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Abstract  

Graphene has emerged as a topic of huge scientific interest due to its high surface area, exceptional 

mechanical properties, electron transfer, and other physical properties. In polymers, this one-atom 

thick 2D crystal may significantly enhance the physical properties at very small loading level. In 

this review, essential characteristics of polymer/graphene nanocomposite have been discussed. 

Moreover, fabrication techniques (in situ method, solution route, melt technique) frequently 

employed for polymer/graphene nanocomposite have been discussed. Applications of these 

nanocomposites in Li-ion batteries, electronic devices, and solar cells have been conversed along 

with the current challenges associated with processing and scalability of these materials. 
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1. Introduction 

Polymers have been employed as recurrently active components in wide range of technical applications. The 

extensive use of polymers is entrenched in their versatile structure and properties such as lightweight, 

processability, strength, ease of fabrication, and low cost. However, technical applications of polymers have 

been limited due to deprived thermal, electrical, and mechanical properties [1]. In this regard, physical 

properties of polymers have been modified using reinforcement or second phase in the matrix [2]. 

Nanoparticles (graphite, graphene, carbon nanotube (CNT), carbon nanofilber) have been exploited as 

successful reinforcing agent for polymers compared with the traditional fillers. In polymer/nanofiller 

nanocomposite, final material properties usually depend on (i) nature and type of polymer; (i) nature and 

type of nanofiller; and (iii) nature of interaction between polymer and nanofiller [3]. Consequently, polymer 

nanocomposite reveals superior material performance than pristine polymer matrix and composite [4]. 

Incorporation of graphene nanofiller has gained immense research interest [4]. Graphene is composed of 

carbon atoms that are densely packed in honeycomb crystal lattice. Graphene is two-dimensional carbon 

nanofiller with one-atom-thick planar sheet of sp2 bonded atoms. It is the thinnest known material found in 

the universe and has tremendous potential [5]. Graphene exhibits range of essential characteristics such as 

flexibility, transparency, high aspect ratio, surface area, tensile strength, thermal and electrical conductivity, 

electromagnetic interference shielding ability, and low coefficient of thermal expansion (CTE) [6]. Superior 

mechanical properties, high thermal conductivity, and outstanding electronic properties have been observed 

when compared with other conventional nanofiller such as carbon nanotube, montmorillonite (nanoclay), 

graphite, and exfoliated graphite (EG) [7]. The exclusive properties of graphene are further enhanced when 

combined with polymers to form polymer/graphene nanocomposite. Polymer/graphene nanocomposite has 

demonstrated superior mechanical, thermal, and electrical properties compared to neat polymers. 

Improvements in mechanical and electrical properties of polymer/graphene nanocomposite have been 

observed relative to nanoclay or other carbon filler-based composite. Recently, production of 

polymer/graphene nanocomposite has gained extraordinary research attention. Graphene has also been 

largely exploited as conducting nanofiller in electronic applications [8]. Due to the existence of isolated 

graphene sheets, thermal, mechanical, and electrical, and barrier properties of the resulting materials have 

been influenced [9]. Polymer/graphene nanocomposite systems are expected as potential contender in 

electronic equipment, electrode materials, electronics packing, chips, fuel cells, aerospace, sporting, goods, 

radar absorbents, corrosion resistant coatings, and other devices [10]. 

2. Graphene 

 Graphene is basic structure of several carbon nanofillers as graphite, CNT, graphene oxide (GO), and 

fullerene (Fig. 1).  

The planar sheet of sp2 bonded carbon atoms in graphene is densely packed In honey comb crystal 

structure [11-13]. Graphene own extraordinary properties. It has double surface area than that of a 

single walled carbon nanotube (SWCNT). Graphene also has tunable electronic band gap, ultra high 

mechanical strength, excellent thermal conductivity, and elasticity [14]. Consequently, graphene is a 

monatomic nonomaterial (2D) consisting of sp2-hybridized single layer of carbon atoms with benzene 

as repeating structural monomer. Since the discovery of graphene, It has been employed to resolve 

several research deficiencies associated with polymer/graphite and polymer/CNT composite [15]. A 

single atomic sheet of graphite i.e. graphene is 200 times harder than steel and 30 times harder than 

https://www.google.com.pk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CC8QFjADahUKEwimx66yr4zIAhUCRxoKHaOEDWk&url=https%3A%2F%2Fsimple.wikipedia.org%2Fwiki%2FCoefficient_of_thermal_expansion&usg=AFQjCNHXMYqSORNla7cbHRCSB4VJWi0OAw&bvm=bv.103388427,d.d2s
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diamond [16, 17]. Graphene also has certain advantages compared with carbon nanotube (i) graphene 

synthesis from inexpensive graphite; (ii) low cost production than nanotube; and (iii) high purity as 

metallic impurities present are present in CNT [18]. Table 1 outline various processes used for 

graphene production. Graphene, due to excellent mechanical, electrical and thermal properties, has 

recently attracted immense research interest as reinforcing phase in nanocomposite materials [19]. 

Graphene also has intrinsic energy dissipating mechanism, sheet bending and sliding to improve 

toughness nanocomposite [20-23]. However, sometimes graphene sheets may restack to form graphite 

due to high aspect ratio and vander Waals interaction.  

 

 

Fig. 1 Graphite, graphene, and graphene oxide. 

 

Table 1 Processes for graphene production. 

 

Method Thickness Advantage 

Reduction of GO Multi-layered Good yield 

From CNT Multi-layered Thickness control is tricky 

Arc discharge Single to few layer Good yield 

Chemical vapor deposition (CVD) Single to few layer Controlled thickness 
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3. Polymer/graphene nanocomposite 

Graphene is a magnificent reinforcement for polymers owing to implausible physical properties such as high 

thermal conductivity ~5,000 W/mK, high electron mobility ~ 250,000 cm2/Vs, and considerably high 

Young’s modulus ~1TPa. Even very small amount of graphene has been found to improve mechanical, 

electrical, and thermal properties of nanocomposite [24-26]. Properties of graphene reinforcement have 

been compared with carbon nanotube and other conventional nanofillers [27]. A major problem with 

graphene reinforcement is poor dispersion in polymer matrices. For this purpose, surface modification of 

graphene has been performed. Functionalized graphene has bee found to easily dispersed and compatible 

with polymers. Fine distribution of graphene in polymer matrix in turn may enhance the mechanical, thermal, 

electrical, and gas barrier properties of final nanocomposite. Compatibility between polymer and graphene 

depends on the polar nature of the polymer as well as type of functional groups present on polymer backbone. 

In this regard, hydroxyl modified graphene, carboxyl modified graphene, amine modified graphene, as well 

as ionic liquid-modified graphene have been produced and studied for fine dispersion in polymer matrices 

[28]. Use of unmodified graphene has also been studied with polystyrene by in situ technique [29]. 

Poly(methyl methacrylate)/graphene nanocomposite has revealed applications in anti-corrosion, additive, 

coating, sealer, binders, optical fiber, and outdoor electrical applications [30, 31]. To improve thermal and 

electrical properties of the PMMA/graphene nanocomposite, functionalized graphene has been found more 

effective than non-functional form [32]. The PMMA/unmodified graphene nanocomposite was obtained 

through emulsion polymerization of methyl methacrylate monomer in graphene dispersion. Graphene has 

also been reinforced in polyethylene, polypropylene, and polybutylene matrices [33]. Polyvinyl alchol 

(PVA)-based graphene nanocomposite were also reported [34]. However, dispersion of graphene in polymer 

matrices is still a research challenge. Thermoplastic polyurethane (TPU), polyacrylic acid (PAA), 

polyacrylonitrile (PAN), polyester, polyolefin, and epoxy resin have also been considered as potential hosts 

for graphene [35-40]. Solution technique has been used in most of cases. In addition, latex technology has 

been found useful for dispersing graphene into a polymer matrix [41, 42]. Exfoliated 

polystyrene(PS)/graphene nanocomposite has been prepared [43]. Exfoliated polypropylene (PP)/graphene 

nanocomposite have also been prepared [44]. The storage moduli of PP/graphene nanocomposite was 

increased with increasing graphene loading up to 1.0 wt.%. Beyond this concentration, there was slight 

reduction in the storage moduli of nanocomposite. An increase in glass transition temperature (Tg) was 

observed with 0.1 wt. % of graphene. Thermal conductivity of 0.396 W/MK was observed with 2.1vol % of 

graphene [45, 46]. Thus, graphene is very promising as nanofiller to fabricate high-performance polymer 

nanocomposite [47, 48]. Multilayer graphene nanoplatelet (MLG) and polymer nanocomposite has also 

been fabricated from exfoliation of graphite. The affect of MLG on thermal conductivity and stability of 

polymer/MLG nanocomposite was explored. The thermal conductivity was found to increase with 

increasing nanofiller content.  

4. Preparation strategies 

Sonication, ultra-sonication, in-situ polymerization, and solution mixing have been used to form 

polymer/graphene nanocomposite (Table 2). Solution method is the low cost and facile technique in this 

regard (Fig. 2).  

Choice of the technique basically depends on uniform dispersion of graphene, exfoliation, and complete 

intercalation with polymers [49]. However, all the mentioned techniques appear ideal to process 

polymer/graphene nanocomposite [50]. The coupled method of in-situ polymerization and solution mixing 
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has been used for the chemical interaction between the polymer and graphene. In solution route, serious 

problems are (i) use of hazardous chemicals and (ii) non-feasibility for industrial scale production due to low 

yield and high cost. Melt mixing technique is also in demand. However, direct melt-mixing of polymer and 

graphene is not adequate for appropriate filler dispersion. The poor dispersion in melt method may affect the 

quality and properties of resultant polymer/graphene nanocomposite [51]. Melt route has been modified to 

influence the dispersion quality. Therefore, a combined solution and melt route has been designed for better 

dispersion of graphene in polymer matrices [52]. Polymer/graphene nanocomposite obtained by 

combination approach has shown better mechanical and flexural properties due to better dispersion. 

Materials obtained by modified melt approach also show high electrical conductivity. 

 

Table 2 Polymer/graphene nanocomposite. 

 

 

Fig. 2 Conventional solution technique for graphene dispersion in polymer. 

 

Polymer Reinforcement Processing 

Poly(vinyl chloride) (PVC) Reduced graphene Solution, In situ route 

Poly(methylmethacrylate) (PMMA) Reduced graphene Solution, In situ route 

Polyurethane Graphene/Reduced graphene Melt, Solution, In situ route 

Polystyrene (PS) Graphene/Reduced 

graphene/GO 

Solvent method 

Polyacrylonitrile (PAN) Graphene/graphite/GO Electrospinning, Solvent method 

Polycarbonate Graphene/Reduced graphene Melt method 

Rubber/natural rubber Graphene/Reduced graphene Melt method 

Poly(vinylidine fluride) (PVDF) Reduced graphene Solvent, melt method 
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5. Application of polymer/graphene nanocomposite 

Graphene has superior properties compared with polymers which are also reflected in 

polymer/graphene nanocomposite. These nanocomposites show superior mechanical, thermal, gas 

barrier, electrical and flame retardant properties relative to neat polymers. Polymer/graphene has also 

established high electron mobility at room temperature. The probable uses of polymer/graphene 

nanocomposite include energy storage devices such as lithium ion batteries, conducting electrodes, 

electronic devices, and solar cell and dye-sensitized solar cell. 

 

5.1.  Electronic devices 

 

With the advancement in experimental nanosciences, the electronic properties of graphene nanosheets 

have gained attention [53, 54]. Field-effect transistor (FET) is an excellent example of 

polymer/graphene nanocomposite-based electronics (Fig. 3).  

 

 

Fig. 3 Field-effect transistor. 

 

Fabrication of ultra-sensitive sensors has also been effectively established. Various techniques for 

micromechanical cleavage have been developed to achieve fine single layer graphene nanosheets [55]. 

Yield of the methods have also been tried to improve. Among greater yield methods, chemical 

reduction of graphene oxide to graphene is successful. However, these graphene sheets have basal 

plane of carbon atoms decorated with epoxide and hydroxyl groups [56]. Due to hydrophilic character, 

the nanosheet with functional groups may decrease the interplane forces [57]. At present, graphene is 

more preferred in electronic devices compared with other thermally conductive fillers such as graphite, 

carbon nanotube, carbon black, silicon carbide, silicon nitride, and nanodiamond. Thin films of 

polymer/graphene nanocomposite have shown cost efficiency, elasticity, transparency, and electric and 

magnetic properties [58]. In electronic applications, mostly thermoset polymers (epoxy, phenolic) are 

favored because they do not change their form or do not melt at high temperature. However, 

thermoplastic polymers are least recommended for prolonged device stability.   

 

5.2.  Li-ion battery 

 

Application in Li-ion battery is a greatest achievement of polymer/graphene nanocomposite. Initial 

efforts involve the replacement of liquid electrolyte in battery with solid polymer (Fig. 4). The battery 

electrolytes were first established in 1970s [59].  
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Fig. 4 Schematic representation of solid polymer lithium batteries. 

 

Polyethylene oxide (PEO) was complexed with alkali metal salts, and the electrolyte showed high ionic 

conductivity around 10-3 Scm-1. The polymers electrolytes are classified as pure solid polymer 

electrolyte and gel polymer electrolytes. Poly(methyl metacrylate), polyacrylonitrile, and 

poly(vinylidene fluoride), and PEO has been successfully used as polymer electrolytes. In solid 

polymer electrolytes, lithium salts (LiPF6, LiBF4, LiCF3SO3, LiClO4) have been dispersed in polymers. 

These solid polymer electrolytes show ionic conductivity in the range of 10-8 to 10-4 Scm-1. Gelled 

polymer electrolyte consists of plasticizer or solvent in polymer matrix. These electrolytes have 

ambient ionic conductivity of ~10-3 S cm-1. The ionic conductivity of these electrolytes also depends on 

the molecular weight of polymers. Consequently, ionic conductivity, mechanical, and physical 

properties of solid polymer electrolyte are less than gelled polymer electrolyte [60]. Reduced graphene 

oxide (RGO) and thermally reduced graphene oxide (TRGO) have also been used in Li-ion batteries. 

Incorporation of silica/titania particles have also been used to improve the efficiency of nano-hybrid 

[61]. In PEO and ethylene glycol, GO nanosheets have been directly converted to graphene by simple 

sonication method [62]. Graphene has tendency to chemi- and physisorb oxygen from water, oxygen 

and CO2 species [63, 64].  

 

5.3. Solar cell 

In photovoltaic devices, graphene has excellent application due to low-cost, transparency, flexibility, 

and wonderful electron-transport properties and very high exporter mobility (Fig. 5).  

 

 

Fig. 5 Polymer/graphene solar cell.  
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Recently, several graphene-based solar cells have been reported [65]. In electrodes, graphene is a 

perfect 2D material to form films with good transparency, high conductivity, and low roughness. 

Graphene oxide reduction to graphene has been employed to form large-area, transparent, and 

conductive thin graphene films. Such graphene films have thickness of 10 nm, conductivity ~550 Scm-1 

and transparency of 70%. In dye-sensitized solar cells, graphene materials have been used as window 

electrode [66]. In electrodes, polymer film width was attuned as 20 mm. Later the graphene particles 

were dropped on the polymer layer. Vacuum evaporation technique has been used to form solar cell 

structures. The polymer/graphene layer is usually coated on glass substrate. In bulk hetero-junction 

(BHJ) solar cells, graphene nanocomposite may act as a hole-extraction layer [67-70].  

6. Conclusions 

In this review, properties of graphene as reinforcement have been discussed. Graphene has been argued 

with reference to polymer property improvement including mechanical, thermal, and electrical. The 

superimposing effect of graphene and polymer in refining the thermal, conducting, and physical 

properties of polymers has been included. Considerable improvement in mechanical, electrical, and 

thermal properties was observed in polymer nanocomposite reinforced with graphene. The 

conductivity predisposes to high solar cell efficiency of polymer/graphene materials. These 

nanocomposite have been prepared using variety of techniques such as in situ polymerization, melt 

method, solution route, latex technology and other methods. Generally, dispersion of graphene is poor 

in polymer matrices. For this purpose, surface-modified graphene has been employed to form 

polymer/graphene nanocomposite. Functional graphene may easily disperse in organic polymer 

matrices. The polar interaction between graphene and organic polymers are accountable for better filler 

dispersion in the polymers. Potential application of polymer/graphene nanocomposite has been 

discussed in electronic devices, batteries, and solar cell. 
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