
 

Sara Maria Ventura Ramalhete 

 

 

 

Epigenetic biomarkers as predictors of clinical 

outcomes in colorectal cancer 

 

 

 

 

 

 

 

 

UNIVERSIDADE DO ALGARVE 

Departamento de Ciências Biomédicas e Medicina 

2019 

  



 

  



i 
 

Sara Maria Ventura Ramalhete 

 

 

Epigenetic biomarkers as predictors of clinical 

outcomes in colorectal cancer 

 

Mestrado em Oncobiologia: 

Mecanismos Moleculares do Cancro 

Trabalho efetuado sob a orientação de: 

Professor Doutor Pedro Castelo-Branco 

 

 

 

 

 

UNIVERSIDADE DO ALGARVE 

Departamento de Ciências Biomédicas e Medicina 

2019 



ii 
 

  



iii 
 

 

 

Epigenetic biomarkers as predictors of clinical outcomes in 

colorectal cancer 

 

 

 

 

 

 

 

 

Declaração de autoria do trabalho 

Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos 

consultados estão devidamente citados no texto e constam da listagem de referências 

incluída. 

I declare that I am the author of this work that is original and unpublished. Authors and 

works consulted are properly cited in the text and included in the list of references.” 

 

___________________________________ 

(Sara Maria Ventura Ramalhete)  



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2019 Sara Maria Ventura Ramalhete 

A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no 

Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a 

obra, independentemente do meio utilizado, bem como de a divulgar através de 

repositórios científicos e de admitir a sua cópia e distribuição para fins meramente 

educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito 

ao autor e editor respetivos. 



v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“If you want to make the world a better place, 

Take a look at yourself and make a change.” 

Michael Jackson 

  



vi 
 

  



vii 
 

Agradecimentos 
 

Em primeiro lugar, agradeço ao meu orientador, Professor Doutor Pedro Castelo-Branco, 

por me ter aceite no seu grupo, ter confiado em mim, e por todo o apoio que me deu ao 

longo da realização desta dissertação. 

 

Agradeço à Professora Doutora Ana Marreiros por toda motivação, disponibilidade e 

ajuda em tudo o que precisei para a realização deste projeto. 

 

Aos meus colegas André Mestre e André Fonseca, um muito obrigada por todo o apoio, 

motivação e amizade que demonstraram ao longo deste último ano. 

 

Quero também agradecer a todos os restantes membros desta equipa por me terem 

apoiado e acolhido, e por todas as discussões científicas que proporcionaram ao longo da 

realização deste projeto. 

 

Um agradecimento especial ao Luís Carlos por todo o apoio e motivação para que pudesse 

chegar até aqui. 

 

Por último, mas não menos importante, agradeço à minha família por todo o carinho, 

confiança e por me terem ajudado a chegar aqui.  



viii 
 

  



ix 
 

Abstract 

 

Colorectal Cancer is the third most common cancer and the second leading cause of death 

by cancer worldwide with about 1.3 million new cancer cases and 693,933 deaths reported 

in 2012. 

Here, we intend to determine an epigenetic roadmap of Colorectal Cancer to predict tumor 

progression and patient outcome. 

We analyzed whole-genome DNA methylation (Illumina Infinium HumanMethylation 

450K array) and gene expression (Illumina HiSeq) in multiple stages of CRC (21 normal, 

54 stage I, 131 stage II, 111 stage III, and 51 stage IV). The data is available in TCGA 

database, and was downloaded, processed and analyzed through R programming. 

Results show that, in stages I, II, III, and IV, 307, 400, 305 and 233 genes are differentially 

expressed (fold-change absolute value > 1.5, p-value adjusted<0.05) and 924, 1814, 1169, 

and 618 CpG sites are differentially methylated (Δβ absolute value > 0.2, p-value 

adjusted<0.05), respectively. In addition, all these CpG sites are correlated with the 

respective gene. When the KEGG and Gene Ontology analysis was performed, we found 

that the enriched functions are related to nervous system, one of the processes deregulated 

in cancer progression. Moreover, we also identified 66, 85, 41, and 40 specific genes for 

stages I, II, III, and IV, respectively. 

Regarding the diagnosis, were found 238 genes and 835 CpG sites as good diagnosis tool 

for stage I (AUC>0.8). Furthermore, 6, 1, and 5 genes and 87, 7, and 3 CpG sites were 

classified as good biomarkers for overall survival for stages I-IV, respectively. In 

addition, 3, 3, and 2 genes and 30, 12, 9 CpG sites were identified as good biomarkers for 

recurrence free survival for stages I-IV, respectively. 

These results suggest that different methylation events are associated to specific stages of 

CRC which can predict patient outcome and might improve colorectal cancer diagnosis 

and prognosis. 

 

Keywords: Colorectal Cancer, Epigenetics, DNA methylation, Biomarkers, Diagnosis, 

Prognosis.  
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Resumo 

Introdução: O cancro colorretal é um evento biológico que compreende múltiplos 

passos, decorrendo de diversas alterações genéticas e epigenéticas.  

Apesar das melhorias no rastreio, diagnóstico e prognóstico de cancro, incluindo de 

cancro colorretal, este continua a ser o terceiro tipo de cancro mais comum em homens e 

segundo em mulheres, com mais de 1,3 milhões de novos casos diagnosticados, e 693.933 

mortes reportados em todo o mundo no ano de 2012. Em parte, a incidência e mortalidade 

continuam elevadas devido à baixa sensibilidade e especificidade na deteção de cancro 

colorretal nos estádios iniciais da doença. 

Atualmente, entre os diversos meios de diagnóstico, a técnica mais eficiente é a 

colonoscopia, contudo apresenta baixa especificidade e sensibilidade. Estudos mais 

recentes têm apontado outros biomarcadores como forma de diagnóstico e prognóstico 

para o cancro colorretal, incluindo a septina 9. Este último é um biomarcador epigenético 

atualmente comercializado. 

Este projeto teve como objetivos realizar uma análise global do genoma em termos de 

metilação do ADN e expressão genética através de um código em R, identificar mutações 

epigenéticas que ocorram ao longo da progressão do cancro colorretal, e, por último, 

relacionar estas alterações com o efeito causado nos doentes. 

Métodos: Neste projeto, foi efetuada uma análise global do genoma de um cohort de 

cancro colorretal, em termos de metilação do ADN (Illumina Infinium 

HumanMethylation 450K array) e expressão genética (Illumina HiSeq). Neste projeto, 

foram analisadas 21 amostras de tecido normal adjacente ao tumor e 347 amostras 

tumorais divididas de acordo com a classificação TNM (54 estadio I, 131 estadio II, 111 

estadio III e 51 estadio IV). Estes dados estão publicamente disponíveis, sendo que foram 

descarregados da base de dados do The Cancer Genome Atlas (TCGA) e analisados 

através de programação em R. 

Resultados: Os resultados sugerem que nos estádios I, II, III e IV, estão diferencialmente 

expressos 307, 400, 305 e 233 genes (valor absoluto de fold-change > 1,5 e p-value 

ajustado (FDR) < 0.05) e diferencialmente metilados 924, 1.814, 1.169 e 618 locais de 

metilação (valor absoluto de Δβ > 0,2 e p-value ajustado (FDR) < 0.05), respetivamente. 
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Em adição, cada um destes locais de metilação encontra-se correlacionado com os 

respetivos genes encontrados diferencialmente expressos no mesmo estadio (p-value < 

0.05). De seguida, efetuou-se uma análise nas bases de dados KEGG e Gene Ontology 

(GO). A utilização destas ferramentas revelou que as funções mais enriquecidas estão 

relacionadas com o sistema nervoso. Estudos anteriores já tinham descrito alterações em 

genes envolvidos no desenvolvimento e regulação do sistema nervoso como desreguladas 

em diversos tipos de cancro. Em adição, foi ainda realizada uma análise com o objetivo 

de encontrar quais dos genes encontrados diferencialmente expressos e que continham 

locais de metilação diferencialmente metilados ainda não tinham sido reportados em 

associação com cancro colorretal e cancro em geral. Esta análise sugere que 87 genes 

nunca foram associados nem com cancro colorretal nem com cancro no geral. Em 

oposição, 511 já forma reportados em algum tipo de cancro. Destes últimos, 278 já foram 

também reportados em cancro colorretal enquanto 233 nunca foram descritos neste tipo 

de cancro. 

Como forma de validação, realizou-se, ainda, uma técnica multivariada de representação 

gráfica, a qual demonstrou que tanto os genes como os locais de metilação selecionados 

conseguem distinguir amostras tumorais de amostras normais. Esta técnica permitiu-nos 

ainda diferenciar amostras tumorais em dois grupos principais distintos. 

Ainda neste estudo, foram identificados 66, 85, 41 e 40 genes que estão somente 

diferencialmente expressos nos estádios I, II, III e IV. Curiosamente, apenas 85 genes são 

comuns aos 4 estadios de desenvolvimento de cancro colorretal  

O potencial dos genes e locais de metilação, encontrados como diferencialmente 

expressos e metilados, respetivamente, para distinguir tecido tumoral do tecido normal 

também foi avaliado através da análise de curvas de receiver operating characteristic 

(ROC). Como resultado, obteve-se que 238 genes e 835 locais de metilação são bons 

marcadores de tecido tumoral em estadio I, quando comparado com tecido normal 

adjacente (AUC > 0,8, sendo que apenas foram selecionados os pontos ótimos com 

especificidade e sensibilidade > 60%). ASTN1, por exemplo, foi um dos genes 

classificados como um excelente marcador de diagnóstico (AUC =0,989). Este gene 

contém ainda o local de metilação cg08104310, o qual foi considerado um excelente 

marcador de diagnóstico (AUC=1,000). 
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De seguida, a capacidade de prever o outcome do paciente em termos de sobrevida em 

geral e sobrevida livre de progressão, através dos valores de metilação e expressão dos 

genes e locais de metilação específicos para cada um dos estádios, foi avaliada. Em 

relação à sobrevivência em geral, para os estádios II, III e IV, foram identificados 6, 1 e 

5 genes e 87, 7 e 3 locais de metilação, respetivamente, como possíveis biomarcadores de 

prognóstico (p-value < 0.05). Especificamente, genes como o ZNF536 (p-value=0,018; 

HR=3,133), SOX1 (p-value=0,041; HR=0.459) e BFSP2 (p-value=0,027; HR=2.828), por 

exemplo, foram identificados como bons preditores de sobrevivência em geral dos 

estádios II, III e IV, respetivamente. Relativamente aos locais de metilação, as 

cg02430935 localizada no gene HMX (p-value=0,013; HR=3,139), cg26489108 

localizada no gene DMRT3 (p-value=0,027; HR=0,407) e a cg01847754 localizada no 

gene CXorf1 (p-value=0,019; HR=3,155), por exemplo, foram identificadas como bons 

marcadores para a sobrevivência em geral dos estádios II, III e IV, respetivamente. 

Quanto à sobrevivência livre de recorrência, para os estádios II, III e IV, foram 

identificados 3, 3 e 2 genes e 30, 12 e 9 locais de metilação, respetivamente, capazes de 

prever se o doente para recorrer ou não. Mais concretamente, genes como o CNTD2 (p-

value=0,00033; HR=0,196), SOX1 (p-value=0.01; HR=0,359) e HTR2C (p-

value=0,0064; HR=0,285) foram identificados como bons preditores de prognóstico para 

a sobrevivência livre de progressão nos estádios II, III e IV, respetivamente. 

Relativamente aos locais de metilação, as cg06162589 localizada no gene SLC5A8 (p-

value=0.0066; HR=0,2924), cg03700449 localizada no gene ASCL1 (p-value=0.0055; 

HR=0,3114) e cg14772660 localizada no gene SLC5A7 (p-value=0.0047; HR=4,3174) 

são exemplos de bons preditores de sobrevivência livre de progressão para os estádios II, 

III e IV, respetivamente.  

Conclusão: Este estudo sugere que as alterações epigenéticas são dinâmicas ao longo da 

progressão de cancro colorretal, demonstrando que há alterações que são características 

de estádios específicos, enquanto outras se mantêm alteradas desde o primeiro estadio. 

Notavelmente, algumas das alterações conseguem distinguir doentes com um prognóstico 

mais severo de doentes com um prognóstico mais indolente. 
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Assim sendo, este estudo mostrou que existem possíveis biomarcadores para cancro 

colorretal que devem ser melhor estudados no futuro. Este estudo pode ainda demarcar o 

início da melhoria das técnicas de diagnóstico e prognóstico. 

 

Palavras-chave: Cancro Colorretal, Epigenética, Metilação do ADN, Biomarcadores, 

Diagnóstico, Prognóstico.  
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1. CHAPTER I- INTRODUCTION 

 

 

1.1. Cancer 

Historically, the humoral theory, proposed by Hippocrates, was the first trying to explain 

what cancer is. He believed that humans contained 4 body fluids, named humor fluids: 

blood, phlegm, yellow bile, and black bile, which could be the cause of cancer. 

Specifically, Hippocrates proposed that alterations on these substances including an 

abnormal increase of black bile led cancer to arise1. 

It was only in 1838 that it was demonstrated that cancer is formed by cells which are 

derived from other cells- the blastema theory23. After, other theories arose, including the 

chronic irritation theory, which suggested that cancer was caused by chronic irritation; 

the trauma theory, which asserted that trauma led to cancer, and the parasite theory, which 

characterized cancer as a contagious disease that could be transmitted among humans 

through parasites2,4,5. 

Despite multiple attempts to understand the cause of cancer, it was in the 20th century that 

the mystery started to be solved. Firstly, both Watson and Crick uncovered the structure 

of deoxyribonucleic acid (DNA). Then, it was revealed how genes work and that genes 

can be affected by mutations. Later, it was also discovered that DNA can be altered and 

cause cancer through the exposure to chemicals, radiation, viruses and other carcinogens. 

It was also in the same century, that oncogenes and tumor suppressor genes were 

identified2. 

Nowadays, it is known that cancer is a group of diseases characterized by uncontrolled 

cell division that ultimately can spread to other tissues and metastasize. Although 

proliferation and cellular growth being normal and essential processes for development 

of organisms, cell division can become out of control, resulting in the accumulation of 

both mutations and epimutations6. This condition may lead to an uncontrolled cellular 

growth and, ultimately, in the invasion of distant tissues7. 
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1.1.1. Epidemiology of Cancer  

Despite the significant improvement in treatment and screening and the search for tumor 

biomarkers, cancer is the second leading cause of death in the world with more than 14 

million new cancer cases reported and 8.2 million deaths worldwide in 2012. In 2018 it 

was estimated about 18.1 million new cases and 9.6 million cancer-related deaths. 

Additionally, assenting in statistical predictions, it is expected that over 23 million new 

cancer cases are diagnosed and 14 million deaths by cancer are reported in 2035. 

Among all cancer types, the most frequents are lung, breast, colorectal and prostate 

cancers8–10. 

 

1.1.2. Mutation in Tumorigenesis 

Mutations and epimutations might have an impact in gene expression by modifying DNA 

sequence or chromatin structure, respectively11. Those changes can occur under many 

circumstances such as exposure to tobacco, chemicals, radiation or infectious organisms- 

external factors- and inherited mutations, hormones, immune conditions  and random 

mutations- internal factors6. Additionally, other events can also arise during cancer 

development, such as genomic rearrangements, amplification, insertion and deletion 

(indel)12,13. 

Importantly, neither the total number of mutations nor epimutations are directly related 

to the outcome. These events can be assembled in two main groups: driver and passenger 

mutations. Driver mutations provide selective advantage to tumor cell growth, 

contributing to the tumor initiation and progression. In contrast, passenger mutations do 

not provide selective growth advantage, meaning that they do not contribute to tumor 

initiation and progression. Driver mutations happen in small scale in cancer, whereas 

passenger mutations are the most common alterations found in cancer cells. Additionally, 

there is another type of mutations, named gatekeeping mutations, which provide 

advantages to the growth of normal cells13–17. 

Among all cellular processes, cell fate determination, cell survival, and genome 

maintenance are the three main processes related to cancer driver genes13. These 

processes are regulated by several oncogenes and tumor suppressor genes, which are often 

activated or inactivated, respectively, across the tumor development16. 
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1.1.3. Hallmarks of Cancer 

Hanahan and Weinberg have originally proposed six hallmarks that normal cells acquire 

during the malignant transformation, which promote tumor growth and progression, 

revolutionizing the knowledge of tumorigenesis (Figure 1.1)18,19: 

 

a. Sustaining proliferative signaling. 

Cancer cells can affect the production and release of growth-promoting signals, such as 

growth factors that bind to cell-surface receptors. This control affects the cell cycle and 

cell growth, leading to an uncontrolled proliferation. Specifically, there are different 

known ways to take control of proliferation such as an autocrine proliferative stimulation, 

meaning that cancer cells produce growth factors themselves; or stimulating normal cells 

to produce growth factors. Moreover, mechanisms as somatic mutations that activate 

additional downstream pathways, or the disruption of negative feedback mechanisms that 

inhibits proliferative signaling are also commonly observed18–21. 

 

b. Evading growth suppressors. 

Besides cancer cells constitutively activate proliferative signals, they inhibit growth 

suppressors (tumor suppressor genes). Among all known tumor suppressor genes, the 

most studied are Retinoblastoma (Rb) and Tumor Protein 53 (TP53). Both are involved 

in the control of cell cycle, being responsible to decide if the cell proliferates or enters in 

senesce or apoptosis. Moreover, the cell-cell contact is also lost in several types of cancer, 

in order to maintain the uncontrolled cell growth18,19,22,23. Indeed, this fact contributes to 

cancer development and metastization as well24. 

 

c. Resisting cell death. 

Cancer cells avoid apoptosis, a programed mechanism of cellular death. Indeed, there are 

regulators that receive and process the extracellular death-inducing signals, as well as 

regulators that sense and integrate signals of intracellular origin. As a consequence of the 

activation of any of these regulators, the apoptotic effectors are also activated and the cell 

suffers apoptosis, being digested by both its neighbors and phagocytic cells25. In cancer, 
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this mechanism is abnormally altered, leading to the proliferation of damaged cells. For 

example, cancer cells lose the tumor suppressor gene TP53, which is responsible for 

inducing apoptosis. Other strategies, such as to increased expression (upregulation) of 

antiapoptotic regulators and survival signals, or to downregulate proapoptotic factors are 

also commonly observed in several types of cancer as a way to avoid apoptosis18,19,26,27. 

 

d. Enabling replicative immortality. 

Although normal cells have a limited number of cell divisions, cancer cells acquire the 

capability of dividing indefinitely. Specifically, cancer cells evade both senescence and 

crisis/apoptosis, being able to proliferate indeterminately. There are evidences that this 

feature is, in part, due to the activation of telomerase, a DNA polymerase that is 

responsible by the maintenance of the repetitive sequences located at the ends of 

chromosomes, named telomeres, which ultimately leads to cell immortalization. 

Remarkably, studies demonstrated that most non-immortalized cells do not express the 

gene that encodes for telomerase whereas about 90% of spontaneous immortalized cells 

do. Moreover, there are evidences that this alteration is correlated to resistance to 

senescence and crisis/apoptosis, and is associated to poor prognosis18,19,28,29. 

 

e. Inducing angiogenesis. 

During malignant transformation, cancer cells are able to induce angiogenesis with the 

purpose of obtaining nutrients and oxygen as well as remove metabolic wastes and carbon 

dioxide. This process is mediated by vascular endothelial growth factor-A (VEGF-A), a 

promotor of angiogenesis, and thrombospondin-1 (TSP-1), an inhibitor of angiogenesis. 

Moreover, the production of new blood vessels due to a chronic activation of angiogenesis 

has liabilities, resulting in precocious capillary sprouting, convoluted and excessive 

vessel branching, distorted and enlarged vessels, erratic blood flow, micro hemorrhaging, 

leakiness, and abnormal levels of endothelial cell proliferation and apoptosis. 

Studies have revealed that angiogenesis is important in microscopic premalignant stages 

as well as in later cancer stages as it promotes tumor mass growth18,19,30,31. 

 

 



5 
 

f. Activating invasion and metastasis. 

In advanced stages of the disease, a tumor mass with epithelial origin can spread to other 

tissues through the epithelial-mesenchymal transition mechanism. During this process, 

cancer cells must be altered in order to efficiently invade and metastasize. This process is 

characterized by shape alterations, as well as the loss of adhesion properties to 

neighboring cells and to the extracellular matrix. In detail, loss of proteins such as E-

cadherin, cytokeratin, or laminin-1, involved in the cell adhesion, is often observed in 

tumors of epithelial origin. Additionally, studies have also demonstrated alteration of 

these class of proteins in other types of cancer, including breast cancer32, lung cancer33, 

and colorectal cancer34. Not only that, molecules associated to cell migration during 

embryogenesis and the inflammation processes were found deregulated18,19,35,36. 

More recently, four additional tumor characteristics were added to the “hallmarks of 

cancer”: genome instability and mutation, tumor-promoting inflammation, deregulating 

cellular energetics and avoiding immune destruction (Figure 1.1)19. 

 

g. Genome instability and mutation 

Throughout tumorigenesis, cancer cells acquire mutations and genomic instability, due to 

aberrant alterations in multiple genes including oncogenes and tumor suppressor genes. 

In this sense, cancer cell ability to detect and resolve DNA errors is reduced, and therefore 

there is increased mutation burden. Thus, cancer cells can acquire alterations that confer 

selective advantage, promoting cancer progression. Remarkably, these alterations are 

transmitted to daughter-cells during the cell cycle, leading to a mass constituted by clones 

of those cells. Moreover, there are evidences that genes involved in the detection and 

repair of DNA damage, or cell growth and proliferation, as TP53, ATM, and BRCA1 are 

frequently altered in order to promote tumorigenesis17,19,37–39. 

 

h. Tumor-promoting inflammation 

Tumor-promoting inflammation is also considered a cancer characteristic, since it has 

been found infiltrated innate and adaptative immune cells in tumors. Specifically, 

inflammatory cells, which are present in the tumor microenvironment, play a key role in 

tumor progression by facilitating the availability of molecules that promote 
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tumorigenesis, such as growth factors, survival factors, proangiogenic factors, 

extracellular matrix-modifying enzymes, and inductive signals to induce invasion and 

metastasis. Importantly, those inflammatory cells can also release chemicals that act as 

mutagenic factors to cancer cells, promoting cancer development19,40,41. 

 

i. Deregulating cellular energetics 

Cancer cells need to change their metabolic program in order to facilitate cancer 

progression. Therefore, in both absence and presence of oxygen, cancer cells metabolize 

glucose through anaerobic glycolysis, a process commonly used by normal cells only in 

the absence of oxygen. Although, glycolysis is a faster process when compared to 

mitochondrial phosphorylation, it is a less efficient way of adenosine triphosphate (ATP) 

production. Thus, in a process of aerobic glycolysis, cancer cells increase glucose 

transporters (GLUTs) as well as the uptake and utilization of glucose. Additionally, 

glycolysis is associated with cell proliferation, due to the facilitation of macromolecules 

and organelles biosynthesis achieved from glycolytic intermediates19,42,43. 

 

j. Avoiding immune destruction 

Although avoiding immune destruction is an emerging hallmark of cancer, this process is 

yet to be fully understood. The immune system cannot eliminate cancer cells neither in 

early/later stages nor in micro metastases. Studies have suggested that in order for cancer 

cells to escape from immune destruction, they block the function of components from the 

immune system as well as secretions that can eliminate them. For example, cancer cells 

alter their cell surface antigens in order to avoid recognition by the immune system cells. 

In this sense, cancer cells develop strategies to evade immune destruction, leading to the 

down-regulation of the immune system and consequently increasing cancer cells 

proliferation19,44. 
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1.2. Main Pathways Altered in Cancer 

For the past years, several pathways have been reported to be aberrantly regulated during 

cancer development and progression, including the following45: 

 

1.2.1. TGFβ Pathway 

TGFβ pathway is frequently affected in cancer, since it regulates processes such as cell 

proliferation, apoptosis, and immortalization which are often altered in this disease. When 

TGFβ activates its receptor (TGFβ receptor), both Smad2 and Smad3 are phosphorylated. 

and associated with Smad4, constituting a complex that migrates to the nucleus. As a 

result, proteins that inhibit the cell cycle, as Smad7 and Skil, are produced, leading to cell 

cycle blockade (Figure 1.2)46–48. 

In cancer, mutations/deletions in Smad2, can inactivate the TGFβ pathway, leading to cell 

cycle progression even in the presence of cell damage7,49. Moreover, the TGFβ receptor 

can also loose it functions due to mutations or DNA methylation of its promoter, leading 

to inactivation of the pathway. 

Figure 1.1 Hallmarks of cancer. Capabilities of tumor cells acquired during tumorigenesis (adapted 

from Hanahan and Weinberg, 2011). 
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However, several studies have also demonstrated that TGFβ can be up-regulated in 

metastatic cancer cells when compared to normal cells. Specifically, TGFβ can induce 

the remodulation of the extracellular matrix, leading to immunosuppression, angiogenesis 

and activation of myofibroblast differentiation50–52. 

 

 

1.2.2. Myc Pathway 

Myc is considered to have oncogenic properties due to its ability to promote cell cycle 

progression. In fact, in order for the cell to divide it needs to fulfill multiple requisites 

which are verified in a checkpoint (R point). If all is correct, Myc forms a heterodimer 

with Max, inducing the expression of proteins that promote the cell cycle. 

Simultaneously, Myc can initiate the S phase through the activation of transcription 

factors. To note there are other pathways that can trigger Myc activation, such as Wnt, 

Notch, which are approached below. Contrarily, TGFβ signaling can block it (Figure 

1.3). 

Figure 1.2 Schematic figure representing TGFβ signaling pathway. The activation of TGFβ 

receptor induces proteins that inhibits cell cycle progression (from Tecalco-Cruz et al. 2018). 
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Hence, genetic or epigenetic alterations that induce aberrant expression of Myc in cancer 

promotes cell growth and proliferation7,53,54. 

 

 

1.2.3. PI3K Pathway 

PI3K is an intracellular lipid kinase that, when activated, leads to the conversion of 

phosphatidylinositol (4,5)-bisphosphate (PIP2) into phosphatidylinositol (3,4,5)-

triphosphate (PIP3), by phosphorylate PIP2. As a result, cytoplasmic proteins, including 

AKT, can bind to PIP3. Then, two kinases, PDK1 and PDK2, phosphorylate AKT in two 

sites, leading to its activation. Consequently, AKT kinase phosphorylates other substrates 

that regulate cell proliferation, survival, and size. Recently, there are evidences that 

PDK1, when activated, can also induce the expression of Myc through phosphorylation 

of PLK1. Moreover, PTEN can dephosphorylate PIP3, converting it to PIP2, leading to 

the block of the activity of AKT (Figure 1.4)7,55–57. 

Since PI3K signaling regulates several mechanisms, including cell motility, growth, 

proliferation, and metabolism, it can play a key role in carcinogenesis. Therefore, this 

pathway is commonly activated in cancer through several mechanisms, including 

Figure 1.3 Schematic figure representing the Myc pathway. Myc protein can induce processes 

as ribosome biogenesis, glycolysis, and DNA replication cell cycle (adapted from Dang 2010). 
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genomic alterations involving PIK3CA, PIK3R1, PTEN, AKT, TSC1, MTOR, and TSC2, 

58. 

 

 

1.2.4. RTK/RAS Pathway 

Receptor tyrosine kinases (RTKs) are receptors located in the cell surface and constituted 

by an extracellular (N-terminal), a transmembrane and a cytoplasmic kinase domain. This 

type of receptors, when activated by growth factors, hormones, cytokines, neurotrophic 

factors and other extracellular signaling molecules, stimulate cell proliferation, 

differentiation, survival and cell migration. 

RTKs are monomers, which, when activated by an extracellular stimulus of its N-terminal 

region, forms a dimer. This dimerization leads to the auto phosphorylation of the receptor, 

creating a dock site to a complex that can activate Ras, a GTPase protein, that hydrolysis 

GTP into GDP. Consequently, when the RTK is phosphorylated, Ras is activated, 

inducing pathways as MAPK and PI3K. Thus, genes involved in cell proliferation and 

survival are activated (Figure 1.5)59,60. 

Figure 1.4 Schematic figure representing the PI3K pathway. PI3K converts PIP2 into PIP3, 

leading to the activation of AKT and Myc. As a result, genes involved in cell proliferation and 

survival are activated (from Cunningham et al. 2013). 
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In cancer, Ras is found frequently mutated, leading to its constitutive activation. Once, 

permanently activated Ras is incapable of releasing GTP, and therefore the hydrolysis of 

GTP into GDP is blocked, leading to a constitutive activation of downstream signaling7. 

 

1.2.5. NRF2 Pathway 

Generally, the transcription factor Nrf2 is considered a tumor suppressor gene, since its 

activation leads to the stimulation of genes involved in the defense of the cell against 

metabolic, xenobiotic, and oxidative stress. In fact, when the cell experiences endogenous 

or exogenous stress, there is an increase in Nrf2 levels, due to the non-ubiquitination of 

it by KEAP1. Thus, Nrf2 is translocated to the nucleus where it forms a heterodimer with 

MAF and binds to the antioxidant response element (Figure 1.6). As a result, genes 

involved in metabolism, intracellular redox-balancing, apoptosis, and autophagy are 

transcribed61–63. 

Figure 1.5 Schematic figure representing Ras activation. The phosphorylation of RTK leads 

to the activation of Ras (adapted from Schöneborn et al. 2018) 
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Also, it is believed that Nrf2 can also act as an oncogene, by promoting the survival of 

cancer cells. Specifically, studies suggested that due to the anti-oxidant effect of Nrf2, 

cancer cells can be protected from excessive oxidative stress, chemotherapeutic agents, 

or radiotherapy. However, this oncogenic role in carcinogenesis is yet to be fully 

understood61–63. 

 

1.2.6. Wnt Pathway 

When the Wnt protein binds to its receptor it leads to the inactivation of glycogen synthase 

kinase-3β (GSK-3β) preventing the phosphorylation of β-catenin and blocking its 

degradation. Therefore, β-catenin migrates to the nucleus, where it associates with 

transcription factors leading to the expression of genes involved in cell proliferation 

(Figure 1.7). 

In cancer, the aberrant activation of Wnt pathway can lead to increased translocation of 

β-catenin into the nucleus, and, consequently, promote the transcription of genes that 

promote cell survival and proliferation. Moreover, alterations of Apc, a protein that 

Figure 1.6 Schematic figure representing NRF2 pathway. NRF2 pathway induces the 

transcription of genes involved in the protection of oxidative stress (adapted from Zhao et al. 

2017). 
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participates in the complex that promotes the degradation of β-catenin, are also frequent 

in cancer7,64,65. 

 

 

 

1.2.7. p53 Pathway 

p53, considered the master guardian of the genome, plays a key role in apoptosis control, 

cell cycle arrest and DNA damaged repair (Figure 1.8). Cell stress events, including DNA 

damage, oncogenic stress, hypoxia, and telomerase erosion, activate the p53 pathway. 

Specifically, the kinase ATM can block Mdm2, a p53 inhibitor, by phosphorylate it. This 

event leads to p53 activation, which in turn induces the expression of genes that block 

cell division and DNA repair, or trigger programmed cell death (Figure 1.8)66–69. 

Figure 1.7 Schematic figure representing the Wnt pathway. The expression of Wnt protein 

blocks the degradation of β-catenin, leading to the transcription of genes involved in cell 

proliferation (from Centelles 2012). 
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In cancer, levels of p53 can be reduced, or the protein can be sequestered in the nucleus, 

inactivating its function7. Furthermore, mutations in TP53 can affect its folding resulting 

in the proliferation of cells with DNA damage and therefore promoting cancer69. 

 

1.2.8. Notch Pathway 

When the Notch receptor is activated by its Delta or Jagged ligands, suffers a proteolytic 

cut. As a consequence, a cytoplasmatic fragment is translocated into the nucleus, where 

it activates the expression of genes involved in cell proliferation, by participating in a 

transcription factor complex (Figure 1.9). 

In cancer, there are reports that an increased expression or truncated forms of the Notch 

receptor are common ways to induce cell proliferation. Moreover, an increased 

expression of Notch ligands is also observed in several types of cancer. Also constitutive 

expression of Notch, due to deletions in the gene that encodes the extracellular domain of 

the protein, is also reported in cancer7,70–72. 

 

Figure 1.8 Schematic figure representing p53 pathway. When p53 is activated, genes 

responsible by apoptosis, cell cycle arrest and DNA repair are transcribed (adapted from Boland 

et al. 2005). 
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1.3. Colorectal Cancer 

Colorectal cancer (CRC) consists in a multistep process which occurs due to both genetic 

and epigenetic alteration leading to silencing of tumor suppressors genes and increased 

expression of oncogenes, ultimately promoting cellular growth73. This process evolves 

from a hyperplasia into a adenocarcinoma which ultimately becomes able to metastasize 

to organs such as liver, lung, peritoneum, bone or brain74. 

 

1.3.1. Epidemiology of CRC 

According to statistical data available in GLOBOCAN about the year 2012, CRC is the 

third most common cancer in men and the second in women with 1, 3 million new cases 

diagnosed, and 693,933 deaths in the world. In Portugal, during 2012, 7,129 new cases 

of CRC, and 3,797 deaths due to this disease were reported (Figure 1.10). 

Figure 1.9 Schematic figure representing the Notch pathway. The expression of Notch ligands 

leads to the translocation of a cytoplasmatic fragment of Notch receptor. As a result, genes 

involved in cell proliferation are transcbribed (adapted from Avila et al. 2013). 
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The incidence is higher after 50 years of age, being the median age of diagnosis around 

70 years8,75,76. In developed regions as Australia/New Zealand, Europe and Northern 

America the incidence of CRC is higher due to risk factors as diet and lifestyle77. In 

contrast, Western Africa, Middle Africa and South-Central Asia are the regions where 

incidence rates are lower. Despite of this, mortality rates are higher in less developed 

regions due to a lack of healthcare resources. With regard to 5-year survival rates, these 

can vary greatly, ranging from around 90% in early stages of the disease to less than 10% 

when the disease has metastasized78. 

Sporadic CRC is the most frequent form of CRC representing about 75% of all CRC 

cases79. Many risk factors may contribute to cancer initiation and progression including 

family history80, age81, smoking habits82, alcohol83, and diet, including both red and 

processed meat84,85.  

 

Figure 1.10 Cancer incidence and mortality in Portugal, 2012. Colorectal Cancer is the 

most common cancer in Portugal, representing 14.5% of all cancer cases, accounting with 7129 

new cases in 2012. Moreover, Colorectal Cancer is also the deadliest cancer, being associated 

to over 15% of mortality by cancer (data source: GLOBOCAN) 
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1.3.2. Disease subtypes 

CRC can arise sporadically or affect patients who have a genetic predisposition, with 

family history, including genetic syndromes as Lynch Syndrome and familial 

adenomatous polyposis. Several genes altered in familial CRC have been identified, 

including DNA mismatch repair genes, the Adenomatous Polyposis Coli (APC), MutL 

Homolog 1 (MLH1), and Phosphatase and Tensin Homolog (PTEN)86. 

Sporadic CRC are divided into three main subtypes, depending on the molecular 

alteration in its origin: microsatellite instability (MSI), chromosomal instability (CIN), 

and CpG island methylator phenotype (CIMP). However, the tumor can be characterized 

by features of these different subtypes86. 

 

1.3.3. Colorectal Cancer Model 

The model for colon and rectum tumorigenesis was initially suggested by Fearon and 

Vogelstein. According to that model, CRC is a multistep process that arises from benign 

lesions into a malignant tumor. Across the malignant transformation, somatic alterations 

occur, including alterations in oncogenes and tumor suppressor genes87. 

It is believed that those alterations are generated and propagated through clonal evolution, 

meaning that mutations/epimutations occur in a cell, and are inherited by daughter cells 

during mitosis. When the mutations are acquired, the cell has two ways to go: either 

undergo senescence before entering in the cell cycle or avoid apoptosis and to entry in 

cell cycle. In the second case, that cell might accumulate mutations and epimutations, 

originating clones which altogether can be able to cause a heterogeneous tumor mass 

(Figure 1.11)17,88,89. 
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In CRC (Figure 1.12), chromosomal instability drives tumorigenesis, initiated by the 

inactivation of APC gene, and followed by mutations in KRAS. The increasing 

chromosomal instability leads to other successive alterations, including loss of 

heterozygosity (loss of 18q-long arm) and mutations of SMAD4, and Cell Division Cycle 

4 (CDC4). Ultimately, mutations in TP53 allow the transition from late adenomas to 

cancer90. 

Another less common way to develop CRC is through microsatellite instability which can 

facilitate tumor initiation and progression, due to lacking mismatch repair mechanisms. 

This pathway is often initiated by abnormal alterations in the Wnt signaling and followed 

by activating mutations in B-Raf Proto Oncogene (BRAF) and KRAS genes. Importantly, 

the inefficiency of mismatch repair genes, caused due to hypermethylation of MLH1 

promoter, is increased throughout tumorigenesis. Therefore, tumor cells with mutations 

in genes as MutS Homolog 3 (MSH3), MutS Homolog 6 (MSH6), TGFβ receptor 2 

(TGFBR2), Insulin-like Growth Factor 2 Receptor (IGF2R), and BCL2 Associated X 

(BAX) are positively selected. Altogether, these events lead to the activation of a 

mechanism responsible for tumor progression independent of TP5391. 

Figure 1.11 A heterogenous tumor. The accumulation of mutations and epimutations leads to a 

heterogeneous tumor mass (from Easwaran et al. 2014). 
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1.3.4. Staging Systems 

CRC can be classified according to molecular and histological features- histological 

staging- or physical exams, biopsies, and imaging tests- clinical staging. These 

classifications allow to differentiate the state of cancer evolution and decide the best 

treatment option to the patient. 

The most common method of classification used is the TNM system (Table 1.1) which 

distinguishes the cancer stages based on: 

a. Tumor size (T): size of primary tumor (range from T0-T4), 

b. Lymph nodes (N): whether cancer has spread to lymph nodes (range from N0-

N3), 

c. Metastasis (M): whether cancer has metastasized (M0 or M1). 

Higher numbers of T, N, and M are associated to most advanced disease, and, 

consequently, to worst prognosis92. Importantly, when the category cannot be determined, 

it is classified by X (TX or NX). 

The overall stage is obtained by the combination of these three characteristics93. 

 

 

Figure 1.12 Adenoma–carcinoma sequence model schematic representation of genomic 

events that occur in colon and rectum tumorigenesis (from Walther et al. 2009) 
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Table 1.1 Colorectal Cancer staging according to the most recent AJCC system effective on 

January 2018 (adapted from American Cancer Society®) 

 

 

1.3.5. Screening, Diagnosis and Prognosis 

The detection of CRC in early stages of the disease- screening- is based on colonoscopy, 

flexible sigmoidoscopy (FS), fecal occult blood testing (FOBT), and fecal 

immunochemical test (FIT). 

Currently, colonoscopy remains the most accurate test for CRC screening and diagnosis. 

This technique can detect 88-98% of advanced neoplasia. Importantly, several studies 

have reported a decrease in mortality due to colonoscopy94. FS is also used to diagnose 

CRC, with a sensitivity of 90% to detect advanced neoplasia. However, both colonoscopy 

and FS are invasive and expensive techniques. 

Overall Stage  T N M 

Stage I 
 T1 N0 M0 

 T2 N0 M0 

     

Stage IIA  T3 N0 M0 

     

Stage IIB  T4a N0 M0 

     

Stage IIC  T4b N0 M0 

     

Stage IIIA 
 T1-T2 N1/N1c M0 

 T1 N2a M0 

Stage IIIB 

    

 T3-T4a N1/N1c M0 

 T2-T3 N2a M0 

 T1-T2 N2b M0 

     

Stage IIIC  T4a N2a M0 

  T3-T4a N2b M0 

  T4b N1-N2 M0 

     

Stage IVA  Any T Any N M1a 

     

Stage IVB  Any T Any N M1b 

     

Stage IVC  Any T Any N M1c 
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As an alternative to colonoscopy, FOBT and FIT can also be used to screen CRC at lower 

costs and in a simpler way. Nevertheless, these tests exhibit low sensitivities and 

specificities. FOBT only detects 13-50% of CRC cases, and 9-24% of advanced 

neoplasia. On the other hand, the sensitivity of FIT to detect CRC, and advanced neoplasia 

is 79%, and 32-53%, respectively81,95–97. 

To predict CRC outcome, blood tests targeting tumor markers might be performed. 

Common CRC marker are the carcinoembryonic antigen (CEA), and cancer antigen 19-

9 (CA 19-9). These markers have poor sensitivity and specificity in early stages of the 

disease. Nonetheless, over the disease progression, both specificity and sensitivity 

increase98,99. 

The success of treatment and survival depends on the efficiency of screening/detection of 

cancer. In case of local CRC, the success rate is 70-90% however, in advanced CRC, the 

mortality is high88. In fact, the statistics presented by National Cancer Institute indicate 

that 92% of stage I, 63-87% stage II, 53-89% stage III, and 11% stage IV colon cancer 

patients survive at least 5 years. Similarly, the rectum cancer patients in stage I-IV have 

a 5-years survival rate about 87%, 49-80%, 58-84%, and 12%, respectively100. 

 

1.4. Epigenetics 

Epigenetics, firstly introduced by Conrad Waddington in 1940s, is defined by reversible 

alterations that affect gene expression without altering DNA sequence88,101–103. 

Regulation of gene expression mediated by epigenetic alterations, including DNA 

methylation at cytosine residues in CpG dinucleotides, posttranslational modifications of 

amino acids on the amino-terminal tail of histones, and post-transcriptional regulation by 

small non coding RNAS, including microRNAs, is frequent in normal cells during 

embryonic development, imprinting or tissue differentiation104–106 (Figure 1.13). 

Moreover, these epigenetic changes contribute to the different gene expression profiles 

of distinct cell types107. For example, in humans there are several cell types that are 

originated from the same fertilized egg cell, presenting the same DNA. However, each 

one of these cell types have distinct function, due to the inactivation and activation of 

different sets of genes through epigenetic mechanisms108. 

Remarkably, this process can become abnormal, resulting in aberrant changes of gene 

expression, and consequently in several diseases, including cancer107,109. 
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Besides that, epigenetic alterations are also determinant to tumor heterogeneity and 

different treatment responses. An example is the chemoresistance due to 

hypermethylation of the Transcription Factor AP-2 epsilon (TEAP2E) gene, that occurs 

in 51% of CRC110,111. 

 

1.4.1. microRNAs 

MicroRNAs (miRNAs) were discovered in Caenorhabditis elegans in 1993112 and are 

small non-coding ribonucleic acids (RNA) about 21-25 nucleotides in length, which are 

related to regulation of gene expression through complementary binding to 3’untranslated 

region (UTR) of its messenger RNA (mRNA) target molecules. The consequence of this 

binding depends on the complementarity between miRNA and its target. In case of 

complete complementarity, the most probable effect is mRNA degradation. In contrast, 

incomplete complementarity leads to translation inhibition113–115. Therefore, any 

Figure 1.13 Schematic representation of epigenetic modifications. DNA methylation, histone 

modification, and post-transcriptional regulation by noncoding RNA are reversible alterations 

which affect gene expression (from Ahuja et al. 2016). 
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alteration in the regulation of these non-coding RNAs may drive changes in gene 

expression which may lead to silencing or overexpression of many genes. 

miRNAs are encoded either in intronic regions or in intergenic regions and are usually 

transcribed by polymerase II (Pol II), producing primary miRNAs (pri-miRNAs). The 

pri-miRNA is cleaved by DROSHA, which is constituted by two ribonuclease (RNase) 

III domains, generating a precursor miRNA (pre-miRNA) which is exported to the 

cytoplasm, where is recognized by DICER1. This RNase III enzyme cleaves the pre-

miRNA, producing an RNA duplex which later associates with RNA-induced silencing 

complex (RISC). Importantly, this complex will be guided by the guide strand of the 

mature miRNA incorporated in RISC116,117 (Figure 1.14). 

miRNAs have also revealed important in cancer biology, since miRNAs are able to 

control several targets implicated in tumor growth, invasion, angiogenesis, and immune 

invasion. Therefore, the function of miRNAs could be considered as tumor suppressor 

genes or oncogenes, depending on their target. Additionally, recent studies have 

demonstrated different miRNA patterns between normal and tumor tissue, and that these 

patterns are also able to distinct tumor types and their subtypes118. 
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1.4.2. Histone Modifications 

Cells do not express all genes at the same time as gene expression depends on the needs 

of the cell. This is possible due to proteins associated with chromatin called histones, 

which stabilizes the negative charge of DNA and provides stability to the chromatin. 

Histones regulate gene expression through alterations in the chromatin structure, either 

by condensing the chromatin, which leads to gene inactivation, or by stretching the 

chromatin, which results in gene activation104. Therefore, protein binding sites may be 

exposed or masked, and consequently gene expression is altered. 

A group of 8 histones (an octamer) forms the nucleosome, which comprises two of each 

H2A, H2B, H3 and H4 histones. Moreover, there is an additional histone, H1, that works 

as a linker (Figure 1.15A). Each one of these histones is susceptible to suffer 

posttranslational modifications, especially in the N-terminal tails. The impact of these 

modifications, caused by histone methyltransferases (HMT), histone acetyltransferases 

Figure 1.14 miRNA processing. The gene that codifies the miRNA is transcribed originating the 

pri-miRNA. This is processed by DROSHA in the nucleus and, originating the pre-miRNA.It is 

exported to the cytoplasm where it is cleaved by DICER and associated to the RISC complex. 

Lastly, the mature miRNA guides the RISC complex to the target mRNA (from Nelson et al. 

2008). 
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(HAT), histone deacetylases (HDAC), and histone demethylases (HDM), depends on the 

modification- generally acetylation, methylation, phosphorylation, and ubiquitination- 

and residue where it takes place- commonly lysine or arginine residues88,119–121 (Figure 

1.15B). 

 

 

Figure 1.15 Nucleosome assembly and post-translational modification of histone tails. (A) 

A nucleosome is an octamer of histones. (B) Each histone can suffer post-translational 

modifications in its tails (from Chen et al. 2014). 
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Artem Barski has identified histone modifications patterns associated to promoters, 

insulators, enhancers, and transcribed regions. Modifications such as mono methylation 

of histone 3 at lysine 4 (H3K4me1), tri methylation of histone 3 at lysine 4 (H3K4me3), 

and acetylation of histone 3 at lysine 27 (H3K27ac) have been associated to active 

enhancers, active promoters, and active enhancers and promoters, respectively. In 

contrast, tri methylation of histone 3 at lysine 27 (H3K27me3), tri methylation of histone 

3 at lysine 9 (H3K9me3), and tri methylation of histone 3 at lysine 36 (H3K36me3) have 

been associated to repressive chromatin122. 

 

1.4.3. DNA Methylation 

DNA methylation consists in the covalent addition of a methyl group to the 5-carbon of 

a cytosine residue by DNA methyltransferases (DNMT)123. That reaction often takes 

place in CG dinucleotides- CpG sites. These dinucleotides can be located in CpG Islands, 

which are DNA regions constituted by more than 50% of CG dinucleotides in a minimum 

length of 200-500 bases124,125. CpGs are usually methylated in human normal cells and 

located outside of the promoter. Paradoxically, CpG Islands are usually unmethylated and 

overlapping promoter regions (Figure 1.16A)81,108. 

The DNMTs enzyme family includes DNMT1, DNMT3a, and DNMT3B, where DNMT1 

is responsible for maintaining methylation patterns during replication, and DNMT3a and 

DNMT3b are responsible for de novo methylation81,108.  

This epigenetic mechanism is essential during the embryonic development, imprinting, 

X-chromosome inactivation, and suppression of repetitive element transcription. 

Importantly, there are evidences that DNA methylation plays a key role in cancer 

development86,126. 

DNA methylation is often associated with gene inactivation, particularly when it takes 

place at the gene promoter (Figure 1.16B). Nevertheless, there are evidences that 

promoter hypermethylation can also lead to gene activation. The result of DNA 

methylation seems to be dependent on the region where it happens. This means that DNA 

methylation may affect regulatory regions, blocking protein binding sites due to the 

recruitment of methyl-CpG-binding domain (MBD) proteins. If the region affected is an 

activator binding site, the gene will be not expressed. In contrast, hypermethylation of 

gene promoters on repressor binding site, prevents the DNA access, leading to gene 
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expression. Another explanation of gene activation associated with promoter 

hypermethylation, suggested by Bert et. al, is that regional hypermethylation forces the 

activation of alternative transcription start sites (TSS-Figure 1.17)108,125,127. 

 

 

In cancer, this epigenetic mechanism is frequently deregulated, leading to an unbalance 

of gene expression. When aberrant DNA methylation changes- either hypermethylation 

or hypomethylation- occurs in driver genes, the normal cellular function is altered, and 

tumorigenesis may arise. 

Figure 1.16 Hypermethylation can lead to gene inactivation. (A) In normal cells, there is a 

generalized methylation of the gene body, in contrast to a promotor region that is un-methylated. 

(B) In the case of diseases like cancer, promotor region can be aberrantly methylated and the 

region of gene body un-methylated. Consequently, that gene can be silenced. (Adapted from 

McBryan et al. 2014) 
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1.4.4. Epigenetic Alterations and Colorectal Cancer 

Epigenetic events, which may also occur during normal ageing, have been associated with 

higher risk of cancer. In the early 80’s hypomethylation was associated to cancer. 

Moreover, in 1986, hypermethylation of calcitonin was associated with tissue-specific 

gene silencing. Nevertheless, hypermethylation was also associated with inactivation of 

tumor suppressor genes, through observations based on the Rb promoter101. 

Several studies have shown that DNA methylation patterns of many genes become 

aberrant during carcinogenesis, including genes belonging to the Wnt and Ras signaling 

pathways, DNA repair genes, and cell cycle-related genes73. Specifically, in CRC, 

aberrantly methylated genes as Integrin Subunit Alpha 4 (ITGA4), O-6-Methylguanine-

DNA Methyltransferase (MGMT), Solute Carrier Family 5 Member 8 (SLC5A8), and 

Secreted Frizzled Related Protein 2 (SFRP2) have been reported since early stages. 

Therefore, it is evident that methylation is involved in the initiation and progression of 

CRC. However, among all abnormally methylated genes, there is no evidence that a 

specific functional class of genes is more affected during specific steps of CRC initiation 

or progression81. 

In addition, studies have suggested that DNA methylation as well as genetic alterations 

play a role in cancer progression and metastasis. Methylated genes as TIMP 

Metallopeptidase Inhibitor 3 (TIMP3), Inhibitor of DNA Binding 4 (ID4) and Interferon 

Regulatory Factor 8 (IRF8) are more frequent in advanced CRC than in adenomas, 

Figure 1.17 Promoter hypermethylation can be associated with gene activation. (A) 

Promoter hypermethylation can happen in a region of repressors binding. Hence, when 

hypermethylation occurs, the transcriptional repressor is blocked, leading to abnormal gene 

activation. (B) Promoter hypermethylation can lead to the gene activation through alternative 

TSS. (Adapted from Bert et al. 2013) 
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providing clonal growth advantage. Despite association to advanced stages, DNA 

methylation seems to be most prevalent in CRC initiation rather than in its progression81. 

 

1.4.5. Epigenetic biomarkers as predictors of clinical outcome  

A biomarker is any substance, structure, or process that can be estimated, and used in 

order to identify normal biological processes, pathogenic processes, treatment responses, 

or evolution of the disease128. Hence, epigenetic biomarkers could be useful in the clinic 

for diagnosis, prognosis or prediction of responsiveness to therapy. 

Specifically, in CRC, in spite of efforts to identify new biomarkers capable to detect or 

predict progression and therapy response, there is a lack of accurate biomarkers. 

Moreover, as reported before, the detection of CRC in early stages is crucial to the 

efficiency of the treatment. 

Therefore, measuring DNA methylation levels of specific sites can be a potential 

biomarker, since DNA methylation patterns are found usually altered in CRC. Not only 

that, DNA methylation levels can be detected through non-invasive methods, such as 

evaluation of tumor-derived cell-free from blood or feces, making it a good 

biomarker129,130. 

Until now, few epigenetic biomarkers have been reported in CRC, including aberrant 

methylation of Septin 9 (SEPT9) detected in plasma (sensitivity and specificity of almost 

90%), methylation of SFRP2 detected in serum and fecal DNA (sensitivity of almost 

67%)131, methylation of Thrombomodulin (THBD) detected in blood (sensitivity of 74% 

to stage I/II CRC at a specificity of 80%)132 and methylation of Syndecan 2 (SDC2) also 

detected in blood (sensitivity of 92% for stage I)133. An epigenetic biomarker based on 

aberrant methylation of Vimentin (VIM) is currently commercialized in  the United States 

for early detection of CRC with 83% of sensitivity and 82% of specificity81. Among all 

existent epigenetic biomarkers, two meta-analysis estimate that the sensitivity to diagnose 

CRC and adenomas is about 62%-75%134,135. 

 

1.5. Databases Analysis and Statistic Methodologies 

In the last years, the amount of data available in public repositories has increased 

enormously. The Cancer Genome Atlas (TCGA), The National Center for Biotechnology 
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Information (NCBI), Ensembl, Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC), and Kyoto Encyclopedia of Genes and Genomes (KEGG) are 

good examples of these repositories where vast amounts of clinical and biological 

information is present with relatively easy accessibility136,137. 

Indeed, before the new computational era and the web repositories, the costs and time 

spent collecting data could restrict scientific production. Nowadays, the improvement of 

online platforms not only allows for its access anywhere in the world but also significantly 

reduced the time spent in the data processing (Figure 1.18)138,139. 

However, to handle the amount of available data can be a challenge. Therefore, 

researchers from different fields of knowledge have been developing bioinformatic 

approaches combined with statistical analysis139. This promotes the creation of 

methodologies that can test hypothesis to be validated by inferential statistics with the 

help of computational tools136. Some of these tools comprise different programming 

languages (including R language used in the present work) since statistical software has 

its limitations regarding the management and processing of big data140,141. 

Moreover, TCGA, the principal repository of data collection used in these studies has 

become an important repository for cancer research, since it stores more than 2.5 

petabytes of information, including genetic, epigenetic and clinical data, allowing for the 

analysis of more than 440 thousand variables (e.g. in case of DNA methylation).  

Also, other methodological strategies were implemented in order to validate our analysis 

that included:  

1.  Univariate approaches to analyze the population of the study, including the 

socio-demographic and clinical characterization; 

2. Bivariate approaches to analyze the linear association of gene expression and 

DNA methylation in order to select which genes and CpG sites are differentially 

expressed and methylated, respectively; 

3. Multivariate approaches to observe the relationship between genes and CpG sites 

selected, and the sample distribution. 
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This characterization allowed to identify genes and CpG sites that can discriminate tumor 

samples from normal samples, and, subsequently, among different stages, to identify all 

significant associations between gene expression and DNA methylation. Finally, using 

multivariate approaches, we aimed to prove that the distribution of samples is able to 

reflect the intrinsic distancing of gene expression of DNA methylation of that samples, 

which were previously selected. 

  

Figure 1.18 A network of data availability. Data can be upload and download from different 

databases to be used in different research projects (adapted from 

https://cbiit.cancer.gov/ncip/cancer-research-data-commons). 
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2. CHAPTER II- OBJECTIVES 

Even though several studies have identified aberrant expression of several genes in CRC 

to be associated to epigenetic events, including aberrant DNA methylation, there is still a 

lot to know about how DNA methylation impacts gene expression during CRC 

carcinogenesis. Moreover, there is a lack of biomarkers that can accurately identify 

patients with early stages of CRC or predict patient outcome. Therefore, the identification 

of new biomarkers that play a key role in the initiation and progression of CRC might 

improve personalized treatments. 

Here, we hypothesize that there is an epigenetic roadmap in CRC progression. Therefore, 

we: 

1. Performed a genome-wide analysis of both DNA methylation and gene 

expression, contributing to the knowledge of epigenetic dynamics on CRC; 

2. DNA methylation and gene expression of CRC patients in different stages of 

its progression through developing a Bioinformatics based tool (script); 

3. Identified epigenetic mutations responsible for CRC initiation and progression; 

4. Identified potential epigenetic biomarkers to help in the diagnosis and 

prediction of CRC progression. 
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3. CHAPTER III- MATERIALS AND METHODS 

 

 

3.1. Data Collection 

We analyzed whole-genome DNA methylation (Illumina Infinium HumanMethylation 

450K array) and gene expression (Illumina HiSeq) of CRC patients (“TCGA-COAD” 

and “TCGA-READ”) publicly available in The Cancer Genome Atlas database (TCGA; 

http://cancergenome.nih.gov/). The data was obtained through TCGAbiolinks package 

using the functions: GDCquery, GDCdownload, and GDCprepare142. 

 

3.1.1. The Cancer Genome Atlas 

TCGA is an American database funded by National Cancer Institute (NCI) from the 

National Institute of Health (NIH) and the National Human Genome Research Institute 

(NHGRI) with the main aim to understand the genetics of cancer. TCGA has over 2.5 

petabytes of data, aggregating 33 different tumor types, including 10 rare cancers, based 

on paired tumor and normal tissue sets collected from 11,000 patients143. Importantly, it 

means that normal tissue samples were obtained from cancer patients (Figure 3.1). 

 

Figure 3.1 TCGA by numbers. TCGA provides data for different tumor types regarding a 

significant amount of patients (adapted from https://cancergenome.nih.gov/abouttcga). 
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a. Gene Expression 

Gene expression values were generated through Illumina HiSeq 2000 RNA Sequencing 

platform by the University of North Carolina TCGA genome characterization center. 

These values were normalized (RSEM normalized count) and transformed by the 

application of base 2 logarithm to the expression measures plus one. The purpose of this 

transformation is to linearize the relationship between gene expression and DNA 

methylation144. Furthermore, UCSC Xena HUGO probeMap was used to map genes. 

 

b. DNA Methylation 

DNA methylation values (beta values) were measured experimentally through Illumina 

Infinium HumanMethylation450K array and were noted using BeadStudio software. The 

beta values range from 0 to 1, depending on the intensity ratio between the methylated 

bead type to the combined locus intensity, meaning that higher beta values correspond to 

higher methylation levels whereas lower beta values correspond to lower methylation 

levels145. 

 

c. TCGAbiolinks Package 

To download clinical data, from both DNA methylation and gene expression datasets for 

both colon (TCGA-COAD) and rectum (TCGA-READ) cohorts, we used the 

Bioconductor package TCGAbiolinks version 2.7.2 available for R programming140. The 

package is a software tool developed to query, download and analyze genomic and 

epigenomic data, once TCGA is a challenge for bioinformaticians, clinicians and 

molecular biologists. When compared to other tools developed to analyze TCGA open 

access data, TCGAbiolinks is the most complete package142. 

 

3.2. Patient Selection 

In order to group CRC patients, the clinical information was imported to R using 

GDCquery_clinic function provided by TCGAbiolinks package or were obtained online 

(https://xena.ucsc.edu/). 

The patients were separated into 5 groups according to CRC staging: Solid Tissue 

Normal, and stage I-IV (Primary Solid Tumor). To perform this analysis, only patients 
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with tumor stage information, DNA methylation and gene expression data were included 

(Figure 3.2A, Figure 3.2B). 

 

Figure 3.2 Sample selection using R programming. DNA methylation and gene expression 

data were obtained for the groups of patients: (A) normal samples, and (B) primary tumor 

samples. 



36 
 

Therefore, the analysis of TCGA-COAD and TCGA-READ cohorts was based on 21 

Solid Tissue Normal patients, and 347 Primary Solid Tumor (54 stage I, 131 stage II, 111 

stage III, and 51 stage IV). Importantly, few patients had DNA methylation measures 

from more than one sample. In these cases (duplicated cases), the DNA methylation 

measure was substituted by the median value of duplicated cases for each methylation 

probe (Figure 3.3). 

 

 

3.3. Study Pipeline 

After patient selection, we analyzed both DNA methylation and gene expression data to 

identify which CpG sites and genes were differentially methylated and expressed in 

Primary Solid Tumor comparatively to Solid Tissue Normal. 

Initially, absence of gene location, or probe identification were exclusion criteria for CpG 

sites selection whereas absence of gene name was exclusion criteria for gene selection. 

Importantly, before any statistical analysis, outlier values were removed from both 

expression and methylation databases. Then the set of selected genes and CpG sites were 

analyzed (Figure 3.4). 

Figure 3.3 The approach to remove duplicated cases. DNA methylation measurements of 

different samples from the same patient was substituted by the median value of duplicated cases 

for each methylation CpG site. 
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Secondly, a statistical analysis was performed to identify if there is statistical evidence 

for differences on gene expression/ DNA methylation between normal and tumor tissue 

samples of each stage of the CRC. At that point, only genes/CpG sites with false discovery 

rate (FDR) lower than 5% were considered (Figure 3.4). 

Then, the mean for each gene/CpG site was calculated for normal and tumor samples 

(calculated separately depending on disease stage), aiming to measure the base 2 

logarithm of fold-change (referred only as fold-change) and Δβ values, respectively. 

Thus, genes with fold-change absolute value higher than 1.5 and CpG sites with Δβ 

absolute value higher than 0.2 were considered as differentially expressed and methylated 

between normal and tumor samples, respectively. Importantly, only differentially 

expressed genes which contained CpG sites differentially methylated were considered. 

Similarly, only CpG sites located in genes differentially expressed were considered 

(Figure 3.4). 

 

 

Lastly, a Pearson correlation test was performed as criteria of both CpG sites and genes 

selection. This analysis was executed aiming to identify a relationship between 

Figure 3.4 Study Pipeline. Both whole-genome Illumina HiSeq and Illumina Infinium 

HumanMethylation 450K array data were analyzed. Firstly, were selected genes and CpG sites 

with statistic differences (FDR cut-off < 0.05). Then, an additional cut-off was applied for gene 

expression values- fold-change absolute value higher than 1.5- and for DNA methylation- Δβ 

absolute value higher than 0.2. After, only genes with CpG sites differentially methylated as well 

as CpG sites located in differentially expressed genes were admitted. At last, Pearson coefficient 

was measured, and a p-value cut-off was applied (p-value <0.05). 
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methylation and expression levels in tumor tissue. At this step, a p-value cut-off lower 

than 0.05 was established (Figure 3.4). 

Moreover, enrichR R package was used to clarify in which pathways (KEGG 2016) 

selected genes were involved. The same package was used to identify enriched biological 

processes (GO Biological Process 2018)146. 

Another package available for R software, RISmed, was used to investigate which 

selected genes had not yet been reported in PubMed database as associated with CRC or 

with cancer in general147. 

Thereafter, in order to identify potential good diagnostic biomarkers that could 

discriminate tumor from normal tissue, a receiver operating characteristic (ROC) curve 

analysis was performed using pROC R package148. Here, it was applied a cut-off, in which 

it was considered as potential good diagnostic biomarkers genes/CpG sites with an area 

under the curve (AUC) higher than 0.8149. Then, survival R packages was used to perform 

Cox regression analysis in order to identify prognostic biomarkers (overall survival and 

recurrence free survival)150,151. In this analysis, the threshold to divide patients into two 

groups was based on the median, and a p-value cut-off at 0.05 was considered. 

   

3.4. Statistical Testing 

In order to identify if there were any evidences of statistically significance differences 

between Solid Tissue Normal and Primary Solid Tumor, test hypothesis were formulated, 

and statistical hypothesis tests were performed152. The main aim of statistical hypothesis 

tests is to achieve characteristics of a certain population by statistical inference153. This 

means that statistical hypothesis tests are performed based on a sample and extrapolated 

to a population. 

Therefore, statistical testing implies the formulation of a null hypothesis, the selection of 

the most appropriate statistical test, and the p-value estimation to asses if the null 

hypothesis is true. The null hypothesis generally asserts that there are no differences 

between our groups. In opposition, the alternative hypothesis sustains that there are 

differences between our groups, and that those differences did not arise due to chance. 

The most common way to decide if the null hypothesis is rejected is based on p-value154–

156.  
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The choice of statistical test depends on the data distribution. If the data are normally 

distributed, parametric tests are most adequate. On the other hand, if the data are “free 

distributed”, nonparametric tests should be used. Parametric methods are based on mean 

estimator, being more powerful. In contrast, nonparametric methods use the median, 

being more robust, especially in case of existence of outliers157. 

All statistical analysis were performed using functions provided by available packages 

for R programming140. Importantly, in all statistical analysis, it was used a p-value <0.05 

as the significance level. 

 

3.4.1. Handling Outliers 

Experimental data can present observations with values deviated from the other ones- 

outliers. Indeed, these cases may influence our analysis. For example, in the concrete case 

of the current study, the presence of outliers can influence the fold-change measured. 

Hence, the decision if a specific gene is or not differentially expressed can be biased. 

Therefore, to deal with this issue, outliers should be identified and properly handled158–

160. 

Here, outliers were assessed using boxplot.stats function provided by R base140. 

Moreover, these values were not replaced, meaning that missing values were introduced 

in our data (Figure 3.5). 

 

 

3.4.2. Shapiro-Wilk Normality Test 

Shapiro test was used to assess whether the sample is normally distributed. The null 

hypothesis assumes that the population is normally distributed, meaning that lower p-

values suggest that the sample is not normally distributed whereas higher p-values suggest 

that the sample is normally distributed. Importantly, compared to other tests to assess 

Figure 3.5 Function to remove outliers. Outlier values were substituted by missing data. 
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normality, Shapiro-Wilk test is considered the be the most powerful test, independently 

of either the size or the type of distribution of the sample161. 

Here, the function shapiro.test provided by stats package was used140. Importantly, few 

variables were excluded from this analysis due to: 

a. missing data- only variables with at least 3 non-missing values were 

considered161; 

b. all non-missing data to be equal 0. 

 

3.4.3. Paired and Unpaired Two-Sample Tests 

The Wilcoxon rank sum test, also known as Mann-Whitney U test, is a non-parametric 

test which was used with the aim to compare two samples (e.g. to compare DNA 

methylation measures of both normal and tumor tissue) that are not normally distributed. 

The null hypothesis is that the distribution of both groups is the same162. By contrast, 

when we intend to compare two normally distributed samples, a parametric test was 

applied. If both samples are normally distributed and they had equal variances, the 

unpaired Student’s t test was applied. Otherwise, when samples were normally 

distributed, but they had unequal variances, the Welch test was applied163. The null 

hypothesis in t test is that the mean of both samples is equal164. 

In order to perform both Wilcoxon signed-rank and t test, wilcox.test (Figure 3.6A) and 

t.test (Figure 3.6B) functions was used140. Here, it was only considered variables with 

two or more observations in both samples (normal and tumor tissue). 
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3.4.4. Levene Test 

The Levene test was used to assess the equality of variances of two samples. This test 

was performed before the implementation of t test to decide if the Welch test should be 

applied. The null hypothesis is that the variances of two samples are equal165. 

Levene test was implemented using the leveneTest function provided by car R package 

(Figure 3.7)166. 

 

 

Figure 3.7 Adapted function to perform the Levene test. 

Figure 3.6 Adapted functions to compare two-samples. (A) Function to perform a t-test 

considering the variance homogeneity. (B) Function to perform Wilcoxon signed-rank test. 
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3.4.5. Correction for Multiple Testing 

Many simultaneous statistical tests might originate p-values less than the critical value by 

chance, hence resulting in the rejection of null hypothesis even if it is true (false positive 

or type I error). In case of a p-value of 0.05, when 100 null hypotheses are simultaneous 

tested, the chance of commit a type I error is 5%. Due to this fact, each p-value must be 

corrected. One approach to adjust the p-value is using the false discovery rate (FDR) 

method, which corrects the falsely rejected hypothesis155,167. 

In order to correct multiple testing effect, p-values obtained were corrected by FDR 

method using the function p.adjust provided by stats package140. 

 

3.4.6. Pearson Correlation 

Pearson correlation test is a parametric statistic test which aims to detect if two pared 

continuous variables are linearly associated. The relationship between the variables are 

measured by correlation coefficient that range from -1 (perfect negative correlation) to 1 

(perfect positive correlation). A correlation coefficient of 0 means that there is not a linear 

correlation between the variables (Table 3.1). Importantly, correlation analysis do not 

indicate which variable vary in response to the other one168–170. 

 

Table 3.1 Correlation coefficient interpretation. The relationship between two pared 

continuous variables can be measured by correlation coefficient. This coefficient ranges from -1 

to 1, being dependent on the degree of association between these variables (adapted from Mukaka 

et al. 2012). 

 

 

 

 

                                    1Absolute value 

 

In this specific case, the Pearson correlation was performed to identify which DNA 

methylation variations are associated to unbalance in gene expression in Primary Solid 

|Correlation Coefficient|1  Meaning 

0.00 – 0.30  Negligible correlation 

0.30 – 0.50  Low correlation 

0.50 – 0.70  Moderate correlation 

0.70 – 0.90  High correlation 

0.90 – 1.00  Very high correlation 
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Tumor. The null hypothesis is that correlation coefficient is 0155. To perform Pearson 

correlation, the function cor.test provided by stats R package was used140. 

 

3.4.7. Receiver operating characteristic (ROC) curve analysis 

ROC curve analysis was used as a technique to measure the quality of a diagnostic 

biomarker (e.g. identify CpG sites as a potential diagnostic tool). This curve is represented 

based on the true positive fraction (TPF), the same of sensitivity, and false positive 

fraction (FPF), given by 1 – specificity. The TPF is the ratio between the number of true 

positive decision and the number of actually positive cases. Otherwise, FPF is the 

ratio/division between the number of false positive decisions (considered as positive, but 

actually are negative) and the number of actually positive cases. Therefore, each 

coordinate (x,y) in a plot of the ROC curve corresponds to a pair of TPF and FPF171. 

Moreover, the relationship between these two measures- accuracy- can be determined 

through the area under the ROC curve (AUC). These accuracy measure range from 0.5 to 

1. As described in the Table 3.2, lower AUC values represent an inaccurate test -bad 

diagnostic tool- whereas higher AUC values represent an accurate test- good diagnostic 

tool149,172. 

 

Table 3.2 Classification of the diagnostic accuracy. The area under the ROC curve, an accuracy 

measure, is used to classify the diagnosis potential of a specific tool (Khouli et al. 2009). 

 

 

 

 

The ROC curve analysis was implemented using the roc function provided by pROC R 

package148. Importantly, an AUC cut-off of 0.8 was established to consider good 

biomarkers149. 

 

Area Under the Curve (AUC)  Meaning 

0.5 - 0.6  Failed 

0.6 – 0.7  Poor 

0.7 – 0.8  Fair 

0.8 – 0.9  Good 

0.9 - 1  Excellent 
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3.4.8. Overall Survival and Recurrence Free Survival Analysis 

The prognostic ability of selected genes and CpG sites was tested fitting a Kaplan-Meier 

(KM) analysis, a logrank test, and a Cox proportional hazards regression model. This 

approach compares the survival time, with possible censoring, of two groups divided 

according to a specific threshold of the predictor variable. Firstly, the KM, an estimator 

that was used to determine the survival function for our two groups (better prognosis and 

worst prognosis), was drawn173,174. Then, it was used the logrank test in order to compare 

the survival functions of both groups. This test is a non-parametric test where the null 

hypothesis is that the distribution of both functions is the same174,175. 

Finally, the effect of the selected factor (methylation values of a CpG site or expression 

values of a gene) on the survival was measured through hazard ratio (HR). If a hazard 

ratio is equal 1, that predictor variable has no effect on survival. A hazard ratio lower than 

1 is a bad prognostic factor for group 1 when compared to group 2 whereas a hazard ratio 

higher than 1 is a good prognostic factor for group 1 when compared to group 2176–178. 

This analysis was performed using coxph function provided by survival R package. Then, 

to estimate the survival/recurrence proportion, it was used the surfit function provided by 

survival R package. Kaplan-Meier curves were done using the ggsurvplot function 

provided by survminer R package150,151,179. Importantly, the threshold was based on the 

median value of the predictor variable. 

 

3.4.9. HJ-Biplot and Hierarchical Clusters 

HJ-Biplot is a data reduction technique to analyze, in a multivariate perspective, the 

samples distribution considering all relationships of variables. A hierarchical cluster 

analysis156 was performed considering the patient coordinates180. Thus, we used the Ward 

method to aggregate samples in clusters considering the square Euclidean distance. 

Moreover, in this approach was fixed the contributions, of factor to the element, over than 

0.7. This contribution allows to know which variables are more directly related to each 

axis, and, consequently, it also allows to identify which variables are the most responsible 

by distributing the individuals on a reduced space, for posterior orthogonal projections in 

each variable. Importantly, it was only selected genes which have CpG sites with 

contributions of factor to the element over 0.7, as well as CpG sites which are located in 

genes with contributions of factor to the element over 0.7. 
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HJ-Biplot was implemented using the function HJ.Biplot provided by MultBiplotR R 

package. The Analysis of Hierarchical Clusters was executed using the function 

AddCluster2Biplot provided by the same R package181. Importantly, this technique does 

not deal with missing data. Hence, missing observations were replaced by the median 

value of the respective variable. 

 

3.5. Citation Tool 

RISmed is a text data mining package able to interact with Pubmed, a public query 

database of scientific literature. This package allows to count how many times a term was 

referred in Pubmed abstracts and, when possible, in PubMed articles147. 

EUtilsSummary and QueryCount functions were used to investigate which genes were 

mentioned in both CRC and cancer in general on Pubmed published articles from 1787 

to June 2018, and how many times have been mentioned (Figure 3.8A). The keywords 

used include “cancer”, “colorectal cancer”, “rectum cancer”, and “colon cancer”. 

Importantly, the function keggGet, provided by KEGGREST package available for R 

software, was also used to identify all names given to each gene (Figure 3.8B)182. All 

these names were used in our analysis. 



46 
 

 

 

3.6. Enrichment Analysis 

To better understand the functional profile of a set of genes differentially expressed and 

methylated in our CRC cohort, it was performed an enrichment analysis. In this step, the 

function enrichr, provided by enrichR package, was used to obtain and display the most 

statistically significant enriched pathways (KEGG_2016) and biological processes 

(GO_Biological_Process_2018)146. 

  

Figure 3.8 Functions to obtain the number of citations in PubMed for each gene. (A) 

Function to obtain all designations for each gene. (B) Function of obtain the total number of 

citations of each gene in association with a cancer term. 
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4. CHAPTER IV- RESULTS 

 

 

4.1. Clinical Features 

CRC patients analyzed in this study were characterized according to the parameters 

showed in Table 4.1. The clinical data was exported from TCGA website, being 

processed and analyzed through R programming140. 

Stage I patients are a mean age of 66 years old. Approximately 60% of our group is 

constituted by male, and 40% of female patients. Almost all patients are white- 76%- 

against 15% of black or African American. Additionally, colon is the more affected region 

comprising 80% of all cases. The anatomic subdivision more common is the cecum 

(35%), being splenic flexure the less common (2%-Table 4.1). 

Moreover, the mean age of stage II CRC is about 66 years old. In this stage, the genders 

are more balanced, with 51% of males and 49% of females. Regarding to the race, it is 

observed that white patients constitute the great majority (68%). In addition, colon is the 

most frequently affected region (81%), being sigmoid colon the most predominant 

subdivision (18%-Table 4.1). 

Furthermore, in stage III, was observed a mean age of 63 years old. Additionally, 55% of 

all patients are male against 45% of females. In terms of race, 76% are white patients, 

keeping the patterns observed in the other stages. Moreover, it is observed that in 70% of 

all patients, the tumor site is colon against 30% of rectum. Regarding to the anatomic 

subdivision, as in the stage I, cecum is the region most afflicted (Table 4.1). 

Regarding to stage IV, the mean age of these patients is 61 years old. In addition, 57% 

are male patients whereas 43% are females. The predominant race continues to be white 

patients (71%). Moreover, 75% of all cases are colon tumor, being sigmoid colon, the 

most anatomic subdivision affected (27%-Table 4.1). 

At last, the patients with normal samples are a mean age of 68 years old, and 24% are 

male patients. Furthermore, 48% of these patients are white, 14% are black or african 

American, and 38% have no information available about their race. Moreover, as normal 

samples are collected from patients with the disease, there are tumor related information 

about these patients. Specifically, about 90% of them are colon cancer, and sigmoid colon 

is the anatomic subdivision most affected (38%-Table 4.1). 
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Table 4.1 Descriptive statistics about patients, as well as the distribution of patients by stage. 

1standard deviation 

 

4.2. Epigenetic Roadmap in Colorectal Cancer 

Aiming to investigate which CpG sites are differentially methylated in tumor tissue when 

compared to normal tissue, we performed a comparative analysis between normal tissue 

and each stage of CRC. 

 

Groups 

n (%) 

 
Normal 

21 (5.7) 

Stage I 

54 (14.7) 

Stage II 

131 (35.6) 

Stage III 

111 (30.1) 

Stage IV 

51 (13.9) 

Age (mean ± sd1 years)  68 ± 13 66 ± 13 66 ± 13 63 ± 13 61 ± 13 

< 65 years old   7 (33%) 24 (44%) 57 (44%) 61 (55%) 31 (61%) 

> 65 years old  14 (67%) 30 (56%) 74 (56%) 50 (45%) 20 (39%) 

Gender       

Male  12 (57%) 32 (59%) 67 (51%) 61 (55%) 29 (57%) 

Female  9 (43%) 22 (41%) 64 (49%) 50 (45%) 22 (43%) 

Race       

Black or African 

American 

 
3 (14%) 8 (15%) 19 (15%) 22 (20%) 11 (22%) 

American Indian or 

Alaska Native 

 
0 (0%) 0 (0%) 0 (0%) 1 (1%) 0 (0%) 

White  10 (48%) 41 (76%) 89 (68%) 85 (76%) 36 (70%) 

Asian  0 (0%) 0 (0%) 11 (8%) 1 (1%) 0 (0%) 

Not Reported  8 (38%) 5  (9%) 12 (9%) 2 (2%) 4 (8%) 

Anatomic Subdivision       

Ascending Colon  2 (10%) 6 (11%) 24 (18%) 10 (9%) 6 (12%) 

Descending Colon  1 (5%) 2 (4%) 5 (4%) 5 (4%) 2 (4%) 

Cecum  4 (18%) 19 (35%) 21 (16%) 23 (21%) 9 (17%) 

Hepatic Flexure  2 (10%) 2 (4%) 7 (5%) 7 (6%) 1 (2%) 

Rectosigmoid Junction  0 (0%) 6 (11%) 10 (8%) 17 (15%) 7(14%) 

Rectum  2 (10%) 4 (7%) 14 (11%) 15 (14%) 6 (12%) 

Sigmoid Colon  8 (37%) 10 (18%) 33 (25%) 22 (20%) 14 (27%) 

Splenic Flexure  0 (0%) 1 (2%) 3 (2%) 0 (0%) 1 (2%) 

Transverse Colon  0 (0%) 3 (6%) 9 (7%) 9 (8%) 1 (2%) 

Not Reported  2 (10%) 1 (2%) 5 (4%) 3 (3%) 4 (8%) 

Tumor Site       

Colon  
19 (90%) 43 (79%) 

106 

(81%) 
78 (70%) 38 (75%) 

Rectum  2 (10%) 10 (19%) 25 (19%) 33 (30%) 12 (25%) 
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We analyzed 364,643 probes and 20,502 genes, from CRC patients in different stages of 

the disease. To consider genes as differentially expressed and CpG probes as differentially 

methylated a p-value cut-off lower than 0.05, a fold-change absolute value cut-off higher 

than 1.5, and a Δβ absolute value cut-off higher than 0.2 were defined (Figure 3.4, Figure 

4.1). 

The comparative analysis with normal tissue suggested that 4,268 CpG sites 

corresponding to 681 genes are differentially methylated and expressed in stage I of the 

disease (Figure 4.1). Additionally, the correlation analysis shows that DNA methylation 

alterations of 924 CpG sites are correlated to gene expression changes of 307 genes 

(Figure 4.1, Appendix 1, and Appendix 2). The majority of these CpG sites are 

hypermethylated in tumor tissue (597 hypermethylated and 327 hypomethylated- Figure 

4.2A1, Appendix 1) and associated to down-regulated genes (226 down-regulated and 81 

up-regulated, Appendix 2). Interestingly, when we determine the position of those CpG 

sites across the 307 genes, we found that the majority of them are in the gene body 

(43.8%), followed by regions near the TSS (34.6%). The five prime untranslated region 

(5’UTR), three prime untranslated region (3’UTR), and first exon are regions with less 

differentially methylated CpG sites (10.4%, 4.7%, and 6.5%, respectively; Figure 4.3A). 

Figure 4.1 Study pipeline indicating CpG sites and genes selected for each stage. The 

pipeline presented at Figure 3.2 was applied to CpG sites and genes available in the TCGA 

database. Here, it is shown how many CpG sites and genes were selected in each step of that 

pipeline. 
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Additionally, from the 924 CpG sites, 543 are negatively correlated with gene expression, 

while 381 are positively correlated (Figure 4.2A2, Appendix 1). 

Moreover, when we investigate the top 15most differentially expressed genes (Table 4.2), 

we found that most genes are up-regulated in tumor tissue, excepting CACNG5, GABRG1 

and HTR3B, with an absolute fold-change value ranging from 4.47 to 6.62. Interestingly, 

altogether these genes have 27 CpG sites differentially methylated associated with them 

(0.20 < |Δβ| < 0.41), which are linearly correlated with gene expression levels (0.27 < |ρ| 

< 0.64). Moreover, our analysis shows that both SOX14 and HTR3B are strongly regulated 

by DNA methylation. Specifically, SOX14 is negatively correlated to the methylation 

levels of 6 CpG sites whilst HTR3B is positively correlated with 4 CpG sites in CRC 

tissue (Appendix 1, Appendix 2). 

Regarding to stage II of the disease, our analysis suggested that 3,506 CpG sites located 

throughout 580 differentially expressed genes are differentially methylated compared to 

normal tissue (Figure 4.1). However, only 1,814 CpG sites (1,366 hypermethylated, and 

448 hypomethylated- Figure 4.2B1, Appendix 3) are significantly correlated to 400 genes 

(294 down-regulated, and 106 up-regulated- Figure 4.1, Appendix 4), being 1,305 

negatively correlated and 509 positively correlated (Figure 4.2B2, Appendix 3). 

Furthermore, the majority of CpG sites selected are located in the gene body (36.5%), 

TSS1500 (23.6%), and TSS200 (19.5%). Only 10.1% are in the 5’UTR, 6.4% in the first 

exon, and 3.9% in the 3’UTR region (Figure 4.3B). 

Additionally, our analysis identified genes represented in Table 4.2 as the top 15 genes 

more differentially expressed in tumor tissue when compared to normal tissue (4.47 < 

|fold-change| < 6.57). These top 15 genes are linearly correlated to methylation levels of 

33 CpG sites (0.21 < |Δβ| < 0.40; 0.18 < |ρ| < 0.66). Surprisingly, PTF1A is negatively 

correlated with methylation levels of 13 CpG sites (Appendix 3, Appendix 4).  

Additionally, from normal tissue to stage III, 2,522 CpG sites located on 502 genes are 

statistically differentially methylated and expressed (Figure 4.1). Moreover, 1,169 CpG 

sites (758 hypermethylated and 412 hypomethylated- Appendix 5) are also correlated to 

gene expression changes of 305 genes (205 down-regulated and 102 up-regulated- Figure 

4.1, Figure 4.2C1, and Appendix 6), being 690 negatively correlated and 479 positively 

correlated (Figure 4.2C2, Appendix 5). Additionally, these CpG sites distributed along 

the gene, being the gene body (39.9%) the most enriched region, followed by TSS1500 
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(21%), TSS200 (20.8%), 5’UTR (9.1%), first exon (4.7%), and 3’UTR (4.5%, Figure 

4.3C). 

 

 

Figure 4.2 Characterization of CpG sites differentially methylated throughout CRC 

development. Status of both CpG sites and the respective gene in (A1) stage I, (B1) stage II, 

(C1) stage III, and (D1) stage IV of CRC development. Moreover, it is also represented the 

Pearson correlation- between gene expression and methylation values of each CpG site- 

distribution in (A2) stage I, (B2) stage II, (C2) stage III, and (D2) stage IV. 
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Furthermore, this analysis reveals that the top 15 genes more differentially expressed on 

stage III, represented in the Table 4.2, have absolute fold change values ranging from 

4.34 to 6.79. These genes are correlated with methylation levels of 34 CpG sites (0.20 < 

|Δβ| < 0.41; 0.19 < |ρ| < 0.90). Among all these genes, PTF1A is the gene correlated with 

more CpG sites (11 CpG sites- Appendix 5, Appendix 6). 

 

 

Ultimately, it was identified 2,277 CpG sites related to 518 genes differentially expressed 

in stage IV when compared to normal tissue (Figure 4.1). From these set of genes and 

Figure 4.3 Localization of CpG sites differentially methylated in the gene. Distribution of 

CpG sites differentially methylated (A) in stage I, (B) stage II, (C) stage III, and (C) stage IV. 

Only CpG sites with one gene location were taken into account. TSS1500 and TSS200: probes 

located within 1500 and 200 base pairs from the transcription start site, respectively; 5’UTR 

and 3’UTR: five and three prime untranslated regions, respectively. 
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CpG sites, were identified 618 CpG sites (266 hypermethylated, and 352 

hypomethylated- Appendix 7) which are statistically correlated to gene expression of 233 

genes (146 down-regulated, and 87 up-regulated-Figure 4.1, Figure 4.2D1, and 

Appendix 8), being 288 negatively correlated and 330 positively correlated (Figure 

4.2D2, Appendix 7). Similarly, to previously stages, the gene body (45.8%) is where most 

events occur, followed by TSS1500 (18%), TSS200 (14.5%), 5’UTR (12%), 3’UTR 

(5.2%), and first exon (4.5%; Figure 4.3D). 

 

Table 4.2 The top 15 most differentially expressed genes for each stage of the disease 

 

 

 

 

 

 

 

 

 

In the Table 4.2, the top 15 genes, which have absolute fold change values ranging from 

4.51 to 5.75, were identified. Additionally, 40 CpG sites are correlated either positively 

or negatively with these top 15 genes (0.20 < |Δβ| < 0.43; 0.28 < |ρ| < 0.90). Specifically, 

ELF5 is strongly negatively correlated with methylation levels of 9 CpG sites as well as 

FGF3 (Appendix 7, Appendix 8). 

 

4.3. Nervous System Related Functions are Enriched in CRC 

Aiming to clarify the biological relevance of genes involved in cancer progression, a 

functional enrichment analysis was performed using enrichR package available for R 

software146. 

Stage I Stage II Stage III Stage IV 

    

FEZF1 FEZF1 FEZF1 KRTAP3-1 

SOX14 SOX14 LOC84931 ZIC5 

LOC84931 SPRR1A SOX14 PTF1A 

SPRR1A LOC84931 SPRR1B DKK4 

GBX2 GBX2 C14orf105 NKX2-8 

ZIC5 ZIC5 ZIC5 DIRC1 

CACNG5 C14orf105 KRTAP3-1 SPRR3 

PGLYRP3 SPRR3 DIRC1 HTR2C 

GABRG1 DKK4 PTF1A LY6G6E 

SEMG2 DIRC1 ONECUT3 HOXC13 

ONECUT3 OTOP3 ELF5 TBX5 

HTR3B PTF1A PGLYRP3 ELF5 

DIRC1 SEMG2 NXPH1 SPERT 

SPRR3 KRTAP3-1 LY6G6E ONECUT3 

KRTAP3-1 PGLYRP3 NKX2-8 FGF3 
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This analysis showed that the great majority of enriched pathways are common across 

CRC progression. In detail, “Neuroactive ligand-receptor interaction” is significantly 

enriched in all stages, being the most significantly enriched pathway (adjusted p-value < 

0.05) in all stages (Figure 4.4, Appendix 9, Appendix 10, Appendix 11, and Appendix 

12). The nicotine addiction pathway is also present among all stages of the disease. 

Salivary secretion is significantly enriched in both stages II and IV, cAMP signaling 

pathway is also significantly enriched in stage II, and amyotrophic lateral sclerosis (ALS) 

is enriched in stage I (Figure 4.4, Appendix 9, Appendix 10, Appendix 11, and Appendix 

12). 

 

 

Moreover, when the focus is on the top 9 of the most significantly enriched biological 

process of each stage (adjusted p-value lower than 0.05) gene ontology (GO), we found 

“dopaminergic neuron differentiation” as the most enriched biological process, 

considering the ratio of overlapped genes. Interestingly, this is significantly enriched in 

all stages of CRC development, although stage II, and stage III are stages with more genes 

Figure 4.4 Enriched pathways across colorectal cancer development. The most significant 

enriched pathways (adjusted p-value < 0.05) in colorectal cancer in each stage. 
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that play a role in these functions (both overlap 7/21, adjusted p-value 4.94e-05, 6.77e-

06, respectively- Figure 4.5, Appendix 13, Appendix 14, Appendix 15, and Appendix 

16). 

Curiously, other functions are also significantly over-represented in all stages of CRC 

development, meaning that there are biological processes altered since early stages which 

are maintained across CRC progression. Specifically, anterograde trans-synaptic 

signaling, chemical synaptic transmission, and neuron differentiation are altered 

processes common to all stages (Figure 4.5, Appendix 13, Appendix 14, Appendix 15, 

and Appendix 16). 

 

 

4.4. Identification of potential New Biomarkers for CRC 

After identifying the genes differentially expressed and methylated in each stage of CRC, 

we were interested in assessing if they had already been associated with CRC or any other 

cancer in general. Our results showed that out of the 598 genes, 87 of them had not been 

associated neither CRC nor other cancers. On the other hand, 511 genes were mentioned 

in cancer related articles. From this set of genes, 278 also appears related with CRC 

Figure 4.5 Enriched biological process: gene ontology (GO). The top 9 more enriched 

biological processes for each stage of colorectal cancer development. Colors represent each stage 

of the disease whereas shape represents the enriched biological process. Ratio of overlapped genes 

(overlapped genes/total genes). 
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whereas 233 have not yet been associated to these terms (Figure 4.6A, Appendix 17, and 

Appendix 18). 

Then the top 20 genes most strongly associated with CRC (COMP, CD5L, CALCA, 

ACTBL2, SLC6A2, F2, KRT17, TMEFF2, ELANE, AICDA, C10orf90, PRB2, CRP, 

MMP7, KRT24, SCN11A, FOXD3, GPR149, CASR, HCRT) and the bottom 20 genes, that 

had not yet been previously associated with CRC (ADRB3, AKR1CL1, ALOXE3, ASPG, 

ASTN1, ATCAY, B3GALT1, BAI3, C13orf36, CACNG7, CADM2, CALY, CAMKV, 

CHRM2, CHST4, CHST8, CIDEA, CNGA3, CNTNAP4, and COL29A1) are shown in 

Figure 4.6B.  

 

 

4.5. Identification of genes epigenetically regulated which characterize CRC 

progression 

We then performed intersections between all genes identified as differentially expressed 

and methylated in each stage of the disease, using VennDiagram package available for R 

Figure 4.6 Potential new epigenetic biomarkers for colorectal cancer. (A) Only 14.5% of all 

genes considered as differentially expressed and methylated had not yet been previously 

associated with cancer. In contrast, 85.5% have already been reported in cancer PubMed articles. 

From these, 39.0% had not yet been reported in colorectal cancer articles whereas 46.5% were 

mentioned in “colorectal cancer” associated articles. (B) From the set of genes reported in cancer, 

we identify the top 20 genes reported in CRC (green), and 20 genes that had not been previously 

reported in CRC (red). 
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software183. The analysis showed that 85 genes are differentially methylated and 

expressed across all stages of the disease when compared to normal tissue whereas 66, 

85, 41, and 40 genes are altered only on a specific stage (stage I, stage II, stage III, and 

stage IV, respectively) of CRC development (Figure 4.7, Figure 4.8, Appendix 19, 

Appendix 20, Appendix 21, Appendix 22, and Appendix 23). 

 

 

Additionally, this approach also showed that few genes are epigenetically deregulated in 

2 or more stages. In more detail, 61, 41, and 19 genes are common to stages I and II, 

stages II and III, and stages III and IV, respectively (Figure 4.7, Figure 4.8). 

Figure 4.7 Genes epigenetically regulated across colorectal cancer development. From all 

genes found as differentially expressed and correlated to DNA methylation changes, there are 

specific set of specific genes which are differentially expressed and methylated only on stage I, 

stage II, stage III, and stage IV. Moreover, there are common set of genes that are differentially 

expressed and methylated throughout all stages. 
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Similarly, the intersection of CpG sites differentially methylated throughout CRC 

development was performed. This revealed that stage II is the stage with more CpG sites 

differentially methylated, followed by stages I, III, and IV. Specifically, 121 CpG sites 

are differentially methylated across all stages of the disease when compared to normal 

tissue (Appendix 24). 342, 815, 298, and 178 CpG sites are differentially methylated only 

on a specific stage- stage I, stage II, stage III, and stage IV, respectively (Figure 4.9, 

Appendix 25, Appendix 26, Appendix 27, , and Appendix 28). Moreover, Table 4.3 

shows the top 10 most differentially methylated CpG sites specific for each tumor stage 

when compared to normal tissue. 

 

Figure 4.8 Epigenetic dynamic in CRC. There are genes differentially expressed which present 

CpG sites differentially methylated altered in only one stage of CRC. Specifically, 66, 85, 41, 

and 40 genes revealed as differentially expressed only on stages I, II, III, and IV, respectively. 

Moreover, 61, 41, and 19 genes are common to stages I and II, stages II and III, and stages III 

and IV, respectively. Additionally, 85 genes are common to all stages of CRC (adapted from 

Chen et al. 2015). 
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Table 4.3 Top 10 specific CpG sites most differentially methylated in each stage. Positive 

values for Δβ mean that CpG site is hypermethylated in tumor tissue when compared with normal 

tissue. 

 

Interestingly, when we investigated which specific CpG sites were associated to specific 

genes, we found 200, 223, 89, and 55 CpG sites differentially methylated located within 

66, 85, 41, 40 specific genes for stages I, stage II, stage III, and stage IV, respectively. In 

regard to alterations maintained throughout CRC development, we found 121 CpG sites 

located in 55 differentially expressed genes. 

CpG Δβ  Stage Gene CpG Δβ Stage Gene 

cg01566592 0.6182190 Stage 

I 

RIMS2 cg05937969 0.4898993 Stage 

III 

CASR 

cg21769093 
-0.5632798 Stage 

I 

VWC2 cg19868631 0.4786458 Stage 

III 

VSTM2A 

cg05135828 
0.5567621 Stage 

I 

SLITRK4 cg16732616 0.4692574 Stage 

III 

DMRTA2 

cg00662647 
0.5393673 Stage 

I 

SLC35F3 cg01163842 0.4580375 Stage 

III 

GSC 

cg09813525 
0.5331854 Stage 

I 

PCDH8 cg27341472 0.4567671 Stage 

III 

TMEM196 

cg14170313 
0.5202518 Stage 

I 

RORB cg01134282 0.4539574 Stage 

III 

RALYL 

cg20129213 
0.5114721 Stage 

I 

RIMS2 cg04347874 0.4488147 Stage 

III 

NKX2-1 

cg27486637 
0.4967454 Stage 

I 

WDR17 cg23097402 0.4455062 Stage 

III 

DMRTA2 

cg17535595 
0.4963827 Stage 

I 

PCDH8 cg07961994 0.4371072 Stage 

III 

GRID2 

cg18443378 
0.4843755 Stage 

I 

WDR17 cg24882673 -

0.4334559 

Stage 

III 

ZMAT4 

cg24403845 
0.5834750 Stage 

II 

SORCS1 cg00241002 -

0.5653321 

Stage 

IV 

LOC731789 

cg16437728 
0.5450563 Stage 

II 

SYT9 cg25884711 0.5186585 Stage 

IV 

NPY 

cg25146017 
0.5413849 Stage 

II 

C6orf186 cg07369569 -

0.4910343 

Stage 

IV 

HMGCLL1 

cg25729826 
0.5324301 Stage 

II 

CASR cg02468050 0.4885486 Stage 

IV 

GRID2 

cg04842146 
0.5197947 Stage 

II 

RALYL cg01395254 -

0.4680523 

Stage 

IV 

MYT1L 

cg27361134 
0.5170881 Stage 

II 

RIMS4 cg24977670 -

0.4572511 

Stage 

IV 

CTNND2 

cg20872937 
0.5140720 Stage 

II 

GALR1 cg20388823 0.4566364 Stage 

IV 

GRID2 

cg24190603 
0.5032448 Stage 

II 

SNAP91 cg24543552 -

0.4483070 

Stage 

IV 

KHDC1L 

cg26296488 
0.5027418 Stage 

II 

DRD5 cg01847754 -

0.4460867 

Stage 

IV 

CXorf1 

cg09258813 
0.5003622 Stage 

II 

ADRB3 cg02608452 -

0.4386950 

Stage 

IV 

KCNA4 
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4.6. Potential New Biomarkers for Colorectal Cancer Diagnosis 

ROC curve analyses were performed to establish which genes and CpG sites can 

distinguish tumor tissue from normal tissue with specific sensitivity and specificity. 

Therefore, aiming to discovery which genes can be potential biomarkers to CRC 

diagnosis (AUC > 0.8), we found that 238 differentially expressed and methylated genes 

from a set of 307 can differentiate stage I tumor tissue from normal tissue (Appendix 29). 

Surprisingly, 24 genes of these genes have not yet been associated with cancer in general, 

in contrast to 214 which have already been reported in cancer (Appendix 18, Appendix 

29). From these 214 genes, 93 have not yet been reported in CRC (Appendix18, Appendix 

29). 

Figure 4.9 CpG sites differentially methylated across colorectal cancer development. A 

set of CpG sites, located in genes differentially expressed, was found differentially methylated 

in colorectal cancer. In more detail, when an overlap of these CpG sites is performed, 342, 

814, 298, and 178 CpG sites were detected as differentially methylated only on stage I, stage 

II, stage III, and stage IV, respectively. 121 were differentially methylated across all stages in 

our analysis. 
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Additionally, we intended to identify which CpG sites could potentially differentiate 

tumor from normal tissue. In accordance to our results from a set of 924 CpG sites, 835 

were able to differentiate stage I tumor tissue from normal tissue (Appendix 30). 

As an example, we show that ASTN1 is one gene which its expression values can 

differentiate stage I tumor tissue from normal tissue with an AUC of 0.989 (Figure 4.10A, 

Figure 4.10B). Additionally, previous studies have already demonstrated that ASTN1 

function is related to the nervous system. Specifically, ASTN1 is a receptor involved in 

the neuronal migration across glial fibers. A lack of these gene leads to a slow 

migration184–186. 

Interestingly, the methylation values of CpG site cg08104310 located in ASTN1 gene can 

also differentiate stage I tumor tissue from normal tissue, with an AUC of 1.000 (Figure 

4.10C, Figure 4.10D). 
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4.7. Identification of Epigenetic Biomarkers which predict patient outcome 

The prognostic value of specific genes for each stage was investigated. Thus, a survival 

analysis was performed using the median as threshold. This analysis shows that from a 

set of 85 genes altered only on stage II (Appendix 21), 6 (KRT83, LAIR2, SBSN, SNAP91, 

TMEM179, ZNF536) have statistical significance to predict the outcome of stage II CRC 

patients (Table 4.4, and Figure 4.11). Moreover, from a set of 41 specific genes altered 

only on stage III (Appendix 22), only SOX1 can predict the outcome for stage III patients 

(Table 4.4). Lastly, from a set of 40 specific genes only altered in stage IV (Appendix 

Figure 4.10 ASTN1 gene has the potential to distinguish stage I colorectal tumor tissue from 

normal tissue. (A, C) ROC curve analysis for ASTN1 expression values (AUC= 0.98), and 

cg08104310 which is located in the 3’UTR region (AUC=1.000). (B, D) Violin plots representing 

expression (FDR=1.14E-09) and methylation (FDR=9.01E-09) values for normal and tumor 

tissue. Each dot corresponds to a patient. 
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23), only 5 genes (BFSP2, F2, HOTAIR, and KHDC1L, SLC6A5) have the capability to 

predict stage IV patient outcome (Table 4.4). However, using a median of SLC6A5 

expression value to divide our patients into two distinct groups, one of them is constituted 

by only one patient. Thus, we did not consider SLC6A5 as a potential prognosis 

biomarker. 

 

Table 4.4 Genes that better predict the outcome (overall survival). HR: hazard ratio. 

 

As represented in the Table 4.4, notwithstanding stage II having more genes that can 

predict the outcome, it is in stage IV that genes have the highest statistical significance 

for that prediction. Additionally, the set of initial genes under the analysis is higher in 

stage II (85 genes) than in stage IV (40 genes). 

In Figure 4.11, are shown survival curves for ZNF536, a negative regulator of neuron 

differentiation (stage II- Figure 4.11A), SOX1, an inhibitor of cell growth and promoter 

of apoptosis (stage III- Figure 4.11B), and BFSP2, which codifies for a filament protein 

Gene Stage HR p-value Cut-off Gene Function 

SNAP91 Stage II 0.3395086 0.01277283 0.5254676 

Encodes a protein 

responsible for the 

transport of EGF receptor 

(EGFR)187. 

ZNF536 Stage II 3.1328533 0.01819290 1.7054029 

Negatively regulates 

neuron 

differentiation188,189. 

SBSN Stage II 0.3779900 0.02744733 1.2330904 

Involved in epidermal 

differentiation and  
cornified envelope 

formation190. 

KRT83 Stage II 2.5024214 0.03404451 1.0393490 
Keratin gene (RefSeq, Jul 

2008). 

TMEM179 Stage II 2.8799428 0.04846541 0.0000000 Not well established. 

LAIR2 Stage II 0.4305100 0.04998472 2.4087934 

Inhibits immune cell 

function upon collagen 

binding191. 

      

SOX1 Stage III 0.4594413 0.04070349 3.08714 

Inhibition of cell growth, 

and promotion of 

apoptosis192. 

      

KHDC1L Stage IV 0.2215415 7.522785e-04 0.0000000 
Involved in Germ Cell and 

Early Development193. 

HOTAIR Stage IV 0.3138915 1.457532e-02 2.5124539 Long noncoding RNA194. 

F2 Stage IV 3.332949 1.480315e-02 1.8856746 Coagulation factor195,196. 

BFSP2 Stage IV 2.828378 2.677998e-02 0.5357807 
Codify for a filament 

protein197. 
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(stage IV- Figure 4.11C) as examples of outcome predictors from the three stages. Those 

curves show that lower expression levels of ZNF536 (p-value=0.018, hazard ratio=3.133) 

and BFSP2 (p-value=0.027, hazard ratio=2.828) is associated with a poor prognosis 

whereas in case of SOX1 (p-value=0.041, hazard ratio=0.459) are associated with a better 

prognosis. Interestingly, neither ZNF536 nor BFSP2 have been previously reported to 

have a role in CRC. 

 

 

Furthermore, we also analyzed the potential of specific CpG sites to predict patient 

outcome and found that 88, 7, and 3 (Appendix 31, Appendix 32, and Appendix 33) from 

a set of 815, 298, and 178 CpG sites (Appendix 26, Appendix 27, and Appendix 28) are 

Figure 4.11 Epigenetically altered genes can predict patient outcome. (A) Kaplan-Meier 

curve representing the overall survival for stage II based on expression values of ZNF536 gene. 

The median cut-off-1.71 - was used to divide patients into 2 groups. (B) Kaplan-Meier curve 

representing the overall survival for stage III based on expression values of SOX1 gene. The 

median cut-off- 3.09- was used to divide patients into 2 groups. (C) Kaplan-Meier curve 

representing the overall survival for stage IV based on expression values of BFSP2 gene. The 

median cut-off-0.54 - was used to divide patients into 2 groups. The group of patients with 

expression values lower than the cut-off was considered as down-regulated (red line) whereas 

patients with expression values higher than the cut-off was considered as up-regulated (blue 

line). 
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good predictors for stage II, III, and IV, respectively. Similar to the pattern observed on 

potential gene predictors, there are more CpG sites in stage II than in any other stage. 

In addition, Figure 4.12 shows one CpG sites per stage as examples. Specifically, 

hypomethylation of cg02430935- located in the body of the tumor suppressor gene 

HMX2198 - in stage II (Figure 4.12A) and cg01847754- located in the first exon of CXorf1 

gene- in stage IV (Figure 4.12C) is associated with poor prognosis (p-value=0.013, and 

0.019, respectively; hazard ratio=3.139, and 3.155, respectively). In contrast, 

hypomethylation of cg26489108- located in the region of TSS of a gene involved in the 

regulation of  cell differentiation and survival, DMRT3199- in stage III (Figure 4.12B) is 

related to a better prognosis (p-value=0.027, hazard ratio=0.407). 

 

 

Figure 4.12 CpG sites predict patient outcome. (A) Kaplan-Meier curve representing the 

overall survival for stage II based on methylation values of cg02430935. The median cut-off-

0.63 - was used to divide patients into 2 groups. (B) Kaplan-Meier curve representing the overall 

survival for stage III based on methylation values of cg26489108. The median cut-off- 0.74- 

was used to divide patients into 2 groups. (C) Kaplan-Meier curve representing the overall 

survival for stage IV based on methylation values of cg01847754. The median cut-off-0.24 - 

was used to divide patients into 2 groups. The group of patients with methylation values lower 

than the cut-off was considered as hypomethylated (blue line) whereas patients with 

methylation values higher than the cut-off was considered as hypermethylated (red line). 
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Then, the potential of the same set of genes and CpG sites to differentiate patients that 

recurred from those who did not was also investigated. Regarding gene expression, Cox 

analysis showed that 3 genes can differentiate stage II CRC patients who recur from 

patients who do not recur (CNTD2, SNAP91, and RPH3A). In addition, 3 genes were 

identified as good predictors of recurrence for stage III (SOX1, IZUMO1, and GNGT1). 

Lastly, only 2 genes were capable to predict recurrence in stage IV (KHDC1L, and 

HTR2C; Table 4.5). 

Interestingly, SNAP91, SOX1, and KHDC1L genes can predict both overall survival and 

recurrence free survival for stage II, stage II, and stage IV, respectively (Table 4.4, Table 

4.5). 

 

Table 4.5 Genes that better predict the outcome (recurrence free survival). HR: hazard 

ratio. 

 

 

Figure 4.13 shows plotted curves representing the recurrence free survival for stages II-

IV, based on gene expression levels of CNTD2, a controller of cell cycle, SOX1, and 

HTR2C, also an intermediate of cell cycle. Remarkably, high gene expression levels of 

these 3 genes are associated with a poor prognosis, meaning that patients with high levels 

of these genes have a higher probability for recurrence. Moreover, this analysis shows 

Gene Stage HR p-value Cut-off Gene Function 

CNTD2 Stage II 0.1962451 0.0003321157 5.8719668 Controls the cell cycle200. 

SNAP91 Stage II 0.3705250 0.0194745759 0.5066019 

Encodes a protein responsible 

for the transport of EGF 

receptor (EGFR)187. 

RPH3A Stage II 0.3897250 0.0299158467 0.6922486 

Involved in the regulation of 

exocytosis and endocytosis 

processes at presynaptic 

sites201. 

      

SOX1 Stage III 0.3592034 0.01014127 3.0871403 
Inhibition of cell growth, and 

promotion of apoptosis192. 

IZUMO1 Stage III 0.4474681 0.04563485 0.5046712 
Involved in sperm–egg 

fusion202. 

GNGT1 Stage III 0.4415817 0.04985110 1.0921398 
G-proteins of 

photoreceptors203. 

      

HTR2C Stage IV 0.2846536 0.006409629 0 

Receptor of serotonin which 

have function related to cell 

growth204,205 

KHDC1L Stage IV 0.2443717 0.007702573 0 
Involved in Germ Cell and 

Early Development193. 
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that all patients in stage IV who have expression levels of the HTR2C gene above the cut-

off recur by 3 months. In opposition, patients who have expression levels of HTR2C gene 

below the cut-off might have a delay on recurrence (Figure 4.13). 

 

 

When looking at CpG sites, in order to identify potential biomarkers for recurrence free 

survival, the same set of CpG sites tested for overall survival were also analyzed here. 

For recurrence free survival in stage II patients, it was found 30 CpG sites that can 

distinguish two groups (those who recur and those who do not recur) based on a specific 

cut-off (Appendix 34). In stage III, and stage IV, it was found 12 and 9 genes as recurrence 

predictors, respectively (Appendix 35, Appendix 36). 

Figure 4.13 Recurrence Free Survival prediction through gene expression levels. (A) 

Kaplan-Meier curve representing the recurrence free survival for stage II based on expression 

values of CNTD2 gene. The median cut-off-5.87- was used to divide patients into 2 groups. (B) 

Kaplan-Meier curve representing the recurrence free survival for stage III based on expression 

values of SOX1 gene. The median cut-off-3.09 - was used to divide patients into 2 groups. (C) 

Kaplan-Meier curve representing the recurrence free survival for stage IV based on expression 

values of HTRC2 gene. The median cut-off-0 - was used to divide patients into 2 groups. The 

group of patients with expression values lower than the cut-off was considered as down-

regulated (red line) whereas patients with expression values higher than the cut-off was 

considered as up-regulated (blue line). 
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Figure 4.14 shows Kaplan-Meier plots representing recurrence free survival curves for 

the most significant CpG site from each stage. Specifically, high methylation levels of 

cg06162589- located in the 3’UTR region of a tumor suppressor gene SLC5A8206 - in 

stage II (p-value=0.0066, hazard ratio= 0.2924- Figure 4.14A) and cg03700449- located 

in the first exon of a gene involved in the neurogenesis, ASCL1207- in stage III (p-

value=0.0055, hazard ratio= 0.3114- Figure 4.14B) are associated with a poor prognosis 

whereas high methylation levels of cg14772660- located in body of a gene SLC5A7 that 

encodes to a choline transporter208- in stage IV (p-value=0.0047, hazard ratio= 4.3174- 

Figure 4.14C) are associated with a better prognosis. 

Moreover, this analysis also showed that patients with high methylation levels of 

cg06162589, have a probability of 100% to recur at 7 months. In contrast, patients who 

present low methylation levels of that CpG site have a reduced probability to recur 

(Figure 4.14A). A similar scenario happens in stage IV, when methylation levels of 

cg14772660 are considered. Specifically, it is expected that all patients of both 

hypomethylated and hypermethylated groups recur. However, patients who present low 

methylation levels of cg14772660 recur before (Figure 4.14C). 
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4.8. CRC patients can be grouped according to their gene expression and 

DNA methylation patterns 

Here, in order to validate the results obtained by our pipeline (Erro! A origem da 

referência não foi encontrada.), we used the HJ-biplot multivariate technique of 

graphical representation, followed by hierarchical clustering in the patient coordinates, 

considering the ward method and the Euclidean square distance. Furthermore, this 

approach was also used aiming to corroborate the pipeline and to distinguish groups of 

patients classified within the same stage. In order to facilitate the visualization of the 

results we established three groups per stage and selected genes and CpG sites with 

contributions over than 0.7 to increase powerful quality contributions to HJ-biplot 

(Figure 4.15, Figure 4.16). 

Figure 4.14 CpG sites can predict recurrence. (A) Kaplan-Meier curve representing the 

recurrence free survival for stage II based on methylation levels of cg06162589. The median cut-

off-0.32- was used to divide patients into 2 groups. (B) Kaplan-Meier curve representing the 

recurrence free survival for stage III based on methylation levels of cg03700449. The median 

cut-off-0.52 - was used to divide patients into 2 groups. (C) Kaplan-Meier curve representing 

the recurrence free survival for stage IV based on methylation levels of cg14772660. The median 

cut-off-0.69 - was used to divide patients into 2 groups. The group of patients with methylation 

values lower than the cut-off was considered as hypermethylated (red line) whereas patients with 

methylation values higher than the cut-off was considered as hypomethylated (blue line). 
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Firstly, we analyzed how samples from CRC patients are distributed based on genes 

differentially expressed in each stage when compared to normal tissue samples. Applying 

the contribution cut-off, we selected 43, 22, 12, and 12 genes (from a set of 307, 400, 305, 

and 233, respectively) from stages I, II, III, and IV. This suggests that each set of variables 

is the strongest when combining genes responsible for the patient distribution in a 

respective stage. 

Since the HJ-biplot is a data reduction technique, the plans 1-2 (Figure 4.15) retains 

87.3%, 85.4%, 87.4%, and 89.5% of the total absorbed inertia (Figure 4.15A, Appendix 

37, Figure 4.15B, Appendix 38, Figure 4.15C, Appendix 39, Figure 4.15D, and 

Appendix 40) from stages I, II, III, and IV, respectively. This fact shows that all genes in 

all stages are correlated and represent high levels of information (amount of accumulated 

variance). We also observed that no isolated gene (or a set of genes) exists with other 

behavior (correlated with axis 2). In fact, all of these set of variables are correlated to the 

axis 1, meaning that all variables are correlated with each other. 

Moreover, this approach shows that we can distinguish primary tumor from normal 

samples (circles and triangles, respectively- Figure 4.15). Thus, the pipeline applied was 

efficient. Also, it is also possible to identify two subgroups of primary tumor samples (red 

and green), suggesting that in the same stage, there are patients who have different 

patterns of gene expression, and might be responsible for different outcomes (Figure 

4.15). Curiously, when we looked at the HJ-biplot representation of each stages, we 

observed that the distance between normal and primary tumor samples is bigger in stages 

I and IV. This fact shows that in these stages primary tumor samples are more distinct 

from normal samples than in other stages. Interestingly we observed two-subgroups of 

patients at stage II where the green subgroup is closer to normal tissue when compared to 

the red group. At a lesser extent the same was observed in stage III of the disease 

suggesting that different set of genes are characterizing distinct subgroups of patients. 



71 
 

 

 

The same approach was applied using CpG sites differentially methylated in CRC. For 

that we selected 116, 65, 16, and 30 from stages I, II, III, and IV, respectively. The total 

absorbed inertia of plans 1-2 were: 85.3%, 81.3%, 84.4%, and 85.2% for each stage 

(Figure 4.16A, Appendix 41, Figure 4.16B, Appendix 42, Figure 4.16C, Appendix 43, 

Figure 4.16D, and Appendix 44). These results are similar to the ones obtained for gene 

expression since all differentially methylated CpG sites are correlated and also represent 

high levels of retained information. We also observed that no isolated CpG sites 

correlated with axis 2 exist, meaning that all of those CpG sites are correlated. 

Figure 4.15 HJ-biplot representation of gene expression for (A) stage I, (B) stage II, (C) stage 

III, and (D) stage IV of CRC. In stage I, cluster 1 is composed by 25 patients, cluster 2 by 29 

patients and cluster 3 by 21 patients. In stage II, cluster 1 is composed by 103 patients, cluster 2 

by 25 patients and cluster 3 by 24 patients. In stage III, cluster 1 is composed by 46 patients, 

cluster 2 by 62 patients and cluster 3 by 21 patients. In stage IV, cluster 1 is composed by 32 

patients, cluster 2 by 18 patients and cluster 3 by 22 patients. 
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Furthermore, similar to the observed in HJ-biplot applied to a set of genes, we found that 

the set of selected CpG sites can also differentiate primary tumor from normal samples 

(circles and triangles, respectively), and it can divide primary tumor samples into two 

distinct groups (red and green). Additionally, it is also possible to observe that the 

distance from the cluster constituted by normal samples (triangles) to the clusters 

constituted by primary tumor samples is higher in stages I, and IV when compared to 

stages II, and III (Figure 4.16). This suggests that the set of CpG sites selected can easily 

detect which are the tumor samples. Regarding to stage II, we detected a decrease of the 

proximity between clusters of normal and primary tumor samples (Figure 4.16B). As for 

stage III, we found that the cluster formed by normal samples are homogenous, in spite 

of the proximity to other clusters constituted by primary tumor samples, suggesting that 

there are tumor samples with more similarities to normal samples. (Figure 4.16C). 
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Figure 4.16 HJ biplot representation of DNA methylation for (A) stage I, (B) stage II, (C) 

stage III, and (D) stage IV. In stage I, cluster 1 is composed by 27 patients, cluster 2 by 25 

patients and cluster 3 by 23 patients. In stage II, cluster 1 is composed by 91 patients, cluster 2 

by 36 patients and cluster 3 by 25 patients. In stage III, cluster 1 is composed by 29 patients, 

cluster 2 by 81 patients and cluster 3 by 22 patients. In stage IV, cluster 1 is composed by 30 

patients, cluster 2 by 19 patients and cluster 3 by 23 patients. 
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5. CHAPTER V- DISCUSSION 

In this study, we performed a whole-genome analysis of the CRC patient cohort, available 

at the TCGA dataset, with the intention of identifying epigenetic signatures during CRC 

development. Contrarily to the majority of whole-genome analysis performed, we 

decided to analyze CRC initiation and progression, by distributing our patients through a 

correspondent TNM stage209–211. 

We found that epigenetic alterations are present throughout CRC development and that 

they can be associated either to the overexpression or silencing of genes. This was 

expected since DNA methylation alters the chromatin structure212,213. In addition, the 

dynamics of epigenetic alterations was also shown here, since there are different DNA 

methylation patterns in different stages of CRC development. Thus, as previous studies 

reported, understanding DNA methylation alterations may provide new insights on this 

disease, and hopefully help to improve both diagnostic and prognostic in CRC214. Indeed, 

it is known that epigenetic changes are dynamic during events as embryonic development 

and cell differentiation. However, until now there was a lack of studies that demonstrated 

these dynamics across CRC initiation and progression215–217. 

Moreover, we also found that there are groups of genes more affected by these changes 

than others, possibly due to the importance of specific classes of genes involved in cancer 

initiation and progression7. However, few genes are epigenetically altered in all stages of 

CRC suggesting that, depending on the CRC stage, different genes need to be 

overexpressed or down-regulated in order to favor the disease91. 

Furthermore, applying the developed pipeline, we found that stage IV contains less 

alterations, where DNA methylation is correlated with gene expression, than the other 

stages when compared to normal tissue. One possible explanation for this observation is 

that in the last stage, cells may not need to express genes responsible for cancer initiation. 

However, another reasonable hypothesis lies on the fact that during metastastatic 

formation, cancer cells might need to become more similar to normal cells for this process 

to be successful. Alternatively, sample size could have had an influence in our analysis. 

Moreover, we also found that stage I is not the stage with more alterations, in opposition 

to previous reports81. This difference can also be explained by sample size. Additionally, 

previous studies also shown that, although there are no significant differences in the 

proportion of early and advanced tumors which present aberrant DNA methylation 
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patterns, the number of genes differentially methylated is different across cancer initiation 

and progression81,218,219. 

This study identified for each stage of CRC development, multiple CpG sites 

differentially methylated which are correlated to alterations in gene expression. In 

agreement with previous studies220, when we investigated where these CpG sites are 

located, we found that promoters (TSS200, TSS1500) and gene body are the regions more 

affected by aberrant methylation. Indeed, the aberrant methylation in promoter region 

alters the accessibility of transcriptions factors to the DNA, leading to changes in gene 

expression127. Additionally, gene body methylation has already been associated to 

alteration on gene expression221. Recently, it was reported that intragenic DNA 

methylation can prevent the transcription initiation of aberrant transcripts in mouse 

embryonic stem cells222. Another study also suggested that gene body DNA methylation 

associated with H3K36me3 blocks aberrant transcription223. 

Moreover, when we compared methylation patterns across CRC progression, we found 

that the most common alteration is hypermethylation. Among all hypermethylated CpG 

sites, we observed that the great majority is located in down-regulated genes, meaning 

that high methylation levels are associated to low gene expression levels. This fact further 

strengthens the conventional idea that hypermethylation is often associated with down-

regulation whereas hypomethylation leads to gene activation. However, there are cases 

where this is not verified. Indeed, the consequence of DNA methylation in gene 

expression depends on its location in the gene. Specifically, when CpG sites are located 

in repressor regions, and this region is hypermethylated, repressors are blocked. 

Consequently, hypermethylation will be associated with overexpression of the respective 

gene. Interestingly, this pattern was observed before in genes involved in cancer as TERT 

and EGFR. In both cases, promoter hypermethylation leads to gene activation127,224. 

Nevertheless, the pattern described before is less observed in stage IV. Specifically, in 

opposition to previous stages, hypomethylation is more common than hypermethylation 

and a positive correlation between DNA methylation and gene expression levels in tumor 

tissue is also more common than negative correlation. These findings suggest that the 

epigenetic pattern of stage IV is different from other stages. Importantly, across cancer 

progression, the heterogeneity increases, which can instigate this difference225. 
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When the top 15 most differentially expressed genes with significant differences in DNA 

methylation were analyzed, we found that the vast majority were simultaneously present 

in the top 15 in all four stages. Specifically, genes as ZIC5, DIRC1, KRTAP3-1 are found 

in all stages, meaning that these genes are among the most differentially expressed genes 

in CRC progression. Curiously, ZIC5 is a zinc finger complex which has already been 

associated with cancer. Satow et al. also associated ZIC5 with higher survival of CRC 

cells by enhancing FAK and STAT3 activity226. DIRC1 is not well described, although it 

has been reported in familial clear cell renal cancer227. KRTAP3-1 is a keratin-related 

gene, and has not been previously reported in cancer PubMed articles228. Although these 

three genes are players in CRC their role has not yet been characterized. 

Furthermore, FEZF1, SOX14, LOC84931, and PGLYRP3 are among the top 15 most 

differentially expressed genes with significant differences in methylation in stages I, II, 

and III. All these genes have been associated with cancer, however only FEZF1 was 

previously reported in CRC. Interestingly, both FEZF1 and SOX14 are reported as 

enhancers of tumor proliferation and metastasis229,230. LOC84931 has also been 

associated with cancer, however its role in oncogenesis is poorly described231. At last, 

Jing et al. have associated PGLYRP3 to inflammatory bowel disease (IBD)232. 

Importantly, higher risk of CRC is mostly connected to IBD233,234. This fact suggests that 

PGLYRP3 can be effectively related to CRC directly or indirectly, although its association 

has not been yet well studied. 

Biological process analysis was performed using KEGG and GO platforms. Results 

indicate that genes differentially expressed and methylated across CRC development have 

similar functions, being the majority related to the nervous system development. 

Specifically, KEGG pathway analysis revels “nicotine addiction”, “neuroactive ligand-

receptor interaction”, “cAMP signaling pathway”, “salivary secretion” and “ALS” as the 

most enriched pathways in CRC. Previous studies have reported that smoking is strongly 

associated with higher incidence and mortality in CRC235–238. “Neuroactive ligand-

receptor interaction” pathway also revealed to be important. This pathway was also found 

enriched in other types of cancer as well as in CRC239,240. Moreover, several studies have 

also described the relationship between cAMP and cancer. Specifically, studies referred 

that increasing cAMP levels leads to inhibition of cell growth by the induction of 

apoptosis and/or cell cycle arrest241. For example, Dong, H et al. have demonstrated that 

the activation of cAMP signaling leads to a decrease of cell migration in breast cancer242. 
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Regarding the salivary secretion pathway, there are reports which suggest that cancer can 

interact with salivary glands, including pancreatic cancer, breast cancer, lung cancer, and 

ovarian cancer. However, these relationship is not yet well established243. Finally, the 

ALS pathway is also enriched in our analysis. Curiously, neurodegenerative diseases have 

been inversely associated with cancer244–246. Whereas cancer involve resistance to cell 

death, neurodegenerative diseases occurs due to premature cell death247. In case of ALS 

pathways, its relationship with cancer is not clear248,249. 

Interestingly, GO biological process analysis shows that the most enriched functions are 

related to the neural system. Several studies suggested that there is a crosstalk between 

neural system and CRC cells. Neurogenesis and axogenesis are important in cancer 

development, and nerves are constituents of the microenvironment250–252. In addition, 

studies suggested that neurotransmitters can stimulate migration, cell survival, and 

proliferation, immune suppression, angiogenesis, and provide mechanical support. Hence 

the nervous system pathways development is associated with poor prognosis, by inducing 

tumorigenesis and metastasis253–255. For example, in pancreatic cancer, cancer cells grow 

and invade nerves, leading to a poor prognosis and severe pain256,257. In a specific case of 

CRC progression, there are also evidences that the nervous system support cell migration 

through a processes called perineural invasion258. 

Unexpected, from all genes found as differentially expressed and methylated, 14.5% have 

not yet been previously reported in any cancer type, including CRC and might be critical 

to CRC initiation and progression. For example, CIDEA has already been associated with 

other cancers by promoting apoptosis in mammalian cells259. Interestingly, our analysis 

showed that this gene is differentially expressed, and it has CpG sites differentially 

methylated in all stages of CRC progression. Furthermore, CIDEA is down-regulated in 

all stages, which is corroborated by its biological function259. 

Then, we investigated the potential of genes differentially expressed and methylated 

between stage I and normal tissue as potential diagnostic biomarkers in CRC. This 

analysis revealed that 78% of differentially expressed genes and 90% of CpG sites 

differentially methylated are good candidates. This evidence suggests that DNA 

methylation levels of CpG sites can probably be more trustworthy than gene expression 

levels in relation to diagnosis. This because almost all CpG sites found differentially 

methylated in tumor tissue when compared to normal tissue could be used as potential 

biomarkers for diagnosis in contrast to the lower number of differently expressed genes 
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with the same ability One possible explanation to this fact might be due to expression 

levels being more instable, meaning that they can vary easily due to different factors 

besides cancer260. Moreover, these are good early diagnostic candidates, since its 

methylation occurs in early stages of CRC. For example, ASTN1 where both gene 

expression and DNA methylation values could differentiate stage I tumor tissue from 

normal tissue, had a higher AUC value for the methylation of one of its CpG cg08104310, 

rather than for its expression values. This result suggests that methylation of ASTN1 gene 

can better differentiate tumor from normal tissue than its expression levels. ASTN1 

codifies for a membrane protein involved in the central nervous system development261. 

Interestingly, functions related to nervous system development are enriched in our 

analysis and have been associated with cancer, as reported before. 

Additionally, this analysis showed that although enriched functions of genes differentially 

expressed with probes differentially methylated are similar across CRC, there are 

different genes associated to CRC initiation and progression. The same pattern was 

observed with specific CpG sites that were associated only to a specific stage, as well as 

CpG sites which characterize all stages of CRC development. Also, we found that there 

are genes differentially expressed and with probes differentially methylated in specific 

stages of CRC development, suggesting that these genes have an important function in a 

specific stage. In contrast, we also found genes differentially expressed and methylated 

in all stages, evidencing that there are genes that play a role across CRC development. It 

was also identified common genes between two stages suggesting a role in the transition 

between stages. Interestingly, there is a lack of studies that corroborate these findings, as 

the vast majority of whole-genome analysis performed until this date do not analyze DNA 

methylation and gene expression data across cancer initiation and progression taking into 

account the TNM staging. 

Also, when we evaluated the potential of specific genes differentially expressed to predict 

the outcome of patients in stage II, III, and IV, we found that there are genes capable of 

distinguishing two groups depending on a gene expression cut-off value. For example, in 

stage II, ZNF536 expression values can differentiate two distinct groups. In this case, the 

down-regulation of ZNF536 is associated with poor prognosis. Interestingly, this gene 

encodes for a zinc finger protein which negatively regulates neuron differentiation188,189 

and was previously reported in association with cancer only once. Importantly, this type 

of proteins have been revealed as players in the progression of multiple cancer types262.  



79 
 

Regarding stages III and IV, genes as SOX1 and BFSP2, respectively, can also 

differentiate two groups with distinct outcome. Indeed, higher gene expression levels of 

SOX1 were associated with a worst prognosis. Paradoxically, distinct studies reported that 

SOX1 is associated with inhibition of cell growth as well as promoting apoptosis, by 

decreasing β-catenin levels192. Hence, it was expected that low methylation values of 

SOX1 were associated with a worst prognosis. Interestingly, DNA methylation changes 

have also been reported in another study, where SOX1 was hypermethylated in CRC. In 

the same study, SOX1 was also found most significantly methylated in later stages of 

TNM classification263. 

Furthermore, BFSP2 is a gene that codifies for a filament protein and lower BFSP2 

expression levels are associated with poor prognosis in this study. Interestingly, this gene 

has not been previously reported in CRC, perhaps due to their specificity to lens fiber 

cells, a structure in the eye197. 

Next, we evaluated the potential of CpG sites to predict patient outcome and found that 

there are CpG sites efficient to distinguish 2 groups. Specifically, CpG sites as 

cg02430935, cg26489108 and cg01847754 are able to predict the outcome in stage II, 

stage III, and stage IV, respectively. Furthermore, both cg0243093- located in the first 

intron of HMX2 gene- and cg26489108- located in the region near to the TSS of DMRT3 

gene- are hypermethylated in tumor tissue (stages II and III, respectively). Moreover, 

HMX2 gene was down-regulated, and DMRT3 gene was up-regulated. In addition, 

previous studies have reported that HMX2 inhibits the cellular growth, and are frequently 

silenced in colorectal cancer cell lines and primary tumors123. DMRT3 was also found up-

regulated in a recent study. The same study has reported an interaction between this gene 

and both TP63 and SOX2 in lung cancer. 

Interestingly, hypermethylated of cg0243093 (HMX2 gene) in tumor tissue is associated 

with a better prognosis in stage II patients. In fact, previous studies have suggested that 

HMX2 has tumor suppressor activity in cancer198, being down-regulated in other cancer 

types123. 

Regarding to cg26489108 (DMRT3 gene), we found a positive correlation between 

methylation levels of this CpG site and DMRT3 gene in tumor tissue which is associated 

with poor prognosis. However, in contrast with the standard epigenetic regulation 

mechanism, hypermethylation of this CpG site is associated with gene over-expression264. 
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One possible explanation for this, is that this CpG site is located in a repressor binding 

region. When hypermethylation occurs, the repressors are blocked, and, consequently, 

the gene is constitutively expressed. The hypothesis that hypermethylation leads to the 

activation of an alternative promoter should be considered127.  

Considering cg01847754- located in the first exon of CXorf1 gene is hypomethylated in 

stage IV. This is in accordance with survival analysis performed, which showed that low 

methylation levels are associated with a poor prognosis. Interestingly, one more time, the 

canonical pathway is not observed, meaning that hypomethylation of cg01847754 is 

associated with down-regulation of CXorf1 gene. Indeed, this gene may be an interesting 

candidate biomarker for cancer prognosis although its role in cancer is not clear yet. 

Then, were identified genes that could predict patient recurrence. CNTD2, SOX1, and 

HTR2C are some of the genes found as predictors of recurrence free survival in stages II, 

III, and IV, respectively. Specifically, CNTD2 was found over-expressed in stage II CRC 

tissue which is in agreement with a poor prognostic associated with high gene expression 

levels. CNTD2 is a member of the cyclin family which can control the cell cycle. When 

there are alterations on genes that regulate the cell cycle, the consequence may be 

uncontrolled cell growth. Recently, this gene was reported as a new oncogenic driver in 

lung cancer200. 

HTR2C is up-regulated in stage IV of our cohort, and, as expected, high expression levels 

of this gene are associated with a poor prognosis. In agreement with our finding, other 

studies have already reported an over-expression of HTR2C in tumor tissue204. 

Interestingly, HTR2C is a receptor of serotonin involved in cell growth204,205. Also, there 

are evidences that serotonin plays a key role in aggressive tumors, mainly when HTR2C 

is present205. 

We also observed that high SOX1 expression levels in stage III is associated with a poor 

prognosis. Similar to SOX1, SNAP91, and KHDC1L were found to be predictors of both 

survival and recurrence for CRC patients in stages II, and IV, respectively. This suggest 

that the expression levels of these genes should be monitored even after cancer treatment. 

Moreover, SOX1, and SNAP91 were also identified as correlated with survival in different 

types of cancers including glioblastomas265–267. Additionally, studies reported aberrant 

methylation of SOX1 in a CRC cohort, validating our results263. Regarding to KHDC1L, 

there are no reports associating it neither to CRC nor to cancer in general. 
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Furthermore, our findings revealed that there are CpG sites that allow to differentiate 

patient recurrence. For example, cg06162589 located in the 3’UTR of SLC5A8, 

cg03700449 located in the first exon of ASCL1, and cg14772660 located in the gene body 

of SLC5A7 are CpG sites with potential for prognosis in stage II, III, and IV, respectively. 

Moreover, both cg06162589 and cg14772660 are hypomethylated, and positively 

correlated with gene expression levels of tumor tissue, whereas cg03700449 is 

hypermethylated, and negatively correlated with gene expression levels of tumor tissue. 

In addition, Cox analysis reveals that low methylation levels of cg14772660, and high 

levels of cg03700449 are associated with poor prognosis, regarding recurrence free 

survival. Although cg06162589 is hypomethylated in tumor tissue, low methylation 

levels are associated with a better prognosis of CRC patients. In addition, SLC5A8 was 

also identified as down-regulated in colon and other tumors as lung cancer and acute 

myeloid leukemia268–270. In hepatocellular carcinoma, SLC5A8 was also found to be 

down-regulated, which was associated with the inhibition of cancer progression by 

decreasing the expression of proteins such as β-catenin, and c-Myc271. Interestingly, in 

previous studies SLC5A8 has already been reported as a tumor suppressor gene that can 

be silenced by epigenetic mechanisms206,269,270,272–275. In lung adenocarcinomas, ASCL1, 

a gene involved in cell proliferation, survival, and cell cycle control, was found 

overexpressed mainly in smokers, and associated with a poor prognosis. Additionally, in 

the same study it was observed a global hypomethylation of this gene276. Other studies 

have also reported that DNA methylation regulates expression levels of ASCL1 in cancer. 

Interestingly, in medullary thyroid cancer, the expression levels of this gene are decreased 

by the action of NOTCH1277. Moreover, SLC5A7 was also found to be down-regulated in 

different tumor types, being associated with poor prognosis. In contrast, high expression 

levels of this gene are associated with better prognosis in several cancer types. However, 

its role in cancer development remains unclear278. 

Finally, using HJ-biplot multivariate analysis we identified a set of gene expression and 

methylation profiles that can differentiate normal and tumor samples corroborating the 

pipeline previously applied. Also, this analysis allowed to differentiate for each tumor 

stage two different sub-groups suggesting that there are patients who are classified into 

the same stage but have distinct gene expression and methylation patterns. Indeed, this 

might explain why patients at the same stage differ in survival time. However, to validate 

these results, further studies need to be performed. Specifically, to evaluate whether, in 
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fact, the outcome of these two groups are distinct, a Kaplan-Meier analysis followed by 

a logrank test can be performed.  

In summary, epigenetic changes are dynamic across CRC initiation and progression, and 

can influence the expression of genes involved in this process, including genes with 

functions related to the nervous system regulation. Using specific cut-offs for certain 

differentially expressed genes or differentially methylated CpG sites, it was possible to 

distinguish tumor from normal tissue, in an early stages of the disease (stage I), and 

determine patient outcomes (overall survival and recurrence free survival). 

 

5.1. Limitations 

The current study presents some limitations including: 

a. The sample size should be larger and similar for each stage. 

b. Normal samples are from tumor adjacent tissues and, in some cases, they might 

not be normal anymore. It would be better to have normal tissue from individuals 

without disease. 

c. The clinical information should be more robust as the current one presented some 

difficulties to standardize our groups. 

d. In the HJ-biplot representation, it was only taken in account both first and second 

dimensions. 
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6. CHAPTER VI- CONCLUSION 

This whole-genome analysis provides advances in the knowledge of epigenetic dynamics 

across CRC initiation and progression. 

Here, we created an epigenetic roadmap, identifying new biomarkers for CRC that can be 

potentially used in the clinic for CRC detection and prediction of survival and recurrence. 

Firstly, we defined a pipeline based on a statistical analysis to identify which genes and 

CpG sites are differentially expressed and methylated in each TNM stage of tumor tissue, 

when compared to normal tissue. 

Epigenetic alterations are present in CRC progression although only 85 genes with 

significant different expression profiles are common to all stages of CRC progression. 

Interestingly, we also found expression and methylation profiles specific to different 

stages of CRC. 

Moreover, this specific expression and methylation profiles can distinguish two sub-

groups of patients with distinct outcomes at the same cancer stage.  

Additionally, we have identified genes differentially expressed with CpG sites 

differentially methylated in CRC that have never been reported to be associated to CRC 

or cancer in general.  

Furthermore, our multivariate analysis showed that our pipeline was efficient in 

distinguishing tumor from normal samples and that a small set of genes with distinct 

expression and methylation profiles can distinguish different subgroups of patients in the 

same tumor stage. 

In conclusion, our findings evidence that epigenetic alterations are dynamic across CRC 

initiation and progression and may have clinical applications. 

However, further analyzes are needed. In the future, these findings should be validated in 

other cohorts, including cohorts with a larger sample size for each stage.  



84 
 

  



85 
 

REFERENCES 

1. Hajdu, S. I. Greco-Roman thought about cancer. Cancer 100, 2048–2051 (2004). 

2. Sudhakar, A. History of Cancer, Ancient and Modern Treatment Methods. J. 

Cancer Sci. Ther. 01, i–iv (2009). 

3. Hajdu, S. I. Thoughts about the cause of cancer. Cancer 106, 1643–1649 (2006). 

4. Alter, N. M. Mechanical Irritation as Etiologic Factor of Cancer: Clinical 

Observation. Am. J. Pathol. 1, 511–518.3 (1925). 

5. Plimmer, H. G. THE PARASITIC THEORY OF CANCER. Br. Med. J. 2, 1511–

5 (1903). 

6. Mathur, G., Nain, S. & Sharma, P. K. Cancer: An Overview. Acad. J. Cancer 

Res. 8, 1–9 (2015). 

7. Weinberg, R. A. The Biology of Cancer. (Garland Science, Taylor & Francis 

Group, 1943). 

8. Ferlay, J. et al. Cancer incidence and mortality worldwide: Sources, methods and 

major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015). 

9. Hatzimichael, E., Lagos, K., Sim, V. R., Briasoulis, E. & Crook, T. Epigenetics 

in diagnosis, prognostic assessment and treatment of cancer: an update. EXCLI J. 

13, 954–76 (2014). 

10. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence 

and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 68, 

394–424 (2018). 

11. Laurence, L. Genetic Mutation. Nat. Educ. 1, 113 (2008). 

12. Helleday, T., Eshtad, S. & Nik-Zainal, S. Mechanisms underlying mutational 

signatures in human cancers. Nature Reviews Genetics 15, 585–598 (2014). 

13. Vogelstein, B. et al. Cancer genome landscapes. Science 340, 1546–1558 (2013). 

14. Merid, S. K., Goranskaya, D. & Alexeyenko, A. Distinguishing between driver 

and passenger mutations in individual cancer genomes by network enrichment 

analysis. BMC Bioinformatics 15, (2014). 

15. Pon, J. R. & Marra, M. A. Driver and Passenger Mutations in Cancer. Annu. Rev. 

Pathol. Mech. Dis. 10, 25–50 (2015). 

16. Macconaill, L. E. & Garraway, L. A. Clinical implications of the cancer genome. 

J. Clin. Oncol. 28, 5219–28 (2010). 

17. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 

(2012). 

18. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 

(2000). 

19. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 

144, 646–74 (2011). 

20. Witsch, E., Sela, M. & Yarden, Y. Roles for Growth Factors in Cancer 



86 
 

Progression. Physiology 25, 85–101 (2010). 

21. Ruan, W.-J. & Lai, M.-D. Autocrine Stimulation in Colorectal Carcinoma 

(CRC): Positive Autocrine Loops in Human Colorectal Carcinoma and 

Applicable Significance of Blocking the Loops. Med. Oncol. 21, 01–08 (2004). 

22. Zilfou, J. T. & Lowe, S. W. Tumor Suppressive Functions of p53. Cold Spring 

Harb. Perspect. Biol. 1, a001883–a001883 (2009). 

23. Dyson, N. J. RB1 : a prototype tumor suppressor and an enigma. Genes Dev. 30, 

1492–1502 (2016). 

24. Okegawa, T., Pong, R.-C., Li, Y. & Hsieh, J.-T. The role of cell adhesion 

molecule in cancer progression and its application in cancer therapy. Acta 

Biochim. Pol. 51, 445–57 (2004). 

25. Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 35, 

495–516 (2007). 

26. Bauer, J. H. & Helfand, S. L. New tricks of an old molecule: lifespan regulation 

by p53. Aging Cell 5, 437–440 (2006). 

27. Wong, R. S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. 

Cancer Res. 30, 87 (2011). 

28. Jafri, M. A., Ansari, S. A., Alqahtani, M. H. & Shay, J. W. Roles of telomeres 

and telomerase in cancer, and advances in telomerase-targeted therapies. Genome 

Med. 8, 69 (2016). 

29. Zvereva, M. I., Shcherbakova, D. M. & Dontsova, O. A. Telomerase: structure, 

functions, and activity regulation. Biochemistry. (Mosc). 75, 1563–83 (2010). 

30. Nishida, N., Yano, H., Nishida, T., Kamura, T. & Kojiro, M. Angiogenesis in 

cancer. Vasc. Health Risk Manag. 2, 213–9 (2006). 

31. Nagy, J. A., Chang, S.-H., Dvorak, A. M. & Dvorak, H. F. Why are tumour blood 

vessels abnormal and why is it important to know? Br. J. Cancer 100, 865–869 

(2009). 

32. Wu, Y., Sarkissyan, M. & Vadgama, J. Epithelial-Mesenchymal Transition and 

Breast Cancer. J. Clin. Med. 5, 13 (2016). 

33. Xiao, D. & He, J. Epithelial mesenchymal transition and lung cancer. J. Thorac. 

Dis. 2, 154–9 (2010). 

34. Vu, T. & Datta, P. Regulation of EMT in Colorectal Cancer: A Culprit in 

Metastasis. Cancers (Basel). 9, 171 (2017). 

35. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. 

Clin. Invest. 119, 1420–1428 (2009). 

36. Roche, J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers (Basel). 

10, 52 (2018). 

37. Wei Dai, Y. Y. Genomic Instability and Cancer. J. Carcinog. Mutagen. 05, 

(2014). 

38. Iengar, P. Identifying pathways affected by cancer mutations. Genomics 110, 



87 
 

318–328 (2018). 

39. Broustas, C. G. & Lieberman, H. B. DNA Damage Response Genes and the 

Development of Cancer Metastasis. Radiat. Res. 181, 111–130 (2014). 

40. Bondar, T. & Medzhitov, R. The Origins of Tumor-Promoting Inflammation. 

Cancer Cell 24, 143–144 (2013). 

41. Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related 

inflammation, the seventh hallmark of cancer: links to genetic instability. 

Carcinogenesis 30, 1073–1081 (2009). 

42. Liberti, M. V. & Locasale, J. W. The Warburg Effect: How Does it Benefit 

Cancer Cells? Trends Biochem. Sci. 41, 211–218 (2016). 

43. Jiang, B. Aerobic glycolysis and high level of lactate in cancer metabolism and 

microenvironment. Genes Dis. 4, 25–27 (2017). 

44. Vinay, D. S. et al. Immune evasion in cancer: Mechanistic basis and therapeutic 

strategies. Semin. Cancer Biol. 35, S185–S198 (2015). 

45. Sanchez-Vega, F. et al. Oncogenic Signaling Pathways in The Cancer Genome 

Atlas. Cell 173, 321–337.e10 (2018). 

46. Tecalco-Cruz, A. C., Ríos-López, D. G., Vázquez-Victorio, G., Rosales-Alvarez, 

R. E. & Macías-Silva, M. Transcriptional cofactors Ski and SnoN are major 

regulators of the TGF-β/Smad signaling pathway in health and disease. Signal 

Transduct. Target. Ther. 3, 15 (2018). 

47. Kitamura, K., Aota, S., Sakamoto, R., Emori, T. & Okazaki, K. Smad7 induces 

G0/G1 cell cycle arrest in mesenchymal cells by inhibiting the expression of G1 

cyclins. Dev. Growth Differ. 47, 537–552 (2005). 

48. Shinagawa, T., Dong, H.-D., Xu, M., Maekawa, T. & Ishii, S. The sno gene, 

which encodes a component of the histone deacetylase complex, acts as a tumor 

suppressor in mice. EMBO J. 19, 2280–2291 (2000). 

49. Colak, S. & ten Dijke, P. Targeting TGF-β Signaling in Cancer. Trends in 

Cancer 3, 56–71 (2017). 

50. Pardali, K. & Moustakas, A. Actions of TGF-β as tumor suppressor and pro-

metastatic factor in human cancer. Biochim. Biophys. Acta - Rev. Cancer 1775, 

21–62 (2007). 

51. Lebrun, J.-J. The Dual Role of TGF <math id="M1"> <mrow> <mi 

mathvariant="bold-italic">β</mi> </mrow> </math> in Human Cancer: From 

Tumor Suppression to Cancer Metastasis. ISRN Mol. Biol. 2012, 1–28 (2012). 

52. Seoane, J. & Gomis, R. R. TGF-β Family Signaling in Tumor Suppression and 

Cancer Progression. Cold Spring Harb. Perspect. Biol. 9, a022277 (2017). 

53. Dang, C. V. MYC on the Path to Cancer. Cell 149, 22–35 (2012). 

54. Dang, C. V. Enigmatic MYC Conducts an Unfolding Systems Biology 

Symphony. Genes Cancer 1, 526–531 (2010). 

55. Yu, J. S. L. & Cui, W. Proliferation, survival and metabolism: the role of 



88 
 

PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. 

Development 143, 3050–3060 (2016). 

56. Cunningham, J. T. & Ruggero, D. New Connections between Old Pathways: 

PDK1 Signaling Promotes Cellular Transformation through PLK1-Dependent 

MYC Stabilization. Cancer Discov. 3, 1099–1102 (2013). 

57. Tan, J. et al. PDK1 Signaling Toward PLK1-MYC Activation Confers 

Oncogenic Transformation, Tumor-Initiating Cell Activation, and Resistance to 

mTOR-Targeted Therapy. Cancer Discov. 3, 1156–1171 (2013). 

58. Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in 

cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018). 

59. Regad, T. Targeting RTK Signaling Pathways in Cancer. Cancers (Basel). 7, 

1758–1784 (2015). 

60. Schöneborn, H., Raudzus, F., Coppey, M., Neumann, S. & Heumann, R. 

Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating 

Brain Neurons. Int. J. Mol. Sci. 19, 4052 (2018). 

61. Menegon, S., Columbano, A. & Giordano, S. The Dual Roles of NRF2 in Cancer. 

Trends Mol. Med. 22, 578–593 (2016). 

62. Leinonen, H. M., Kansanen, E., Pölönen, P., Heinäniemi, M. & Levonen, A.-L. 

Role of the Keap1–Nrf2 Pathway in Cancer. in Advances in Cancer Research 

281–320 (Elsevier Inc., 2014). doi:10.1016/B978-0-12-420117-0.00008-6 

63. Zhao, H., Eguchi, S., Alam, A. & Ma, D. The role of nuclear factor-erythroid 2 

related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol. Cell. 

Mol. Physiol. 312, L155–L162 (2017). 

64. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 

1461–1473 (2017). 

65. Centelles, J. J. General Aspects of Colorectal Cancer. ISRN Oncol. 2012, 1–19 

(2012). 

66. Boland, C. R. INFECTION, INFLAMMATION, AND GASTROINTESTINAL 

CANCER. Gut 54, 1321–1331 (2005). 

67. Hao, Q. & Cho, W. Battle Against Cancer: An Everlasting Saga of p53. Int. J. 

Mol. Sci. 15, 22109–22127 (2014). 

68. Brooks, C. L. & Gu, W. New insights into p53 activation. Cell Res. 20, 614–621 

(2010). 

69. Toufektchan, E. & Toledo, F. The Guardian of the Genome Revisited: p53 

Downregulates Genes Required for Telomere Maintenance, DNA Repair, and 

Centromere Structure. Cancers (Basel). 10, 135 (2018). 

70. Avila, J. L. & Kissil, J. L. Notch signaling in pancreatic cancer: oncogene or 

tumor suppressor? Trends Mol. Med. 19, 320–327 (2013). 

71. Kopan, R. Notch Signaling. Cold Spring Harb. Perspect. Biol. 4, a011213–

a011213 (2012). 



89 
 

72. Lasky, J. L. & Wu, H. Notch Signaling, Brain Development, and Human 

Disease. Pediatr. Res. 57, 104R–109R (2005). 

73. Coppedè, F., Lopomo, A., Spisni, R. & Migliore, L. Genetic and epigenetic 

biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J. 

Gastroenterol. 20, 943–956 (2014). 

74. Vatandoust, S., Price, T. J. & Karapetis, C. S. Colorectal cancer: Metastases to a 

single organ. World J. Gastroenterol. 21, 11767–11776 (2015). 

75. Brenner, H., Kloor, M. & Pox, C. P. Colorectal cancer. in The Lancet 383, 1490–

1502 (2014). 

76. Globocan, I. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. World Health 

Organization (2012). doi:10.1074/jbc.M111.260794 

77. Center, M. M., Jemal, A., Smith, R. A. & Ward, E. Worldwide variations in 

colorectal cancer. Diseases of the Colon and Rectum 53, 1099 (2010). 

78. Ting, W.-C. et al. Common genetic variants in Wnt signaling pathway genes as 

potential prognostic biomarkers for colorectal cancer. PLoS One 8, e56196 

(2013). 

79. Migliore, L., Migheli, F., Spisni, R. & Copped, F. Genetics, cytogenetics, and 

epigenetics of colorectal cancer. Journal of Biomedicine and Biotechnology 

2011, (2011). 

80. Taylor, D. P., Burt, R. W., Williams, M. S., Haug, P. J. & Cannon-Albright, L. A. 

Population-Based Family History-Specific Risks for Colorectal Cancer: A 

Constellation Approach. Gastroenterology 138, 877–885 (2010). 

81. Lao, V. V. & Grady, W. M. Epigenetics and colorectal cancer. Nat. Rev. 

Gastroenterol. Hepatol. 8, 686–700 (2011). 

82. American Cancer Society. Colorectal Cancer Risk Factors. Available at: 

https://www.cancer.org/cancer/colon-rectal-cancer/causes-risks-prevention/risk-

factors.html.  

83. Klatsky, A. L. et al. Alcohol intake, beverage choice, and cancer: a cohort study 

in a large kaiser permanente population. Perm. J. 19, 28–34 (2015). 

84. Alexander, D. D., Weed, D. L., Miller, P. E. & Mohamed, M. A. Red Meat and 

Colorectal Cancer: A Quantitative Update on the State of the Epidemiologic 

Science. Journal of the American College of Nutrition 34, 521–543 (2015). 

85. Chan, D. S. M. et al. Red and processed meat and colorectal cancer incidence: 

Meta-analysis of prospective studies. PLoS One 6, (2011). 

86. Coppedè, F. Epigenetic biomarkers of colorectal cancer: Focus on DNA 

methylation. Cancer Letters 342, 238–247 (2014). 

87. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. 

Cell 61, 759–767 (1990). 

88. Verma, M. & Kumar, V. Epigenetic Biomarkers in Colorectal Cancer. Molecular 

Diagnosis and Therapy 21, 153–165 (2017). 



90 
 

89. Easwaran, H., Tsai, H.-C. & Baylin, S. B. Cancer Epigenetics: Tumor 

Heterogeneity, Plasticity of Stem-like States, and Drug Resistance. Mol. Cell 54, 

716–727 (2014). 

90. Armaghany, T., Wilson, J. D., Chu, Q. & Mills, G. Genetic alterations in 

colorectal cancer. Gastrointest. Cancer Res. 5, 19–27 (2012). 

91. Walther, A. et al. Genetic prognostic and predictive markers in colorectal cancer. 

Nat. Rev. Cancer 9, 489–499 (2009). 

92. American Cancer Society. Colorectal Cancer Stages. (2017). 

93. Roadknight, C. et al. Biomarker Clustering of Colorectal Cancer Data to 

Complement Clinical Classification. SSRN Electron. J. (2012). 

doi:10.2139/ssrn.2828496 

94. Zauber, A. G. et al. Colonoscopic Polypectomy and Long-Term Prevention of 

Colorectal-Cancer Deaths. N. Engl. J. Med. 366, 687–696 (2012). 

95. Rex, Douglas K; Boland, C Richard; Dominitz, Jason A; Giardiello, Francis M; 

Johnson, David A; Kaltenbach, Tonya; Levin, Theodore R; Lieberman, David; 

Robertson, D. J. Colorectal Cancer Screening: Recommendations for Physicians 

and Patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Am. 

J. Gastroenterol. 112, 1016–1030 (2017). 

96. Center, M. M., Jemal, A., Smith, R. A. & Ward, E. Worldwide variations in 

colorectal cancer. Dis. Colon Rectum 53, 1099 (2010). 

97. Schreuders, E. H. et al. Colorectal cancer screening: A global overview of 

existing programmes. Gut 64, 1637–1649 (2015). 

98. Fakih, M. G. & Padmanabhan, A. CEA monitoring in colorectal cancer. What 

you should know. Oncology (Williston Park). 20, 579–587; discussion 588, 594, 

596 passim (2006). 

99. Duffy, M. J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it 

clinically useful? Clinical Chemistry 47, 624–630 (2001). 

100. Society, A. C. What Are the Survival Rates for Colorectal Cancer, by Stage? 

(2017). Available at: https://www.cancer.org/cancer/colon-rectal-

cancer/detection-diagnosis-staging/survival-rates.html. (Accessed: 20th August 

2003) 

101. Feinberg, A. P. & Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer 

4, 143–153 (2004). 

102. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. 

Neuropsychopharmacology 38, 23–38 (2013). 

103. Waddington CH. The epigenotype. Endeavour (1942). 

104. Sharma, S., Kelly, T. K. & Jones, P. A. Epigenetics in cancer. Carcinogenesis 31, 

27–36 (2009). 

105. Ahuja, N., Sharma, A. R. & Baylin, S. B. Epigenetic Therapeutics: A New 

Weapon in the War Against Cancer. Annu. Rev. Med. 67, 73–89 (2016). 



91 
 

106. Dupont, C., Armant, D. & Brenner, C. Epigenetics: Definition, Mechanisms and 

Clinical Perspective. Semin. Reprod. Med. 27, 351–357 (2009). 

107. Weksberg, R., Butcher, D. T., Grafodatskaya, D., Choufani, S. & Tycko, B. 

Epigenetics. in Emery and Rimoin’s Principles and Practice of Medical Genetics 

1–31 (Elsevier, 2013). doi:10.1016/B978-0-12-383834-6.00006-9 

108. McBryan, T. & Adams, P. D. Epigenetics. in Handbook of Pharmacogenomics 

and Stratified Medicine 57–69 (Elsevier, 2014). doi:10.1016/B978-0-12-386882-

4.00004-9 

109. Renaud, F. et al. MUC5AC hypomethylation is a predictor of microsatellite 

instability independently of clinical factors associated with colorectal cancer. Int. 

J. Cancer 136, 2811–2821 (2015). 

110. Ebert, M. P. A. et al. TFAP2E-DKK4 and Chemoresistance in Colorectal Cancer. 

N. Engl. J. Med. 366, 44–53 (2012). 

111. Crea, F. et al. Epigenetics and chemoresistance in colorectal cancer: An 

opportunity for treatment tailoring and novel therapeutic strategies. Drug Resist. 

Updat. 14, 280–296 (2011). 

112. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene 

lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 

843–854 (1993). 

113. Chuang, J. C. & Jones, P. A. Epigenetics and microRNAs. Pediatr. Res. 61, 24–

29 (2007). 

114. Meltzer, P. S. NEWS & VIEWS Small RNAs with big impacts. Nature 435, 0–1 

(2005). 

115. MacFarlane, L.-A. & R. Murphy, P. MicroRNA: Biogenesis, Function and Role 

in Cancer. Curr. Genomics 11, 537–561 (2010). 

116. Lin, S. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. 

Cancer 15, 321–333 (2015). 

117. Nelson, K. M. & Weiss, G. J. MicroRNAs and cancer: past, present, and potential 

future. Mol. Cancer Ther. 7, 3655–3660 (2008). 

118. Hayes, J., Peruzzi, P. P. & Lawler, S. MicroRNAs in cancer: Biomarkers, 

functions and therapy. Trends in Molecular Medicine 20, 460–469 (2014). 

119. Kouzarides, T. Chromatin Modifications and Their Function. Cell 128, 693–705 

(2007). 

120. Sawan, C. & Herceg, Z. Histone Modifications and Cancer. Advances in 

Genetics 70, (2010). 

121. Chen, R., Kang, R., Fan, X.-G. & Tang, D. Release and activity of histone in 

diseases. Cell Death Dis. 5, e1370–e1370 (2014). 

122. Barski, A. et al. High-Resolution Profiling of Histone Methylations in the Human 

Genome. Cell 129, 823–837 (2007). 

123. Jin, B. et al. DNMT1 and DNMT3B Modulate Distinct Polycomb-Mediated 



92 
 

Histone Modifications in Colon Cancer. Cancer Res. 69, 7412–7421 (2009). 

124. Gardiner-Garden, M. & Frommer, M. CpG Islands in vertebrate genomes. J. Mol. 

Biol. 196, 261–282 (1987). 

125. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nature 

Biotechnology 28, 1057–1068 (2010). 

126. Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in 

the epigenetic hierarchy? Genes Cancer 2, 607–17 (2011). 

127. Bert, S. A. et al. Regional activation of the cancer genome by long-range 

epigenetic remodeling. Cancer Cell 23, 9–22 (2013). 

128. Strimbu, K. & Tavel, J. A. What are biomarkers? Current Opinion in HIV and 

AIDS 5, 463–466 (2010). 

129. Danese, E. et al. Epigenetic alteration: new insights moving from tissue to 

plasma – the example of PCDH10 promoter methylation in colorectal cancer. Br. 

J. Cancer 109, 807–813 (2013). 

130. Leygo, C. et al. DNA Methylation as a Noninvasive Epigenetic Biomarker for 

the Detection of Cancer. Dis. Markers 2017, 1–13 (2017). 

131. Tang, D. et al. Diagnostic and prognostic value of the methylation status of 

secreted frizzled-related protein 2 in colorectal cancer. Clin. Invest. Med. 34, 

E88-95 (2011). 

132. Lange, C. P. E. et al. Genome-Scale Discovery of DNA-Methylation Biomarkers 

for Blood-Based Detection of Colorectal Cancer. PLoS One 7, (2012). 

133. Oh, T. et al. Genome-wide identification and validation of a novel methylation 

biomarker, SDC2, for blood-based detection of colorectal cancer. J. Mol. 

Diagnostics 15, 498–507 (2013). 

134. Luo, Y. X., Chen, D. K., Song, S. X., Wang, L. & Wang, J. P. Aberrant 

methylation of genes in stool samples as diagnostic biomarkers for colorectal 

cancer or adenomas: A meta-analysis. International Journal of Clinical Practice 

65, 1313–1320 (2011). 

135. Yang, H. et al. Diagnostic value of stool DNA testing for multiple markers of 

colorectal cancer and advanced adenoma: A meta-analysis. Canadian Journal of 

Gastroenterology 27, 467–475 (2013). 

136. Blei, D. M. & Smyth, P. Science and data science. Proc. Natl. Acad. Sci. 114, 

8689–8692 (2017). 

137. Cao, L. Data science and analytics: a new era. Int. J. Data Sci. Anal. 1, 1–2 

(2016). 

138. Marx, V. The big challenges of big data. Nature 498, 255–260 (2013). 

139. Dunn, M. C. & Bourne, P. E. Building the biomedical data science workforce. 

PLOS Biol. 15, e2003082 (2017). 

140. R Core Team. R Development Core Team. R: A Language and Environment for 

Statistical Computing 55, 275–286 (2017). 



93 
 

141. Jonge, E. van der Loo, M. An introduction to data cleaningwith R. Stat. 

Netherlands (2013). 

142. Colaprico, A. et al. TCGAbiolinks: An R/Bioconductor package for integrative 

analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016). 

143. Tomczak, K., Czerwińska, P. & Wiznerowicz, M. The Cancer Genome Atlas 

(TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Poznań, 

Poland) 19, A68-77 (2015). 

144. Silva, T. C. et al. TCGA Workflow: Analyze cancer genomics and epigenomics 

data using Bioconductor packages. F1000Research 5, 1542 (2016). 

145. Dedeurwaerder, S. et al. A comprehensive overview of Infinium 

HumanMethylation450 data processing. Brief. Bioinform. 15, 929–941 (2014). 

146. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis 

web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016). 

147. Kovalchik, S. RISmed: Download Content from NCBI Databases. R package 

version 2.1.7 (2017). 

148. Robin, X. et al. pROC: an open-source package for R and S+ to analyze and 

compare ROC curves. BMC Bioinformatics 12, 77 (2011). 

149. El Khouli, R. H. et al. Relationship of temporal resolution to diagnostic 

performance for dynamic contrast enhanced MRI of the breast. J. Magn. Reson. 

Imaging 30, 999–1004 (2009). 

150. Therneau, T. & Grambsch, P. Modeling Survival Data: Extending the Cox 

Model. Springer-Verlag (2000). 

151. Therneau, T. A Package for Survival Analysis in S. version 2.38 (2015). 

152. Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a 

guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350 (2016). 

153. Bakan, D. The test of significance in psychological research. Psychol. Bull. 66, 

423–437 (1966). 

154. Qu, H.-Q. H.-Q., Tien, M. & Polychronakos, C. Statistical significance in genetic 

association studies. Clin. Investig. Med. 33, E266–E270 (2010). 

155. MCDONALD, J. H. HANDBOOK OF BIOLOLOGICAL STATISTICS. 

(SPARKY HOUSE PUBLISHING, 2014). 

156. Hair, J. F., Anderson, R. E., Tatham, R. E., Black, W. C. Análisis Multivariante. 

(1999). 

157. Kitchen, C. M. R. Nonparametric vs Parametric Tests of Location in Biomedical 

Research. American Journal of Ophthalmology 147, 571–572 (2009). 

158. Aguinis, H., Gottfredson, R. K. & Joo, H. Best-Practice Recommendations for 

Defining, Identifying, and Handling Outliers. Organ. Res. Methods 16, 270–301 

(2013). 

159. Kwak, S. K. & Kim, J. H. Statistical data preparation: management of missing 

values and outliers. Korean J. Anesthesiol. 70, 407 (2017). 



94 
 

160. Rousseeuw, P. J. & Hubert, M. Robust statistics for outlier detection. Wiley 

Interdiscip. Rev. Data Min. Knowl. Discov. 1, 73–79 (2011). 

161. Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk , Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2, 21–33 

(2011). 

162. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biometrics Bull. 

(1945). doi:10.2307/3001968 

163. Welch, B. L. The Generalization of `Student’s’ Problem when Several Different 

Population Variances are Involved. Biometrika 34, 28 (1947). 

164. Kim, T. K. T test as a parametric statistic. Korean J. Anesthesiol. 68, 540 (2015). 

165. Levene, H. Robust tests for equality of variances. In Contributions to Probability 

and Statistics: Essays in Honor of Harold Hotelling. Stanford Univ. Press 278–

292 (1960). 

166. Weisberg, S. & Fox, J. An R Companion to Applied Regression. (Thousand Oaks: 

Sage, 2011). 

167. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical 

and powerful approach to multiple testing. Journal of the Royal Statistical 

Society B 57, 289–300 (1995). 

168. Mukaka, M. M. Statistics corner: A guide to appropriate use of correlation 

coefficient in medical research. Malawi Med. J. 24, 69–71 (2012). 

169. Spearman, C. Spearman ’ s rank correlation coefficient. Amer. J. Psychol. 15, 

72–101 (1904). 

170. Spearman, C. The Proof and Measurement of Association between Two Things. 

Am. J. Psychol. 15, 72 (1904). 

171. Metz, C. E. Basic principles of ROC analysis. Semin. Nucl. Med. VIII, 238–298 

(1978). 

172. Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test 

assessment. Journal of Thoracic Oncology (2010). 

doi:10.1097/JTO.0b013e3181ec173d 

173. Kaplan, E. L. & Meier, P. Nonparametric Estimation from Incomplete 

Observations. J. Am. Stat. Assoc. 53, 457 (1958). 

174. Clark, T. G., Bradburn, M. J., Love, S. B. & Altman, D. G. Survival Analysis 

Part I: Basic concepts and first analyses. Br. J. Cancer 89, 232–238 (2003). 

175. Jager, K. J., van Dijk, P. C., Zoccali, C. & Dekker, F. W. The analysis of survival 

data: the Kaplan–Meier method. Kidney Int. 74, 560–565 (2008). 

176. Andersen, P. K. & Gill, R. D. Cox’s Regression Model for Counting Processes: 

A Large Sample Study. Ann. Stat. (1982). doi:10.1214/aos/1176345976 

177. Cox, D. R. Regression models and life tables. J. R. Stat. Soc. Ser. B 34 187–200 

(1972). 

178. Bradburn, M. J., Clark, T. G., Love, S. B. & Altman, D. G. Survival Analysis 



95 
 

Part II: Multivariate data analysis – an introduction to concepts and methods. Br. 

J. Cancer 89, 431–436 (2003). 

179. Kassambara, A. & Kosinski, M. survminer: Drawing Survival Curves using 

‘ggplot2’. R package version 0.4.2 (2018). 

180. Galindo, M. P. Una alternativa de representación simultánea: HJ-biplot. Questíio 

10, 13–23 (1986). 

181. Vicente-Villardon, J. L. MultBiplotR: MULTivariate Analysis Using BIPLOTs. 

R package version 18.2.09 (2018). 

182. Tenenbaum, D. KEGGREST: Client-side REST access to KEGG. R package 

version 1.20.0 (2018). 

183. Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-

customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, 35 (2011). 

184. Fishell, G. & Hatten, M. E. Astrotactin provides a receptor system for CNS 

neuronal migration. Development 113, 755–65 (1991). 

185. Zheng, C., Heintz, N. & Hatten, M. E. CNS gene encoding astrotactin, which 

supports neuronal migration along glial fibers. Science 272, 417–9 (1996). 

186. Adams, N. C., Tomoda, T., Cooper, M., Dietz, G. & Hatten, M. E. Mice that lack 

astrotactin have slowed neuronal migration. Development 129, 965–72 (2002). 

187. Beggs, A. et al. Hypermethylation of SNAP91 as an alternative mechanism of 

epidermal growth factor signalling dysregulation: a genome-wide meta-analysis 

with validation of colorectal cancers. Lancet 383, S25 (2014). 

188. Somaiah, N. et al. Targeted next generation sequencing of well-

differentiated/dedifferentiated liposarcoma reveals novel gene amplifications and 

mutations. Oncotarget 9, 19891–19899 (2018). 

189. Qin, Z. et al. ZNF536, a Novel Zinc Finger Protein Specifically Expressed in the 

Brain, Negatively Regulates Neuron Differentiation by Repressing Retinoic 

Acid-Induced Gene Transcription. Mol. Cell. Biol. 29, 3633–3643 (2009). 

190. Li, J. et al. A data mining paradigm for identifying key factors in biological 

processes using gene expression data. Sci. Rep. 8, 9083 (2018). 

191. Lebbink, R. J. et al. The soluble leukocyte-associated Ig-like receptor (LAIR)-2 

antagonizes the collagen/LAIR-1 inhibitory immune interaction. J. Immunol. 

180, 1662–9 (2008). 

192. Lin, Y.-W. et al. SOX1 suppresses cell growth and invasion in cervical cancer. 

Gynecol. Oncol. 131, 174–181 (2013). 

193. Geng, L. N. et al. DUX4 Activates Germline Genes, Retroelements, and Immune 

Mediators: Implications for Facioscapulohumeral Dystrophy. Dev. Cell 22, 38–

51 (2012). 

194. Heubach, J. et al. The long noncoding RNA HOTAIR has tissue and cell type-

dependent effects on HOX gene expression and phenotype of urothelial cancer 

cells. Mol. Cancer 14, 108 (2015). 



96 
 

195. de Vetten, M., Ploos van Amstel, H. K. & Reitsma, P. H. RFLP for the human 

prothrombin (F2) gene. Nucleic Acids Res. 18, 5917 (1990). 

196. Pozzi, N. & Di Cera, E. Prothrombin structure: unanticipated features and 

opportunities. Expert Rev. Proteomics 11, 653–655 (2014). 

197. Jakobs, P. M. et al. Autosomal-Dominant Congenital Cataract Associated with a 

Deletion Mutation in the Human Beaded Filament Protein Gene BFSP2. Am. J. 

Hum. Genet. 66, 1432–1436 (2000). 

198. DEMOKAN, S. et al. Validation of nucleolar protein 4 as a novel methylated 

tumor suppressor gene in head and neck cancer. Oncol. Rep. 31, 1014–1020 

(2014). 

199. Zhang, S., Li, M., Ji, H. & Fang, Z. Landscape of transcriptional deregulation in 

lung cancer. BMC Genomics 19, 435 (2018). 

200. Gasa, L. et al. A systematic analysis of orphan cyclins reveals CNTD2 as a new 

oncogenic driver in lung cancer. Sci. Rep. 7, 10228 (2017). 

201. Burns, M. E., Sasaki, T., Takai, Y. & Augustine, G. J. Rabphilin-3A: A 

Multifunctional Regulator of Synaptic Vesicle Traffic. J. Gen. Physiol. 111, 243–

255 (1998). 

202. Kato, K. et al. Structural and functional insights into IZUMO1 recognition by 

JUNO in mammalian fertilization. Nat. Commun. 7, 12198 (2016). 

203. Lagman, D., Sundström, G., Ocampo Daza, D., Abalo, X. M. & Larhammar, D. 

Expansion of transducin subunit gene families in early vertebrate 

tetraploidizations. Genomics 100, 203–211 (2012). 

204. Soll, C. et al. Serotonin promotes tumor growth in human hepatocellular cancer. 

Hepatology 51, 1244–54 (2010). 

205. Sarrouilhe, D., Clarhaut, J., Defamie, N. & Mesnil, M. Serotonin and cancer: 

what is the link? Curr. Mol. Med. 15, 62–77 (2015). 

206. Babu, E. et al. Role of SLC5A8, a plasma membrane transporter and a tumor 

suppressor, in the antitumor activity of dichloroacetate. Oncogene 30, 4026–4037 

(2011). 

207. Raposo, A. A. S. F. et al. Ascl1 Coordinately Regulates Gene Expression and the 

Chromatin Landscape during Neurogenesis. Cell Rep. 10, 1544–1556 (2015). 

208. Choudhary, P. et al. Discovery of Compounds that Positively Modulate the High 

Affinity Choline Transporter. Front. Mol. Neurosci. 10, (2017). 

209. Wei, J. et al. Integrated analysis of genome-wide DNA methylation and gene 

expression profiles identifies potential novel biomarkers of rectal cancer. 

Oncotarget 7, (2016). 

210. Naumov, V. A. et al. Genome-scale analysis of DNA methylation in colorectal 

cancer using Infinium HumanMethylation450 BeadChips. Epigenetics 8, 921–

934 (2013). 

211. Vidal, E. et al. A DNA methylation map of human cancer at single base-pair 

resolution. Oncogene 36, 5648–5657 (2017). 



97 
 

212. Lim, D. H. K. & Maher, E. R. DNA methylation: a form of epigenetic control of 

gene expression. Obstet. Gynaecol. 12, 37–42 (2010). 

213. Siegfried, Z. & Simon, I. DNA methylation and gene expression. Wiley 

Interdiscip. Rev. Syst. Biol. Med. 2, 362–371 (2010). 

214. Shigaki, H. et al. Epigenetic changes in gastrointestinal cancers. J. Cancer 

Metastasis Treat. 1, 113 (2015). 

215. Fardi, M., Solali, S. & Farshdousti Hagh, M. Epigenetic mechanisms as a new 

approach in cancer treatment: An updated review. Genes Dis. 5, 304–311 (2018). 

216. Burggren, W. W. Dynamics of epigenetic phenomena: intergenerational and 

intragenerational phenotype ‘washout’. J. Exp. Biol. 218, 80–87 (2015). 

217. Kim, M. & Costello, J. DNA methylation: an epigenetic mark of cellular 

memory. Exp. Mol. Med. 49, e322–e322 (2017). 

218. Kim, Y.-H. et al. CpG island methylation of genes accumulates during the 

adenoma progression step of the multistep pathogenesis of colorectal cancer. 

Genes, Chromosom. Cancer 45, 781–789 (2006). 

219. Øster, B. et al. Identification and validation of highly frequent CpG island 

hypermethylation in colorectal adenomas and carcinomas. Int. J. Cancer 129, 

2855–2866 (2011). 

220. Mishra, N. K. & Guda, C. Genome-wide DNA methylation analysis reveals 

molecular subtypes of pancreatic cancer. Oncotarget 8, (2017). 

221. Yang, X. et al. Gene body methylation can alter gene expression and is a 

therapeutic target in cancer. Cancer Cell 26, 577–590 (2014). 

222. Neri, F. et al. Intragenic DNA methylation prevents spurious transcription 

initiation. Nature 543, 72–77 (2017). 

223. Teissandier, A. & Bourc’his, D. Gene body DNA methylation conspires with 

H3K36me3 to preclude aberrant transcription. EMBO J. 36, 1471–1473 (2017). 

224. Castelo-Branco, P. et al. Methylation of the TERT promoter and risk 

stratification of childhood brain tumours: an integrative genomic and molecular 

study. Lancet Oncol. 14, 534–542 (2013). 

225. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer 

therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2017). 

226. Satow, R., Inagaki, S., Kato, C., Shimozawa, M. & Fukami, K. Identification of 

zinc finger protein of the cerebellum 5 as a survival factor of prostate and 

colorectal cancer cells. Cancer Sci. 108, 2405–2412 (2017). 

227. Druck, T. et al. The DIRC1 gene at chromosome 2q33 spans a familial RCC-

associated t(2;3)(q33;q21) chromosome translocation. J. Hum. Genet. 46, 583–

589 (2001). 

228. Kim, Y.-J., Yoon, B., Han, K. & Park, B. C. Comprehensive Transcriptome 

Profiling of Balding and Non-Balding Scalps in Trichorhinophalangeal 

Syndrome Type I Patient. Ann. Dermatol. 29, 597 (2017). 



98 
 

229. Bian, Z. et al. LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis 

in colorectal cancer by regulating PKM2 signaling. Clin. Cancer Res. 

clincanres.2967.2017 (2018). doi:10.1158/1078-0432.CCR-17-2967 

230. Li, F., Wang, T. & Tang, S. SOX14 promotes proliferation and invasion of 

cervical cancer cells through Wnt/β-catenin pathway. Int. J. Clin. Exp. Pathol. 8, 

1698–704 (2015). 

231. Iancu, I. V. et al. LINC01101 and LINC00277 expression levels as novel factors 

in HPV-induced cervical neoplasia. J. Cell. Mol. Med. 21, 3787–3794 (2017). 

232. Jing, X. et al. Peptidoglycan Recognition Protein 3 and Nod2 Synergistically 

Protect Mice from Dextran Sodium Sulfate–Induced Colitis. J. Immunol. 193, 

3055–3069 (2014). 

233. Kim, E. R. Colorectal cancer in inflammatory bowel disease: The risk, 

pathogenesis, prevention and diagnosis. World J. Gastroenterol. 20, 9872–9881 

(2014). 

234. Testa, U., Pelosi, E. & Castelli, G. Colorectal Cancer: Genetic Abnormalities, 

Tumor Progression, Tumor Heterogeneity, Clonal Evolution and Tumor-

Initiating Cells. Med. Sci. 6, 31 (2018). 

235. Luchtenborg, M., White, K. K. L., Wilkens, L., Kolonel, L. N. & Le Marchand, 

L. Smoking and Colorectal Cancer: Different Effects by Type of Cigarettes? 

Cancer Epidemiol. Biomarkers &amp; Prev. 16, 1341–1347 (2007). 

236. Anderson, J. C. et al. Prevalence of colorectal neoplasia in smokers. Am. J. 

Gastroenterol. 98, 2777–2783 (2003). 

237. Chao, A. et al. Cigarette smoking and colorectal cancer mortality in the cancer 

prevention study II. J. Natl. Cancer Inst. 92, 1888–96 (2000). 

238. Chen, K., Xia, G., Zhang, C. & Sun, Y. Correlation between smoking history and 

molecular pathways in sporadic colorectal cancer: a meta-analysis. Int. J. Clin. 

Exp. Med. 8, 3241–57 (2015). 

239. Fang, Z.-Q. et al. Gene expression profile and enrichment pathways in different 

stages of bladder cancer. Genet. Mol. Res. 12, 1479–1489 (2013). 

240. Liu, J. et al. Aberrantly methylated-differentially expressed genes and pathways 

in colorectal cancer. Cancer Cell Int. 17, 75 (2017). 

241. Vitale, G., Dicitore, A., Mari, D. & Cavagnini, F. A new therapeutic strategy 

against cancer: cAMP elevating drugs and leptin. Cancer Biol. Ther. 8, 1191–

1193 (2009). 

242. Dong, H., Claffey, K. P., Brocke, S. & Epstein, P. M. Inhibition of breast cancer 

cell migration by activation of cAMP signaling. Breast Cancer Res. Treat. 152, 

17–28 (2015). 

243. Wang, X., Kaczor-Urbanowicz, K. E. & Wong, D. T. W. Salivary biomarkers in 

cancer detection. Med. Oncol. 34, 7 (2017). 

244. Bajaj, A., Driver, J. A. & Schernhammer, E. S. Parkinson’s disease and cancer 

risk: a systematic review and meta-analysis. Cancer Causes Control 21, 697–707 

(2010). 



99 
 

245. Becker, C., Brobert, G. P., Johansson, S., Jick, S. S. & Meier, C. R. Cancer risk 

in association with Parkinson disease: A population-based study. Parkinsonism 

Relat. Disord. 16, 186–190 (2010). 

246. Roe, C. M. et al. Cancer linked to Alzheimer disease but not vascular dementia. 

Neurology 74, 106–112 (2010). 

247. Plun-Favreau, H., Lewis, P. A., Hardy, J., Martins, L. M. & Wood, N. W. Cancer 

and Neurodegeneration: Between the Devil and the Deep Blue Sea. PLoS Genet. 

6, e1001257 (2010). 

248. Sato, Y. et al. Report of an autopsy case of colon cancer with amyotrophic lateral 

sclerosis. Nihon Shokakibyo Gakkai Zasshi 104, 1365–70 (2007). 

249. Taguchi, Y. & Wang, H. Genetic Association between Amyotrophic Lateral 

Sclerosis and Cancer. Genes (Basel). 8, 243 (2017). 

250. Lu, R. et al. Neurons generated from carcinoma stem cells support cancer 

progression. Signal Transduct. Target. Ther. 2, 16036 (2017). 

251. Jobling, P. et al. Nerve-Cancer Cell Cross-talk: A Novel Promoter of Tumor 

Progression. Cancer Res. 75, 1777–1781 (2015). 

252. Hanoun, M., Maryanovich, M., Arnal-Estapé, A. & Frenette, P. S. Neural 

Regulation of Hematopoiesis, Inflammation, and Cancer. Neuron 86, 360–373 

(2015). 

253. Entschladen, F., Drell, T. L., Lang, K., Joseph, J. & Zaenker, K. S. Tumour-cell 

migration, invasion, and metastasis: navigation by neurotransmitters. Lancet 

Oncol. 5, 254–258 (2004). 

254. Mancino, M., Ametller, E., Gascón, P. & Almendro, V. The neuronal influence 

on tumor progression. Biochim. Biophys. Acta - Rev. Cancer 1816, 105–118 

(2011). 

255. Grabowski, P. et al. Neuroendocrine differentiation is a relevant prognostic factor 

in stage III–IV colorectal cancer. Eur. J. Gastroenterol. Hepatol. 13, 405–411 

(2001). 

256. Marchesi, F., Piemonti, L., Mantovani, A. & Allavena, P. Molecular mechanisms 

of perineural invasion, a forgotten pathway of dissemination and metastasis. 

Cytokine Growth Factor Rev. 21, 77–82 (2010). 

257. Bapat, A. A., Hostetter, G., Von Hoff, D. D. & Han, H. Perineural invasion and 

associated pain in pancreatic cancer. Nat. Rev. Cancer 11, 695–707 (2011). 

258. Duchalais, E. et al. Colorectal Cancer Cells Adhere to and Migrate Along the 

Neurons of the Enteric Nervous System. Cell. Mol. Gastroenterol. Hepatol. 5, 

31–49 (2018). 

259. Inohara, N. CIDE, a novel family of cell death activators with homology to the 

45kDa subunit of the DNA fragmentation factor. EMBO J. 17, 2526–2533 

(1998). 

260. de Nadal, E., Ammerer, G. & Posas, F. Controlling gene expression in response 

to stress. Nat. Rev. Genet. 12, 833–845 (2011). 



100 
 

261. Chang, H. Cleave but not leave: Astrotactin proteins in development and disease. 

IUBMB Life 69, 572–577 (2017). 

262. Jen, J. & Wang, Y.-C. Zinc finger proteins in cancer progression. J. Biomed. Sci. 

23, 53 (2016). 

263. Huang, J. et al. DNA hypermethylated status and gene expression of 

PAX1/SOX1 in patients with colorectal carcinoma. Onco. Targets. Ther. 10, 

4739–4751 (2017). 

264. Herman, J. G. & Baylin, S. B. Gene Silencing in Cancer in Association with 

Promoter Hypermethylation. N. Engl. J. Med. 349, 2042–2054 (2003). 

265. Gao, Y.-F. et al. COL3A1 and SNAP91: novel glioblastoma markers with 

diagnostic and prognostic value. Oncotarget 7, (2016). 

266. Lou, J. et al. Prognostic significance of SOX-1 expression in human 

hepatocelluar cancer. Int. J. Clin. Exp. Pathol. 8, 5411–8 (2015). 

267. Guan, Z. et al. SOX1 down-regulates β-catenin and reverses malignant 

phenotype in nasopharyngeal carcinoma. Mol. Cancer 13, 257 (2014). 

268. Miyauchi, S., Gopal, E., Fei, Y.-J. & Ganapathy, V. Functional Identification of 

SLC5A8, a Tumor Suppressor Down-regulated in Colon Cancer, as a Na + -

coupled Transporter for Short-chain Fatty Acids. J. Biol. Chem. 279, 13293–

13296 (2004). 

269. Park, J. Y. et al. Gene silencing of SLC5A8 identified by genome-wide 

methylation profiling in lung cancer. Lung Cancer 79, 198–204 (2013). 

270. Whitman, S. P. et al. DNA hypermethylation and epigenetic silencing of the 

tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL 

partial tandem duplication. Blood 112, 2013–2016 (2008). 

271. Hu, B.-S., Xiong, S.-M., Li, G. & Li, J.-P. Downregulation of SLC5A8 inhibits 

hepatocellular carcinoma progression through regulation of Wnt/β-catenin 

signaling. Tumor Biol. 37, 13445–13453 (2016). 

272. Ganapathy, V., Gopal, E., Miyauchi, S. & Prasad, P. D. Biological functions of 

SLC5A8, a candidate tumour suppressor. Biochem. Soc. Trans. 33, 237–240 

(2005). 

273. Ueno, M. et al. Aberrant Methylation and Histone Deacetylation Associated with 

Silencing of SLC5A8 in Gastric Cancer. Tumor Biol. 25, 134–140 (2004). 

274. Park, J. Y. et al. Candidate tumor suppressor gene SLC5A8 is frequently down-

regulated by promoter hypermethylation in prostate tumor. Cancer Detect. Prev. 

31, 359–365 (2007). 

275. Bhutia, Y. D. et al. SLC transporters as a novel class of tumour suppressors: 

identity, function and molecular mechanisms. Biochem. J. 473, 1113–1124 

(2016). 

276. Miyashita, N. et al. An Integrative Analysis of Transcriptome and Epigenome 

Features of ASCL1–Positive Lung Adenocarcinomas. J. Thorac. Oncol. 13, 

1676–1691 (2018). 



101 
 

277. Truong, N., Chun, S. M., Kim, T. I., Suh, Y. A. & Jang, S. J. Hypermethylation 

of adjacent CpG sites is negatively correlated with the expression of lineage 

oncogene ASCL1 in pulmonary neuroendocrine tumors. Tumor Biol. 39, 

101042831770622 (2017). 

278. Li, M., Sun, Q. & Wang, X. Transcriptional landscape of human cancers. 

Oncotarget 8, (2017). 

 


