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Abstract  

Heavy metals as dangerous and long lasting pollutants in environment have been widely studied and 

monitored. Liver is the most important organ in storage and detoxification of these pollutants. Assessment of 

indicators, including changes in intermediate active components between the liver and pollution effect, 

provide sensitive liver biomarkers and can be a suitable index for health condition of fish. In addition, fish 

liver is a favorite model to study interaction between environmental factors and liver structure and 

performance. This review studies variety of liver biomarkers in molecular- cellular (damage to chromosome, 

DNA and lysosome; increasing metallothionein and ferritin levels), biochemical-physiological (transaminase 

enzymes and oxidative enzyme parameters) and morphological-histopathological levels, and investigates 

advantages and disadvantages of these levels. Moreover, restrictions and landscape in the future is discussed 

for these biomarkers exposed to heavy metals pollution. There are many liver biomarkers that can be used for 

identification of initial heavy metal pollution, assessment of health condition of fish and ability of fish to 

defense against pollution challenges. Some of these biomarkers are special for heavy metal pollution while 

the others are non-special.  
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Introduction 

Growth in the human population and the development of industries has led to high levels of water 

pollution that are a serious threat to various aquatic ecosystems. Heavy metal pollution has long-term 

toxic effects and unlike many of the organic pollutants, they are not degraded over time. Even though 

some heavy metals (e.g., Cu, Zn and Mn) [1] are needed for the growth of organisms, they are toxic if 

their concentration exceeds an allowable limit. Other heavy metals do not have any biologic role (e.g., Cd, 

Ag, Hg, Pb and Cr), and are described as xenobiotic [2]. The heavy metals are easily dissolved in water, 

and are therefore absorbed by fish and other aquatic organisms. These pollutants are able to be 

bioconcentrated even at very low concentrations, most specifically in the liver [3], and, therefore, their 

concentrations in organisms is higher than that in the environment. Fishes have particular sensitivity to 

environmental changes, and respond more specifically to pollution than mammals [4]. Thus, measurement 

of biomarkers, either as individual or as population responses to toxic stress resulting from pollution, 

could be used to easily and rapidly monitor pollution.  

 Fish liver is the most important organ for detoxification and the main site of many important 

metabolic reactions involving carbohydrate, lipids and protein [5]. It also is important for the storage of 

glucose and vitamins A, D, E, K, and B12 [6]. Numerous environmental stressors affect the liver and 

cause metabolic disturbances and structural damage, possibly leading to death [4]. At all the different 

cellular levels (i.e., molecular, cellular, biochemical, physiological, morphological, and histopathological), 

exposure, effective and susceptibility biomarkers can be used to monitor initiative signals of pollution, 

liver health and ability of this organ to defense against pollution challenges, respectively. 

 Fish livers have been a favorite model to study the interactions between environmental factors 

and the functions and structures of the liver [4]. This article reviews liver biomarkers at the different 

biological levels when exposed to heavy metal pollution, and evaluates their advantages and 

disadvantages.  

Main text 

Cellular-molecular biomarkers in the liver 

The liver functions to store and detoxify heavy metals. Thus, heavy metals cause changes in the proteins, 

DNA, and lysosomes of hepatocytes. 

Stored metabolites  

Fishes are able to absorb heavy metals through the skin mucosa, gill and alimentary tract [7]. They are 

transferred through ion channels or specialized transporter systems in the plasma membrane into the body 

[8] and, finally, into the liver and kidney (detoxification organs) where they are absorbed independent of 

their concentration [9]. They are then stored intracellularly as metallothionein-bound metals, 

ferritin-bound complex, and bound within vesicle-granules [8]. While considered the most important 

organ in detoxification, some studies show that liver is the major organ in storage of heavy metals [10]. 

However, a few heavy metals (e.g. Cr) are preferentially stored in other organs such as the gill [11, 12], 

and the extent of storage may differ between males and females [13]. 

 Once stored in the fishes, these will become part of the food of other animals and humans higher 

in the food chain. 

Biomarkers of damage to chromosomes, DNA and lysosomes  
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The presence of heavy metals in liver tissue often causes oxidative stress and increases of reactive oxygen 

species (ROS) through induction of O2 and transformation into O2
.- (superoxide), H2O2 (hydrogen 

peroxide) and OH. (hydroxyl radical). The hydroxyl radical is able to react with many compounds. 

Therefore, these radicals could transfer energy to other molecules including vital molecules. This may 

cause damage such as DNA single (SSB) and double strand breaks (DSB), micronuclei (MN XX), 

chromosome aberrations (CA) and sister chromatid exchanges (SCE) in hepatocytes and other cells 

[14-18]. 

Among other cell injuries caused by free radicals from heavy metals in hepatocytes is lysosomal damages. 

Fish hepatocytes often have a small number of lysosomes, and during heavy metal pollution the number 

and size of the lysosmes increase to store pollutant and lipids [19]. In addition, lysosomal membrane 

stability decreases due to damage to the lysosomal detoxification system, and enzymes of the lysosomes 

are released into the cytoplasm and nucleoplasm. This results in more damage to hepatocytes [19, 20]. 

Although lysosome stability quickly monitors damage and the capacity of hepatocyte in detoxification, 

observations need to be confirmed with liver histopathologic and other physiologic biomarkers. In 

addition, the number, size and lysosomal alterations could be affected by sex and season of vitellogenesis 

in female fish [21] and, therefore, can cause error in pollution monitoring .  

Protein biomarkers  

After entering heavy metals into the body, some proteins, such as metalothionin, chelate heavy metals via 

their sulfhydryl groups, and suppress heavy metal activity [22]. These low molecular weight proteins 

(2-16 kDa) have cysteine amino acids in binding site enriched in thiol ions [23]. Since the liver is the 

major site accumulating heavy metals, the most metalothionin is found in the liver. Its increase in the liver 

is a suitable biomarker for heavy metal pollution [24]. P-glycoprotein [25], heat shock proteins [26] and 

multixenobiotic resistance protein (MXR) [27] are the other known protein biomarkers for heavy metal 

increases in the liver, although they may also respond to some other xenobiotic compounds.  

Biochemical and physiological biomarkers 

Reactions in the liver to heavy metal oxidative stress might be enzymatic or non-enzymatic (Figure 1) and 

seem to be specific for monitoring heavy metals pollution. 

 

 

 
 

Figure 1 Biochemical and physiological biomarkers in the liver 
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Hematologic parameters   

In fishes, proteins and lipids are used as energy sources [28]. Muscle glycogen obtained from glucose, 

which in turn is obtained from glycogenesis of exogenous and endogenous amino acids and lactate from 

anaerobic glycolysis [29]. The liver has the major role in the synthesis of the plasma proteins and the 

glucose. Some studies showed that pollution, especially heavy metals pollution, disrupted hepatocytes, 

and, therefore, decreased the removal of plasma glucose and proteins [30].Other studies showed similar 

results [31, 32]. 

 Transaminase enzymes, including alanine transferase (ALT), aspartate transferase (AST), and 

alkaline phosphatase (ALP) are important for amino acid and protein metabolism in fish tissues, and are 

key metabolic enzymes released into the blood from damaged hepatocytes [33] and also have increased 

synthesis due to induction [34]. Thus, alterations in plasma levels of transaminase enzymes could be a 

sign of hepatocytes damages. 

 With heavy metal pollution, decreases or increases of some other easily measured liver 

detoxification enzymes, such as glucuronosyltransfrase (UDP-GT) [35] and δ-aminolevulinic acid 

dehydratase (ALAD) [36] can also be used as suitable biomarkers, although they may not have been 

heavy metal specific.  

Oxidative enzyme parameters 

Production of antioxidant compounds is part of an organism’s response to free radicals, by trying to 

neutralize them to slow or prevent oxidative damage. Antioxidants generally stop oxidative chain 

reactions by giving a hydrogen atom to free radicals. The yield and performance of an antioxidant is 

dependent on how its hydrogen is released [37].  

 In the liver, antioxidant defenses occur both enzymatically and non-enzymatically. Antioxidant 

enzymes of the mitochondria and cytoplasm are able to decompose hydrogen peroxide (H2O2) [37, 38]. 

Thus, measurements of these enzymes are a valid biomarker for monitoring free radicals. Among the most 

important antioxidant enzymes whose activity changes with pollution are catalase (CAT), glutathione 

peroxidase (GPx) [39], and superoxide dismutase (SOD) [40]. Although some P450 enzymes also respond 

to heavy metals [41], their alterations with other organic pollutions make these enzymes more 

non-specific biomarkers.  

Histopathological-morphological biomarkers 

Histopathological alterations have special advantages [42]. Differences in biochemical processes in 

different organelles lead to different responses that can be determined histocytologically. Long-term 

exposure to heavy metals causes more changes in detoxification organs such as the kidney [43] and the 

liver. Studies of the livers of fish and birds exposed to heavy metals show degenerative, destructive and 

inflammatory alterations [43-46]. Again, however, they are non-specific biomarkers. 

Bile as a biomarker in fish 

The bile secreted by the liver contains salts and bile acids, which have role in emulsification and 

absorption of fatty acids from the gastrointestinal tract. It also has an important role in the excretion of 

many xeno- and endobiotics that the kidney is not able to remove them from the liver and blood [47]. 

Several studies have shown that many heavy metals enter into the gall bladder, and then are excreted from 

the fish [47-50]. The bile liquid can be more easily analyzed and is not age or sex dependent [50]. With 

cannulation, bile can be obtained from the bile duct without killing the fish [47]. Thus, monitoring bile 

and establishing correlations of heavy metals in bile and its storage in the liver can improve the value of 
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data obtained using the bile.  

Problems and future of study on liver biomarkers in response to heavy metals 

Some of the limitations mentioned require further research to allow fish to be more successfully used as 

biomarkers for heavy meat pollution:  

 Fishes are the most diverse group among vertebrates. Species diversity and factors such as sex 

and reproduction season may affect some liver biomarkers. So, these need to be better documented.  

To better understand the changes in liver biomarkers with heavy metal pollution, it is necessary to 

understand which non-biological factors (e.g., temperature, salinity, and pH) and biological factors (e.g., 

fish age and size, liver structure, and fish genotype) affect these biomarkers so that measurement 

conditions can both be standardized and optimized.  

Using cell culture, one can more easily study the effects of heavy metals on hepatocytes. These can be 

used to determine dose effects and the impact of other pollutants in the same water sample. These then 

need to be correlated with results in the field.  

 So are liver biomarkers appropriate and valid as compared to other biomarkers for use in real 

ecosystems? Additional questions that need to be answered include understanding the time course of liver 

changes. It may also be important to have a better understanding of the molecular mechanisms by which 

heavy metals change liver transporters, genes and proteins under different pollution scenarios.  

Conclusion 

This study showed that there are many liver biomarkers at all different cellular levels that can be used for 

identification of initial heavy metal pollution (exposure biomarkers), assessment of health condition of 

fish (effect biomarkers) and ability of fish to defense against pollution challenges (susceptibility 

biomarkers). Moreover, these biomarkers are useful for environmental monitoring and assessment; some 

of these biomarkers, such as metallothionein and ferritin, are special for heavy metal pollution while the 

others are non-special.  
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