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Abstract  
Brain capillary endothelial cells, which are connected by extensive tight junctions and are polarized into luminal (blood-facing) and 
abluminal (brain-facing) plasma membrane domains, form the blood-brain barrier (BBB). The polar distribution of transport proteins 
mediates glucose and amino acid (AA) homeostasis in the brain. The ability to isolate the luminal and abluminal membranes has 
permitted the study of each side of the BBB separately in vitro and yielded new information on BBB function. The two membranes 
have different characteristics. Facilitative transporters were found on both membranes in a position to permit the bidirectional 
transport of glucose, almost all amino acids and taurine. Na+-dependent transporters were only found on abluminal membranes. The 
Na+-dependent transporters on the abluminal side are capable of removing virtually all amino acids including acidic AA from the 
extracellular fluid of brain (ECF). The presence of Na+-dependent carriers on the abluminal membrane provides a mechanism by 
which the concentrations of AA, glucose and taurine in the ECF of brain may be maintained at optimal levels under physiological and 
pathophysiological circumstances. Facilitative carriers for glutamine (n) and glutamate (xg-) are found only in the luminal membrane 
of the BBB. This organization allows the net removal of acidic and nitrogen-rich AA from brain, and explains the low rate of 
glutamate and glutamine penetration into the central nervous system. The presence of a g-glutamyl cycle at the luminal membrane and 
Na+-dependent AA transporters at the abluminal membrane may serve to modulate movement of AA from blood to brain. The 
g-glutamyl cycle is expected to generate pyroglutamate within the endothelial cells. Pyroglutamate stimulates Na+-dependent AA 
transporters at the abluminal membrane thereby reducing net influx of AA the to brain. It is now clear the BBB may actively 
participate in the regulation of the AA content of the brain as well as contributing to the control of brain osmolarity. 
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Introduction 

The brain is protected from the changing metabolite, 
ionic and drug concentrations in blood by the 
blood-brain barrier (BBB) that surrounds the entire 
central nervous system including the spinal cord. The 
BBB is necessary to provide an optimal chemical 
environment for cerebral function. Several layers exist 
between blood and brain: capillary endothelial cells, a 

basement membrane comprising collagen, fibronectin 
and laminin that completely covers the capillaries, 
pericytes that are embedded in the basement membrane, 
and astrocyte processes that surround the basement 
membrane [1]. Each of these layers could, potentially, 
restrict the movement of solutes (Figure 1). 

 

 

 

 

 

 

 

                         (A)                                                    (1B) 

Figure 1 (A) The BBB exists at the level of the endothelial cells of cerebral capillaries. The endothelial cells are joined together by an 
extensive network of tight junctions and surrounded by a basement membrane, within which pericytes reside. Astrocytic processes 
(commonly called end-feet) surround cerebral capillaries (figure was previously published in IUBMB Life). (B) An electron micrograph of 
a cerebral capillary shows the basic elements. The electron micrograph was provided by Robert Page, MD; Professor, Neurosurgery and 
Anatomy, Pennsylvania State University College of Medicine. 

Endothelial cells were demonstrated to be the 
primary site of the BBB when it was observed that 
horseradish peroxidase could not pass the endothelial 
layer from either the blood or the brain [1]. While 
researchers argued that the astrocytes were a likely site 
of the barrier [2], the endothelial cells were 
demonstrated to have high electrical impedance,      
≈ 2,000 ohms x cm2, therefore, even ions are restricted 
by the endothelial cell layer [3]. It is now accepted that 
the cerebral endothelial cell layer is the principal site of 
the BBB in mammals. 

Cerebral capillary endothelial cells differ from other 
mammalian capillary endothelial cells by having fewer 

cytoplasmic vesicles, more mitochondria and a larger 
number of tight junctions between overlapping cells [4]. 
The tight junctions inhibit paracellular movement, 
prevent membrane molecules from moving from one 
cell to another, and divide the membranes of the 
endothelial cells into two distinct sides [5, 6]. Different 
populations of both lipids and intrinsic proteins (e.g., 
transporters) exist on the luminal and abluminal sides 
[7-9]. Thus molecules must pass two sheaths of 
membrane to enter the brain. The combined 
characteristics of these membranes determine which 
molecules traverse the barrier and how fast. 
Extracellular fluid (ECF) of brain originates from 
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cerebral capillaries and percolates through the brain 
parenchyma to join the cerebrospinal fluid (CSF) 
produced by the choroid plexus [10]. The CSF then 
flows to the systemic circulation via arachnoid 
granulations [11]. The BBB has an area of about 12 m2 
-- about 5,000 times that of the choroid plexus [12]. The 
BBB is the focus of this review because it is the primary 
pathway by which brain receives nutrition from the 
circulation.  

Various methods are used to study the transport of 
solutes across the BBB in vivo and in vitro including: 
single-pass indicator diffusion [13], the brain uptake 
index [14], in situ brain perfusion [15], isolated brain 
microvessels [16, 17], and cultured endothelial cells 
[18-20]. These techniques give valuable information 
about transport, but they do not distinguish between the 
different transport properties of the luminal membranes 
and abluminal membranes.  

Transport studies in vivo led to the impression that 

the BBB, at least with regard to nutrients, was a passive 
system. The various facilitative transporters were 
considered to play a role in the regulation of brain 
metabolism through their ability to limit access [21]. On 
the other hand, it was known that ions such as 
bicarbonate, Na+, K+, Cl-, Ca++ etc. are actively secreted 
across the BBB [2, 11] and are important in regulating 
ionic content of the ECF [11]. (Na+/K+)-ATPase is 
present in the abluminal membrane capable of 
maintaining the concentration gradient of Na+ (external 
> internal) thereby allowing Na+-dependent co-transport 
of nutrients [22].  

This review will focus on relatively current 
knowledge gained by studying the transport properties 
of the individual membranes of the BBB reviewed 
earlier [23, 24]. Study of the isolated membranes has 
allowed the determination of the contributions of the 
abluminal as well as the luminal membrane to brain 
nutrient balance. 

 

 

 

 

 

 

 

 

 

Figure 2 Isolated luminal and abluminal membranes. Capillaries are collected from the bovine cerebral cortex, and their membranes 
detached [25]. The luminal and abluminal membranes are isolated by differential centrifugation. The membranes form sealed spheres that 
are suitable for the study of transport [26-28]. It is possible, for instance, to load the vesicles with K+ thereby creating transmembrane 
potentials. External Na+ and substrate can be manipulated as well thereby testing for the presence of Na+-dependent transport systems. 
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Isolating Luminal and Abluminal 

Membranes 

Betz and asociates [8] developed a procedure to 
separate the respective plasma membrane domains: they 
demonstrated a polarity between the two sides. Sánchez 
del Pino and colleagues recognized the potential of 
using these membranes to study transport under 
controlled conditions [26-28]. On isolation, luminal and 
abluminal membranes form sealed spherical vesicles 
that are predominantly right-side-out, and are suitable 
for the study of transport in vitro (Figure 2). The 
isolated membranes maintain functional transport 
properties, and thus may be used to characterize the 
contribution of each membrane domain to BBB activity 
under controlled conditions in vitro. For instance, the 
ionic composition inside and outside the vesicles 
permits the exploration of such conditions as the 
influence of the transmembrane potential and 
Na+-dependence. This advance allowed the study of the 
BBB in a different manner and resulted in a change in 
the concept of the BBB and the synergy between its two 
membranes. The following sections illustrate that the 
BBB is an active participant in the regulation of the 
brain’s amino acid (AA), glucose and ammonia 
contents. 

Glucose 

Facilitative transport of glucose: Glucose supplies 
virtually all the fuel for cerebral energy metabolism of 
the mammalian brain: it is the only substrate able to 
completely sustain neural activity [29]. Glucose 
provides energy for neuronal activity through oxidative 
metabolism, both in the basal and activated states [30]. 
Cerebral blood flow, oxygen consumption, and glucose 
delivery are coupled to glucose metabolism [31, 32]. 

Facilitative diffusion across the BBB is primarily 
mediated by GLUT1, the first facilitative glucose 
transporter to be cloned [33]. Two different molecular 

weight forms of this facilitative transporter (45 and 55 
kDa) exist within the brain. The difference in their 
relative molecular weight is accounted for by a differing 
extent of glycosylation [34]. However, these species do 
not appear to differ in their protein structure or kinetic 
characteristics [34]. The higher molecular weight 55 
kDa isoform, which is comparable to that found in 
erythrocytes of higher mammalian species, is the 
predominant isoform in the BBB; it is present in both 
the luminal and abluminal membranes, as well as an 
intracellular pool [35-40]. The 45kDa GLUT1 isoform 
is the predominant glucose transporter in glial cells 
[41]. 

Certain electron microscopy studies of human and rat 
BBB have reported an asymmetric distribution of the 
GLUT1 transporters among compartments with 11% of 
the transporters residing in the luminal membranes, 
44% in the abluminal membranes, and the remaining 
45% residing in the intracellular vesicular pool [40, 42] 
while others found the distribution to be different in 
canine brain endothelial cells with similar levels of 
GLUT1 transporters in the luminal and abluminal 
membranes and a smaller intracellular pool [43]. Our 
own studies in rat determined GLUT1 to be 22.5% in 
luminal membranes; 22.5% intracellularly and 55% in 
abluminal membranes. It should however be noted that 
the levels of detection of the transporter is very 
dependent on the fixation conditions and the antibody 
[39].  

Direct kinetic measurements of the transport activity 
in isolated bovine membranes showed similar activity 
in both membranes [44], which was consistent with 
corresponding binding studies with the competitive 
inhibitor cytochalasin B. However initial western blot 
analysis suggested a marked discrepancy in the levels of 
GLUT1 in the respective membranes dependent on the 
specific antibody. Further examination of isolated 
membranes using of 2D-PAGE/Western blotting reveal 
different GLUT1 conformations that arise from 
differential phosphorylation of GLUT-1 [39]. The role 
and significance of the phosphorylation of GLUT1 
remains to be determined. GLUT3 may be present in 
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the luminal membranes of canine and bovine 
endothelial cells (unpublished). Evidence exists that the 
message for GLUT3 is present in rat endothelial cell 
transcriptomes [45]. 

Na-dependent transport of glucose: A 
Na+-dependent transporter was discovered on the 
abluminal membranes of rats with a higher affinity and 
lower capacity than the facilitative transporter, while 
Enerson and Drewes identified the transcriptome of a 
Na+-dependent glucose transporter (Slc5a2) in rat brain 
capillaries [44,  45]. The Na+-dependent glucose 
transporter is in a position to transport glucose from the 
ECF into the endothelial cells against a concentration 
gradient, using the energy of the inwardly directed Na+ 
gradient. A model of our concept of the constituents and 
polarity of glucose transport across the BBB is 
illustrated in Figure 3.  

The discovery of a Na+-dependent glucose 

transporter on the abluminal membrane is interesting in 
view of the fact that the brain requires mechanisms 
ensuring continuous glucose delivery. On the other hand, 
it has been observed in all mammalian species studied 
that the brain glucose concentration is only about 20% 
that of plasma [41, 46-49]. Although the delivery of 
glucose to various brain structures is proportional to 
their metabolic rates, the velocity of unidirectional 
glucose influx is only about 50-75% greater than the 
rate of glucose consumption [30]. The question arises 
whether there is an advantage for the brain to reside in 
an environment of relatively low glucose concentration? 
A possible explanation is that the Na+-dependent 
transport mechanism prevents glucose from reaching 
concentrations that could osmotically compromise the 
extracellular environment or exert cytotoxic effects 
through, say glycosylation of proteins. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3 Glucose transporters across the BBB. GLUT1 is located in both the luminal and abluminal membranes with similar activity [39, 
44, 50]. GLUT1 on the luminal membrane is, however, phosphorylated and does not react as strongly to antibody to the carboxy terminus. 
Because of this some authors suggested that GLUT1 was unevenly distributed. GLUT3 may also be in the luminal membranes of 
endothelial cells (unpublished) and evidence for GLUT3 exists in rat transcriptomes [45, 51].  
 

Amino Acids 

Facilitative amino acid transporters existing in both 
membranes of the BBB: Early studies of AA transport 
in vivo identified facilitative transporters on the luminal 

membrane that were saturable and stereoselective [52, 
53]. Luminal carriers of AA have no dependence on Na+ 
gradients [52, 54-57]. Three broad classes of facilitative 
carriers exist: large neutral amino acids (LNAA), 
cationic AA (CAA), and acidic AA (AAA) [58]. 
Currently, four facilitative carriers have been identified 
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L1, y+, xG-, n and one for taurine. L1 and y+ are present 
in both membranes [27, 28] while xG- and n are 
restricted to the luminal membrane [59]. 
Facilitative transport of large essential neutral 
amino acids; system L1: Early studies of transport in 
vivo revealed a distinct pattern of LNAA uptake by the 
brain: movement of essential NAA (neutral amino 
acids) from blood to brain was greater than 
non-essential NAA; the movements of the latter were 
minimal [54, 60]. Transport was facilitative, 
Na+-independent and NAA were preferred [58]. 
Therefore, the carrier seems to belong to the L-system 
(leucine preferring) originally described by Oxender 
and Christensen and it is probably the high affinity form 
currently referred to as L1 [61-64]. Measurements in 
membranes indicate L1 is present in both membranes in 
a 2:1 ratio (luminal-to-abluminal) [27, 28]. The 
substrates carried by L1 include: leucine, valine, 
methionine, histidine, isoleucine, tyrosine, tryptophan, 
phenylalanine and threonine, most of which are 
essential AA. The affinity constants (Km) are in the µM 
range and similar to the plasma concentrations [64]. 
Glutamine has also been described as a substrate of L1, 
but glutamine transport is not completely inhibited by 
BCH (2-aminobicyclo(2,2,1)-heptane-2-carboxylic 
acid), a specific inhibitor of the L1 system. Therefore, it 
seems likely that glutamine is transported by system n 
as well as L1 [59].  

System L1 seems to be the most important path by 
which essential NAA gain access to the brain. 
Fernstrom and Wurtman demonstrated the important 
role of the L1-system and the competition among 
LNAA by showing that brain tryptophan and serotonin 
contents were correlated with the ratio of 
tryptophan-to-LNAA existing in plasma [65]. They 
concluded that competition between tryptophan and 
other LNAA for entry to the brain is an important factor 
in determining the content of serotonin in brain.  
Facilitative transport of cationic amino acids: 
system y+: Smith concluded that system y+ is the 
primary CAA transporter of the BBB from experiments 
conducted in vivo that examined the BBB only from the 
luminal side [66]. A more recent study of plasma 
membranes isolated from bovine brain microvessels 
allowed characterization of the CAA transporters on 

both sides of the BBB [67]. 
Two families of proteins have been identified that 

transport CAA. CAT or cationic amino acid transporters 
system (y+) is selective for cationic amino acids, 
whereas BAT or broad scope amino acid transport 
systems (B0,+, bo,+, and y+L) also accept neutral amino 
acids [68-73]. Transporter system B0,+ is the only 
Na+-dependent carrier that carries CAA, as well as 
some NAA (although with less affinity). No evidence 
was found to support the presence of System B0,+ in the 
BBB and no evidence was found of Na+-dependence of 
CAA transport [67, 74-76]. In this regard, the CAA are 
unique because all other naturally occurring AAA and 
NAA examined to date have Na+-dependent transporters 
on the abluminal membrane that are capable of coupling 
the Na+ gradient existing between the extracellular fluid 
of brain (ECF) and BBB endothelial cells to transport 
AA out of the ECF. Facilitative transport seems to be 
the only mechanism in the BBB to allow the movement 
of CAA.  

Na+-independent systems bo,+ and y+L were not found 
in either membrane [67]. Therefore as posited by Smith, 
only system y+ is available to transport CAA [66]. In 
addition to transporting CAA, y+ exhibits weak 
interactions with NAA if Na+ is present and hence it is 
referred to as y+ [77, 78]. In the BBB, y+ may transport 
several essential NAA (phenylalanine, threonine, 
histidine, valine, and methionine) as well as 
non-essential NAA (serine, glutamine, alanine, and 
glycine) but the affinity constants are about ten-fold 
greater than those of system L1 [67]. Thus while y+ may 
contribute to the “first-order” transport component 
observed in studies of AA transport [21], system L1 
must be considered the principal provider of essential 
NAA while y+ is primarily a purveyor of arginine.  

The ability of system y+ to transport several 
non-essential amino acids (serine, glutamine, alanine 
and glycine), with affinity values similar to their plasma 
concentrations may explain the slight permeability of 
the BBB to small NAA [21, 60]. 

While both membranes of the BBB contain y+, its 
activity is greater on the abluminal side and it is voltage 
sensitive [67]. The affinity of y+ is greater for arginine 
compared with the other CAA and y+ is probably 
important in the provision of arginine for nitric oxide 
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(NO) synthesis. The biosynthesis of NO requires 
L-arginine and O2 for the NO synthase (NOS) catalyzed 
reaction. Endothelial cells do not have the ability to 
synthesize arginine de novo [79]. Therefore endothelial 
cells must rely on an external source of arginine; it is 
likely that the availability of arginine is the determining 
factor in NO production by endothelial cells [80]. Three 
isoforms of NOS have been identified: neuronal 
(NOS-1), inducible (NOS-2) and endothelial (NOS-3) 
[80]. Real-time PCR and Western blotting techniques 
established the presence of all three known NOS in 
cerebral endothelial cells suggesting that NO can be 

produced in brain endothelial cells [67]. 
Facilitative amino acid transporters existing only in 
the luminal membrane: 
Facilitative transport of glutamine; system n: 
Facilitative transport of glutamine across the luminal 
membrane of the BBB was not inhibited by BCH and 
did not demonstrate trans-stimulation [59]. This 
transport system is similar to system n described in 
hepatic plasma membrane vesicles [81]. The BBB 
system n is inhibited by asparagine and histidine [76] as 
was found in hepatic vesicles by Pacitti et.al. System n 
exists solely on the luminal membrane. 

Table 1 Amino acids transported by facilitative transport systems. 
 

System L1 y+ n xG- taurine 
Non-essential      
Glycine  *    
Alanine  *    
Serine  *    
Proline      
Asparagine +  +   
Glutamine + * +   
Aspartate    +  
Glutamate    +  
Arginine  +    
Ornithine  +    
Essential in brain      
Lysine  +    
Histidine + * +   
Threonine + *    
Cysteine  *    
Methionine + *    
Valine + *    
Leucine +     
Isoleucine +     
Phenylalanine + *    
Tyrosine  +    
Tryptophan +     
Taurine     + 

 
AA transported, or shown to inhibit transport, are indicated by the symbol +. Facilitative transport (weak) of NAA by y+ in the presence of 
Na+ are indicated the symbol *. Systems L1 and y+ exist on both membranes while systems xG- and n are restricted to the luminal 
membrane [59]. AA in italics are essential in brain [82]. The membrane distribution of these transporters is shown in Figure 4. 
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Table 2 Kinetic characteristics of facilitative amino acid transporters on the blood-brain barrier. 

 

Transporter 
(Substrate) 

Apparent Km 
(µM) 

Apparent Vmax 
(pmol*mg-1*min-1) 

Clearance 
(µl*mg-1*min-1) 

Position 

L1 (Phe) 12 94 8 Luminal & Abluminal 

y+ (Lys) 800 5,800 7 Luminal & Abluminal 

n (Gln) 1000 1,100 1 Luminal 

xG- (Glu) 900 700 1 Luminal 

Tau 0.06 0.1 2 Luminal & Abluminal 

The radiolabeled substrates used for measurements are in parenthesis. Clearance was calculated to the nearest integer as Vmax/Km. Values 
were taken from [26-28] except taurine, which was from [83]. 
 
 

Table 3 Amino acids transported by Na+-dependent systems of the abluminal membrane. 
 

System A N ASC Na+-LNAA EAAT 

Non-essential      
Glycine   + +  
Alanine +   +  
Serine + + +   
Proline +     
Asparagine + +    
Glutamine +     
Aspartate     + 
Glutamate     + 
Essential in brain      
Histidine + +  +  
Threonine   + +  
Cysteine   +   
Methionine   + +  
Valine   + +  
Leucine   + +  
Isoleucine   + +  
Phenylalanine    +  
Tyrosine    +  
Tryptophan    +  
Taurine      

AA that are transported, or shown to inhibit transport, are indicated by a +. Data for systems A, N, and ASC are from [84]. Data for 

Na+-LNAA are from [75]. Data for the EAAT1-3 family are from [85]. AA in italics are essential in brain [82]. The Na+-dependent 

transporter for taurine has not yet been characterized in the BBB. 
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Figure 4 Amino acid transporters of the BBB. The brain gains access to all essential AA through the facilitative systems L1 (NAA), y+ 
(CAA) and TAU that exist on each membrane. Facilitative transporters xG- and n exist only on the luminal membrane and are in a position 
to allow glutamate, aspartate and glutamine egress. Each facilitative transporter carries several substrates (please see Table 1). The 
Na+-dependent transport systems provide mechanisms for the removal of non-essential AA, toxic AA, as well as maintaining the optimal 
concentrations of all other AA. As with the facilitative systems there is considerable overlap of substrates (please see Table 3). All naturally 
occurring NAA are transported by at least one system and some by as many as three. Abbreviations: A, Na+-dependent system A; N, 
Na+-dependent system N; ASC, Na+-dependent system ASC; Na+LNAA, Na+-dependent system Na+LNAA, EAAT, Na+-dependent 
glutamate transporter, TAU, Na+-dependent taurine transporter, xG-, facilitative glutamate transporter, n, facilitative glutamine transporter. 
 

Facilitative transport of acidic amino acids; 
system xG-: Benrabh and Lefauconnier [86] studied 
glutamate uptake in vivo and found no evidence of 
Na+-dependent transport when glutamate was presented 
to the luminal membrane. They concluded the carrier 
was facilitative and probably the xG- form because no 
evidence for the cystine-glutamate exchanger xC- could 
be found. This was confirmed in isolated luminal 
membranes. Cystine did not compete with glutamate for 
uptake while aspartate did. Furthermore, cystine did not 
accelerate glutamate uptake in vesicles preloaded with 
cystine [59]. Facilitative glutamate transport was only 
found on the luminal border allowing the release of 
glutamate from endothelial cells to the plasma [59]. A 
compilation of the substrates carried by the various 
facilitative systems is presented in Table 1 and their 
kinetic characteristics in Table 2. The organization of 
the transporters is depicted in Figure 4. 

Facilitative transport of Taurine: Taurine, 
(2-amino-ethanesulfonic acid) is one of the most 
abundant amino acids in mammals [87]. (Taurine is 
commonly considered an amino acid although amino 
acids are molecules containing both an amino and a 

carboxyl group.) Taurine is synthesized primarily by the 
liver, [88] and enters and leaves the brain via 
transporters [89-91]. Brain has a high taurine content 
comparable to amino acids such as glutamine, aspartate 
and gamma amino butyric acid (GABA) [92]. Taurine 
has multiple cellular functions including a central role 
as a neurotransmitter and as an important osmolyte [93]. 
Taurine is almost completely negatively charged at pH 
7.4. Rasgado-Flores et. al. studied taurine transport 
across both membranes of the BBB [83]. They 
confirmed the presence of facilitative transporters in 
both BBB luminal and abluminal membranes with 
affinity constants in the µM range however the transport 
system has yet to be identified. 

Amino acid gradients between brain and plasma: 
The concentrations of all naturally occurring AA in CSF 
(presumably similar to the ECF) are about 10% or less 
than the plasma concentrations; the exception is 
glutamine that has a similar concentration in CSF and 
plasma [82].  This situation cannot be explained by the 
consumption of AA by the brain because the 
arteriovenous differences across the brain of most AA 
are almost imperceptible [94, 95] as are the 
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arteriovenous differences of ammonia (NH4
+), a 

by-product of AA catabolism [96]. These observations 
indicate that AA leave the brain against a concentration 
gradient. From this it may be concluded that active (e.g. 
Na+-dependent) systems on the abluminal membrane 
have an important role in maintaining both homeostasis 
of brain AA content as well as the lower concentration 
in the extracellular fluid. Based on similar observations 
Bradbury wrote "there is a strong indirect argument in 
favor of the hypothesis that most AA must be moved 
against a concentration gradient from interstitial fluid to 
blood" [97]. 

Na+-dependent transport systems of the abluminal 
membrane: Several Na+-dependent systems have been 
identified in the abluminal membrane of the BBB. They 
include: A (alanine preferring), which was first 
characterized and shown to actively transport small 
non-essential NAA [7, 26, 84], ASC (alanine, serine and 
cysteine preferring) [84, 98-100], N (glutamine, 
asparagine and histidine preferring) [59, 84], the 
excitatory acidic AA family (EAAT, aspartate and 
glutamate preferring) [85, 101], a system that transports 
primarily essential AA, LNAA [75] and a transporter of 
taurine [83]. 

Na+-dependent transport of AA exists only in 
abluminal membranes. No Na+-dependency has been 
detected in luminal membranes, which appear to have 
only facilitative carriers. Therefore, the Na+-dependent 
transporters are in a position to remove AA from brain 
utilizing the Na+-gradient that exists between the ECF 
and the endothelial cells of brain capillaries comprising 
the BBB.  

Na+-dependent transport of large neutral amino 
acids: system Na+-LNAA: Initial studies by Sánchez 
del Pino et al., [26, 28] found Na+-dependent 
phenylalanine transport that was inhibited by BCH. 
Studies by Van Winkle and associates [68] had 
demonstrated system B0,+ as a Na+-dependent carrier 
that recognizes NAA and is inhibited by BCH. Because 
of this characteristic and the observed inhibition, the 
authors thought carrier system B0,+ was likely to be 
responsible for the transport activity. A characteristic of 
system B0,+ is the ability to transport CAA [68]. 
However, the rate of lysine transport was not inhibited 
by the presence of BCH casting doubt on the presence 

of system B0,+ [75]. Further investigation led to the 
discovery of Na+-LNAA as the carrier responsible for 
the BCH-inhibited, Na+-dependent phenylalanine 
transport and other LNAA [75]. 

Na+-LNAA was discovered as a distinct transporter in 
abluminal membrane microvessels and its kinetic 
characteristics cannot be ascribed to any other currently 
known systems [75]. Na+-LNAA has a high-affinity for 
leucine and is inhibited by other NAA including: 
glutamine, histidine, methionine, phenylalanine, serine, 
threonine, tryptophan, and tyrosine. Transport is 
Na+-dependent, voltage sensitive and inhibited by BCH. 
The spectrum of AA carried by Na+-LNAA is similar to 
the facilitative system L1 that allows the entry of 
essential LNAA down their concentration gradients 
(compare Tables 1 and 3). The presence of a 
Na+-dependent carrier on the abluminal membrane, 
capable of removing LNAA from the brain, most of 
which are essential may provide a mechanism for the 
control of the LNAA content of the brain. 

Na+-dependent transport of small non-essential 
neutral amino acids; system A: The activity of system 
A, named for its preference for transporting alanine 
may be distinguished from other Na+-dependent carriers 
by its acceptance of MeAIB (N-methylamino-isobutyric 
acid) as a unique substrate [61, 102]. System A is 
voltage sensitive; three positive charges are translocated 
per MeAIB molecule [84]. System A is inhibited by 
small non-essential AA such as: proline, alanine, 
histidine, serine, asparagine and glutamine as well as 
the essential AA histidine. Some laboratories reported a 
similar AA spectrum for system A but also included 
glycine [7, 61]. Glycine transport was not mediated by 
system A in isolated membrane vesicles but was a 
putative substrate of system ASC. 

Na+-dependent transport of some large and small 
neutral amino acids; System ASC: ASC activity was 
measured in abluminal membranes, after blocking 
system A with MeAIB, confirming the findings of 
others who have reported its presence [98-100]. In 
addition to alanine, serine, cysteine and glycine, several 
essential AA were putative substrates including: 
methionine, valine, leucine, isoleucine, and threonine. 
ASC activity is independent of the transmembrane 
potential [84]. 



 

Hawkins RA et al. American Journal of Neuroscience Research 2013, 1:1-25 

  
Ivy Union Publishing | http: //www.ivyunion.org October 8, 2013 | Volume 1 | Issue 2  

Page 11 of 25 

Na+-dependent transport of nitrogen rich amino 
acids; System N: System N has a preference for NAA 
that are nitrogen-rich such as glutamine, histidine, and 
asparagine, hence its designation [103, 104]. BBB 
abluminal membranes also transport serine via this 
system. System N was not affected by the 
transmembrane potential [84]. Li+ could substitute for 
Na+ suggesting system N in the BBB is similar in to the 
system N in liver cells. 

Na+-dependent transport of acidic amino acids; 
the EAAT family: Na+-dependent glutamate 
transporters exist on the abluminal membrane. They are 
voltage dependent, and collectively have an apparent 
Km of 14 µM at a transmembrane potential of –61mV 
[85]. Analysis of mRNA demonstrated three 
transporters were expressed (EAAT1, 2 and 3) in brain 
capillary endothelial cells. Western blot analysis 
confirmed the glutamate transporters to be present only 
on the abluminal membranes. The activity of the three 

transporters was 1:3:6, EAAT1: EAAT2: EAAT3, 
respectively. EAAT4 may also be present as the 
transcriptome has been found in rat brain endothelial 
cells [45]. Collectively the EAAT family is the most 
powerful of the Na+-dependent AA transporters; they 
show the greatest ability to clear AA at low 
concentrations (Table 4). 

Na-dependent transport of taurine: 
Na+-dependent taurine transport was found only on the 
abluminal membrane. This indicates that taurine can be 
extruded from the brain even in the absence of a 
favorable concentration gradient for taurine across the 
abluminal membrane. The Na+-dependent transport of 
taurine was voltage dependent between -25 and -101 
mV and had an affinity constant in the low µM range 
(Table 4). Na+-dependent transport of taurine was 
sensitive to external osmolality being most active at low 
osmolalities [83]. 

 
Table 4 Kinetic characteristics of Na+-dependent amino acid transporters in abluminal membranes. 

 

Transporter (Substrate) Apparent Km (µM) Apparent Vmax (pmol*mg-1*min-1) 
Clearance 

(µl*mg-1*min-1) 
Voltage Sensitivity 

A (MeAIB) 400 500 1* Yes 
N (Gln) 1,300  4,400 No 
ASC (Ala) 110 660 6 No 
Na+-LNAA (Leu) 21 114 5* Yes 
EAAT (Glu) 14 151 11* Yes 
Taurine 7 7 10 Yes 

The radiolabeled AA used for measurements are in parenthesis. Clearance was calculated as Vmax/Km. Kinetic values were from: 
Na+-LNAA, [75]; EAAT1-3, [85] A, ASC and N [84] and taurine [83]. Values marked by an asterisk were measured at a calculated 
transmembrane potential of -61 mV (taurine -59mV). MeAIB (20 mmol x l-1) was included in measurements of systems N and ASC to 
exclude transport by system A.  
 
Possible Physiological Relevances 

Organization of the various transport systems: The 
brain gains access to all essential AA through the 
facilitative systems L1 and y+. There is considerable 
substrate overlap within the facilitative systems as well 
as within the Na+-dependent systems (Tables 1 and 3). 
Facilitative transport of taurine also exists, but the 

carrier has not been characterized in the BBB. 
Six Na+-dependent AA transport systems are present 

exclusively on the abluminal membrane of the BBB 
(Figure 5) and the capacities of these transporters are 
similar or greater than those of the facilitative 
transporters. Because the electrochemical gradient for 
Na+ is oriented to flow from the extracellular fluid into 
the endothelial cells, these Na+-dependent transport 
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systems are in a position to export AA from the brain 
extracellular fluid to the blood [105, 106].  

Thus, AA that pass both endothelial cell membranes 
and enter the basement membrane space could be 
actively, and selectively, pumped back across the 
abluminal membrane. This asymmetrical distribution of 
Na+-dependent carriers has the potential, therefore, to 
reduce the content of AA in the brain. 

The Na+-dependent transport systems provide a 
mechanism for the elimination of non-essential AA and 
toxic AA as well as maintaining the optimal 
concentrations of all other AA. All naturally occurring 
AA are transported by at least one system and some by 
as many as three (Table 3). The kinetic characteristics 
are summarized in Table 4. The following sections 
illustrate how both membranes of the BBB may play an 
active role in maintaining homeostatic concentrations. 

Branched chain amino acids and brain function: It 
has been suggested that the plasma concentrations of 
branched chain AA (BCAA) may influence brain 
function and affect: appetite [107], physical and mental 
fatigue [108-110], mental performance [111], physical 
endurance [112, 113], sleep [111] hormonal function, 
blood pressure, and affective state [114]. Presumably, 
BCAA influence brain function by altering the 
availability of aromatic AA [65]. As mentioned, 
transport of LNAA is mediated by the facilitative 
system L1, which is shared by several LNAA with 
BCAA being more effective in competition with 
aromatic AA. Consequently, when plasma BCAA 
concentrations rise, which can occur in various normal 
and abnormal situations, they impair the entry of 
aromatic AA, notably tryptophan [114]. Serotonin 
synthesis in brain depends directly on the availability of 
tryptophan. Therefore, when plasma BCAA 
concentrations rise, the contents of brain tryptophan and 
serotonin fall [114]. While the focus of LNAA transport 
has been on the facilitative system L1, the recent 
discoveries that Na+-dependent carrier systems are 
present on the abluminal membrane of the BBB adds a 
new element that should be considered [75, 84]. These 
Na+-dependent carriers are capable of propelling all 
NAA, including BCAA and aromatic AA back toward 
the plasma against their ECF-plasma concentration 
gradient and may affect the brain content of AA. 

Glutamate in plasma and brain: Glutamate, a 
non-essential amino acid, is the most abundant free AA 
in the brain. In CNS glutamate functions as a 
neurotransmitter, a link between the redox states of the 
pyridine nucleotides (NAD+ and NADP+), and as a fuel 
reserve. The oxidation of glutamate to oxaloacetate 
yields 12 ATP per molecule. Therefore, when the brain 
has insufficient glucose levels or glycolytic flux is 
reduced, it mobilizes glutamate as a fuel [115-117].  

Compartmentation of glutamate: In the CNS 
glutamate exists as the free AA divided between two 
separate metabolic compartments located in astrocytes 
and neurons. These compartments were first recognized 
in the brain on the basis of radioisotope 
precursor-product relationships between glutamine and 
glutamate [96, 118-121]. Compartmentation is almost 
absent at birth and develops in parallel with glial cells 
since glutamine synthetase is found only in astrocytes.  

Neuronal glutamate is contained in at least two pools, 
in neuronal perikarya and dendrites and the other in 
nerve terminals (vesicles) [117, 120, 121]. Nerve 
impulses trigger release of glutamate from the 
pre-synaptic terminal, which in turn binds to the 
glutamate receptors on the opposing synaptic 
membrane. Neurotransmission is terminated by 
astrocytes uptake and neurons [122].  

Excitotoxicity hypothesis of neuronal death: Early 
studies that used pharmacological doses of glutamate 
demonstrated brain damage in areas of the brain that 
were not protected by the BBB [123, 124]. These 
studies led to the concept that neuronal death could be 
produced by over stimulation of excitatory AA 
receptors [125-127]. Subsequently, this hypothesis 
became a popular explanation of the pathogenesis of 
neuronal death in a variety of acute conditions. 
However, the source of glutamate arises from within the 
brain. For instance, during an ischemic episode, release 
of glutamate from brain cells may result in an excessive 
concentration of glutamate in the ECF [128-131]. The 
excitation of neurons by glutamate may in turn result in 
the opening of receptor-coupled ionophores, of which 
calcium channels are of particular importance. A large 
influx of calcium associated with impaired intracellular 
calcium sequestration mechanisms, that activate 
catabolic enzymes, may ultimately result in neuronal 
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death [132].  
Glutamate in circulation: Plasma glutamate 

concentrations are in the range of 50 to 100 µM in 
humans and other species [82]. Even when relatively 

large quantities of monosodium glutamate are added to 
food of mice, monkeys or humans only small changes 
in the plasma concentration of glutamate were found 
[133-136].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 Glutamate and glutamine transport between neurons, astrocytes, and endothelial cells. The presence of Na+-dependent 
carriers capable of pumping glutamine and glutamate from brain into endothelial cells, glutaminase within endothelial cells to hydrolyze 
glutamine to glutamate and NH4+, and facilitative carriers for glutamine and glutamate at the luminal membrane provides a mechanism for 
removing nitrogen and nitrogen-rich AA from the brain [59]. EAAT1, 2 and 3 are present in endothelial cells, and astrocytes [85, 137, 138]. 
A transcript of EAAT4 has also been found in endothelial cells indicating that it may be present as well [45]. EAAT3 is present in nerve 
cells [139]. Abbreviations: A, Na+-dependent system A; N, Na+-dependent system N; EAAT, Na+-dependent glutamate transporter, xG-, 
facilitative glutamate transporter, n, facilitative glutamine transporter.  
 

Control of extracellular glutamate in the BBB: 
Early studies of the BBB using whole brain perfusions 
or animals in vivo identified facilitative transporters in 
the BBB membrane that are saturable and 
stereoselective [14, 60]. Because the substrate was 
presented to the capillary lumen it may be deduced that 
these transporters are present at least in the luminal 
membrane. On the other hand, it has been shown in 
several studies that glutamate does not enter the brain in 
significant quantities, except in the circumventricular 
organs [140-142]. Until recently this was puzzling. Why 
should there be a transport system for an AA that is 
synthesized within the brain in large quantities? 
Examining the luminal and abluminal membranes 
separately provided an explanation. 

As describe above, facilitative glutamate transport 

exists solely in the luminal border in a position to allow 
transport in both directions between plasma and 
endothelial cells [59]. However, the function of a 
transporter for AA that had a high affinity and a low 
capacity was not clear: both glutamate and aspartate are 
non-essential amino acids that are synthesized and 
accumulated in high concentrations in the brain [21, 
143, 144].  

Active transport systems expel glutamate from the 
ECF: Ordinarily, ECF glutamate is kept very low (≈ 
0.5-2 µM) [117]. In fact the concentration of glutamate 
and aspartate in cerebrospinal fluid is lower than any 
other AA [82]. The large gradient between brain cells 
and ECF is maintained by EAAT, which couple the 
steep Na+ gradient that normally exists between the 
ECF and brain cells. Currently five members of the 
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EAAT family have been identified [117, 145, 146]. 
They reside in the plasma membranes of astrocytes, 
neurons and the BBB [85, 117, 131, 139, 147-152]. The 
Na+-dependent transporters work at the limit of their 
ability to maintain the glutamate gradient between the 
brain cells and ECF. If the oxygen supply is insufficient 
to maintain ATP levels, membrane Na+/K+-ATPase 
cease to function. Under these circumstances the Na+ 
gradient is dissipated and glutamate is released from 
both astrocytes and neurons by reversal of the EAAT 
family of transporters. If ECF glutamate rises nerve 
cells may be damaged. 

Current concept of glutamate transport across the 
BBB: The current concept is that when glutamate 
concentrations increase above optimal in the ECF, the 
abluminal membrane of the BBB brings glutamate into 
the endothelial cells. The facilitative transport system in 
the luminal membrane allows glutamate egress to the 
circulation (Figure 5). 

The organization of the BBB explains why various 
investigators have found glutamate entry to brain is 
almost undetectable [94, 140-142, 144]. Glutamate may 
enter the endothelial cells, but net movement of 
glutamate from endothelial cells to the brain is nearly 
impossible. This is a consequence of the steep 
Na+-gradient that powers the EAAT family of glutamate 
transporters at the border between the ECF and the 
abluminal membrane of the endothelial cells. Because 
of this organization the BBB is virtually impermeable to 
the net movement of glutamate from circulation into the 
brain. 

Ammonia Balance 

The organization of the BBB also provides an 
explanation for a long-standing question regarding brain 
NH4

+ metabolism. Various measurements have shown 
that 20-50% of the NH4

+ circulating through the blood 
vessels in brain passes the BBB and is incorporated 
quantitatively into the amide group of glutamine by 
astrocytes [96, 119]. It is intriguing, however, that it has 
not been possible to consistently measure arteriovenous 
differences of NH4

+ [96]. If there were no mechanism 
for the removal of glutamine it would accumulate in 

brain, thereby raising the osmolarity and causing brain 
swelling. For instance, taking cerebral blood flow to be 
1 ml x min-1 x g-1 and plasma NH4+ to be 50-100 
µmol/ml it may be calculated that glutamine 
accumulation could be 14-72 µmol/g each day. Clearly 
this would be an osmotic challenge for the brain. The 
situation is now clearer. Glutamine may be pumped 
from ECF into endothelial cells and is at least partially 
metabolized to NH4+ and glutamate. The remaining 
glutamine as well as NH4

+ and glutamate are free to 
diffuse across the luminal membrane into the blood. 
This provides an explanation why the rate of NH4

+ 
uptake and release are balanced. 

This new knowledge also explains how the entry of 
glutamine (and glutamate) to the CNS is restricted [141, 
153, 154] even though carrier activities for both amino 
acids have been described [58, 144, 155]. Glutamine 
and glutamate can traverse the luminal membrane on 
facilitative systems. However, movement into the brain, 
across the abluminal membrane, is small because of the 
lack of facilitative carriers in the abluminal membrane. 
Furthermore, the Na+-dependent carriers in the 
abluminal membrane that are driven by the steep Na+ 
gradient that exists between brain ECF and the cell 
interior forcefully oppose glutamate entry and promote 
its removal from the brain. 

The BBB seems to be arranged in such a manner as 
to not only restrict the entry of glutamine and glutamate 
into the brain but also actively export these amino acids 
and NH4+ to the circulation. Therefore, the BBB 
participates in the regulation of brain nitrogen 
metabolism, and protects against the development of 
neurotoxicity by preventing the accumulation of 
glutamate as well as the accumulation of NH4+. 

Oxoproline Stimulates Na+-dependent 

Carriers 

The γ-glutamyl cycle produces oxoproline. The 
γ-glutamyl cycle proposed by Meister, which is 
important for the synthesis and degradation of reduced 
glutathione (GSH), has been shown to influence AA 
transport in various tissue [156, 157]. The original 
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suggestion that the cycle is involved directly in AA 
translocation into cells is controversial, having received 
support and criticism. However, studies using lactating 
mammary glands and placenta of pregnant rats showed 
that oxoproline (also known as pyroglutamate), an 
intermediate of the γ-glutamyl cycle, serves to stimulate 
Na+-dependent AA transport [158, 159]. 

The first reaction of the cycle occurs extracellularly 
and is catalyzed by γ-glutamyl transpeptidase (GGT) 
(Figure 6) [157]. The substrates for GGT are 

glutathione, which is exported across the luminal 
membrane of endothelial cells to the plasma side, and 
extracellular AA in the plasma. The γ-glutamyl-AA that 
results is transported into the cells. Intracellularly, 
γ-glutamyl-AA are substrates of γ-glutamyl 
cyclotransferase, which converts the γ-glutamyl-AA 
into oxoproline and the corresponding free AA. 
Subsequently, oxoproline is hydrolyzed to glutamate by 
oxoprolinase [160]. 

 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 6 The influence of oxoproline on AA transport across the blood-brain barrier. γ-Glutamyl-AAs are formed at the outer surface 
of luminal membranes of the endothelial cells by GGT that transfers the γ-glutamyl moiety of glutathione to most AA thereby forming a 
γ-glutamyl-AA. The γ-glutamyl-AA enters endothelial cells where the AA is released and oxoproline is formed. The Na+-dependent 
transport systems A, ASC, and Na+-LNAA, EAAT and y+, all located on the abluminal side, are activated by oxoproline. N was the only 
system not stimulated. L1 is present on both the luminal and abluminal membrane and is not affected by oxoproline [161]. Abbreviations: A, 
Na+-dependent system A; N, Na+-dependent system N; EAAT, Na+-dependent glutamate transporter, xG-, facilitative glutamate transporter, 
n, facilitative glutamine transporter. The possibility exist that oxoproline causes an increase in the transmembrane potential therefore 
providing a greater driving force. 
 

Oxoproline stimulates the Na+-dependent system A, 
but has no effect on facilitative transport of 
L-phenylalanine (a representative substrate of the 
facilitative transport system L1); the effect of 
oxoproline is restricted to the Na+-dependent AA 
transport systems of the abluminal membrane [59]. 
Further studies showed that oxoproline stimulated all 
Na+-dependent AA transport systems with the exception 
of system N, which transports glutamine [84]. The latter 
is interesting because glutamine is the only AA present 
in similar concentrations in plasma and ECF and is 
synthesized from NH4+ that enters brain continuously 

[96]. Also of interest was the finding that oxoproline 
stimulated y+, which not only transports CAA, but also 
transports a range of NAA in the presence of Na+ [77, 
78]. 

The presence of GGT in the BBB has been puzzling. 
GGT activity is high in tissues that actively transport 
AA, such as the brush border of the proximal 
convoluted tubules of the kidney, the lactating 
mammary gland, and the apical portion of the intestinal 
epithelium [162]. The BBB differs from these tissues in 
that it is not associated with active AA uptake from 
plasma. While brain requires essential AA for its 
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function and growth, their supply is not much greater 
than the demand, and it is difficult to detect 
arteriovenous differences of AA across the brain [94, 95, 
140]. The data support the hypothesis that the 
γ-glutamyl cycle influences AA transport systems 
indirectly through oxoproline, produced intracellularly 
as an intermediary metabolite of the γ-glutamyl cycle. 
Oxoproline, in turn acts to stimulate Na+-dependent AA 
transport systems. The γ-glutamyl cycle and GGT may 
serve to monitor the availability of AA to the brain, and 
constitute the first step in a control mechanism that 
influences the accessibility and content of brain AA 
(Figure 6).  

The transpeptidation activity of GGT is a function of 
the plasma concentration and spectrum of AA [163], 
both of which may vary considerably, depending on 
nutritional status. This provides a feed-back mechanism 
in which the γ-glutamyl-AA produced by GGT enter 
cerebral capillary endothelial cells and are converted to 
oxoproline, which in turn activates four of the five 
Na+-dependent system at the abluminal membrane. 
Since these systems are oriented to remove AA from the 
brain in an energy-dependent fashion, up-regulation 
could provide at least a part of a control mechanism to 
guard against elevations of AA in brain when their 
concentration is excessive. This is of particular interest 
with regard to smaller non-essential AA for which 
systems A and ASC have a relatively high affinity. Thus, 
this process may serve to modulate the entry of AA 
serving as neurotransmitters, or their precursors. 

Volume Regulation 

Influence of the blood-brain barrier on brain 
volume: The BBB is an important structure through 
which the brain may respond to osmotic stresses. The 
brain is separated from plasma by a continuous layer of 
endothelial cells that behave in a matter analogous to a 
single semipermeable membrane. Therefore the brain as 
a whole acts as an osmometer, shrinking and swelling in 
response to changes in plasma tonicity [164] and/or in 
the intracellular osmolyte concentration [165]. For 
example, brain shrinkage may result from exposure to a 
hypertonic extracellular environment. On the other hand, 

brain swelling may occur either from a reduction of 
plasma osmolality or an increase in the intracellular 
osmolyte concentration of brain cells. An example of 
the first instance is hyponatremia [166] where the 
extracellular Na+ concentration drops to 135 mEq/L 
(135 mM) or less [167, 168]. An example of brain 
swelling resulting from an increase in the intracellular 
osmolytes concentration is hyperammonemia. In this 
instance ammonia permeates the cell membranes and 
gets metabolized in the intracellular milieu of nerve 
cells yielding the impermeant glutamine [165, 169]. 
Osmotically obliged water influx leading to cell 
swelling follows this increase in the intracellular 
osmolyte concentration. Brain swelling can be rapidly 
reversed by the injection of impermeant osmolytes such 
as urea, mannitol or glycerol into the circulation 
demonstrating that the BBB allows the ready passage of 
water. Aquaporins 1 and 4 have been identified in 
choroid plexus and astrocytes respectively and AQP9 in 
glia and neurons, but aquaporins have not yet been 
found in the BBB despite the physiological evidence of 
rapid water movement [170, 171].  

The main organic intracellular osmolytes in rat and 
human brains are glutamate, glutamine, taurine and 
glycine (Table 5) [166]). Exposure to hypo-osmotic 
conditions leads to osmotically obliged movement of 
water into the brain cells producing cell swelling. This 
event leads to activation of cell volume sensors (e.g., 
macromolecular crowding, [172]) followed by the 
promotion of the loss of intracellular osmolytes and 
osmotically obliged water. This mechanism is called 
regulatory volume decrease. The first osmolytes to be 
lost are inorganic, i.e., Na+, K+ and Cl-. This effect 
however, compromises the excitability of nerve cells. 
Thus, under the persistent conditions of extracellular 
hypo-osmolarity (e.g., hyponatremia, reviewed by 
[166]), there is recovery of the intracellular content of 
Na+ and K+ accompanied by the simultaneous loss of 
organic intracellular osmolytes. These main osmolytes 
are: glutamate, glutamine, taurine, myo-inositol and 
creatine. Interestingly, under persistent conditions of 
extracellular hypo-osmolarity, the intracellular content 
of most organic osmolytes recovers partially except for 
taurine, which keeps exiting the brain cells until being 
completely depleted. Taurine transport across the 



 

Hawkins RA et al. American Journal of Neuroscience Research 2013, 1:1-25 

  
Ivy Union Publishing | http: //www.ivyunion.org October 8, 2013 | Volume 1 | Issue 2  

Page 17 of 25 

membrane of nerve cells and the blood brain barrier has 
received considerable attention [83, 173-178] due to the 
fact that it is one of the most inert osmolytes, has the 
lowest osmolarity threshold for its exit from the brain 
cells, and has the largest efflux of all osmolytes. 
Interestingly, each of the organic osmolytes has 
facilitative transport systems in the luminal membrane 
that allow entry to and exit from the brain, as well as 
Na+-dependent co-transporter systems on the abluminal 
membranes in a position to move metabolites from ECF 

to endothelial cells. Of special interest is the fact that 
the abluminal transport of taurine across the blood brain 
barrier is sensitive to osmolarity [83]. The transport rate 
of this osmolyte is highest under hypo-osmotic 
conditions (i.e., 229 mOsm/kg H2O). From a 
teleological perspective this observation may suggest 
that this mechanism prevents excessive accumulation of 
taurine in the interstitial fluid once this osmolyte has 
been released to prevent brain cell swelling under 
hypo-osmotic conditions 

 
Table 5 Major osmolytes within rat brain. 

 

Osmolyte 
Concentration 

(nmol*g-1) 
Na-dependent export on abluminal membrane Facilitative transport on luminal membrane 

Glutamate 12,000 yes yes 
Glutamine 5,590 yes yes 
Taurine 5,500 yes yes 
Aspartate 2,700 yes yes 
Ser, Gly, Ala 2,270 yes yes 
GABA 1,990 yes yes 
Glucose 2,500 yes yes 

All values for metabolites were from control rats studied by [92]. For transport details about each amino acid please see above. GABA 
transport has not been studied at the level of isolated membranes, however, physiological experiment describe the presence of active efflux 
[179]. 

Conclusions 

The current view of the BBB is that cerebral 
endothelial cells participate actively in regulating the 
composition of brain extracellular fluid as well as the 
glucose, AA and the ammonia content of the brain. The 
luminal and abluminal membranes work in a synergistic 
fashion with Na+-dependent transport of AA and 
glucose occurring at the abluminal membrane and 
facilitative transport at the luminal.  

While the BBB determines the availability and 
therefore the brain content of essential AA, astrocytes 
and neurons participate in maintaining the extracellular 
concentrations. Astrocytes and neurons have 
Na+-dependent transport systems capable of 
transporting NAA and acidic AA. These systems are 
actively involved in regulating AA concentrations in the 

ECF and are especially important in the maintenance of 
low concentrations of neurotransmitter AA such as 
glutamate, aspartate, and glycine. On the other hand, it 
now seems clear that the BBB also participates in the 
active regulation of brain ECF composition, and the 
abluminal membrane is especially important in this 
context. 
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