamwidth is 0.5 degrees, the average error of AoA estimation should not be lower than this

value. In Fig. 4.1, the changing tendency of AoA estimation RMSE with increasing numbers

of snapshots are compared among cases with different transmitting power. When the path loss

of signal is considered as a fixed value, the receiving power of signal at BS is only decided by

the power of transmitting signal. It can be easily found that for all transmitting power cases, the

reducing RMSE with increasing snapshots means that the AoA estimation resolution increases

while more signal snapshots are available, it is because that the large number of snapshots

are helpful to reduce the influence of noise in MUSIC based AoA estimation, although these

snapshots lead to the consequence of long AoA estimation time. Compared curves for signals

with different transmitting power, the higher the transmitting power is, the fewer snapshots are

needed to achieve the required resolution. When the number of snapshots utilized is 500, the

signal with relatively low transmitting power can provide high AoA estimation resolution.

4.3.1.2 UEs Connection Ratio

Fig. 4.2 compares the changes on UE connection ratio with different length of ∆t while using

the large connection oriented UE selection algorithm, in order to find out a ∆t which can both

updates the suitability of beams for each UE on time, and avoid too much waste of feedback at

the same time. We define that when UE connection change ratio is higher than one percent, a

feedback should be given. It can be found from Fig. 4.2 that for UEs in speed of 5m/s, when

∆t = 0.04s, the UE connection change is around one percent, hence ∆t = 0.04s when UEs

speed is 5m/s. When the UE speed increases, the value of ∆t should adaptively decrease to

keep the UE connection change ratio. Therefore, for UEs in speeds of 10m/s and 20m/s, ∆t

drops to 0.02s and 0.01s, respectively. What to be mentioned is that the ∆t is always too short

to a sharp AoA change on each UE, so the beam training based on three codeword vectors in

Cl,k for a UE is enough to detect the suitability of original beam.

In the following simulation performance figures, algorithm 1 represents the ultra low feed-

back oriented algorithm, while algorithm 2 is the large connection oriented algorithm. T is the

threshold of the minimum serving period, which represents a predefined minimum period be-
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Figure 4.2: Selected UEs ratio change with different speeds and ∆t.

tween two times of UE connection for both algorithm 1 and algorithm 2, the UEs are assumed

to have fixed moving direction and speed within the beam serving time. The UE connection

percentages of the two algorithms with changing threshold T are shown in Fig. 4.3, here the

curves for algorithm 2 are consisted of UE connection percentage at the end of period T . For

both algorithms, the percentages of connections decrease with the increasing threshold T and

UE speed. However, the connection percentage of algorithm 2 is much higher than that pro-

vided by algorithm 1 under the same UE speeds and threshold T , which means that algorithm

2 provides a significant increase in the UE connection ratio while maintaining the advantage

of a long serving time compared with algorithm 1. Therefore, the high connection ratio is the

advantage of algorithm 2, while the low connection ratio is the disadvantage of algorithm 1.
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Figure 4.3: The connection ratio comparison between two UE selection algorithms.

4.3.1.3 Sum Data Rate

The sum data rates of algorithm 1, algorithm 2 and the multi-sectional codebooks searching

algorithm proposed in [28] are compared in Fig. 4.4 while the speed of UEs is fixed as 5m/s.

As shown in the simulation result, the sum data rates of algorithm 2 always outperform those

of algorithm 1 with different T . Such advantage of algorithm 2 is brought by the larger number

of UEs served at the same time compared with algorithm 1. On top of that, the number of

UEs simultaneously served decreases with the increasing threshold T for both algorithm 1

and algorithm 2, therefore, the sum data rates for both algorithms witness an increase while

threshold T is declining. Finally, it should be mentioned that the UEs are reselected every

coherence time in the multi-sectional codebooks searching algorithm, and only UEs who would

not be affected by the same beam or the adjacent beam interference are selected. Therefore, the

high UEs serving ratio can be kept and these UEs can always be served by suitable beams in
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Figure 4.4: The throughput comparison between two UE selection algorithms.

this algorithm, which leads to the high SR. The overlap of the curve of this algorithm and the

curve of algorithm 2 when T = 0.2 means that algorithm 2 can not only reduce the feedback

required, but also provide high SR.

4.3.1.4 Cumulative Feedback

Table 4.1 compares the minimum serving period T with at least 50% UE connection for two

algorithms. We can find the 50% connection serving time for algorithm 1 is much shorter than

that of algorithm 2, however, the feedback of a UE using algorithm 2 is decided not only by the

threshold T , but also the interval of feedback ∆t in each period of T . Therefore, the cumulative

feedback of both algorithms will be discussed. On top of that, the coherence time mentioned in

the table is viewed as the feedback period of multi-sectional codebooks searching algorithm,

which will be compared with two algorithms with regard to the cumulative feedback later.
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Table 4.1: Codeword Selection Period Comparison

Speed

Algorithm

Algorithm 1

50% connection

minimum serving

time T (s)

Algorithm 2

50% connection

minimum serving

time T (s)

∆t for

Algorithm 2

(s)

Coherence time

(s)

vt = 5m/s 0.067 0.2 0.04 0.00063

vt = 10m/s 0.032 0.1 0.02 0.00031

vt = 20m/s 0.015 0.04 0.01 0.00016

 

Figure 4.5: The cumulative feedback comparison between two UE selection algorithms.
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The cumulative feedback for single UE using algorithm 1, algorithm 2 and the multi-

sectional codebooks searching algorithm are compared in Fig. 4.5. It can be found from

the figure that for both proposed algorithms, UEs moving faster require more feedback bits in

a fixed period of serving time. Compared two algorithms for UEs in same speed, the algorithm

2 sacrifices more bits for the performance improvement on connection percentage and SR. As

mentioned before, the feedback period of multi-sectional codebooks searching algorithm is UE

coherence time. Besides, for the application in multi-zone scenario, the number of bits required

by this algorithm changes with the antennas number. 2 to 7 bits are needed respectively for the

cases using 4 to 128 antennas. In each time of codeword selection, based on the distance de-

tected by the first bit feedback, the zone is determined and the number of bits required can be

known. The average feedback for each time of codeword selection is 6 bits, while only one bit

required for feedback in two proposed algorithms. Therefore, the feedback of both proposed

algorithms are much lower than that of the multi-sectional codebooks searching algorithm,

which means the aim of the algorithms design is achieved.

4.4 Chapter Summary

In this chapter, based on the multi-pattern based beamforming introduced in the last chapter,

two kinds of UE selection algorithms are detailed to make sure that UEs are served with only

non-adjacent beam interference, and a relatively long serving period can be ensured. Compared

with the large UE connection oriented algorithm, ultra low feedback oriented algorithm sacri-

fices fewer bits of feedback, while the former algorithm has better performance on SR and the

percentage of connected UE at the same time. The simulation work shows that the SR of pro-

posed low overhead beamforming utilizing large connection UE selection is very close to that

of the multi-sectional search beamforming algorithm, while fewer numbers of feedback bits are

required by the beamforming algorithm with any proposed UE selection methods, compared

with the multi-sectional search beamforming algorithm.



Chapter 5

AoA Estimation based Low Overhead
Beamforming in FDD mmWave MIMO
System

In FDD channel, with the full use of the angle reciprocity, the fast estimated AoA information

based on uplink signal can be helpful for downlink codeword selections. When the uplink

transmission signal is always available for AoA estimation, the codeword can be adaptively

selected to the changing channel, and the overhead for beamforming is avoided while the high

downlink data rate is kept. In this chapter, we propose a few uplink signal snapshots based fast

AoA estimation algorithm.

5.1 Introduction

With the increasing exploitations of mmWave band, large scale antenna array can be utilized

to achieve very narrow beamforming and high power gain for improving the transmitting data

rate of future wireless systems [62]. The angle-based beamforming and beam-training based

beamforming are two widely used beamforming algorithms for different application scenarios.

Thanks to the angle reciprocity between uplink and downlink, the AoD required in angle-

based beamforming can be obtained by the AoA estimation in the opposite direction [63]. This

algorithm can be adopted by use cases when no beam-training overhead is allowed. Unlike

angle-based beamforming, codebook-based beamforming requires beam-training process. The

beam-training process, assisted by transmitting reference signal, is utilized to select codewords

64
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with the highest data rates based on the feedback from terminals [54], so AoA estimation is not

needed any more.

The applications of angle-based beamforming algorithm are introduced in [64] and [30].

However, in these applications, the beamforming vector has to be adapted to keep up with the

variation of AoA, which could be time-consuming. Besides, the resolution of AoA estima-

tion plays an important role in the performance of angle-based beamforming. In conventional

AoA estimation methods, the MUSIC method was proposed to provide AoA estimation with

high resolution. However, the high-resolution MUSIC algorithm can only be achieved with

the premises of large numbers of snapshots and high SNR [15], which fact has already been

proved by the simulation work in the last chapter. As a result, the high resolution AoA estima-

tion in low SNR environments with limited snapshots still remains an open issue. Compared

with angle-based beamforming, the inaccurate AoA estimation and the time-consuming beam

generation process are evitable in beam-training based beamforming. In this beamforming al-

gorithm, the weight vectors of phase shifters are specified by selected codewords without AoA

estimation requirement [65]. A new problem arises from the heavy overhead expense caused

by exhaustive beam-training for high resolution codebooks. The hierarchical codebook has

been widely considered to cut down the number of symbols required for beam-training [66],

on the basis of which, a low beam-training overhead codeword selection algorithm is further

proposed in paper [67]. However, in the case with high frequent beam changing requirement

[68], the large beam-training overhead is still the bottleneck.

With the development of machine learning, its application in beamforming has been widely

studied in many recent papers [69][70]. Compared with traditional machine learning methods,

the multi-layer neural network is more powerful and flexible to capture complex relationships

due to the combined capability of multiple hidden layers [71]. The CNN is adopted in AoA

estimation in [23], but it is a coarse estimation method and the resolution is not adequate for

angle-based beamforming. In this section, with the further exploration of neural network in

robust AoA estimation, a high resolution angle based codeword selection algorithm, which

combines the advantages in terms of the quick beam generation of codebooks and low beam-

training overhead of angle-based beamforming, is proposed. As mentioned in [72], the path

loss of LoS path is much lower than those of non-LoS (NLoS) paths in mmWave systems.
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Therefore, we generate few snapshots-based uplink LoS path AoA (LAoA) estimation mod-

els to select codewords from hierarchical codebooks for downlink beamforming. To make a

more precise distinction among received uplink signals with similar LAoA, a two-step neu-

ral network structure is proposed to learn the relationship between receiving signal and the

corresponding LAoA from a UE. In the first step, coarse LAoA estimation is achieved by clas-

sifying UEs into several angle groups. After that, LAoA of the UE can be further estimated

within group range by the corresponding step 2 model.

The simulation work is applied in FDD systems, compared with the TDD systems we

discussed in the last two chapters, the uplink signal is always available for frequent LAoA es-

timation during the downlink transmission. Due to the fact that the downlink SR and SWR are

decided by the codeword for beamforming, which is selected based on estimated LAoA. As a

result, the accuracy of uplink LAoA estimation becomes the only factor to affect the perfor-

mance of downlink transmission. Simulation results demonstrate that our proposed two step

neural network based LAoA estimation method provides higher estimation resolution than the

classical MUSIC method with a couple of signal snapshots, while the proposed LAoA estima-

tion application in codeword selection outperforms the SWR optimization oriented codeword

selection algorithm for both SR and SWR within a large range of SNR.

The rest of this chapter is organized as follows. In Section 5.2, the uplink and downlink

system models are introduced. In Section 5.3, the uplink signal based LAoA estimation model

and its application in codeword selection is detailed, while in Section 5.4, the LAoA estima-

tion resolution and codeword selection accuracy of proposed algorithms are compared with

conventional algorithms. Finally, our conclusions are given in Section 5.5.

5.2 Signal Model

5.2.1 Downlink Signal Model

Consider a MU-MIMO-OFDM broadcast system. Due to the fact that the distance between BS

and UEs are not important in the beamforming design, therefore, the influence of distance to the

channel model is not considered to simplify the problem. In the downlink signal transmission,

the large ULA equipped with Nt antennas at the BS is considered in mmWave MIMO system,
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while UEs are equipped with single antennas. Half wavelength is designed as antenna interval,

and the antenna array is used to serve J(J > 1) UEs every time, the transmitter employs J

analog RF beamformer. We focus on the design of analog beamformer, and the receiving

signal at the kth UE on the lth subcarrier can be modeled as

R(k)
D (l) =

√
Ph(k)H

D (l) w(k) (l) s(k) (l) +

J∑
j,k

√
Ph(k)H

D (l) w( j) (l) s( j) (l)︸                               ︷︷                               ︸
inter f erence

+n0 (l) . (5.1)

For convenience, the subcarrier index l will be omitted when there will be no confusion. In

Eq. (5.1), w ∈ CNt×1 is the normalized beamforming vector with ‖w‖ = 1, n0 ∼ CN(0, σ2
n)

represents additive white Gaussian noise and P denotes the power of transmitter. s is the

transmitted symbol block. The conjugate transpose of the downlink channel vector hD can be

written as

h(k)
D =

√
Nt

M∑
m=2

γ(k)
m α

(k)(Nt, sin θ(k)
m ) +

√
Ntγ

(k)
1 α

(k)(Nt, sin θ(k)
1 ), (5.2)

where M and γm ∼ CN(0, σ2
M) denote the number of multipath and the channel gain of the

mth(m = 2, . . . ,M) path, while the channel gain for the LoS path is γ1 ∼ CN(0, σ2
1). The AoD

θ (θ ∈ [0, π]) can be divided into the AoD of LoS path θ1 and AoDs for NLoS paths θm. The

function α (N, sin θ) denotes steering vectors at transmitter, where

α(N, sin θ) =
1
√

N

[
1, e jπ sin θ, . . . , e jπ(N−1) sin θ

]T
. (5.3)

Therefore, the SR of UEs can be expressed as

S R =

J∑
k=1

log2

1 +

∣∣∣√Ph(k)H
D w(k)

∣∣∣2
J∑

j,k

∣∣∣√Ph(k)H
D w( j)

∣∣∣2 + |n0|
2

. (5.4)

Assume that the unit of signal transmission is symbol blocks and the length of blocks can be

viewed as a mmWave channel coherence time period, in each coherence time period, γm and γ1

can be considered to be constant. The symbol blocks in a coherence period should be divided

into Kt symbols blocks for beam-training and Kd symbols blocks for data transmission, i.e.
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K = Kt + Kd. Compared with the UEs SR, the SWR is a better parameter to show the influence

of beam-training symbols to the data transmission, which can be formulated as [67]

S WR =

J∑
k=1

K − K(k)
t

K
log2

1 +

∣∣∣√Ph(k)H
D w(k)

∣∣∣2
J∑

j,k

∣∣∣√Ph(k)H
D w( j)

∣∣∣2 + |n0|
2

. (5.5)

5.2.2 Uplink Signal Model

The single carrier frequency division multiple access (SC-FDMA) signal is utilized in uplink

LTE system. For each conventional SC-FDMA symbol block [73], a snapshot in a transmitted

symbol is x (t) = 1
√

Ms
e j 2π f0t

N
∑Ms−1

n=0 s (n) g
(
t − n N

Ms

)
, where g (t) = 1

√
N

e j π(Ms−1)t
N sin πMst

N

/
sin πt

N , N is

the number of points for IFFT, t is viewed as a snapshot in the symbol block, (t = 0, 1, · · · ,N − 1),

f0 is the carrier frequency, s (n) (n = 0, 1, · · · ,Ms − 1) represents the complex modulated data

in a symbol block, which is modulated by four Quadrature Amplitude Modulation (4QAM),

and Ms denotes the size of a symbol block. Therefore, in the time domain, a snapshot of the

uplink receiving signal at an antenna is Rnt
U (t), which can be written as

Rnt
U (t) =

√
Phnt

U (t) ∗ x (t) + nnt
0 (t) , (5.6)

hU (t) =
√

Nt

M∑
m=2

γmα(Nt, sin θm)δ (t − τm)

+
√

Ntγ1α(Nt, sin θ1)δ (t − τ1) ,

(5.7)

here ∗ denotes operation of convolution, hU (t) is the uplink channel matrix and hnt
U (t) repre-

sents the channel vector for the ntth (nt = 1, 2, . . . ,Nt) antenna, τm (m = 1, 2, . . . ,M) is the time

delay of each path, LAoA equals to the AoD θ1 of the corresponding downlink channel due to

angle reciprocity [74]. As shown in Fig. 5.1, the uplink and downlink signals are assumed to

be transmitted with the same size of symbol block and coherence time period in FDD systems.
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Figure 5.1: Uplink and downlink signals in a mmWave coherence time period.

5.3 AoA Estimation based Beamforming

In this section, a two-step neural network is introduced to estimate LAoA by the uplink re-

ceiving signal for codeword selection. Since the model is designed to discover the relationship

between uplink receiving signal at BS and the corresponding LAoA from a UE, the uplink

channel and signal models are introduced firstly. After that, the generation of training and test-

ing signal samples are presented, and the construction of the two-step neural network models

are shown. Finally, we introduce the application of the proposed neural network based LAoA

estimation in codeword selection algorithm.

5.3.1 Uplink Signal based AoA Estimation

5.3.1.1 Samples Generation for Neural Network

The snapshots of the uplink receiving signal with all multipath signals received at Ns (Ns 6 Nt)

adjacent antennas are utilized to generate the input nodes of training/testing samples. The first

Np snapshots are taken from an uplink symbol block of transmitted data. As mentioned in

paper [76], the variability of uncertain signal waveform can be reduced by the utilization of

average array covariance matrix, which are generated based on Np uplink signal snapshots in

Eq. (5.8)

R =
1

Np

∑Np

n=1
RU [n] RU

H [n]. (5.8)
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Reshape the off-diagonal upper right matrix elements of R as an input vector to the neural

network model, which is

r= [R1,2,R1,3, . . . ,R1,Ns ,R2,3, . . . ,R2,Ns , . . . ,RNs−1,Ns]

∈ C(Ns−1)Ns/2×1

(5.9)

rinput =
[
Real (r) , Imag (r)

]/
‖r‖, (5.10)

rinput is the input nodes vector for both training and testing samples, which has Ns (Ns − 1)

nodes, while the corresponding output node is decided by the selected model type, which will

be explained in the next section.

5.3.1.2 Two-step Neural Network for AoA Estimation
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Figure 5.2: The flow chart of two-step neural network.

In order to achieve high accuracy LAoA estimation, we apply a two-step neural network

based estimation algorithm. The flow chart of the proposed algorithm is shown in Fig. 5.2, in

the first step, the serving space of LAoA is uniformly divided into G angle groups with group

interval g = 180◦/G, while the coarse LAoA estimation is done by classifying the UE into an

angle group C1 (C1 = 0, 2, . . . ,G − 1). After that, the LAoA of the UE can be further estimated

within the group range by the corresponding step-two regression/classification model. The

classification model represents the predictive model with the task to approximate a mapping
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Figure 5.3: The neural network framework for both steps.

function from input variables to discrete output variables, while the regression model outputs

continuous variable. To simplify the writing, we write the two-step model with regression

model in the second step as Two-step Classification-Regression (TCR) model, while the model

with classification model in the second step is called Two-step Classification-Classification

(TCC) model.

Fig. 5.3 is the framework of neural network utilized in both step 1 and step 2. The neural

network has one input layer to get the input nodes into the neural network model, while NH

hidden layers and one output layer are all consisted of a FCL and an AL. The ReLU function

is chosen for the AL in NH hidden layers, while that for the output layer is sigmoid function

because the output of this layer is normalized LAoA or probability, which are values between

0 and 1. The equations of two activation functions are

Fsigmoid (x) =
1

1 + e−x , (5.11)

FReLU (x) = max(0, x). (5.12)

A dropout layer is deployed between hidden layers and the output layer for the sake of prevent-

ing overfitting [75].

It is defined that the neurons number for a FCL in each hidden layer is NF , and that for FCL
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in a output layer is equal to the number of output nodes No. For both step 1 and step 2 models,

the number of input nodes is Ni = Ns (Ns − 1), while the number of output nodes No for the

step 1 classification model is G, and each value of output nodes is the probability of LAoA in

this angle range. The index C1 of the output nodes with the highest probability is the index of

selected angle group.

For the TCR model, only one output node is required for the regression model in step

2. When the output R2 is obtained from step 2 model, which is the normalized LAoA in the

corresponding angle group, the real LAoA can be recovered by Eq. (5.13)

LAoA = g × (C1 + R2) , C1 ∈ [0, · · · ,G − 1] . (5.13)

For the TCC model, the divided UEs in G groups are further classified into smaller groups

with specific LAoA values estimation. Compared with the uniform way for group division

adopted in step 1, here the angle range is nonuniformly divided. As shown in Fig. 5.4, for

the uniform group division, the group interval represents the angle covered by an angle group,

which is the distance between adjacent edges. The largest error of this way is a group interval.

However, for the nonuniform group division, the group interval is the distance between adjacent

group indexes. Each point in the whole range is divided into the angle group with the shortest

absolute distance from corresponding group index to the point, therefore, the largest error of

this way is only half of a group interval, which can be smaller than that of the uniform way.

The group interval for step 2 model is set as g2, and the output of this step C2 is calculated in

Eq. (5.14)

C2 = round
(

LAoA−g×C1
g2

)
, C1 ∈ [0, · · · ,G − 1]. (5.14)

The number of output nodes in the step 2 classification model can be calculated by No =

180◦/G
g2

+ 1, and the LAoA can be easily recovered by LAoA = g × C1 + C2 × g2. When g/g2 is

an integer, the resolution of the LAoA estimation with correct group selections in both steps is

g2/2.
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Figure 5.4: Two angle group division methods.

5.3.2 AoA based Codeword Selection for Multiple UEs

The hierarchical codebooks are designed to generate beams with varying beamwidth and beam

gain based on different numbers of antennas used [66]. The codewords in the highest layer

codebook can generate beams with the narrowest beamwidth and highest beam gain, which

employ Nt antennas and the beam weights can be shown as Eq. (5.15)

w (i) = α (Nt,−1 + (2i − 1)/Nt) , (i = 1, . . . ,Nt) . (5.15)

The number of antennas for codebooks generation decreases with the layer index of codebooks.

Therefore, the lower level the codeword belongs to, the wider beamwidth and lower beam gain

it provides. We utilize number of antennas to evaluate the beam resolution. The more antennas

used for codebook generation, the narrower the beamwidth is, the higher beam gain can be

obtained, which means the higher resolution the beam has. However, a large beam-training

overhead is required to select a suitable codeword with high resolution for transmission. In

paper [67], a SWR optimization oriented codeword selection algorithm based on the hierar-

chical codebooks is proposed to make the best tradeoff between the beam resolution and the

beam-training overhead, which is said to provide better performance than the multi-sectional

codebooks searching algorithm [28] with regard to SWR.

In our proposed LAoA based codeword selection algorithm, with the LAoA estimated by

the two-step neural network, the codebook providing the highest resolution beams can be se-
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lected to serve the UEs. Due to the changing range of beams with codeword index in the

highest level codebook, whether the most suitable codeword can be selected to the UE depends

on the LAoA estimation accuracy and the beamwidth of beams generated by codewords in

the codebook. As a classical method for AoA estimation, MUSIC can also provide estimated

LAoA with high accuracy based on the uplink signal snapshots for downlink codeword selec-

tion. However, it results in less accurate AoA estimation method in low SNR environments

with few snapshots [15]. In the next section, the performance of proposed algorithm will be

compared with the MUSIC based codeword selection algorithm and the benchmark algorithm

respectively with different SNR.

5.4 Performance Evaluation

5.4.1 System Parameters

In this section, the numerical results are given to show the performance of two-step neural

network models for LAoA estimation and their applications in codeword selection algorithm.

Some parameters for the simulation work are defined in Table 5.1. Noted that the training sam-

ples are generated by uplink signal snapshots with random LAoA in the angle range, which are

utilized for both step 1 and step 2 models. These training samples are used to train both TCC

and TCR models with different numbers of groups division, while for the step 2 models ac-

counting for different divided ranges, the training samples with LAoA in corresponding ranges

are allocated.

5.4.2 Numerical Results

5.4.2.1 LAoA Estimation Accuracy

The number of nodes utilized in hidden layers and output layers for different two-step mod-

els and single-step models are listed in Table 5.2 [67]. In Fig. 5.5 and Fig. 5.6, the testing

error cumulative distribution functions (CDF) are compared among different neural network

models and MUSIC algorithm. In these figures, re is the resolution of TCC models, which is
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Table 5.1: Simulation Parameters for Beamforming Design in FDD Systems

UE distance to BS R (m) [0, 500]
Complex channel gain αm ∼ CN(0, 0.01), α1 ∼ CN(0, 1)
number of paths M 10
number of UEs J 2
LAoA range θ (−π/2,π/2)
Duplex mode FDD
BS antennas Nt (ULA) 64/128
Samples generation antennas number Ns 32
Number of IFFT points 512
SNR (dB) [−5, 25]
Symbol blocks in coherence period K 20
Neural network input nodes Ni 992
Training samples number 36000
Testing samples number 500 for each SNR
Snapshots for sample generation 3
Dropout ratio 0.25

calculated by g2/2 and represents the largest error for correct classifications of both steps. Each

point in figures represents the percentage of testing samples with error smaller than or equal

to the value in the x axis. Due to the fact that only small error LAoA estimations can provide

high accuracy codeword selections. Therefore, the error range is selected from 0.5 degree to 5

degrees in Fig. 5.5 and Fig. 5.6.

In Fig. 5.5(a)(b), we compare the performance of TCC/TCR models with different G,

Single-step Classification model and Single-step Regression model. It can be found that the

TCC models with the same re but different G show similar accuracy in both low and high SNR

environments, and all of them can provide about 35% percents of UEs with estimation error

smaller than 0.5 degree. Compared with TCC models, TCR models witness a decrease on the

error CDF with the decreasing number of divided groups. Although the TCR model with 30

groups shows similar performance with TCC models in low SNR environments, its percentage

with small estimation error is much lower than those of TCC models in the high SNR envi-

ronments. On top of that, the Single-step Classification model outperforms the Single-step
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Table 5.2: Hyperparameters for Neural Network Models

Number of mod-
els

Model type NH NF No G

1 Regression 2 500 1 0Classification
(re = 0.5◦)

2 500 181

10
Classification 1 2 120 9

9Classification 2
(re = 0.5◦)

2 120 21

Regression 2 2 120 1

19

Classification 1 2 120 18

18
Classification 2
(re = 0.5◦)

2 120 11

Classification 2
(re = 0.25◦)

2 200 21

Classification 2
(re = 0.125◦)

2 200 41

Regression 2 2 120 1

31
Classification 1 2 150 30

30Classification 2
(re = 0.5◦)

2 120 7

Regression 2 2 120 1

Regression model in both low and high SNR environments. The percentage of UEs with small

error estimated by Single-step Classification model is even higher than that of TCR models in

high SNR environments. To conclude, the TCC models are the best LAoA estimation models

with different SNR.

Based on the above analysis, the TCC models with G = 18 are selected for further analysis.

In Fig. 5.6(a)(b), the 18 groups TCC models with various resolutions are compared with the

MUSIC algorithm. The TCC model with re = 0.25 can be found with highest percentage of

UEs with small error compared with other ones. For the comparison between TCC models and

MUSIC algorithm, all three TCC models outperform the MUSIC algorithm in the low SNR

environments, while in the high SNR environments, MUSIC algorithm shows a little bit better

performance. What’s more, the TCC model with re = 0.25 is the one can provide the closest

performance to the MUSIC algorithm in the high SNR environments.

The neural network based LAoA estimation can be compared with MUSIC based LAoA

estimation in terms of the computational complexity. Both estimation methods are applied on
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the average array covariance matrix in Eq. (5.1). As mentioned in [77], the MUSIC algorithm

complexity is

OMUS IC = N2
s (M + 2) + I (Ns + 1) (Ns − M) f lops , (5.16)

where I is the number of spectral points of the total angle range. The complexity calculation

of the simple neural network framework in Fig. 5.3 is similar to that of matrix multiplications.

The fully connected layers complexity calculation can be divided into the input layers part, the

hidden layers part and the output layer part, the equation is

ONN = (Ni + 1) NF + (NH − 1) (NF + 1) NF

+ (NF + 1) No f lops
. (5.17)

For the calculation of complexity for a specific testing sample input, the complexity of both

step models should be added to get the sum result. Therefore, compared the complexity of 18

groups TCC models with MUSIC algorithm, for LAoA estimation with different resolutions,

the MUSIC algorithm utilizes more flops than that of 18 groups TCC models. On top of that,

compared with TCC models, the complexity of the MUSIC algorithm increases with resolution

more dramatically.
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(a)

 

(b)

Figure 5.5: The comparisons of error CDF for different LAoA estimation models (a) SNR=-
5dB (b) SNR=25dB.
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(a)

 

(b)

Figure 5.6: The comparisons of error CDF for different resolution LAoA estimation models
(a)SNR=-5dB (b) SNR=25dB.
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5.4.2.2 LAoA Estimation based Codeword Selection

With the hierarchical codebook designed by 64 and 128 antennas, the TCC models based code-

word selection algorithms with G = 18 and different resolutions are compared with the MUSIC

based algorithm, the multi-sectional search codeword selection algorithm [28] and the SWR

optimization oriented algorithm [67] in terms of SR and SWR, as shown in Fig. 5.7 and Fig.

5.8, separately. In the simulation, codewords for two UEs are considered to be selected at the

same time.

When Nt = 64, as shown in Fig. 5.7(a), both the TCC models based codeword selection al-

gorithms and the MUSIC based algorithm provide larger SR than that of the SWR optimization

oriented algorithm when SNR>-2dB. In the low SNR environments, the TCC models outper-

form the MUSIC based algorithm, while in the high SNR environments, both TCC model and

MUSIC based algorithms can provide SR which is equal to the multi-sectional search based

algorithm, which algorithm is mentioned to provide the best codeword selections. The TCC

models and the MUSIC algorithm do not require beam-training overhead for codeword selec-

tion, therefore, in Fig. 5.7(b), the TCC models based algorithms and the MUSIC based algo-

rithm show larger SWR than the multi-sectional search based algorithm and SWR optimization

oriented algorithm in all SNR environments. Noted that both SR and SWR performance of two

TCC models with different resolutions are similar, which means the 0.5 degree resolution TCC

model is enough for the 64 antennas based codebook.

With the hierarchical codebook designed by 128 antennas, the performance comparison

of SR and SWR among two TCC models based, MUSIC based algorithm, multi-sectional

search based algorithm and SWR optimization oriented based codeword selection algorithm

are shown in Fig. 5.8(a)(b). The lines for four algorithms show similar changing tendencies

with those shown in Fig. 5.7(a)(b), while for TCC model with re = 0.5 based algorithm, in the

environments with SNR>13dB, it can hardly provide perfect codeword selection. To conclude

that, the TCC model with re = 0.25 is required to adapt to beams with higher resolution when

Nt = 128.
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(a)

 

(b)

Figure 5.7: The comparisons with Nt = 64 of (a) SR among different algorithms (b) SWR
among different algorithms
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(a)

 

(b)

Figure 5.8: The comparisons with Nt = 128 of (a) SR among different algorithms (b) SWR
among different algorithms.
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5.5 Chapter Summary

In this chapter, angle-based beamforming algorithm without beam-training process is proposed

to reduce the overhead for codeword selection while keeping high transmission data rate. Ac-

cording to the estimated LAoA, the beam to serve a UE is generated by selecting codeword

from the highest layer of hierarchical codebook directly. Furthermore, two-step neural net-

work models are designed to provide high resolution and fast LAoA estimation with only a

couple of snapshots in the varing SNR environments. To find out the best model structure, the

CDF of error for TCC models and that for the TCR models are compared in numerical results,

where TCC models show better robustness for the changing SNR. After that, compared with

the MUSIC based codeword selection algorithm and the SWR optimization oriented algorithm,

the TCC model based algorithm with different resolutions shows better SR and SWR. The nu-

merical results show that for codebooks with different beam resolutions, there always exists

one kind of TCC model which can provide more accurate and robust codeword selection than

other algorithms.
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Conclusion and Future Work

6.1 Conclusion

In this thesis, two challenges in the mmWave systems with large scale antenna arrays were

investigated in detail, which are the significant overhead for beamforming and the low robust-

ness of antenna array based AoA estimation. To face challenges, low overhead beamforming

algorithms and a fast and robust AoA estimation method are proposed in Chapter 3, 4 and 5.

The overhead for beamforming can be reduced by increasing the beams serving time in

TDD systems, i.e. cutting down the times for beams change in a fixed period of time. In

Chapter 3, the serving space is divided into zones according to the straight distances from UEs

to the BS. Due to the relationship between the straight distances and the angular speeds of

UEs with similar linear speed, the UEs in the same zone are considered as ones with close

angular speed. Then the multi-pattern codebook is designed to adapt to UEs in different zones.

Beams generated by codewords from a specific pattern codebook have the same beamwidth

and beam gain in the spatial frequency domain, while for beams generated by different patterns

codewords, antenna arrays with different numbers of elements are used to generate beams with

suitable beamwidth and beam gain to serve UEs in different zones. The simulation work shows

that the large intra-zone interference is caused by the reuse of a specific beam at the same time,

or the use of adjacent beams simultaneously, which brings the requirement for UE selection

step before beamforming.

Based on the multi-pattern codebook designed in Chapter 3, in Chapter 4, two UE selection

algorithms are proposed to prevent the serious interference. With the knowledge of UEs loca-

84
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tion information, two UE selection algorithms are designed as ultra low overhead oriented and

large connection oriented, respectively, in order to adapt to different use cases. In the ultra low

overhead oriented UE selection algorithm, the minimum estimated serving period for selected

UEs should be longer than or equal to the predefined threshold; While in the large connection

oriented algorithm, all UEs without the same beam or adjacent beam interference are served

together at the beginning, while the uplink feedback every time interval enables the BS to dis-

connect with the UEs moving out of the selected beam serving space. Simulation results prove

that the percentage of connection for the second algorithm is much higher than that of the first

algorithm under the same beam serving period. The SR of the second algorithm is higher than

that of the first algorithm, which can even be close to the coherence time based beamforming

algorithm. While the cumulative feedback of the first algorithm is fewer than that required

by the second algorithm, both proposed algorithms need fewer feedbacks than the coherence

time based algorithm, which indecates that our proposed algorithms achieve the objective of

overhead reduction in beamforming.

In Chapter 5, a robust and fast AoA estimation method is proposed for the low overhead

beamforming in FDD systems. Due to the availability of uplink transmission signal, the few

uplink transmission signal snapshots based two-step neural network models are proposed to es-

timate AoA of the LoS path. Then the fast estimated LAoA can be used for real-time beam up-

date in angle based codeword selection for beamforming. The results of simulation work show

that the AoA estimated by the proposed two-step classification models is more precise than

that obtained by the MUSIC method in low SNR environment with only a couple of snapshots.

On top of that, compared with the performance of multi-sectional codebook search algorithm,

which can always make the perfect codeword selection, the SR of the proposed algorithms are

lower in the cases with low SNR; while with regard to SWR, which is the parameter taking

the overhead for beamforming into consideration, the proposed algorithms always outperform

the multi-sectional search algorithm. For the performance comparison between the proposed

algorithms and the SWR optimization algorithm, the proposed ones work better than the latter

one in terms of both SR and SWR.

To summarize, this thesis propose several solutions to face the challenges in mmWave large

scale antenna array system, which improve the communications performance in this system.
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6.2 Future Work

In the future, the work in this thesis can be further extended from the following aspects:

• The low overhead beamforming design in TDD systems in this thesis utilizes codebooks

for beam generation, which is a kind of analog signal processing method. The digital sig-

nal processing performs better on the interference reduction compared with analog signal

processing, which means the exploration on hybrid beamforming may bring benefits to

reduce the interference and keep the beamforming gain at the same time.

• Our proposed algorithms focus on the beamforming of signals for UEs with single dom-

inant path to the BS. However, in some environments, more than one dominant paths

may exist. The beamforming methods should be further developed to adapt to these

circustances.

• For the application of physcial layer air interface techniques, the accurate CSI is always

important for signal transmission and receiving. The utilization of large scale antenna

arrays brings high dimensional wireless channel, which makes the accurate channel es-

timation become an open issue.
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[9] Umut Ugurlu, Risto Wichman, Cássio B. Ribeiro, and Carl Wijting. A Multipath
Extraction-Based CSI Acquisition Method for FDD Cellular Networks With Massive An-
tenna Arrays, IEEE Transactions on Wireless Communications, 15(4): 2940-2953,2016.

87



88 BIBLIOGRAPHY

[10] Zahid Farid, Rosdiadee Nordin, and Mahamod Ismail, Recent Advances in Wireless In-
door Localization Techniques and System, Journal of Computer Networks and Communi-
cations, Article ID 185138, 2013.

[11] Yuan Xue, Wei Su, Hongchao Wang, Dong Yang, and Jian Ma. A Model on Indoor Lo-
calization System Based on the Time Difference Without Synchronization. IEEE Access,
6:34179-34189, 2018.

[12] Fuxi Wen, and Chen Liang. Fine-Grained Indoor Localization Using Single Access Point
With Multiple Antennas. IEEE Sensors Journal, 15(3):1538-1544, 2015.

[13] Jonas Fuchs, Robert Weigel, and Markus Gardill. Single-Snapshot Direction-of-Arrival
Estimation of Multiple Targets using a Multi-Layer Perceptron. 2019 IEEE MTT-S Inter-
national Conference on Microwaves for Intelligent Mobility (ICMIM), pages 1-5. IEEE,
2019.

[14] Renzheng Cao, Binyue Liu, Feifei Gao and Xiaofei Zhang. A Low-Complex One-
Snapshot DOA Estimation Algorithm with Massive ULA. IEEE Communications Letters,
21(5): 1071-1074, 2017.

[15] Giorgos A. Ioannopoulos, Dimitris E. Anagnostou, and Michael T. Chryssomallis. Eval-
uating the effect of small number of snapshots and signal-to-noise-ratio on the efficiency
of MUSIC estimations, Antennas Propagation IET Microwaves, 11(5):755-762, 2017.

[16] Sherif Adeshina Busari, Kazi Mohammed Saidul Huq, Shahid Mumtaz, Linglong Dai,
and Jonathan Rodriguez. Millimeter-Wave Massive MIMO Communication for Future
Wireless Systems: A Survey. IEEE Communications Surveys & Tutorials, 20(2):836-869,
2018.

[17] Shajahan Kutty, and Debarati Sen. Beamforming for Millimeter Wave Communications:
An Inclusive Survey. IEEE Communications Surveys & Tutorials, 18(2):949-973, 2016.

[18] Shu Sun, Theodore S. Rappaport, Timothy A. Thomas, Amitava Ghosh, Huan C. Nguyen,
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and Thomas Zwick. Application of Artificial Neural Networks for Efficient High-
Resolution 2D DOA Estimation. Radioengineering, 21(4):1178-1186, 2012.

[25] Subhash Kumar Mishra, Ram Narayan Yadav, and Ripandeep Singh. A Survey on Appli-
cations of Multi Layer Perceptron Neural Networks in DOA Estimation for Smart Anten-
nas. International Journal of Computer Applications, 83(17):22-28, 2013.

[26] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next Generation 5G Wireless Net-
works: A Comprehensive Survey. IEEE Communications Surveys& Tutorials, 18(3):1617-
1655, 2016.

[27] Xiaoming Chen, Derrick Wing Kwan Ng, Wolfgang H. Gerstacker, and Hsiao-Hwa Chen.
A Survey on Multiple-Antenna Techniques for Physical Layer Security. IEEE Communi-
cations Surveys & Tutorials, 19(2):1027-1053, 2017.

[28] Zhenyu Xiao, Tong He, Pengfei Xia, and Xiang-Gen Xia. Hierarchical Codebook De-
sign for Beamforming Training in Millimeter-Wave Communication. IEEE Transactions
on Wireless Communications, 15(5):3380-3392, 2016.

[29] Yuhan Sun, and Chenhao Qi. Weighted Sum-Rate Maximization for Analog Beamform-
ing and Combining in Millimeter Wave Massive MIMO Communications. IEEE Commu-
nications Letters, 21(8):1883-1886, 2017.

[30] Seungnyun Kim, and Byonghyo Shim. AoD-Based Statistical Beamforming for Cell-Free
Massive MIMO Systems. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall),
pages 1-5. IEEE, 2018.

[31] Dantong Liu, Lifeng Wang, Yue Chen, Maged Elkashlan, Kai-Kit Wong, Robert Schober,
and Lajos Hanzo. User Association in 5G Networks: A Survey and an Outlook. IEEE
Communications Surveys and Tutorials, 18(2):1018-1044, 2016.

[32] Taeseok Oh, Changick Song, Jaehoon Jung, and Inkyu Lee. A new RF beam training
method for multi-user millimeter wave systems. IEEE International Conference on Com-
munications (ICC), pages 1-6, May. 2017.

[33] Xin Liu, Yanan Liu, Xianbin Wang, and Hai Lin. Highly Efficient 3-D Resource Alloca-
tion Techniques in 5G for NOMA-Enabled Massive MIMO and Relaying Systems. IEEE
Journal on Selected Areas in Communications, 35(12):2785-2797, 2017.



90 BIBLIOGRAPHY

[34] Hadi Ghauch, Taejoon Kim, Mats Bengtsson, and Mikael Skoglund. Sum-Rate Maxi-
mization in Sub-28-GHz Millimeter-Wave MIMO Interfering Networks. IEEE Journal on
Selected Areas in Communications, 35(7):1649-1662, 2017.

[35] IEEE 802.11 WG. IEEE 802.11ad, Amendment 3: Enhancements for Very High
Throughput in the 60GHz Band. 2012.

[36] Joongheon Kim, and Andreas F. Molisch. Fast millimeter-wave beam training with re-
ceive beamforming. Journal of Communications and Networks, 16(5):512-522, 2014.

[37] Theodore. S. Rappaport, Wireless Communications: Principles and Practice. Upper Sad-
dle River, NJ: Prentice Hall, 2nd ed. edition, 2002.

[38] Rui Peng, and Yafei Tian. Robust Wide-Beam Analog Beamforming With Inaccurate
Channel Angular Information. IEEE Communications Letters, 22(3):638-641, 2018.

[39] Hai Lin, Feifei Gao, Shi Jin, and Geoffrey Ye Li. A New View of Multi-User Hybrid Mas-
sive MIMO: Non-Orthogonal Angle Division Multiple Access. IEEE Journal on Selected
Areas in Communications, 35(10):2268-2280, 2017.

[40] Jakob Hoydis, Stephan ten Brink, and Merouane Debbah. Massive MIMO in the UL/DL
of Cellular Networks: How Many Antennas Do We Need? IEEE Journal on Selected Areas
in Communications, 31(2):160-171, 2013.

[41] C. Lin and G. Y. Li, Adaptive Beamforming with Resource Allocation for Distance-Aware
Multi-User Indoor Terahertz Communications. IEEE Transactions on Communications,
63(8):2985-2995, 2015.

[42] Jingbo Du, Wei Xu, Hong Shen, Xiaodai Dong and Chunming Zhao. Hybrid Precoding
Architecture for Massive Multiuser MIMO with Dissipation: Sub-Connected or Fully-
Connected Structures? IEEE Transactions on Wireless Communications, 17(8):5465-5479,
2018.

[43] Pan Cao, and John Thompson. Low complexity energy efficiency analysis in millimeter
wave communication systems. Modeling and Optimization in Mobile, Ad Hoc, and Wire-
less Networks (WiOpt), pages 1-5, 2017.

[44] Hsiao-Lan Chiang, Tobias Kadur, and Gerhard Fettweis. Analyses of orthogonal and
non-orthogonal steering vectors at millimeter wave systems. 2016 IEEE 17th International
Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages
1-6, 2016.

[45] Theodore S. Rappaport, Felix Gutierrez, Eshar Ben-Dor, James N. Murdock, Yijun Qiao,
and Jonathan I. Tamir. Broadband Millimeter-Wave Propagation Measurements and Mod-
els Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications. IEEE
Transactions on Antennas and Propagation, 61(4):1850-1859, 2013.



BIBLIOGRAPHY 91

[46] Yonghee Han, Jungwoo Lee, and David J. Love. Compressed Sensing-Aided Downlink
Channel Training for FDD Massive MIMO Systems. IEEE Transactions on Communica-
tions, 65(7):2852 - 2862, 2017.

[47] Panos N. Alevizos, Xiao Fu, Nicholas D. Sidiropoulos, Ye Yang, and Aggelos Bletsas.
Limited Feedback Channel Estimation in Massive MIMO With Non-Uniform Directional
Dictionaries. IEEE Transactions on Signal Processing, 66(19):5127 - 5141, 2018.

[48] Wiroonsak Santipach, and Michael L. Honig. Optimization of Training and Feedback
Overhead for Beamforming Over Block Fading Channels. IEEE Transactions on Informa-
tion Theory, 61(4):6103 - 6115, 2010.

[49] Hadi Ghauch, Taejoon Kim, Mats Bengtsson, and Mikael Skoglund. Sum-Rate Maxi-
mization in Sub-28-GHz Millimeter-Wave MIMO Interfering Networks. IEEE Journal on
Selected Areas in Communications, 35(7):1649-1662, 2017.

[50] Wenqian Shen, Linglong Dai, Guan Gui, Zhaocheng Wang, Robert W. Heath, and
Fumiyuki. AoD-Adaptive Subspace Codebook for Channel Feedback in FDD Massive
MIMO Systems. 2017 IEEE International Conference on Communications (ICC), pages
1-5, 2017.

[51] Ahmed Alkhateeb, Omar El Ayach, Geert Leus, and Robert W. Heath. Channel Esti-
mation and Hybrid Precoding for Millimeter Wave Cellular Systems. IEEE Journal of
Selected Topics in Signal Processing, 8(5):831-846, 2014.

[52] Cunhua Pan, Hong Ren, Maged Elkashlan, Arumugam Nallanathan, and Lajos Hanzo.
Weighted Sum-Rate Maximization for the Ultra-Dense User-Centric TDD C-RAN
Downlink Relying on Imperfect CSI. IEEE Transactions on Wireless Communications,
18(2):1182-1198, 2019.

[53] Cunhua Pan, Hong Ren, Maged Elkashlan, Arumugam Nallanathan, and Lajos Hanzo.
Antenna Grouping Based Feedback Compression for FDD-Based Massive MIMO Sys-
tems. IEEE Transactions on Communications, 63(9):3261-3274, 2015.

[54] Fangchao Zhang, Shaohui Sun, Qiubin Gao, and Hui Li. Hybrid CSI-RS transmission
mechanism-based 3D beamforming scheme for FDD massive MIMO system. China Com-
munications , 13(2):109-119, 2016.

[55] Yinglei Teng, Weiqi Sun, An Liu, Ruizhe Yang, and Vincent K. N. Lau. Mobility-Aware
Transmit Beamforming for Ultra-Dense Networks With Sparse Feedback. IEEE Transac-
tions on Vehicular Technology, 68(2):1968-1972, 2019.

[56] Yo-Seb Jeon, and Moonsik Min. Large System Analysis of Two Stage Beamforming
With Limited Feedback in FDD Massive MIMO Systems. IEEE Transactions on Vehicular
Technology, 67(6):4984 - 4997, 2018.

[57] Vutha Va, Junil Choi, and Robert W. Heath. The Impact of Beamwidth on Temporal Chan-
nel Variation in Vehicular Channels and Its Implications. IEEE Transactions on Vehicular
Technology, 66(6):5014-5029, 2017.



92 BIBLIOGRAPHY

[58] D. Inserra and A. M. Tonello, “A Frequency-Domain LoS Angle-of-Arrival Estimation
Approach in Multipath Channels”, IEEE Transactions on Vehicular Technology, vol. 62,
no. 6, pp. 2812-2818, Jul. 2013.

[59] M. Jamalabdollahi and S. A. R. Zekavat, “Joint Neighbor Discovery and Time of Arrival
Estimation in Wireless Sensor Networks via OFDMA”, IEEE Sensors Journal, vol. 15, no.
10, pp. 5821-5833, Oct. 2015.

[60] NGMN Alliance. NGMN 5G White Paper, March 2015.

[61] Taesang Yoo, Nihar Jindal, and Andrea Goldsmith. Multi-Antenna Downlink Channels
with Limited Feedback and User Selection. IEEE Journal on Selected Areas in Communi-
cations, 25(7):1478-1491, 2007.

[62] Irfan Ahmed, Hedi Khammari, Adnan Shahid, Ahmed Musa, Kwang Soon Kim, Eli
De Poorter, and Ingrid Moerman Survey on Hybrid Beamforming Techniques in 5G:
Architecture and System Model Perspectives. IEEE Communications Surveys Tutorials,
20(4):3060-3097, 2018.

[63] Hongxiang Xie, Feifei Gao, Shi Jin, Jun Fang, and Ying-Chang Liang. Channel Estima-
tion for TDD/FDD Massive MIMO Systems With Channel Covariance Computing. IEEE
Transactions on Wireless Communications, 17(6):4206-4218, 2018.

[64] Ming-Fu Tang, Yi-Ying Huang, and Borching Su. Beam-Time Block Coding With
Joint User Grouping and Beamforming for FDD Massive MIMO Systems. IEEE Access,
6:52519-52530, 2018.

[65] Shajahan Kutty, and Debarati Sen. Beamforming for Millimeter Wave Communications:
An Inclusive Survey. IEEE Communications Surveys Tutorials, 18(2):949-973, 2015.

[66] Zhenyu Xiao, Tong He, Pengfei Xia, and Xiang-Gen Xia. Hierarchical Codebook De-
sign for Beamforming Training in Millimeter-Wave Communication. IEEE Transactions
on Wireless Communications, 15(5):3380-3392, 2016.

[67] Yuhan Sun, and Chenhao Qi. Analog Beamforming and Combining Based on Codebook
in Millimeter Wave Massive MIMO Communications. in GLOBECOM 2017 - 2017 IEEE
Global Communications Conference, pages 1-6, 2017.

[68] Xuhong Chen, Jiaxun Lu, Pingyi Fan, and Khaled Ben Letaief. Massive MIMO Beam-
forming With Transmit Diversity for High Mobility Wireless Communications. IEEE Ac-
cess, 5:23032-23045, 2017.

[69] Xiangrong Wang, Pengcheng Wang, and Xianghua Wang. Adaptive Sparse Array Recon-
figuration based on Machine Learning Algorithms. 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 1159-1163, 2018.

[70] Carles Antón-Haro, and Xavier Mestre. Learning and Data-Driven Beam Selection for
mmWave Communications: An Angle of Arrival-Based Approach. IEEE Access, 7:20404-
20415, 2019.



BIBLIOGRAPHY 93

[71] Cheng Yang, Maosong Sun, Wayne Xin Zhao, Zhiyuan Liu, and Edward Y.Chang. A
neural network approach to jointly modeling social networks and mobile trajectories. ACM
Transactions on Information Systems,35(5):124-161, 2017.

[72] Tianyang Bai, Vipul Desai, and Robert W. Heath. Millimeter wave cellular channel mod-
els for system evaluation. in 2014 International Conference on Computing, Networking
and Communications (ICNC), pages 178-182, 2014.

[73] Jinwei Ji, Guangliang Ren, and Huining Zhang. PAPR Reduction of SC-FDMA Signals
Via Probabilistic Pulse Shaping. IEEE Transactions on Vehicular Technology, 64(9):3999-
4008, 2015.

[74] Ming-Fu Tang, Szu-Yu Wang, and Borching Su. Beamforming designs for multiuser
transmissions in FDD massive MIMO systems using partial CSIT. in 2016 IEEE Sensor
Array and Multichannel Signal Processing Workshop (SAM), pages 1-5, 2016.

[75] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting,
Journal of Machine Learning Research (JMLR), 15(1):1929-1958, 2014.

[76] Zhang-Meng Liu, Chenwei Zhang, and Philip S. Yu. Direction-of-Arrival Estimation
Based on Deep Neural Networks With Robustness to Array Imperfections. IEEE Trans-
actions on Antennas and Propagation, 66(12):7315-7327, 2018.

[77] Fenggang Yan, Ming Jin, and Xiaolin Qiao. Low-Complexity DOA Estimation Based on
Compressed MUSIC and Its Performance Analysis, IEEE Transactions on Signal Process-
ing, 61(8):1915-1930, 2013.



Curriculum Vitae

Name: Yuyan Zhao
Post-Secondary 2017 - present, M.E.Sc
Education and Electrical and Computer Engineering
Degrees: Western University

London, Ontario, Canada

2013 - 2017, B.Sc
Communications Engineering
Tongda College of Nanjing University of Posts and Telecommunications
Yangzhou, Jiangsu, China

Honours/Awards: Best Paper Award, IEEE WCSP 2017
Related Work Teaching Assistant
Experience: Western University

2018 - 2019

Research Assistant
Western University
2017 - 2019

Publications:
[1] Y. Zhao, Y. Liu, G. Boudreau, A. B. Sediq, H. A. Zeid and X.Wang, “A Two-Step Neural
Network Based Beamforming in MIMO Without Reference Signal”, in IEEE GLOBECOM
2019, Dec. 2019.
[2] Y. Zhao, Y. Liu, G. Boudreau, A. B. Sediq, and X.Wang, “Angle-based Beamforming in
mmWave Massive MIMO Systems with Low Feedback Overhead Using Multi-Pattern Code-
books”, China Communications, 16(9):18-30, 2019.
[3] Y. Zhao, Y. Liu, G. Boudreau, A. B. Sediq, and X.Wang, “A Low Overhead Angle-based
Beamforming Using Multi-Pattern Codebooks for mmWave Massive MIMO Systems”, in
IEEE ICCC, Aug. 2018.
[4] Y. Zhao, W. Xu, and S. Jin, “An minorization-maximization based hybrid precoding in
NOMA-mMIMO”, in IEEE WCSP, Dec. 2017, pp. 1-6.
[5] D. Qiao, W. Tan, Y. Zhao, C. Wen, and S. Jin, “Spectral efficiency for massive MIMO zero-
forcing receiver with low-resolution ADC”, in IEEE WCSP, Dec. 2016, pp. 1-6.

94


	Exploitation of Robust AoA Estimation and Low Overhead Beamforming in mmWave MIMO System
	Recommended Citation

	tmp.1578676511.pdf.20QpY

