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Introduction 

For the diagnosis of eye related pathologies, digital 
fundus images are becoming increasingly popular. 
This fact opens up the possibility of applying digital 
image processing techniques in ocular fundus images 
to facilitate and improve diagnosis in different ways 

[1]. Several studies were carried out on the 
segmentation of blood vessels in general, however 
only a small number of them were associated with 
retinal blood vessels. Reliable and robust vessel 
extraction is a pre requisite for subsequent retinal 
image analysis and processing since vessels are the 
predominant and most stable structures appearing in 
these images. Computer-aided detection and analysis 
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Abstract  
Retinal blood vessel detection and extraction is an essential step in understanding several eye related pathologies. It is the key in 

automatic screening systems for retinal abnormalities. We present a novel yet simple approach to the detection and segmentation of 

vasculature from the fundus images of the human retina. For the detection and extraction of blood vessels, the green channel of the 

image is separated. The green channel is preprocessed for a better contrast by using contrast limited adaptive histogram equalization 

(CLAHE) and mathematical morphology. On applying bitplane decomposition, bitplane 2 is found to carry important information on 

the topology of retinal vasculature. A series of morphological operations on bitplane 2 segment the vasculature accurately. The 

proposed algorithm is computationally simple and does not require a prior knowledge of other retinal features like optic disc and 

macula. The algorithm has been evaluated on a subset of MESSIDOR and DRIVE image databases with various visual qualities. 

Robustness with respect to changes in the parameters of the algorithm has been examined.   
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of retinal images play a pivotal role in modern 
diagnostic procedures. However, automatic retinal 
segmentation is a complicated affair because of the 
fact that retinal images are often noisy, poorly 
contrasted, and there is a wide variation in vessel 
widths. Information on the retinal vasculature can be 
used in grading disease severity or as part of the 
process of automated diagnosis of ophthalmic 
pathologies. Appearance of the blood vessels in the 
retina can provide information on pathological 
changes caused by some diseases including diabetes, 
hypertension, arteriosclerosis and retinopathy of 
prematurity. The effectiveness of treatment for many 
eye related diseases lies in early detection through 
regular screenings. Furthermore, segmentation of the 
vascular tree in the retina seems to be the most 
appropriate representation for image registration 
applications due to the following three reasons:  

(i) it maps the whole retina; 
(ii) it does not move except in case of a few 

diseases; 
(iii) it contains enough information for the 

localization of some anchor points [2]. 

Many published algorithms for optic disc detection, 
image registration, change detection, pathology 
detection and quantification, tracking in video 
sequences, and computer-aided screening systems 
depend on vessel extraction [3]. The techniques 
published in the research literature for retinal blood 
vessel extraction can be broadly classified into 
methods based on matched filters, adaptive thresholds, 
intensity edges, region growing, statistical inferences, 
mathematical morphology and Hessian measures. The 
recent literature has been dominated by Hessian-based 
methods because of their utility in characterizing the 
elongated structure of vessels. Several challenges of 
vessel extraction in retinal images are illustrated in 
literature. These are:   

(i) There is a wide range of vessel widths. 
(ii) Vessels may be of low contrast. The central 

intensity of some vessels differs from the 

background. Narrow vessels generally exhibit 
the lowest contrast. 

(iii) A variety of structures appear in retinal 
images, including the retina boundary, the 
optic disc, and various pathologies. The latter 
are a particular challenge for automatic vessel 
extraction since they appear as a series of 
bright spots, sometimes with narrow, darker 
gaps in between. 

(iv) Wider vessels sometimes have a bright strip 
running down the center (the “central reflex”), 
causing a rather complicated intensity 
cross-section. Locally, this may be hard to 
distinguish from two side-by-side vessels. 

Our primary focus in this paper is to extract the 
vasculature accurately along with narrow vessels, 
while avoiding false responses.  

Background 

There are many methods in published literature for the 
detection of blood vessel tree in retinal images. The 
method presented by Chaudhari et al. [4] is primarily 
based on 2-D matched filter. The concept of matched 
filter algorithm is employed for the detection of 
piecewise linear segment of retinal blood vessels. 
Hoover et al. [5] improved the methodology in [4] by 
threshold probing. The result obviously shows an 
increase in true positive rate over basic thresholding of 
a matched filter. Kande et al. [6] also uses matched 
filter in [4] to detect vessel tree. The improvised result 
is achieved by using thresholding algorithm based on 
the Spatially Weighted Fuzzy C-Means (SWFCM) 
clustering. Staal et al. [7] proposed an automated 
segmentation of vessels in two-dimensional color 
images of the retina. This method is based on 
extraction of image ridges and approximates the vessel 
centerlines at the same time. Akram et al. [8] and 
Oloumi et al. [9] detected the vascular pattern and thin 
vessels by using 2-D Gabor wavelet. Sofka and 
Stewart [3] made an improvement in blood vessel 
detection in the context of  low-contrast and tried to 
detect the narrow vessels by multi-scale matched 
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filters. The algorithm combines matched-filter 
responses, confidence measures and vessel boundary 
measures. After combining these responses, it forms a 
six-dimensional measurement vector at each pixel. 
Then a training technique is used to map this vector to 
likelihood ratio vesselness which is used for the 
vesselness measurement at each pixel. A supervised 
approach based on artificial neural network (ANN) 
was proposed for blood vessel extraction in [10] and 
[11]. The sensitivity and specificity achieved by the 
method are quite high, however post-processing was 
required to do away with the misclassified vessels. 

The methods mentioned above work well to detect the 
main parts of the vessel tree. However, it does not 
perform well to extract the narrow vessels. Since the 
vessels have a wide range of width and the area of 
small width usually has very low contrast, it simply 
misses to identify it as a vessel. In addition, detection 
of non-vascular structure such as camera aperture 
boundary and the optic disc along with the vascular 
structure is of concern. In an attempt to address the 
above problem, a vessel extraction algorithm based on 
contrast limited adaptive histogram equalization and 
mathematical morphology is proposed in this paper. 

Methodology 

Adaptive Histogram Equalization 

Adaptive histogram equalization (AHE) is an image 
processing technique used to improve contrast in 
images. It differs from ordinary histogram equalization 
in the respect that the adaptive method computes 
several histograms, each corresponding to a distinct 
section of the image, and uses them to redistribute the 
lightness values of the image. It is therefore suitable 
for improving the local contrast of an image and 
bringing out more detail.  

However, AHE has a tendency to over amplify noise 
in relatively homogeneous regions of an image. A 
variant of adaptive histogram equalization called 
contrast limited adaptive histogram equalization 

(CLAHE) prevents this by limiting the amplification 
[12]. Ordinary histogram equalization uses the same 
transformation derived from the image histogram to 
transform all pixels. This works well when the 
distribution of pixel values is similar throughout the 
image. However, when the image contains regions that 
are significantly lighter or darker than most of the 
image, the contrast in those regions will not be 
sufficiently enhanced. 

In its simplest form, each pixel is transformed based 
on the histogram of a square surrounding the pixel. 
The derivation of the transformation functions from 
the histograms is exactly the same as for ordinary 
histogram equalization. The transformation function is 
proportional to the cumulative distribution function 
(CDF) of pixel values in the neighborhood. 

Pixels near the image boundary have to be treated 
specially, because their neighborhood would not lie 
completely within the image. This can be solved by 
extending the image by mirroring pixel lines and 
columns with respect to the image boundary. Simply 
copying the pixel lines on the border is not appropriate, 
as it would lead to a highly peaked neighborhood 
histogram. 

CLAHE differs from ordinary adaptive histogram 
equalization in its contrast limiting. This feature can 
also be applied to global histogram equalization, 
giving rise to contrast-limited histogram equalization 
(CLAHE), which is rarely used in practice. In the case 
of CLAHE, the contrast limiting procedure has to be 
applied for each neighborhood from which a 
transformation function is derived. CLAHE was 
developed to prevent the over amplification of noise 
that adaptive histogram equalization can give rise to. 
This is achieved by limiting the contrast enhancement 
of AHE. The contrast amplification in the vicinity of a 
given pixel value is given by the slope of the 
transformation function. This is proportional to the 
slope of the neighborhood cumulative distribution 
function (CDF) and therefore to the value of the 
histogram at that pixel value. CLAHE limits the 
amplification by clipping the histogram at a predefined 
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value before computing the CDF. This limits the slope 
of the CDF and therefore of the transformation 
function. The value at which the histogram is clipped, 
the so-called clip limit, depends on the normalization 
of the histogram and thereby on the size of the 
neighborhood region. Common values limit the 
resulting amplification to between 3 and 4. 

It is advantageous not to discard the part of the 
histogram that exceeds the clip limit but to redistribute 
it equally among all histogram bins. The redistribution 
will push some bins over the clip limit again, resulting 
in an effective clip limit that is larger than the 
prescribed limit and the exact value of which depends 
on the image. If this is undesirable, the redistribution 
procedure can be repeated recursively until the excess 
is negligible. 

Adaptive histogram equalization in its straightforward 
form presented above, both with and without contrast 
limiting, requires the computation of a different 
neighborhood histogram and transformation function 
for each pixel in the image. This makes the method 
very expensive computationally. 

Interpolation allows a significant improvement in 
efficiency without compromising the quality of the 
result. The image is partitioned into equally sized 
rectangular tiles .A common choice is 64 tiles in 8 
columns and 8 rows. A histogram, CDF and 
transformation function is then computed for each of 
the tiles. The transformation functions are appropriate 
for the tile center pixels. All other pixels are 
transformed with up to four transformation functions 
of the tiles with center pixels closest to them, and are 
assigned interpolated values. Pixels in the bulk of the 
image are bilinearly interpolated, pixels close to the 
boundary are linearly interpolated, and pixels near 
corners are transformed with the transformation 
function of the corner tile. The interpolation 
coefficients reflect the location of pixels between the 
closest tile center pixels, so that the result is 
continuous as the pixel approaches a tile center. This 
procedure reduces the number of transformation 
functions to be computed dramatically and only 

imposes the small additional cost of linear 
interpolation. 

Biplane Decomposition 
The grey level of each pixel in a digital image is stored 
as one or more bytes in the computer. When the grey 
level is represented as a single byte, it is called an 8 bit 
image, representing grey level values in the range 0 to 
255. Decomposing a digital image into its bit planes is 
useful for analyzing the relative importance played by 
each bit of the image. Instead of highlighting gray 
level images, highlighting the contribution made to 
total image appearance by specific bits is examined 
here. In a representative 8 bit gray level image, each 
pixel in an image is represented by 8 bits. The image is 
composed of 8, 1-bit planes ranging from bit plane 0 
(LSB) to bit plane 7 (MSB).  In terms of 8-bits, plane 
0 contains all the lowest order bits in the bytes 
comprising the pixels in the image and plane 7 
contains all the higher order bits. Thus bitplane 
decomposition of an 8 bit image yields eight binary 
images. The bit-plane representation of an 8 bit image 
is shown in Fig. 1 

 

 

Figure 1 Bitplane decomposition 
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Figure 2 Original Image 

In general, the higher order bit planes contain a 
majority of visually significant data while the lower 
order ones contribute to more subtle details in an 
image. On examining the eight bit planes of the   
image, the bitplane 2 is found to carry vital 
information on the vessel tree in the retinal image. 

For the pre-processed retinal images, bit-plane 2 is 
carrying significant information corresponding to the 
vascular tree. Bit-plane 2 of the chosen image is 
shown in Fig. 7. As bit-plane images are binary images, 
they are highly suited for subsequent morphological 
image processing.   

Figure 3 Green Channel of the Original Image 

 

 

 

 

 

 

 

 

Figure 4 Contrast Enhanced Image 

Figure 5 Resultant of CLAHE of Green Channel  

Now, simply by employ
ing the 

techniques of mathematical morphology, the retinal 
vasculature can be extracted very accurately from the 
image as shown in Fig 8.  

 

 

 

 

 

Figure 6 Images after median filtering  
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Figure 7 Bit-plane 2 

  

Figure 8 Extracted Blood Vessels from Bit-plane 2 

Mathematical Morphology 
Mathematical morphology (MM) is the science of 
appearance, shape and organization. MM deals with 
non-linear processes which can be applied to an image 
to remove details smaller than a certain reference 
shape called the structuring element [13]. MM is also 
the foundation of morphological image processing, 
which consists of a set of operators that transform 
images according to the above characterizations. The 
most widely used morphological operations used in 
image processing are dilation, erosion, opening and 
closing. 

MM was originally developed for binary images, and 
was later extended to grayscale functions and images. 

In MM, top-hat transform is an operation that extracts 
small elements and details from given images. There 
exist two types of top-hat transforms. The white 
top-hat transform, which is defined as the difference 
between the input image and its opening by some 
structuring element, and the black top-hat transform 
(bottom hat transform) which is defined as the 
difference between the closing and the input image. 
Top-hat transforms are used for various image 
processing tasks, such as feature extraction, 
background equalization, image enhancement, and 
others. Binary images are best suited for performing 
morphological operations. The images obtained after 
bit plane decomposition are binary images, which are 
thus suitable for performing morphological operations 
[14].  

Dilation is an operation in which the binary image is 
expanded from its original shape. The degree of 
expansion is controlled by the structuring element. The 
dilation process is similar to convolution, in which the 
structuring element is reflected and shifted from left to 
right and then from top to bottom. In this process, any 
overlapping pixels under the centre position of the 
structuring element are assigned with 1 or black values. 
If X is the reference image and B is the structuring 
element, the dilation of X by B is represented as  

( )


⊆









=⊕ XXZBX B Z

ˆ
 (1)                    

Where B̂  is the image B rotated about the origin. 

When an image X is dilated by a structuring element B, 
the outcome element Z would be that there will be at 
least one element in B that intersects with an element 
in X. 

Erosion operator is a thinning operator that shrinks an 
image. The amount by which the shrinking takes place 
is again determined by the structuring element. Here, 
if there is a complete overlapping with the structuring 
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element, the pixel is set white or 0. The erosion of X 
by B is given as  

( )


⊆









=Θ XZBX B Z

ˆ
                  (2) 

In erosion, the outcome element Z is considered only 
when the structuring element is a subset or equal to the 
binary image X. 

Opening is done by first performing erosion, followed 
by dilation. Opening smoothens the inside of object 
contours, breaks narrow strips and eliminates thin 
portions of the image. It is mathematically represented 
as 

    ( ) BBXBX ⊕Θ=                          (3) 

Closing operation does the opposite of opening. It is 
dilation followed by erosion. Closing fills small gaps 
and holes in a single pixel object. The closing process 
is represented by 

( ) BBXBX Θ⊕=•                          (4)                                              

Closing operation protects coarse structures, closes 
small gaps and rounds off concave corners. 

Morphological operations are widely used in the 
detection of boundaries in a binary image. For an 
image X, the following can be applied to obtain a 
boundary image 

( )BXXY Θ−=                          (5)                                              

( ) XBXY −⊕=                         (6)                                              

( ) ( )BXBXY Θ−⊕=                    (7)                                              

Where, the operator ‘⊕’ denotes dilation , ‘⊖’ denotes 
erosion and ‘− ’ indicates set theoretical subtraction. 

Most binary morphological operations have natural 
extensions to gray scale processing. Some, like 
morphological reconstruction, have applications that 
are unique to gray scale images, such as peak filtering. 

The Proposed Method 

 One important issue in fundus images is  that retina 
is not a plane surface and therefore light doesn’t have 
a uniform distribution, producing images with 
non-uniform illumination and consequently with 
different contrast areas. Vignetting is often an 
unintended and undesired effect caused by camera 
settings or lens limitations. The goal of illumination 
correction is to remove uneven illumination of the 
image caused by sensor defaults (vignetting), non 
uniform illumination of the scene, or orientation of the 
surface. Retinal image preprocessing consists of 
correction of non-uniform luminosity, color 
normalization and contrast enhancement. In this work 
we use a method of luminosity correction that is based 
on segmentation of background pixels and subsequent 
computation of luminosity function based only on the 
background image [15]. The advantage of this 
approach is    that it   does   not   produce   
any    ringing   effect. 

From the RGB image, all the three component images 
are separated. The green channel is found to be having 
a better contrast as shown in Fig. 3. So only the green 
channel is preserved for further processing. In order to 
increase the contrast level, we have taken the 
bottomhat transform of the green channel. As an 
attempt to enhance the contrast of the vascular tree, we 
added this image with the tophat transform of it and 
then subtracted the bottom hat transform from this 
combination. The resultant image is shown in Fig. 4. 
Now contrast limited adaptive histogram equalization 
( CLAHE) is performed on the resultant image to get 
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an image as shown in Fig. 5. Subsequently, median 
filtering is performed to remove the noise components. 
The resultant image after median filtering is as shown 
in Fig. 6. On performing bitplane decomposition, we 
observed that bitplane 2 best represents the vascular 
tree in the fundus image. A simple dilation with a 
diamond shaped structuring element will yield the 
extracted vasculature from the fundus image. Also a 
series of morphological operations are performed on 
the binary image to present the results as shown in Fig. 
8.  

The algorithm has been tested and compared with the 
commonly used methods and the results show that the 
method proposed here can not only detect blood 
vessels but also extract most blood vessels accurately.  

Results and Discussion  

Blood vessel segmentation is a key step in almost all 
algorithms used to identify fundus features 
automatically. Furthermore blood vessel detection is 
important for automatic diagnosis of other ophthalmic 
pathologies also. Many automatic techniques for 
vessel identifcation techniques have been proposed in 
the literature, with various degrees of complexity and 
accuracy. The motivation that leads to the 
development of a new method can be summarized in 
the following points: 

(i) Computational speed, 
(ii) Robustness, 
(iii) Flexibility to accommodate a wide range of 

contrast in retinal images. 

346 million people worldwide have diabetes. More 
than 80% of diabetes deaths occur in low- and 
middle-income countries [16]. Diabetic retinopathy 
(DR) is a major cause of blindness today. Blindness 
from DR is responsible for about 20 percent of new 
cases of blindness between the age group of 45 and 74. 
Laser photocoagulation can slow down the progression 
to blindness, if DR is detected in its early stages. 
However this is not an easy task because DR patients 

do not perceive symptoms until visual loss develops 
and this happens in the later stage of the disease, when 
treatment is less effective. In order to ensure that 
diabetic patients receive treatment on time, yearly 
fundus eye examination is advised by physicians. The 
detection a extraction of vasculature from the retinal 
images is inevitable for the early detection of 
ophthalmic pathologies. However growing incidents of 
diabetes increase the number of patients and as a 
consequence the number of images that need to be 
reviewed by experts. In addition, the high cost of 
examinations and the lack of specialists prevent many 
patients from receiving effective treatment. Due to 
these reasons, an expert system for the automatic 
detection of such anomalies has inspired much 
research in this direction.  

There are large influences of human errors and 
subjectivity on the results of inspection by a human 
expert also. Presence of other factors such as noise, 
non-uniform illumination and variety of defect types 
in retinal imagery make the detection of features and 
pathologies in fundus images a challenging problem 
[17].  

Table a comparison of blood vessel extraction algorithms 

Method Accuracy*  Area under ROC Comments 

uman observer 0.9473 -- -- 

Staal et. al. 0.9442 0.952 Supervised  

Neimeijer et. al. 0.9416 0.9294 Supervised 

Kande et. al. 0.9437 0.9515 Unsupervised 

Zana et al. 0.9377 0.8984 Unsupervised 

Jiang et al. 0.9212 0.9114 Unsupervised 

Martnez-Prez et al. 0.9181 -- Unsupervised 

Chaudhuri et al. 0.8773 0.7878 Unsupervised 

Onkaew D et al 0.9388 0.8557 Unsupervised 

Proposed Method 0.9392 0.86805 Unsupervised 

* Maximum Average Accuracy 
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Unfortunately most of the algorithms used today for 
blood vessel detection are computationally intensive, 
and are less accurate, particularly in the presence of 
pathologies in the human retina.   

Three performance measures are taken to evaluate the 
performance of the algorithm and compared it with 
known best algorithms as shown in Table 1.  The first 
performance measure is receiver operator 
characteristics (ROC). An ROC space is defined by 
false positive rate (Fpr) and true positive rate (Tpr) as 
x and y axes respectively, which depicts relative 
trade-offs between true positive (benefits) and false 
positive (costs). Since Tpr is equivalent with 
sensitivity (Sn) and Fpr is equal to (1 - specificity), the 
ROC curve is sometimes called the sensitivity vs (1 - 
specificity) plot. The Sn and Sp are obtained as 
follows: Both measures are evaluated using the four 
metric values– true positive (Tp), sum of pixel marked 
as vessel in both result and ground truth image; false 
positive (Fp), sum of pixel marked as a vessel in result 
image but not in ground truth image; false negative 
(Fn), sum of pixel marked as a background in result 
image but not in ground truth image; true negative 
(Tn), sum of pixel marked as a background in both 
result and ground truth image. The sensitivity and the 
specificity are computed from  Eq. 8 and 9 
respectively. 

 

Figure 9 ROC Curve for DRIVE database 

The best possible prediction method would yield a 
point in the upper left corner or coordinate (0,1) of the 
ROC space, representing 100% sensitivity (no false 
negatives) and 100% specificity (no false positives) 
[20]. The (0,1) point is also called a perfect 
classification. The second is the area under ROC. The 
larger the area under the curve, the greater the 
discriminating ability of the segmentation method [21]. 
The third measure is maximum average accuracy 
(Maa). The accuracy of an image is calculated by 
taking the sum of Tn and Tp divided by sum of the 
total number of nonvessel pixels (n) and total number 
of vessels (p) as illustrated in Eq. 3. In our 
experiments, we used the manual segmentation by the 
first observer of DRIVE database as a gold standard 
for calculating all these three measures- ROC, area 
under ROC, and Maa, Only pixels inside the field of 
view (FOV) are taken into account. 

( )FnTp
TpTprSn
+

==
                (8)

                                                

( )FpTn
TnTnrySpecificit
+

==
            (9)

                                                    

( )np
TpTnMaa

+
+

=
)(

                 (10)
                                              

A comparison of maximum average accuracy of different 
blood vessel extraction algorithms is as depicted in Fig. 10. 

 

  

 

 

 

 

Figure 10 A comparisons based on Maximum average accuracy 
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A visual comparison of the segmentation results with that 
of the Ground truth by an expert ophthalmologist (Gold 
standard) provided in the DRIVE dataset is demonstrated in 
Fig. 11, Fig. 12 and Fig. 13. An arbitrarily chosen image 
(Image No 16) is used in this study. 

 
 

 

 

 

 

 

 

Figure 11 Original images from DRIVE dataset 

The algorithm has been implemented by using Matlab 
version 7.9 (Release 2009 b) and is found to be reasonably 
fast and accurate than the existing computationally intensive 
methods. The results are promising even when it is applied 
to segment the vasculature in images with varying lighting 
or exposure levels and with varying pathologies like macular 
edema. 

The proposed algorithm is simple and more efficient for 
automation. There is no mathematical complexity as in other 
methods and hence there is a significant improvement in 
computational time also. Moreover, this method does not 
just detect the vasculature but can extract the vascular tree 
also. The algorithm has been evaluated on a subset of the 
MESSIDOR and DRIVE image    databases with various 
visual qualities. The corresponding ROC curve for the 
DRIVE dataset is shown in Fig. 9. It is found to be superior 
to the existing ones in terms of computational speed and 
accuracy. Several images with both eyes and with or without 
pathologies were also tested using the algorithm. The false 
alarm rate is found to be very less even in low contrast 
images with multiple defects.  

 
 

 

 

 

 

 

 

Figure 12 Vasculature extracted by the algorithm 

 

 

 

 

 

 

 

Figure 13 Ground truths (Gold standard) by the Human expert 

Moreover, this method does not just detect the 
vasculature but can extract the pixels corresponding to 
vascular tree also. The algorithm, when implemented 
in matlab and executed on a Core i3 system with 4 GB 
memory took only 14 seconds for the segmentation, 
which is superior to the existing ones reported in the 
literature. The algorithm has been extensively tested 
on images of the MESSIDOR and DRIVE image   
databases with varying lighting and exposure levels 
and with varying levels of pathologies. It is found to 
be superior to the existing ones in terms of 
computational speed and accuracy. Several images of 
both eyes and with large areas of hemorrhages, 
microaneurysms and cotton wool spots were also 
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tested using the algorithm. The false alarm rate is 
found to be very low even in low contrast images with 
multiple defects. Our algorithm has a very promising   
average accuracy as depicted in Fig. 9. The main 
attraction of the proposed method is its simplicity, 
accuracy and saving in computational load. Moreover, 
unlike most other algorithms in this area, this 
algorithm does not require a prior knowledge of other 
retinal features such as optic disc or macula for the 
detection of vasculature .The method works pretty 
well to detect the narrow vessels even when the input 
image is a low-contrast one. The experimental results 
demonstrate that the proposed algorithm is fast, 
accurate and robust. 

Conclusion 

A novel algorithm for the extraction of vascular tree is 
proposed in this paper. The algorithm is superior to the 
existing algorithms in terms of computational time and 
accuracy. 
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