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Abstract 

Soccer is the world’s most popular sport, and intentional heading of the ball is exclusive to it. 

Head impacts in youth players are riskier than adults as their brains are developing. Finite 

element models can quantify parameters, like strains within regions of the brain, that are 

otherwise difficult to assess. The purpose of this study was to examine the relationship 

between head kinematics collected by wireless head impact sensors and brain strains in 

regions of interest related to concussion. As well, we assessed head impact strains in regions 

of interest related to concussion for headers from various game scenarios. In conclusion, the 

findings of this thesis showed that maximum principal strain increases in relation to linear 

acceleration and angular velocity, though the strength of relationships ranged between the 

kinematic parameters and the different regions of the brain. As well, game scenarios are 

important to the magnitude of max strains. 
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Summary for Lay Audience 

Soccer is one of the world’s most popular sports, and has over 265 million people worldwide 

play. Heading the ball is exclusive to the game and helps players to maintain control and 

keep the ball from the opposing team. In younger soccer players, exposure to head impacts is 

potentially more at risk for a concussion as the brain is continuing to grow and develop until 

the age of 30. Tracking the forces with wireless accelerometers acting on the head during 

play offers insight into what is occurring in head impacts. To follow up, computer models 

calculate a plethora of equations designed with precise anatomical accuracy to recreate 

impacts based on this data. This creates a simulation of the head impact that offers more 

information that is available from the sensors alone such as internal forces acting on the 

brain.  

The purpose of this study was to examine the relationship in forces imposed on the head 

collected by wireless head impact sensors to strains of the brain occurring in various regions 

of interest that are related to concussion. As well, to assess the various game scenarios head 

impact strains in regions of interest related to concussion. This thesis observed increased 

levels of max principal strain at specific regions of interest in the brain compared to a single 

concussion case resulting from purposeful headers. As well, linear accelerations and angular 

velocities were both related to increased strains occurring in the brain following head 

impacts. In conclusion, the findings of this thesis showed increased maximum principal strain 

in relation to linear acceleration and angular velocity. As well, game scenarios are important 

to the magnitude of max strains. 

Based on the findings of this study it is shown that FEM models can provide important 

insights into the risks associated with purposeful headers, and that ROIs related to concussion 

warrant further examination.  
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Chapter 1  

1 Introduction 

 

The increased prevalence of concussions, and the growing awareness of long-term 

consequences of head impacts, has motivated research into the nature of the underlying 

brain injury. In relation to sport, a concussion has been defined as a brain injury that is 

representative of a traumatic brain injury with complex pathophysiological changes 

affecting the brain induced by biomechanical forces (McCrory et al., 2017).  A sport 

related concussion (SRC) can occur in any sport as a result of incidental contact in both 

non-contact [e.g. competitive cheer] or contact sports [e.g. football] (Bretzin et al., 2018).  

SRC may produce rapid onset of symptoms which in turn can have neurological 

functional changes as well as neuropathological changes (McCrory et al., 2017).  In 

National College Athletic Association (NCAA) Division I football players increased rates 

of incidence for concussion were observed following the 2010 NCAA concussion 

management policy (Houck et al., 2016). The rate of incidence preceding this policy 

increased from 0.99 to 1.39 concussions per 1000 athletic exposures (practice and games) 

following its implementation (Houck et al., 2016).  In a position statement (2019) by the 

American Medical Society for Sports Medicine analyzing 19 different studies involving 

both contact and non-contact sports, there were 6,293 concussions were recorded in 

239,564 athletes. These athletes ranged from grade 8 to college, across all 19 studies it 

was found that an average of 2.6% were concussed per season (Harmon et al., 2019).  

 

1.1 Prevalence of Head Injury in Sports  

 

Over a 15 year (1988-2004) time period across 16 sports with male and female 

representation, data was collected on injury and exposures. The three sports with the 

highest rates of concussion per 1000 athletic exposures were women’s ice hockey (0.91), 

men’s spring football (0.54), and women’s soccer (0.41) (Hootman, Dick, & Agel, 2007). 
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More recently in NCAA athletes spanning from 2009 – 2014, men’s wrestling (10.92), 

men’s ice hockey (7.91), woman’s ice hockey (7.50), men’s football (6.71), women’s 

soccer (6.31), had the five highest rates of concussion per 1,000 athletic exposures across 

25 different sports (Zuckerman et al., 2015). The Michigan High School Athletic 

Association consisting of nearly 200,000 student athletes in the 2015-2016 school year, 

found that the three highest sports with SRC were football (46.1%), women’s basketball 

(11.6%), and women’s soccer (9.5%) (Bretzin et al., 2018).  Football, hockey and soccer 

are consistently identified as sports with the greatest rat of SRC (Bretzin et al., 2018; 

Fraser, Grooms, Guskiewicz, & Kerr, 2017; Houck et al., 2016; Wasserman, Kerr, 

Zuckerman, & Covassin, 2016; Zuckerman et al., 2015).  Of these, women’s soccer 

stands out due to the high incidence of concussions. This is because incidental contact 

between players may result in fouls effectively discouraging players from initiating 

contact (NCAA 2018).  This is a contrast to other non-contact sports, such as basketball, 

which do not penalize this type of accidental contact. 

 

1.2 Occurrence of Concussion in Soccer 

 

Soccer is the world’s most popular sport with over 265 million players playing 

professionally and as amateurs (Rodrigues, Lasmar, & Caramelli, 2016).  In soccer, 

intentional head contact with the ball when it is airborne is a part of the game. The 

number of headers that players perform depends on their position and play style.  In 

amateur soccer players, the number of moderate to severe central nervous system 

(CNS) symptoms correlated with the number of head impacts received during the 

previous two weeks (Stewart et al., 2017).  Furthermore, players who experienced one 

unintentional impact in the preceding two weeks had nearly three times the risk of 

experiencing concussive CNS symptoms compared to players that only experienced 

intentional head impact (Stewart et al., 2017). This further illustrates that exposure to a 

lifetime of head impacts may have negative ramifications that can begin during 

adolescence for athletes. 
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Over seven million high school student athletes and 480,000 playing in NCAA each 

academic year (NCAA, 2019). Approximately 388,000 and 27,600 women participate in 

women’s Soccer in high school and the NCAA respectively, encompassing two different 

age ranges in adolescents and young adults (NCAA, 2019).  The NCAA started 

reporting all injury and exposure date in 1982 with the end goal of injury prevention. 

Between 2009-2014 concussions comprised 6.2% of all the injuries reported by the 

NCAA-ISP (Zuckerman et al., 2015). Women’s soccer contributed the third highest 

number of SRC (8.1%) behind only Football (36.1%) and men’s Ice Hockey (13.4%) per 

the NCAA-ISP between 2009-2014 (Wasserman et al., 2016). Women’s soccer had 6.31 

concussions per 10,000 athletic exposures (Zuckerman et al., 2015). Ball contact 

accounts for 33.8% SRC in women’s soccer (Zuckerman et al., 2015). Ball contact 

resulting in SRC is the second largest (27.3%) ball related injury in women’s soccer 

behind only sprains (38.5%) across 11 different sports from data gathered from the 

NCASS-ISP (Fraser et al., 2017). To address concussions in sport, addressing head 

impacts in adolescents is necessary as this is an important time in development, as well 

when the foundation for sports is created (Alosco & Stern, 2019; Lebel, Walker, 

Leemans, Phillips, & Beaulieu, 2008).  

 

Various factors can make an athlete vulnerable to concussion. For example, in terms of 

athletes age, younger athletes are more vulnerable as they are in a crucial stage of 

cognitive development (Lebel et al., 2008). Head to body mass ratios, growth spurts 

and changing body mass all affect the momentum of young athletes, in conjunction 

with the developing brain (Buzzini & Guskiewicz, 2006). An online injury surveillance 

reporting system showed rates of concussion in US high school athletes had risen over 

a 10 year span that ended following the 2014 season (Comstock, Currie, Pierpoint, 

Grubenhoff, & Fields, 2015). This matched the trend that had been observed in NCAA 

athletes over a similar time period coinciding with the 2010 NCAA concussion 

management policy (Houck et al., 2016).  As well, rates of concussion due to heading 

have significantly increased (p = 0.03) amount among females over this period of  time 

(Comstock et al., 2015). Furthermore, research has shown that the frequency of heading 

increases with age in soccer across different age groups (U13, U14, U15), and is 
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independent of position (Harriss, Johnson, Walton, & Dickey, 2019b).  The neurological 

development and physical maturation of adolescent athletes are at a critical stages as the 

brain and body are both in the midst of physiological changes (Lebel et al., 2008; Lenroot 

& Giedd, 2006; Luders, Thompson, & Toga, 2010).  

 

1.3 Anatomical Regions of Interest Relating to mTBI   

 

The human brain is continuously developing from birth through adulthood (Lebel et al., 

2008). In early childhood, the brain grows rapidly, approaching its peak mass (80-90%) 

around the age of five (Dekaban & Sadowsky, 1978). Following the brains early 

development, the overall growth slows down, and the brain’s white matter (WM) then 

becomes increasingly myelinated with age, increasing connectivity (Iwasaki et al., 1997). 

These changes in WM may be well represented  with diffuse tensor imaging (DTI) 

(Basser, Mattiello, & LeBihan, 1994; Le Bihan, 2003). DTI, through fractional 

anisotropy (FA) and mean diffusivity (MD), quantifies the diffusion of water diffusing 

in an region, and net displacement of water in a region respectively (Lebel et al., 

2008).This is an effective method of evaluating the function of the neural networks of the 

brain, which can become impaired during concussion. A systematic review on imaging of 

youth (aged 5-18) with diagnosed mild traumatic brain injury (mTBI) revealed there was 

a trend that when there was a mTBI present FA values increased and MD values 

decreased compared to healthy controls (Schmidt et al., 2018). Increases in FA post-

concussion in adolescents are believed to be associated with tissue damage associated 

with structural damage to the axons (Virji-Babul et al., 2013). Therefore the fiber tracts 

communicating information throughout the brain being susceptible during development 

warrant further research.  

 

The corpus callosum (CC) is the largest white matter structure in the brain.  It connects 

the left and right hemispheres transversely, functionally connecting to the contralateral 

sides within the homologous cortical regions (Kiernan & Rajakumar, 2013). The number 

of fibers within the CC is determined in utero, increases in myelination of the fibers with 
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age at the CC affects the size (Lebel et al., 2008; Luders et al., 2010). When connection is 

impaired, as can be seen in agenesis of the CC, there is decreased processing speed and 

reduced capacity for higher level thinking (Hinkley et al., 2012). CC impairment can 

affect behavior and development such as attention deficit hyperactivity disorder (ADHD), 

bipolar disorder, alien hand syndrome, and autism (van der Knaap & van der Ham, 2011). 

During a concussion, similar effects can be seen acutely and in conjunction with changes 

in FA and MD affecting white matter (Borich, Makan, Boyd, & Virji-Babul, 2013). 

Interestingly, this study also identified that these changes are also correlated with 

declines in subjective concussion testing scores. The CC’s central anatomical location 

and vast array of connections are important for segueing information. Forces reaching the 

CC transmit throughout via anatomical and direct neural connections . 

 

The thalamus is one of the most important regions within the brain. This structure is 

responsible for receiving and transmitting sensory and motor information and is the major 

subcortical sensori-motor relay (Stiles & Jernigan, 2010). The thalamus receives 

information from sensory receptors such as the retina and relays it to the sensorimotor 

regions of the neocortex (Stiles & Jernigan, 2010). The thalamus is located within the 

forebrain, adjacent to the CC. It has numerous neural connections to the CC, including 

the spinothalamic tract (Kiernan & Rajakumar, 2013). Thalamic volume and processing 

speeds in cognitive tests  are impaired in professional fighters who are exposed to a large 

magnitude of head impacts (Bernick et al., 2015). Retired NFL players had decreased 

thalamus volume compared to healthy age matched controls that negatively correlated 

with age began playing tackle football and total number of years playing (Schultz et al., 

2018). As well, in individuals who have suffered mild traumatic brain injuries had higher 

resting thalamic state network activation and decreased symmetry between sides 

compared to healthy controls (Tang et al., 2011). The developments in the thalamus that 

can be observed either following a professional athletes careers or from sustaining a 

concussion show the thalamus’ importance in being assessed further in head impacts. 

  

The brain stem is an integral region of the brain that connects the brain to the periphery 

of the body. It is composed of the midbrain, pons and medulla oblangata (Kiernan & 
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Rajakumar, 2013). As well, the reticular activating system (RAS) of the brain stem linked 

with loss of consciousness (LOC) is functionally and anatomically connecting the 

thalamus to the brain stem (Delano-Wood et al., 2015). Diffuse axonal injuries (DAI) are 

one of the most common causes of deformation based injuries of the brain stem and other 

white matter regions with direction potentially playing a significant role in concussion 

(Giordano & Kleiven, 2014; Sidaros et al., 2008). Damage to the brain stem is regarded 

to be incompatible with life due to the fundamental functions that it performs, such as 

respiration and cardiovascular regulation (Bernat et al., 2010; Giordano & Kleiven, 

2014).  Impacts in football to the front of the head produce higher strains in the brain 

stem (Beckwith et al., 2018). As well, frontal oblique impacts to the head had the greatest 

MPS in the brain stem in simulations that incorporated a football helmet in the Global 

Human Body Models Consortium (GHBMC) head model (Darling, Muthuswamy, & 

Rajan, 2016).  

 

1.4 Finite Element Modelling of the Head 

 

Modeling studies have predicted the strains in different regions of the brain during 

simulations of the head impacts that led to concussions or were non-injuries (Beckwith et 

al., 2018; Miller, Pinkerton, et al., 2019; Patton, McIntosh, & Kleiven, 2013; Pellman,  

Viano, Tucker, Casson, Waeckerle, 2003). The maximum principal strain (MPS) in 

several regions is larger in concussion impacts vs non injury impacts in computer 

simulations of Australian football and rugby players (Patton et al., 2013). The CC, 

thalamus, and WM experienced the greatest relative differences in MPS in concussion 

cases vs non injuries and MPS was the best predictor of injury severity in impacts in 

these regions (Patton et al., 2013).  As well, MPS was seen to be highest in the cerebrum 

followed by the brain stem and CC relative to other regions within the brain in 

simulations of helmeted impacts using two different finite element models (FEM) 

(Beckwith et al., 2018). Furthermore, oblique frontal impacts simulations experienced 

nearly double MPS than coronal impacts for simulated impacts at the brain stem (Darling 

et al., 2016).  
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FEM of the head allows a unique way of evaluating the mechanics of the head that can 

enable robust analysis of the entire complex system (Mao, Gao, Cao, Genthikatti, & 

Yang, 2013). FEM creates an estimation of an event through a computational simulation. 

For a head model this is possible through the recreation of the human anatomy to 

replicate a scenario based on data input. Both video recordings and head-mounted impact 

sensors yield data that can be used as boundaries for simulation (Campbell et al., 2016; 

Cortes et al., 2017; Mao et al., 2013; Pellman et al., 2003).  FEM uses mathematical 

equations to calculate the stresses and strains for the model components based on the 

model’s geometry, material properties and boundary conditions (Mao et al., 2013). The 

simulation responses, such as maximum principal strains, can be validated against human 

cadavers (Mao et al., 2013).   

 

At its core, the concept of FEM solves complicated problems by finding solutions to 

subsets of problems.  FEM is suited to situations that have several material compositions 

and complex loading conditions (e.g. impact sports) (Yang, 2018). This is refined when 

applying physiological and anatomical features to establish appropriate responses to the 

simulated impact (Yang, 2018). The number of elements affects the resolution of a 

simulation, more elements allows more information at the cost of computational 

processing power and time. The analysis in FEM is based on a continuum, the solution of 

one element’s equations affecting the adjacent elements, resulting in a ripple effect 

(Yang, 2018).  

 

The mesh for FEM consists geometrical polygons comprised of nodes connected by 

elements. The nodes represent specific locations in the model and are the links that 

connect and compose the overall structure. In contrast, elements represent information 

regarding the material properties of the mesh such that displacement of the nodes results 

in stresses and strains in the elements. It is imperative that the nodes are situated to 

capture the relevant anatomy in sufficient detail, and that the elements adequately 

describe the mechanical properties of the structures. The number of elements changes the 
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precision of the overall structure, increasing accordingly. Albeit this comes at the cost of 

time requiring vast quantities of computational processing power.  

 

Computer simulations of football impacts using a head and neck model found that early 

onset muscle activation resulted in decreased rotational velocities (Jin et al., 2017). As 

well, research has shown that neck strength is an important factor in effectively reducing 

the magnitude of head accelerations in deliberate use during soccer heading (Gutierrez, 

Conte, & Lightbourne, 2014). Several studies have used wireless sensors attached to the 

head to obtain information in regards to linear accelerations, angular velocities and 

number of impacts during athletic exposures (E. M. Hanlon & Bir, 2012; Harriss, 

Johnson, Walton, & Dickey, 2019a; Press & Rowson, 2017). This information may allow 

objective assessments of the head impacts when used providing valuable information 

when a concussion occurs. FEM allows for the recreation of head impacts offering insight 

regarding the immediate impact using data collected from sensors. 

 

The internal responses of the brain to external perturbations, such as accelerations are of 

interest because of their influence regarding concussions. Internally the brain undergoes 

deformations due to accelerations caused by head impacts resulting in a domino effect 

that penetrates the layers of the brain that may be observed in simulations (King, Yang, 

Zhang, Hardy, & Viano, 2003; Kleiven, 2007; Patton et al., 2013; Patton, McIntosh, & 

Kleiven, 2015; Rowson & Duma, 2013; Takhounts, Craig, Moorhouse, McFadden, & 

Hasija, 2013; Vianno & Lovsund, 1999). Several studies have attempted to predict 

concussion outcomes from linear and angular accelerations measured with wireless 

sensors (Rowson & Duma, 2013; Zhang, Yang, & King, 2004). Studies that have used 

FEM to look at the internal effects following a simulated impact have found that strain, 

strain rate, as well as products of strain and strain rate to be effective predictors of 

concussion (King et al., 2003; Kleiven, 2007; Patton et al., 2013, 2015; Takhounts et al., 

2013; Zhang et al., 2004). These studies have focused on deep brain structures such as the 

CC, thalamus, brainstem; all of which anatomically connected (King et al., 2003; 

Kleiven, 2007; Patton et al., 2013, 2015; Takhounts et al., 2013; Zhang et al., 2004). The 

effect of excessive strain within the brain has been used as a strong predictor for mild 
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traumatic brain injuries (mTBI) as well as its derivatives and byproducts (King et al., 

2003; Kleiven, 2007; Patton et al., 2013, 2015; Takhounts et al., 2013). MPS exceeding 

0.21 at the corpus callosum may be used as a predictor for concussion at 50% probability 

of a concussion (50POC) (Kleiven, 2007). In contrast, an average strain rate of 84 s-1 with 

the brainstem and a product of strain and strain rate of 36 s-1, was found on average in 

brain injuries (King et al., 2003). 
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Chapter 2  

 

2 Purpose Statement and Hypothesis 

 

2.1 Purpose Statement 

There are two purposes to this study that will be addressed by analyzing the maximum 

principal strain in several brain regions during purposeful head impacts performed by 

female youth soccer players. This will be accomplished by drawing upon a set of 

previously recorded head kinematics from purposeful headers performed during soccer 

games, and recreating (simulations) them using finite element model. The first purpose 

was to assess the relationship between individual kinematic variables and the maximum 

principal strain in purposeful headers in soccer. The second purpose was to compare the 

maximum principal strain for the headers from different game scenarios, and to compare 

them to a concussion case.  

Hypotheses  

1) There will be strong relationships between linear and angular head kinematics and 

the resulting strains in the various regions of interest in the brain that are related 

to concussion  

2) In concussions, the maximum principal strains in the various regions of interest in 

the brain that are related to concussion will be larger than strains during 

purposeful headers 
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Chapter 3  

 

3 Methods 

3.1 Participants 

 

This study is based on head impact data previously collected from a convenience sample 

of 36 female youth soccer players from the Ontario Player Developmental League (OPDL) 

(Harriss et al., 2019a). The players in that study had an average age of 13.4 (SD = 0.9) 

years, height of 1.60 (SD = 0.10) m, and a mass of 50.6 (SD = 8.7) kg. The players 

participated in weekly practices and games. Kinematics from head impacts in games and 

practices were collected using wireless sensors; video recordings were also captured during 

games to characterize the game scenario such as type of purposeful header. Ethics approval 

was granted by the Western University’s Health Science Research Ethics Board 

(HSREB protocol 107948). Written informed consent was obtained from players parents 

prior to participating in this study.  

 

3.2  Instrumentation 

 

Each participant in the field study (Harriss et al., 2019a) was equipped with a wireless 

device (GForce Tracker (GFT2), Artaflex Inc., Markham, Ontario, Canada) that was 

secured in a custom neoprene headband (Figure 1). The headbands were positioned 

below the nuchal line, which is consistent with other studies (Caccese, Lamond, Buckley, 

& Kaminski, 2016; Gutierrez et al., 2014). The GFT2 contains both a tri-axial linear 

accelerometer and a tri-axial gyroscope allowing for wireless collection of these data 

during head impacts (Figure 2). The impact location is calculated by the device according 

to the azimuth and elevation angles and then classified as front, back, left, right, top or 
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bottom (Campbell et al., 2016). The devices were preset to record impacts that exceeded 

the minimum threshold of 7 g on any axis. Pilot testing revealed that purposeful headers 

may result in head accelerations as low as 8 g, and accordingly the devices were set to 

record impacts that exceeded 7 g on any axis. This is consistent with other studies that 

measured collegiate women’s [6 g minimum with header] and U14 youth soccer wireless 

head impacts[4.5 g with header and 5 g non header] (E. Hanlon & Bir, 2010; Press & 

Rowson, 2017).  

 

 

Figure 1. Headband on player during game, device was secured in compartment 

below nuchal line, outlined in yellow for improved visibility 
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Figure 2. Size of the GFT2 device size compared to a quarter. The coordinate system 

of the devices is shown in red with +Z directed downwards. Adapted from Campbell 

(2016) 

 GFT2 devices recorded time stamps when head impacts exceeded the user-defined 

threshold and saved data for 40 ms, starting 8 ms prior, through to 32 ms following the 

threshold. This duration is consistent with other wireless sensors that have been used to 

measure head impacts in soccer (E. M. Hanlon & Bir, 2012).  The tri-axial linear 

accelerometer signals were filtered through a 300 Hz low-pass anti-aliasing filter and 

sampled at 3000 Hz. The tri-axial rotational velocity signals were filtered with a low pass 

anti-aliasing filter and sampled at 800 Hz.  

 

All collected data were stored on the device’s on-board memory during games. Following 

each game, head impact data were uploaded to the GFT’s internet server software 

through a laptop network connected by micro USB to the GFT2. The head impacts were 

further processed on the internet server to calculate resultant linear accelerations and 

rotational velocities calculated for each impact.  
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The impact data was downloaded from the GFT Server to match with video analysis 

described below. Individual player files contained a summary page that included the time 

stamp for each head impact, peak linear acceleration (gForce), impact location, Head 

Injury Criteria (HIC), resultant rotation velocity (º/s), azimuth and elevation. For each 

impact the time series data for the linear accelerations and angular velocities were stored 

in files that could be downloaded. Raw data was extracted and used for further analysis.  

 

3.3 Video Analysis Protocol 

In the field study a total of 60 regular season games (20 games per team) were recorded 

using a Canon Vixia HD camera that mounted to a telescoping system (EVS25, Endzone 

Video Systems, Sealy, Texas, United States). Game video was uploaded to a video 

analysis software program (dba HUDL, Agile Sports Technologies Inc., Lincoln, 

Nebraska, United States). An appointed researcher matched each purposeful header from 

the video with the associated impact recorded by the GFT sensor. One rater was deemed 

appropriate for this analysis based on previous work (Harriss, Walton, & Dickey, 2018). 

The appointed researcher also categorized heading events by game scenario (Table 1).  
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Table 1 Classification of the contexts for the different types of purposeful headers. 

Header 

Context 
Description of purposeful headers 

Pass Air 
Ball was kicked into the air by a player prior to header 

Drop Kick 
Header performed following goalie dropping the ball from hands and 

kicking it prior to touching the ground within own goal crease 

Deflection Ball was deflected off another player or legal body location prior to 

header occurring 

Throw Header performed following a player throwing the ball in from the 

sideline 

Corner 

Header performed following a stationary kick taken from the corner 

of the field after the ball crossed behind the goal line by the defending 

team 

Free Kick 

Header performed following a stationary kick awarded following a 

foul at spot of foul by the opposing team, may be taken across active 

playing field 

Goal Kick Header performed following a kick taken from the six-yard box after 

the ball has gone over the goal line by the attacking team. 
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3.4 Impact Selection  

 

All confirmed impacts identified through video analysis were compiled and ranked in 

descending order of peak resultant linear acceleration. As well, impacts were also ranked 

based on peak rotational velocity. The ranked percentiles for these variables were 

averaged to determine a neutral valuation of the head impacts accounting for both 

variables. Following this, 110 head impacts were evenly selected, representing the 

spectrum of head impacts. Both the maximum and minimum cases were included to 

ensure that the full range of verified head impacts were included. As well, the data set 

included one head impact that resulted in a concussion. This case was included for 

comparison. This concussion impact occurred during a practice. 

 

3.4.1 Concussion Case 

 

A single concussion case occurred in the field study, during a practice. The concussion 

occurred in a 14 year old player performing a crossing drill which would emulate a 

corner kick heading situation in game context.  In terms of other head impact exposures 

for this player, they had 3 head impacts represented in the 110 simulated cases, and 5 

head impacts within the entire field study’s 434 head impacts. Details about the 

kinematics and MPS for the full set of impacts for this participant are presented in 

Appendix A. 

 

3.5 Data Analysis 

FEM simulations were driven using linear accelerations and angular velocities collected 

by the GFT2 Devices for the set of impacts described above. Linear acceleration values 

were converted from the g to mm/s2, and all angular velocities were converted from °/s to 

rads/s. Each simulation of an impact was based on the 40 ms time series of linear 



 

 

17 

acceleration and angular velocity data. The boundary conditions for the simulation were 

set based on the phenomena as described the linear acceleration and angular velocity of 

the head impacts.   

 

3.6 Finite Element Modelling 

 

The Global Human Body Models Consortium (GHBMC) head model was used for the 

simulations (Mao et al., 2013). The GHBMC is a highly detailed model of the head that 

has been validated against 35 experimental cases (Mao et al., 2013). The GHBMC model 

contains elements representing the skin surface, skull and facial bones, sinuses, cerebrum, 

cerebellum, lateral ventricles, corpus callosum, thalamus, and brainstem as well as white 

matter (Mao et al., 2013). This head model is independent of neck musculature and acts 

autonomously within the model in space based on the boundaries set prior to simulation.  

There is no validated model for youths, therefore, similar to previous research (Jiang et 

al., 2014), the model used in the present study was scaled to represent the age of the 

population. The model in this study was scaled to 88% of the GHBMC head model to 

represent a 13 year old female’s head. This was determined by using previous literature 

of sex volume differences reported from 6 studies (Giedd, 2004; Giedd, Raznahan, Mills, 

& Lenroot, 2012; Gur, 2002; Gur, et al., 1999; Hanlon & Bir, 2012; Ostby et al., 2009). 

This was done by scaling the model to 0.9583 of the original length, resulting in the 

desired volume reduction, similar to other studies (Jiang et al., 2014; Roth, Raul, & 

Willinger, 2008). This model contains 270, 552 elements with several variations of shell 

shapes. Specific details are presented in other literature (Mao et al., 2013).   

 

The simulations were run using commercially available software LS-DYNA (Livermore 

Software Technology Co., Livermore, CA) using an 8-core processer.  The boundary 

conditions of the simulations were defined according to the time series data collected by 
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the wireless sensors for each head impact case. In specific, the linear acceleration and 

angular velocity data collected for each purposeful header determined the kinematics of 

the center of mass of the head. 

 

Based upon each elements stiffness and other properties, the LS-DYNA program 

estimates the displacement of each node throughout the mesh of the model. These 

deformations across the mesh are calculated on a continuum with adjacent elements. The 

effects are calculated across each time point, these calculations then may be quantified 

via  further processing in LS-DYNA PrePost. 

 

3.7 Post Simulation Analysis 

.  

Regions of interest (ROIs) (Table 2) were selected based on previous research that 

highlighted regions effected during mTBI with imaging techniques (Banks et al., 2016; 

Borich et al., 2013; Delano-Wood et al., 2015). The genu and splenium of the CC were 

selected as DTI imaging revealed disruptions in white matter integrity in children with 

concussions (Van Beek, Ghesquière, Lagae, & De Smedt, 2015). The thalamus was 

selected as it has vast connections throughout the brain, and makes key contributions to 

the integration and assimilation of sensory and motor information (Stiles & Jernigan, 

2010).  Thirdly, the brain stem was selected due to its involvement in motor activity 

(Kiernan & Rajakumar, 2013), and the observation that standing balance is often 

impaired in concussed athletes (Guskiewicz, Ross, & Marshall, 2001). We specifically 

selected the middle and inferior cerebellar peduncles on the dorsal aspect of the brain 

stem.  

 

The size of each ROI was 9 elements in a 3x3 layout on the superficial surface as 

previously performed in FEM literature (Claeson & Barocas, 2017). This layout was done 
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to mitigate the volatility from individual elements. The selected ROIs were from 

anatomical locations within the model: the CC, thalamus, and brain stem.  Each ROI was 

assessed on the left and right side of the brain. Within each ROI, the MPS in the elements 

was calculated using LS-PrePost (V2.4).  Using a custom LabVIEW program, the peak 

MPS of each element over the time series from a ROI (Figure 3) was extracted. These 

values were averaged to yield a peak MPS value for the entire ROI, and has been termed 

the average peak maximum principal strain (APMPS).    

 

Figure 3. Example of time series plot illustrating the Maximum Principal Strain 

versus time. The peak strains of each of the nine elements from the 3x3 layout are 

highlighted in red. The average peak maximum principal strain (APMPS) was 

calculated as the average of these nine peaks. 
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Table 2. Brain regions, and the regions of interest within each of the brain regions, 

that were examined during the simulations. 

Brain Region Region of Interest 

Corpus Callosum Genu of corpus callosum 

Splenium of corpus callosum 

Thalamus Posterior thalamus 

Lateral anterior thalamus 

Brain Stem Lateral posterior brain stem (dorsal pons) 

 

3.8 Statistical Analysis 

 

A Chi-squared analysis was performed to evaluate whether the proportion of head 

impacts for the different age groups in the sample of 110 simulations were representative 

of the percentages in the total pool. A separate Chi-squared analysis was performed to 

evaluate whether the proportion of head impacts for the different game scenarios in the 

sample of 110 simulations were representative of the percentages in the total pool.  

 

Analyses were performed to evaluate whether the strains in various ROIs for the headers 

in different game scenarios were significantly different than the single concussion case. 

In specific, the APMPS for the single concussion case was compared against the mean 

and 95% CI for various game scenarios, for each of the different ROIs. Box and whisker 

plots were used with the whiskers in the plots indicating the 95% CI of each game 

scenario. The difference in APMPS between the concussion and the headers in the 

various game scenarios were regarded as statistically significant if it fell outside the 
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bounds of the confidence intervals for the APMPS for various game scenarios (Prel, 

Hommel, Röhrig, & Blettner, 2009). 

 

Pearson product-moment correlations were calculated to evaluate the strength of the 

relationship between average peak MPS (APMPS) and peak angular velocity, and 

between APMPS and peak linear acceleration within each of the ROI’s. Thresholds for 

describing the strength of the correlation was based off of recommendations within the 

literature (Mukaka, 2013). The correlation  coefficient (r) values in the range of 0 – 0.3 

were considered negligible, 0.3 – 0.5 low, 0.5 – 0.7 moderate, 0.7 – 0.9 high, and 0.9 – 

1.0 very high.  
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Chapter 4 

4 Results 

 

4.1 Head impacts 

 

From a total of 60 games played in the OPDL, 434 purposeful headers were measured 

with wireless sensors and confirmed with video analysis. From this sample pool, 110 

impacts were selected for FEM analysis. The frequency distribution of head impacts by 

age is presented in Table 3. The proportion of head impacts in each of the age groups in 

the sample used for simulations was not significantly different than the percentages in the 

total pool (Chi-square = 1.893, p=0.3881). This indicates that the distribution of impacts 

in the sample pool for the different age groups was representative of the total pool. 

 

Table 3. Number, and percentage, of head impacts in the sample pool (n=110) and 

the full data set (n=434), broken down by player age. 

Age 

(Years) 

Number (percentage) of head 

impacts in the sample pool 

Number (percentage) of head 

impacts in the total pool 

13 35 (31.8%) 113 (26.0%) 

14 47 (42.7%) 214 (49.3%) 

15 28 (25.5%) 107 (24.7%) 

Total 110 (100%) 434 (100%) 
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Not all players who performed purposeful headers were included  in the set of simulated 

purposeful headers (Table 4). As well, it happened that the head impacts from certain 

players in each age group were represented at a higher frequency than other players- 3 

players represented 27.3% of all simulations. 

 

Table 4. Description of the number of players in the youth soccer data set and 

number of players that were included in the simulations, for each of the three age 

groups. 

Age (Years) 13 14 15 Total 

# of Players in Field Study 10 16 8 34 

# of Players Represented in FE 

Analysis 

9 10 8 27 

# of Players Not Represented in FE 

Analysis 

1 6 0 7 

Mean Headers per Player in FE 

Analysis 

3.9 4.7 3.5 4.1 

Peak Frequency of Headers by a 

single player in FE Analysis 

8 9 11 11 
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4.2 Game Scenarios  

 

The characteristics of the head impacts for the different game scenarios are listed in 

Table 5. The proportion of head impacts in each of the different game scenarios in the 

sample used for simulations was not significantly different than the percentages in the 

total pool (Chi-square = 3.984, p = 0.6788). This indicates that the distribution of impacts 

in the sample pool for the different game scenarios was representative of the total pool.  

 

The most common game scenario was a pass through the air. On average corner kicks 

produced larger linear accelerations and angular velocities compared to other game 

scenarios. Both the largest linear acceleration and angular velocity occurred in passes 

through the air.   

 

Head impacts resulting from a pass through the air, corner kick, goal kick and free kick 

all had larger average linear accelerations than the sample pool average. As well, head 

impacts resulting from a pass through the air, corner kick, goal kick and free kick all had 

larger average angular velocities than the sample pool average.  On average, the corner 

kick had the largest linear acceleration and angular velocity compared to the other kicks. 

On average, the angular velocity for head impacts from corner kicks were nearly 50% 

higher than the next highest game scenario. 
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Table 5. Number, and percentages, of headers in each of the game scenarios, in the 

sample pool (n=110) and the total pool (n=434), as well as the average and standard 

deviation of the peak linear accelerations and angular velocities recorded using the 

wireless devices. The maximum linear acceleration and angular acceleration 

represent the individual header with the largest values recorded in that game 

scenario. All values are based on the sample pool of 110 head impacts. 

Game 

Scenario 

Number (percent) 

in the sample pool  

Number 

(percent) in the 

total pool 

Peak resultant linear 

Acceleration (m/s2) 

Peak resultant 

angular velocity 

(rads/s) 

Pass Air 47 (42.7) 179 (41.2) 198.14 ± 114.51 21.35 ± 12.02 

Throw 39 (35.5) 129 (29.7) 159.44 ± 48.22 15.66 ± 9.28 

Deflection 10 (9.1) 43 (9.9) 128.27 ± 53.04 12.59 ± 12.28 

Drop Kick 7 (6.4) 35 (8.1) 162.13 ± 99.12 17.26 ± 12.35 

Corner 3 (2.7) 12 (2.8) 288.50 ± 43.64 33.56 ± 11.03 

Goal Kick 2 (1.8) 16 (3.7) 243.47 ± 96.21 22.39 ± 1.99 

Free Kick 2 (1.8) 20 (4.6) 224.56± 158.28 18.94 ± 10.97 

Total 110 (100) 434 (100) 179.55± 91.98 18.58 ± 11.46 
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4.3 Relationship between the peak linear acceleration 
and maximum principal strain  

 

4.3.1 Relationship between the peak linear acceleration and MPS 
in the corpus callosum 

 

There were low correlations between the linear acceleration and APMPS for all of the 

ROIs of the CC (Table 5). Between 1.1 and 2.6% of the variance in APMPS was 

explained by the linear acceleration, showing a low contribution. There was a weak 

relationship between linear acceleration and APMPS for all of the ROIs within the CC 

(Figures 3-6). These data are broken down by age and presented in Appendix B 

 

Table 6. Correlations (r) and coefficients of determination (r2) between APMPS and 

linear acceleration for each of the ROIs in the CC. 

Region of Interest r r2 

Left Genu of CC 0.1034 0.0107 

Right Genu of CC 0.1597 0.0255 

Left Splenium of CC 0.0755 0.0057 

Right Splenium of CC 0.1281 0.0164 
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Figure 4. Relationship between the peak linear acceleration and resulting maximum 

principal strain (MPS) in the genu of the corpus callosum on the left side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle.  
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Figure 5. Relationship between the peak linear acceleration and resulting maximum 

principal strain (MPS) in the genu of the corpus callosum on the right side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle. 
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Figure 6. Relationship between the peak linear acceleration and resulting maximum 

principal strain (MPS) in the splenium of the corpus callosum on the left side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle.  
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Figure 7. Relationship between the peak linear acceleration and resulting maximum 

principal strain (MPS) in the splenium of the corpus callosum on the right side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle.  
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4.3.2 Relationship between the peak linear acceleration and MPS 
in the thalamus 

 

There were low correlations between the linear acceleration and APMPS for all of the 

ROIs of the thalamus (Table 6). Between 1.4 and 4.7% of the variance in APMPS was 

explained by the linear acceleration, showing a low contribution. There was a weak 

relationship between linear acceleration and APMPS for all of the ROIs within the 

thalamus (Figures 7-10). These data are broken down by age and presented in Appendix 

B 

 

Table 7. Correlations (r) and coefficients of determination (r2) between APMPS and 

linear acceleration for each of the ROIs in the thalamus. 

Region of Interest r  r2  

Left Posterior Thalamus 0.1175 0.0138 

Right Posterior Thalamus 0.2159 0.0466 

Left Anterior Thalamus 0.1493 0.0223 

Right Anterior Thalamus 0.1330 0.0177 
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Figure 8. Relationship between the peak linear acceleration and resulting maximum 

principal strain (MPS) in the posterior thalamus on the left side. The dotted line 

represents the line of best fit. The single concussion case is represented with the red 

circle. 
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Figure 9. Relationship between the peak linear acceleration and resulting maximum 

principal strain (MPS) in the posterior thalamus on the right side. The dotted line 

represents the line of best fit. The single concussion case is represented with the red 

circle. 
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Figure 10. Relationship between the peak linear acceleration and resulting 

maximum principal strain (MPS) in the anterior thalamus on the left side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle. 
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Figure 11. Relationship between the peak linear acceleration and resulting 

maximum principal strain (MPS) in the anterior thalamus on the right side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle. 
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4.3.3 Relationship between the peak linear acceleration and MPS 
in the brain stem 

 

There were low correlations between the linear acceleration and APMPS for both of the 

ROIs of the brain stem (Table 7). Between 9.2 and 11.0% of the variance in APMPS was 

explained by the linear acceleration, showing a low contribution. There was a weak 

relationship between linear acceleration and APMPS for both of the ROIs within the 

brain stem (Figures 11-12). These data are broken down by age and presented in 

Appendix B 

 

Table 8. Correlations (r) and coefficients of determination (r2) between APMPS and 

linear acceleration for each of the ROIs in the brain stem 

Region of Interest r r2  

Left Posterior Brain Stem 0.3314 0.1098 

Right Posterior Brain Stem 0.3025 0.0915 
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Figure 12. Relationship between the peak linear acceleration and resulting 

maximum principal strain (MPS) in the lateral posterior brain stem on the left side. 

The dotted line represents the line of best fit. The single concussion case is 

represented with the red circle. 
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Figure 13. Relationship between the peak linear acceleration and resulting 

maximum principal strain (MPS) in the lateral posterior brain stem on the right 

side. The dotted line represents the line of best fit. The single concussion case is 

represented with the red circle. 
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4.4 Relationship between Angular Velocity and 
Maximum Principal Strain 

 

4.4.1 Relationship between the peak angular velocity and MPS in 
the corpus callosum 

 

There were high correlations between the angular velocity and APMPS for all of the 

ROIs of the (Table 8). Between 57.4 and 68.2% of the variance in APMPS was explained 

by the angular velocity. This illustrated a large contribution of the angular velocity to the 

APMPS. There was a strong relationship between angular velocity and APMPS for all of 

the ROIs within the CC (Figures 13-16). These data are broken down by age and 

presented in appendix C. 

 

Table 9. Correlations (r) and coefficients of determination (r2) between APMPS and 

angular velocity for each of the ROIs in the CC. 

Region of Interest r value r2 value 

Left Genu of CC 0.8068 0.651 

Right Genu of CC 0.7828 0.6127 

Left Splenium of CC 0.7579 0.5744 

Right Splenium of CC 0.8261 0.6824 
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Figure 14. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the genu of the corpus callosum on the left side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle. 
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Figure 15. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the genu of the corpus callosum on the right side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle. 
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Figure 16. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the splenium of the corpus callosum on the left side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle. 
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Figure 17. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the splenium of the corpus callosum on the right side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle. 
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4.4.2 Relationship between the peak angular velocity and MPS in 
the thalamus 

 

There were high correlations between the angular velocity and APMPS for all of the 

ROIs of the thalamus (Table 9). Between 61.0% and 75.2% of the variance in APMPS 

was explained by the angular velocity. This illustrated a large contribution of the angular 

velocity to the APMPS. There was a strong relationship between angular velocity and 

APMPS for all of the ROIs within the thalamus (Figures 17-20). These data are broken 

down by age and presented in Appendix C. 

 

 

Table 10. Correlations (r) and coefficients of determination (r2) between APMPS 

and angular velocity for each of the ROIs in the thalamus 

Region of Interest r  r2  

Left Posterior Thalamus 0.7812 0.6102 

Right Posterior Thalamus 0.8672 0.752 

Left Anterior Thalamus 0.8268 0.6836 

Right Anterior Thalamus 0.8167 0.667 
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Figure 18. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the posterior thalamus on the left side. The dotted line 

represents the line of best fit. The single concussion case is represented with the red 

circle. 
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Figure 19. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the posterior thalamus on the right side. The dotted line 

represents the line of best fit. The single concussion case is represented with the red 

circle. 
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Figure 20. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the anterior thalamus on the left side. The dotted line 

represents the line of best fit. The single concussion case is represented with the red 

circle. 
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Figure 21. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the anterior thalamus on the right side. The dotted line 

represents the line of best fit. The single concussion case is represented with the red 

circle. 
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4.4.3 Relationship between the peak angular velocity and MPS in 
the brain stem 

There were high correlations between the angular velocity and APMPS for both of the 

ROIs of the brain stem (Table 10). Between 79.0% and 80.5% of the variance in APMPS 

was explained by the angular velocity. This illustrated a large contribution of the angular 

velocity to the APMPS. There was a strong relationship between angular velocity and 

APMPS for all of the ROIs within the CC (Figures 21-22). These data are broken down 

by age and presented in Appendix C. 

 

Table 11. Correlations (r) and coefficients of determination (r2) between APMPS 

and angular velocity for each of the ROIs in the brain stem 

Region of Interest r  r2  

Left Posterior Brain Stem 0.8970 0.8046 

Right Posterior Brain Stem 0.8889 0.7901 
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Figure 22. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the lateral posterior brain stem on the left side. The dotted 

line represents the line of best fit. The single concussion case is represented with the 

red circle. 
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Figure 23. Relationship between the peak angular velocity and resulting maximum 

principal strain (MPS) in the lateral posterior brain stem on the right side. The 

dotted line represents the line of best fit. The single concussion case is represented 

with the red circle. 
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4.5 Maximum Principal Strains for Headers from 
Different Game Scenarios 

 

The APMPSs for a single concussion case for each of the ROIs were compared to each of 

the game scenario’s head impacts to provide some indication of the risk of concussion for 

each game scenario. Furthermore, more detailed results differentiating the purposeful 

headers by age are presented in Appendix D. 

 

4.5.1 Corpus Callosum 

 

In the genu of the CC, on the left side there was statistically significant differences 

between the APMPS in the concussion case compared to the head impacts resulting from 

deflection, free kick and throw ins (Figure 23 – upper left panel). On the right side, none 

of the game scenarios were significantly different than the concussion case (Figure 23 – 

upper right panel).  

 

In the splenium of the CC, on the left side, there were statistically significant differences 

in APMPS from head impacts occurring in deflection, dropkicks, free kicks and throw in 

scenarios compared to the concussion case (Figure 23 – lower left panel). On the right 

side, there were significant differences between deflection, drop kicks, passes through the 

air, free shots and throw in scenarios compared to the concussion (Figure 23 – lower right 

panel).  

 

For this region, the right side of the splenium of the CC experienced the highest APMPS 

during the concussion case (0.1856). Interestingly, the other three regions in the CC were 
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at or below 0.1676. As well, the posterior right thalamus region had the most scenarios 

that were significantly different than the concussion case.   

 

Figure 24. Box and whisker plots showing the average peak of the maximum 

principal strain (MPS) at the ROIs of the corpus callosum for the various game 

scenarios. Boxes represent the 25th – 75th quartile ranges and line within each box 

represents the median. The whiskers represent the 95% CI. The dotted line 

represents the MPS for the single concussion case. 
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4.5.2 Thalamus 

 

In the posterior region thalamus on the left side ( Figure 24 – upper left panel) there were 

no statistically significant differences in APMPS between the concussion case and the 

head impacts from the various game scenarios. However, on the right side (Figure 24 – 

upper right panel) there were statistical significant differences between the concussion 

case and the head impacts from deflections, dropkicks, passes through the air, free kicks 

and throw ins.  

 

In the anterior thalamus on the left side (Figure 24 – lower left panel ) there were 

statistically significant differences in APMPS between the concussion case and several 

game scenarios (deflections, free kicks, and throw ins). On the right side (Figure 24 – 

lower right panel), none of the game scenarios were significantly different than the 

concussion case.  

 

For this region, the right posterior thalamus region experienced the highest APMPS 

during the concussion case (0.1625). Interestingly, the other three regions in the thalamus 

were at or below 0.0816. As well, the posterior right thalamus region had the most 

scenarios that were significantly different than the concussion case.   
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Figure 25. Box and whisker plots showing the average peak of the maximum 

principal strain (MPS) at the ROIs of the thalamus for the various game scenarios. 

Boxes represent the 25th – 75th quartile ranges and line within each box represents 

the median. The whiskers represent the 95% CI. The dotted line represents the 

MPS for the single concussion case. 
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4.5.3 Brain Stem 

 

In the lateral posterior region of the brain stem on the left side, there were statistically 

significant differences between headers in individual game scenarios compared to the 

concussion case for deflections, dropkicks, passes through the air, free kicks and throw 

ins (Figure 25 – left panel). In the lateral posterior region of the brain stem on the right 

side there were statistically significant differences between headers in individual game 

scenarios compared to the concussion case for deflections, dropkicks, goal kicks, passes 

through the air, free kicks and throw ins (Figure 25 – right panel).  

 

Of interest is the fact that, even with independent game scenarios by regions being 

assessed, the corner kick was the only game scenario with MPSs that were not 

significantly different than the concussion case. Across all scenarios with head impacts 

the brain stem was effected to a statistically significant level across most scenarios. 
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Figure 26. Box and whisker plots showing the average peak of the maximum 

principal strain (MPS) at the ROIs of the lateral posterior brain stem for the 

various game scenarios. Boxes represent the 25th – 75th quartile ranges and line 

within each box represents the median. The whiskers represent the 95% CI. The 

dotted line represents the MPS for the single concussion case. 
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5 Discussion 

 

This study evaluated the MPS of specific regions of interest in the brain during 

purposeful head impacts recreated using FEM, compared to a single concussion case, and 

compared to thresholds for concussion. The FEM simulations were based on 

representative headers performed during female youth soccer games. The magnitude of 

the head impacts was quantified using kinematics captured using wireless sensors. These 

head kinematics were used to drive the simulations. The nature of the head impacts was 

captured from video recordings of games, enabling detailed reporting of the MPSs for 

different game scenarios. 

It was hypothesized that there will be strong relationships between linear and angular 

head kinematics and that the APMPS at the various ROI related to concussion. In brief, 

we observed larger correlations between the MPS of the various ROI related to 

concussion and angular velocity than linear acceleration. It was also hypothesized that 

game scenarios where a header occurred would have a lesser magnitude of maximum 

principal strain compared to the concussion case in the various regions of interest 

compared to the purposeful headers. In brief, we observed that corner kicks produced 

sizable MPS throughout the ROIs and that the brain stem is a particularly susceptible 

region compared to a concussion case . These findings will be discussed in detail below.  

 

5.1 Head Impacts 

 

Soccer heading occurs frequently within the rules, and increases with age in female youth 

soccer players (Harriss et al., 2019b). As well, heading is performed with greater 

frequency in games over practices at the high school and collegiate levels (McCuen et al., 

2015). Based on recollection, adult amateur soccer players performed a median of 

approximately 24 headers in a two week period (Stewart et al., 2018).  This study 
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identified that an increased number of headers in these 2 week windows was associated 

with poorer scores on psychomotor speed, and attention tasks. Similarly, prolonged 

exposure to repetitive head impacts, as seen in professional American football and 

professional Association football, has been associated with neurological deficits later in 

life in the form of reduced brain volume (Schultz et al., 2018) and chronic traumatic 

encephalopathy (Ling et al., 2017; Schultz et al., 2018). 

 

Previous research has used wireless sensors to collect data about head impacts in soccer 

in adolescent athletes (Caccese et al., 2016; Gutierrez et al., 2014; E. M. Hanlon & Bir, 

2012; Harriss et al., 2019b; Miller, Pinkerton, et al., 2019). Most of these studies used 

video analysis to confirm the impacts (Caccese et al., 2016; E. M. Hanlon & Bir, 2012; 

Harriss et al., 2019b; Miller, Pinkerton, et al., 2019). This is necessary as wireless sensors 

typically overestimate the number of head impacts. For example, one study of lacrosse 

reported that 65% of head impacts recorded with GFT devices were bona fide head 

impacts verified by video (Cortes et al., 2017). In this same study, only 32% of head 

impacts recorded with X-Patch sensors were bona fide head impacts. Video confirmation 

was used in this thesis to ensure sensor recordings were representative of purposeful 

headers.  

 

In addition to false-positive recordings, the accuracy of kinematic measures made by 

wireless sensors has also been questioned. Research verifying the xPatch observed large 

errors in linear and angular accelerations (approximately 50% RSME) compared to 

accelerations of a Hybrid III headform (McCuen et al., 2015). Campbell and colleagues 

(Campbell et al., 2016) assessed the accuracy of GFT device measures in football helmets 

and found strong correlations between both the linear acceleration (r = 0.82) and the 

rotational velocity (r = 0.94) against impacts using a Hybrid III dummy. In this same 

study, GFT  devices had 14% mean average percent error after a correction algorithm 

was applied for the specific helmet type.  This reduced error compared to other wireless 

sensors legitimizes the use  GFT wireless sensors for the present study. 
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In research quantifying head impacts in youth soccer, Miller and colleagues (2019) report 

that the median linear acceleration (9.4 g) from headers in soccer games was lesser than 

that reported in this study (16.1 g). This may be due to the low volume of game impacts 

in that study (n=13) compared to this study (n=110). Previous research with a larger 

number of header impacts (n=47) in female youth soccer players reported an average 

peak linear acceleration of 20.4 g (E. M. Hanlon & Bir, 2012), which compares more 

favorably to the present study’s findings (18.3 g). The average and median angular 

velocities for headers were considerably higher in this study (18.58 and 16.12 rads/s 

respectfully) compared to other research (3.8 and 4.1 rads/s respectively; (Miller, 

Pinkerton, et al., 2019)). This difference may be due to the different sensing approaches, 

as the research performed by Miller and colleagues (2019) was  performed with wireless 

sensors attached to mouthpieces. The measures in this study reflect those found in other 

literature that utilize a similar wireless sensor placement (E. M. Hanlon & Bir, 2012). 

 

5.2 Game scenarios 

 

In terms of proportions of impacts, the sample pool in this study was representative of the 

total pool as it matched the distributions of the various game scenarios and the different 

player ages. The proportion of headers from the various scenarios that we observed in 

this study was similar to previous research by Miller and colleagues (2019). Miller and 

colleagues (2019) observed that passes through the air and throw ins were the most 

frequent headers, which compares well with the present study.  

 

In terms of impact magnitudes, Miller and colleagues (2019) found the peak average 

linear accelerations and angular velocities came from long kick scenarios. In the present 

study this was the equivalent to the corner kick and pass through air scenario and 

supports the corner kicks high linear accelerations and angular velocities observed.   
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5.3 Correlations between head impact kinematics and 
APMPS 

 

Pellman and colleagues (2003) used video analysis of impacts in professional football to 

recreate impacts using Hybrid III dummies. These impacts assessed head impacts of both 

the striking player and the struck player. The findings indicated that linear acceleration 

the primary reason for concussions. This is in contrast to the findings of this study, as we 

found that there was a weak correlation between linear acceleration and MPS in the 

various regions of interest in the brain that are related to concussion. As well, the low 

coefficients of determination for each of these relationships indicates that the linear 

accelerations recorded by the wireless sensors only explain a minority of the variance in 

APMPS. Accordingly, it appears that linear acceleration recordings from head impact 

sensors may not be useful surrogate measures for strains within certain ROIs of the brain. 

 

Furthermore, Pellman and colleagues (2003) found that there was negligible between the 

angular velocity and injury risk. This is in opposition to the findings in this thesis. We 

found that the angular velocity was highly correlated with APMPS. This is important as 

MPS has been shown to be associated with concussion, and has been used by several 

studies to establish a threshold for probability of concussion (Giordano & Kleiven, 2014; 

Kleiven, 2007). The high coefficient of determination for the relationship between 

angular velocity and APMPS shows that a large amount of variance is explained by 

angular velocity. Accordingly, it appears that angular velocity recordings from head 

impact sensors may be useful surrogate measures for strains within certain ROIs of the 

brain.  

 

Due to the uncertain reliability of the relationship between these two different kinematic 

measures and MPS within certain ROIs of the brain, it is recommended that researchers 

use caution when utilizing data from head impact sensors.  



 

 

62 

5.4 Association between APMPS and concussion.  

 

The CC is located centrally within the brain, contains an abundance of connections 

transversely connecting both hemispheres of the brain, and is susceptible to damage 

during head impacts. For example, in cases of adolescents with diagnosed concussions, 

the CC has shown changes in DTI biomarkers (FA and MD; E. A. Wilde et al., 2008). 

The CC is sensitive to disruption of the fiber tracks in concussion, as evidenced by the 

DTI biomarkers’ fluctuations. This region is particularly relevant to youths as the fiber 

tracts are undergoing progressive myelination into adulthood (Lebel & Beaulieu, 2011; 

McAllister et al., 2012). These changes in the global CC structure are also evident within 

specific regions of the CC. For example, DTI studies have shown statistically significant 

differences between FA and MD measures at the CC’s genu and splenium in patients 

with moderate traumatic brain injuries compared to healthy controls (Kumar et al., 2010). 

This is also supported by the significant elevation in FA values within the genu of the CC 

in a SRC group compared to healthy control (Borich et al., 2013). We observed that the 

CC experienced the highest APMPS across all of the ROIs evaluated within this thesis. 

As well, the concussion case had the highest APMPS value within the splenium of the 

CC ROI on the right side. Indicating that the CC might have been the area of the brain 

that was injured in this particular concussion. 

 

The thalamus has been highlighted as a region that plays a role in the recovery from 

mTBI (Munivenkatappa, Devi, Shukla, & Rajeswaran, 2016). Thalamic volumes are 

decreased in boxers and MMA fighters (Bernick et al., 2015), but are increased, in 

parallel with increases in cognitive test scores, in patients recovering following mTBI 

(Munivenkatappa et al., 2016).  The fighters had significant decreases in brain volume 

and decreased processing speeds that were proportional to their head impact exposure 

(0.3 and 0.19% per fight respectively). Furthermore, in retired NFL football players, the 

amount of years playing football was negatively correlated with thalamic volume 

(Schultz et al., 2018).  
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In one study that utilized FEM to recreate football impacts used ROIs in the thalamus to  

distinguish between concussive impacts that led to LOC compared to those with no LOC 

(Cournoyer & Hoshizaki, 2019). MPS values for shoulder and head impacts were 0.21 

and 0.38 respectively for impacts resulting in LOC. These values are of interest in our 

study as purposeful headers involve voluntary impacts of the head, and therefore 

secondary contact is not relevant. In regards to all sampled impacts, corner and goal kicks 

were the only game scenarios with APMPS at or above the 0.21 LOC threshold observed 

by Cournoyer and Hoshizaki (2019). Interestingly, the concussion case did not reach this 

injury threshold value for any of the ROIs in the thalamus.  

 

We observed that the ROIs in the brain stem had the highest positive correlations 

between APMPS and angular velocity (r > 0.85). These correlations were higher than 

between the linear acceleration and APMPS in the brain stem (r > 0.3). In contrast, 

Cournoyer & Hoshizaki (2019) observed that impact velocity, peak linear and rotational 

acceleration were all significantly greater in the LOC group than the no LOC group. A 

FEM study recreated football impacts based off of two different conditions: oblique 

frontal impact, and a crown impact (Darling et al., 2016). In the oblique frontal impact, 

the MPS at the brain stem was nearly double (0.089) that of the impact to the crown 

(0.045). This impact location is noticeably similar to that of a purposeful header 

performed with proper technique. This highlights that purposeful heading in soccer places 

large strain on the brain stem. This is highlighted in this study in two ways. We observed 

the larger correlations between the MPS in the brainstem and the linear acceleration and 

angular velocity compared to the other brain regions. We also observed that the MPSs in 

the brainstem in the concussion case was significantly higher than most game scenarios. 

This reinforces that increased strains in the brain stem may related to increased risk of 

concussion, as observed by others (Cournoyer & Hoshizaki, 2019).  

 

Giordano and Kleiven (2014) evaluated whether axonal strain was a predictor of TBI 

compared to strain-based measures such as MPS. They simulated concussion head 
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impacts and non-injurious head impacts, and evaluated several brain regions including 

the CC, thalamus and brain stem. The differences in APMPS between the concussion and 

the headers in the various game scenarios were statistically significant (p = 0.01) except 

the CC (p = 0.062). All strain-based measures were good predictors of mTBI. Of note, 

Giordano and Kleiven (2014) observed that the best predictor of concussion with MPS 

was in the brain stem. This is consistent with the current study as the brain stem was 

subjected to significantly less MPS in the purposeful headers compared to the concussion 

case (except in the case of corner, and goal kick (left side only)).   

 

Furthermore, a number of studies have established concussion thresholds based on the 

strain-based measures. Giordano and Kleiven (2014) determined that the 50POC MPS 

values within the CC, thalamus and brain stem were 0.1177, 0.1199, and 0.1264 

respectively. Similarly, Beckwith and colleagues (2018) identified that concussive head 

impacts had median MPS values of 0.13 and 0.14 for the CC and brain stem respectively. 

The relative consistency of these thresholds indicates a level of internal validity. 

 

In the present study, the APMPS in the single concussion case was compared to the 

various kick types. Based on Giordano and Kleiven’s (2014) thresholds, the MPS 

threshold for 50POC was surpassed in three of the four ROIs in the CC; the right side of 

the genu of the CC was the sole exception. Somewhat similarly, two of the four ROI’s 

surpassed the threshold for concussion in the CC as described by Beckwith and 

colleagues (2018).  

 

In this thesis, the APMPS surpassed Giordano and Kleiven’s 50POC threshold in only the 

right posterior thalamus ROI. Furthermore, in comparing the MPS in the brain stem 

during the concussion case to Beckwith and colleagues’ threshold, our concussion case 

was equal to median concussion MPS value in the right ROI. However, neither regions in 

the brain stem reached the 50POC threshold for Giordono and Kleivan’s threshold. This 
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is interesting, as the concussion case had a statistically significant greater MPS in the 

both brain stem regions than most kick types (corner and goal kick excepted). 

 

Considering all of the regions of interest, the brainstem ROIs were the only regions in 

which the strains in the concussion case were significantly larger than the strains for most 

of the game scenarios. Presumably this indicates that the brainstem might have been the 

area of the brain that was injured in this particular concussion. Of interest is the fact that 

the corner kick was the only game scenario that had strains that were not significantly 

different than the concussion case. The lowest peak 95% CIs for corner kicks were within 

the brain stem. Across all scenarios the brain stem was effected to a statistically 

significant level across most scenarios. This also is of interest because the brain stem is 

increasingly effected in oblique frontal impacts as shown by Darling and colleagues 

(2016). 

 

In terms of risk of injury from heading, one study has suggested that players should limit 

the number of goal kick headers to reduce their head impact exposure (Caccese et al., 

2016). We observed that the strains in goal kick headers were large, and therefore it 

seems reasonable to consider reducing headers from goal kicks as a means of reducing 

head impact exposure. However, we noted that the strains in the headers off of corner 

kicks were consistently as large or larger than goal kicks, and therefore strategies to 

reduce head impact exposures should also target corner kicks for their large magnitude 

strains. Finally, in terms of the magnitude of head impact exposure, it is important to 

realize that both goal kicks and corner kicks represent a relatively small fraction of the 

overall number of purposeful headers in our group of female youth soccer players (less 

than 4% each). Accordingly, considering cumulative head impact exposure, it would be 

important to target reductions in other forms of purposeful headers as well. 

 



 

 

66 

5.5 Limitations 

 

5.5.1 Wireless Sensors 

 

The nature of the raw data collected by the GFT2 sensors was a limitation. This is 

because they do not measure angular accelerations which review papers indicate is 

associated with DAI (Miller, Urban, et al., 2019). Although it is possible to numerically 

differentiate angular velocity signals to calculate angular accelerations, that was not done 

in this study. As well, the 40 ms time window measuring impacts is appropriate for 

measuring peak accelerations, and has been used routinely with wireless head impact 

sensors (E. M. Hanlon & Bir, 2012). Other studies have also performed FEM simulations 

based on a 40 ms window length (Beckwith et al., 2018). However, we sometimes 

observed that the brain strains were still increasing at this point in the time record. 

Accordingly, the data in this thesis represents the peak strains recorded within the 40 ms 

window of the simulation, but we acknowledge that larger peak strains may have 

occurred later, beyond the time frame of the simulation. The Beckwith et al. (2018) paper 

does not present time series data, so it is not clear whether this type of situation may have 

occurred in their study too. 

 

5.5.2 Maximum Principal Strain 

 

There were limitations as far as the way that we collected and processed the data, and set 

up for boundary conditions for FEM analysis. MPSs are volatile measures as they are 

sensitive to local changes in geometry and material properties. We addressed this 

volatility by calculating average strains over 3x3 element regions of interest, similarly to 

other researchers (Claeson & Barocas, 2017). As well, another limitation of MPS 

magnitudes is that they do not consider direction. Accordingly, brain tissues that have a 
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specific orientation (such as white fiber tracks), may not be best described using MPS 

magnitudes. 

 

5.5.3 Collection Periods and Type of Head Impacts  

 

This thesis only evaluated purposeful headers during games that were confirmed by 

video.  Although this represents the majority of purposeful heading exposure for youth 

soccer players, it did not evaluate head impacts from practices. As well, this thesis 

focused on purposeful headers and did not evaluate head impacts due to player-to-player 

contact, which are thought to be related to concussions (Zuckerman et al., 2015). 

 

5.5.4 The Single Concussion Case  

 

The field study only captured biomechanical data during the 60 games. The concussion 

that was used in this study occurred in practice during a crossing drill, therefore only 

wireless sensor data was available. As such, this head impact only represents one specific 

example of one mechanism of injury. It is well understood that concussions can occur 

from a variety of mechanisms of injury depending on factors such as impact direction and 

the relative magnitude of the linear and angular accelerations (Rowson et al., 2016). 

Accordingly this thesis does not yield insights that are relevant to other mechanisms of 

injury. 
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5.5.5 Number of Variables Assessed 

 

This thesis focused exclusively on quantifying brain responses using MPS. As support, 

the maximum axonal strain (MAS) was the best parameter based on its receiver operating 

characteristic compared to other parameters (Giordano & Kleiven, 2014). Furthermore, 

other models have successfully differentiated between concussive and non-injurious head 

impacts using MPS (Beckwith et al., 2018; Giordano & Kleiven, 2014), and 

differentiated between concussions that have LOC compared to those with a LOC 

(Cournoyer & Hoshizaki, 2019). However, it is important to note that additional 

variables, such as stresses, might be relevant. 

 

5.5.6 Size of Regions of Interest 

 

This thesis used a small collection of elements to represent the ROI in the various 

anatomical structures that are related to concussion. The brain regions were identified 

using imaging studies for reference. This was unlike other literature where all elements in 

an anatomical region was assessed. The regions assessed in this study may be too minute 

to characterize the average strains of the whole region. This likely led to higher MPS 

magnitudes in this thesis compared to studies that used larger anatomical regions. As, 

well, this likely affected our interpretation of the injury thresholds in this thesis. 
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6 Conclusion  

 

The findings presented in this study offer a unique look into the effects of purposeful 

headers in soccer on a susceptible youth population. Despite the limitations presented 

above, this study illustrated increased levels of MPS at specific ROIs in the brain in the 

single concussion case compared to purposeful headers. It was observed that linear 

accelerations and angular velocities recorded by head impact sensors were both related to 

the strains occurring in the brain following head impacts. However, the strength of the 

relationship varied between ROIs observed, and often predicted a minority of the 

variance in strain. As well, it was recognized the game scenarios in which a head impact 

occurs are an important factor related to the magnitude of the MPS in the brain in youth 

soccer. Based on the findings of this study it is shown that FEM models can provide 

important insights into the risks associated with purposeful headers, and that ROIs related 

to concussion warrant further examination.  
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 Appendices 

Appendix A  

 Practice Header 1 Header 2 Header 3 Header 4 Header 5 

Header Drill Goal Kick Pass Air Throw Goal Kick Throw 

Linear 

(g) 
45.07 17.88 12.69 12.79 12.69 10.25 

Angular 

(º/s) 
1375 1364 2899 84 1273 660 

LCCG 0.168 0.255 0.496 0.014   

RCCG 0.110 0.219 0.390 0.015   

LCCS 0.125 0.180 0.384 0.004   

RCCS 0.186 0.189 0.407 0.005   

LTP 0.079 0.153 0.314 0.006   

RTP 0.162 0.181 0.327 0.007   

LTA 0.082 0.121 0.294 0.006   

RTA 0.066 0.173 0.313 0.005   

LBS 0.095 0.097 0.205 0.006   

RBS 0.103 0.082 0.302 0.007   

CCG –Genu of Corpus Callosum, CCS – Splenium of Corpus Callosum 
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 TP – Thalamus Posterior, TA – Thalamus Anterior,  BS – Brain Stem,   

Appendix B  

  

Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the genu of the CC on the left side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the genu of the CC on the right side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the splenium of the CC on the left side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the splenium of the CC on the right side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the posterior thalamus on the left side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the posterior thalamus on the right side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the anterior thalamus on the left side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the anterior thalamus on the right side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the lateral posterior brain stem on the left side. 
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Age differentiated relationship between the peak linear acceleration and resulting 

APMPS in the lateral posterior brain stem on the right side. 
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Appendix C 

 

 

 

Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the genu of the CC on the left side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the genu of the CC on the right side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the splenium of the CC on the left side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the splenium of the CC on the right side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the posterior thalamus on the left side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the posterior thalamus on the right side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the anterior thalamus on the left side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the anterior thalamus on the left side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the lateral posterior brain stem on the left side. 
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Age differentiated relationship between the peak angular velocity and resulting APMPS 

in the lateral posterior brain stem on the left side. 
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Appendix D 

Number of purposeful headers simulated in this thesis differentiated by game scenario and age. 

 

 Corner Deflection 
Drop 

Kick 
Goal Kick Pass Air Shot Free Throw Total 

13 0 5 3 0 16 1 10 35 

14 0 3 3 2 22 1 16 47 

15 3 2 1 0 9 0 13 28 

Total 3 10 7 2 47 2 39 110 
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