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Abstract  
Identifying and modeling of biological systems is very useful to understand cell's dynamic. To know what really 
happens inside the cell we need to observe the state of a cell. In fact observability is a structural property of a 
control system defined as the possibility to deduce the state of the system from observing its input-output 
behavior. Any complex cell model is a combination of some minimal models which are simpler than complex cell 
model because they have two dimensions. These models can describe the behavior of the cell. The property of 
observability for nonlinear systems is very useful in analyzing such systems. This paper deals with the 
observability of minimal cell models. Based on the fact that the minimal cell models are nonlinear, analyzing the 
property of these models needs nonlinear methods. The method has been used for observability is Lie Derivative. 
The results indicate observability of minimal cell models. 
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Introduction 
Neurons are responsible for transmitting messages 
throughout the body via long distance electrical signals 
known as action potentials (AP). These depend on the 
active transport of sodium and potassium ions across 
the cell membrane. At the cellular level, the electrical 
signal excitable cells amplify and propagate is a change 
in the potential across a cell’s membrane, caused by 
different ion currents flowing through the membrane’s 
channels. In fact for each excitation event, the electrical 
signal is called an AP. For non-pacemaking excitable 
cells, an AP is an externally triggered all or nothing 
response to an external stimulus: if the stimulus is 
sufficiently strong, the cell fires an excitation AP [1]. 
The effect of various drugs on the process of neuron 
firing is a current research interest. The 
Hodgkin-Huxley equations mathematically model the 
influx and efflux of these ions across the cell membrane. 
One of the most important models in computational 
neuroscience is the Hodgkin-Huxley model of the squid 
giant axon [2]. The Hodgkin-Huxley model is a 
combination of minimal models. A mixture of one 
amplifying and one resonant gating variable results a 
minimal model. Each minimal model can oscillate at 
least from some values of its parameters. There are only 
few minimal models and understanding their dynamics 
can shed light on dynamics of more complicated 
electrophysiological models [3]. 

To know what really happens inside the cell we 
need to observe the state of a cell. In fact observability 
is a structural property of a control system defined as 
the possibility to deduce the state of the system from 
observing its input-output behaviour [4]. In some cases 
these states cannot be measured directly. Here we need 
to observe them by an observer and check the 
observability of such systems. Observability is a useful 
property for analyzing minimal models. Minimal 
models can be represented by nonlinear differential 
equations. So we must use nonlinear approach to 
analyze the properties of such systems. 

Problem Formulation 
a) Hodgkin-Huxley Model 
Using pioneering experimental techniques of that time, 
Hodgkin and Huxley in 1952 [8] determined that squid 
axon has three major current: voltage gated persistent 
K+ current with four activation gates (n4 term), voltage 
gated transient Na+ current with three activation gates 
and one inactivation gate (m3h term) and Ohmic leak 
current, IL, which is carried mostly by Cl- ions. The 
complete set of space clamped Hodgkin-Huxley 
equations is [3]: 

     

                                    

                   (1) 

Where 

           (2)                                                                      

    
By using this formulation, we obtain the minimal 

cell models. 
b) Minimal Cell Models 

Let us do the following thought experiment: 
Consider a conductance-based model capable of 
exhibiting periodic spiking and remove completely a 
current or one of its gating variables, and if the reduced 
model has a limit cycle attractor at least for some values 
of parameters, we arrive at the model that satisfies the 
following two properties: 
 It has a limit cycle attractor, at least for some 

values of parameters. 
 If one removes any current or gating variable, 

the model has only equilibrium attractors for 
any values of parameters. 

We refer to such models as being minimal or 
irreducible for spiking. Thus, minimal models can 
exhibit periodic activity, but their reductions cannot. 
According to this definition, any space-clamped 
conductance-based model is a combination of some 
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minimal ones. If not, then it can be reduced to a new 
minimal model. For example, the Hodgkin-Huxley 
model considered is not minimal for spiking. This 
model consists of three current: leakage ΙL, transient 
sodium ΙNa,t (gating variables m and h) and persistent 
potassium Ιk (gating variable n). 

For definition of the minimal models we employ 
here a bottom-up approach, which is based on the 
following rule: A mixture of one amplifying and one 
resonant gating variable (plus an ohmic leak current) 
results in a minimal model. Indeed neither of the 
variables alone can produce oscillation but both are 
enough [3]. 

The amplifying gating variable is the activation 
variable m for voltage gated inward current or 
inactivation variable h for voltage gated outward 
current. These variables amplify voltage changes via a 
positive feedback loop. Indeed a small depolarization 
increases m and decreases h which in turn increases 
inward and decrease outward current and produce more 
depolarization. Similarly a small hyper polarization 
decreases m and increases h, resulting in less inward 
and more outward current and hence in more hyper 
polarization. 

The resonant gating variable is the inactivation 
variable h for an inward current or activation variable n 
for an outward current. These variables resist voltage 
changes via negative feedback loop. A small 
depolarization decreases h and increases n which in turn 
decreases inward and increases outward current and 
produce a net outward current that resists the 
depolarization. Similarly a small hyper polarization 
produces inward current and possibly rebound 
depolarization. 

A typical neuronal model consists of at least on 
amplifying and at least one resonant gating variable. 
Two amplifying and two resonant gating variables 
produce four different combinations depicted in 
Figure1.  

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
Figure1 any combination of one amplifying and one resonant 
gating variables results in a spiking model. [3] 

However, the number of minimal models is not 
four, but six. The additional models arise due to the fact 
that a pair of gating variables may describe 
activation/inactivation properties of the same current or 
of two different currents [3]. 

INa,p+Ik-model 
One of the most fundamental models in 

computational neuroscience is the ΙNa,p+ Ιk-model 
consisting of a fast Na+ current and a relatively slower 

K+ current 

(3)

                                                                     
Here m (t) is much faster than the voltage variable 

V (t), so that m approaches the asymptotic value 
( )Vm∞  instantaneously. In this case we can substitute

( )Vmm ∞= . 

                                                                 (4) 
INa,t-model 

An interesting example of a spiking mechanism is 
given by the ΙNa,t-model which consisting only of an 
ohmic leak current and a transient voltage-gated inward 
Na+ current. 
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                                                                              (5)  
                                                                      

The upstroke of an action potential is generated 
because of the regenerative process involving the 
activation gate m. This mechanism is similar to the one 
in the Hodgkin-Huxley model or in the ΙNa,p+ Ιk-model: 
Increase of m results in increase of the inward current, 
hence more depolarization and more increase of m until 
the excited state is achieved. At the excited state there is 
a balance of the Na+ inward current and the leak 
outward current. 

Assuming that activation dynamics is 
instantaneous, we use ( )Vmm ∞= in the voltage 
equation and obtain: 

                                                                             (6) 

                                                                      

INa,p+Ih-model 
The system describes the essence of the 

mechanism of slow sub-threshold voltage oscillations 
in some cortical, thalamic, and hippocampal neurons. 

  

                                                                              (7)  
                                       

We assume that the activation kinetics of the Na+ 
current is instantaneous, and use ( )Vmm ∞=  in the 
voltage equation to obtain a two-dimensional system: 

                                                                               (8) 
                                                                    
Ih+Ikir-model 

The persistent Na+current, which amplifies 
damped oscillations in the ΙNa,p+ Ιh-model, can be 

substituted by the K+ inwardly rectifying current Ιkir to 
achieve the same amplifying effect. 

       (9) 

                                                                        
Since kinetics of Ιkir is practically instantaneous, 

we can use ( )Vhh KirKir ∞= ,  in the voltage equation 
above and consider the two-dimensional system 

                                                                              (10)

   

Ik+Ikir-model 
In the Ιk+ Ιkir-model 

                                                                             (11) 

                                                             
The amplifying current is Ιkir with inactivation 

gating variable h, and the resonant current is Ιk with 
activation variable n.  

The kinetics of the amplifying current Ιkir is 
relatively fast so that ( )Vhh ∞=  can be used in the 
voltage equation to reduce the three-dimensional 
system above to a two dimensional system. 

(12) 
                                                                                
IA -model 

The last minimal voltage-gated model has only 
one transient K+ current, often referred to as being 
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A-current ΙA, yet it can also generate sustained 
oscillations. In some sense, the model is similar to the 
ΙNa,t -model. Indeed, each consists of only one transient 
current and an Ohmic leak current. The only difference 
is that A-current is outward, and as a result, the action 
potentials are fired downward. The A-current has 
activation and inactivation variables m, and h, 
respectively, and the model has the form: 

                                                                    (13)          
                                                                                  

We are tempted to substitute ( )Vmm ∞=  into 
the voltage equation above and reduce the ΙA -model to 
a two-dimensional system, which hope-fully would 
have the right kind of nullclines and a limit cycle 
attractor. 

                                              

                        

 

(14) 
                                                                                                                                                                                                            

Then we define the observability property of 
systems. 

Method  

Observability 
Consider the nonlinear system [5]: 

  
(15) 

 
 
 

                                                                                     
                                                                         

Two states 0x  and 1x  are distinguishable if there 
exists an input function u  such that: 

( ) ( )10 xzxz ≠  
The system is locally observable at x0 if exists a 

neighborhood of x0 such that every x in that 
neighborhood other than x0 is distinguishable from x0. 
A test for local observability is that [6]: 
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Here ( )if hL  is the Lie derivative of h with 

respect to f which is defined below [6]: 
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By definition, ( ) hhLf =0 . 

We can also define higher-order Lie Derivatives 
[7]: 
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By this test method, we check the observability of 
each minimal cell model. 

Results 

Observability of Minimal Cell Models 
For each minimal model first we construct l

matrix then O  matrix and then calculate the rank of 
O  matrix. For some conditions the O  matrix is not 
full rank. So we determine the condition that the O  
matrix is full rank and then the system is observable.  

For example in the following we calculate the O
matrix for ΙNa,p+ Ιk-model and write the details for 
checking the observability condition.  

Equation (3) describes the ΙNa,p+ Ιk-model. By 
using these equations, 1f  and 2f  can be written as 
below: 
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Here 0=I . 
After calculation the Lie derivatives we can 

construct the l matrix as below: 

[ ]TfVl 1=                                                         (23) 
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For observability O  must be full rank. So: 

( ) K
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            (25)                                                                  
          

With this condition the system is observable. We 
can run above procedure for other minimal cell model. 
The results are given in Table1. 

 
Table1 Result of checking the observability of minimal 

cell models. 

Conclusion 

Using the results table, all minimal cell models are 
observable except on one line in state plane. By this 
condition we can consider these minimal models 
observable. Here we analyzed the observability 
property of minimal cell models. As a result we can use 
observers like Kalman Filter [8], in this case Extended 
Kalman Filter to observe the states of this nonlinear 
systems and via using a state feedback we can control 
the nonlinear behavior of a cell. In next research we'll 
focus on controllability property [5, 7, 9] of minimal 
cell models. 

Item Model Name Observability Condition 

A KPNa II +,  KEV ≠  

B tNaI ,  NaEV ≠  

C hPNa II +,  hEV ≠  

D Kirh II +  hEV ≠  

E KirK II +  KEV ≠  

F AI  KEV ≠  
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