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Introduction 

The quality of computer optimized treatment plan is 

primarily determined by the choice of an objective 
function, constraints, and optimization algorithm. The 
primary objective of radiation therapy, i.e., to deliver 
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Abstract  
The purpose of this study was to evaluate the efficacy of multisolutions optimization algorithm for High Dose Rate (HDR) 

brachytherapy of prostate. In this retrospective study, we included data from 20 prostate cancer patients who underwent ultrasound 

based real time HDR Brachytherapy at institution. The treatment plans of all 20 patients were optimized in Oncentra Prostate 

treatment planning system (TPS) using inverse dose volume histogram based optimization followed by graphical optimization 

(GRO) in real time. The data of all the patients were retrieved later, and the treatment plans were re-optimized using multisolutions 

dose volume histogram based optimization (MDVHO) and multisolutions variance based optimization (MVBO) algorithms with 

same set of dose constraints, same number of catheters, and same contour set as in GRO. Several Pareto optimal solutions were 

obtained by varying the weighting factors of composite objective function in finite steps of adequate resolutions.  These solutions 

were then stored in the database of TPS and same decision criteria was employed to pick the final solution using a decision engine. 

The average values for planning target volume receiving 100% of prescribed dose (V100) for MDVHO, MVBO, and GRO were 

95.03%, 86.72% and 97.56%, respectively. The average V100 due to MDVHO was statistically significant (P = 0.002) in 

comparison to MVBO, whereas the average V100 due to MDVHO and GRO was not statistically significant (P = 0.066). In 

conclusion, the MDVHO can provide comparable solutions to typical clinical optimizations using GRO within clinically reasonable 

amount of time. In most of the cases, the plans created by MVBO were not clinically acceptable without users’ further manual 

intervention.  
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the curative dose to the target while sparing 
neighboring critical structures can now be achieved 
with high degree of accuracy due to technological 
advancement [1]. Furthermore, the rapid 
improvement in three dimensional (3D) imaging 
modalities coupled with advancement in computer 
technology has now made possible to create truly 
anatomy based inverse optimization [2, 3]. However, 
radiation therapy optimization is inherently 
multiobjective problem often with competing 
objectives. For example, in case of prostate cancer, 
we need to have sufficient planning target volume 
(PTV) coverage while sparing the organs at risk 
(OARs) such as urethra, bladder, and rectum. 
However, while increasing the dose to the PTV, it 
also results in increased dose outside the PTV, thus 
increasing radiation exposure to the OARs. These 
objectives cannot be optimized to their best 
simultaneously and a trade-off among the objectives 
exists [4, 5]. 

It is becoming clear that, there is no single best 
solution rather there are many best compromises so 
called Pareto optimal or efficient solutions [6, 7]. A 
Pareto optimal solution is the one which cannot be 
improved in one objective without worsening at least 
one of the other objectives. The line joining the 
Pareto optimal solutions is called Pareto front or 
Pareto limit and shows where best compromise 
between the objectives can be achieved with the 
variation of their relative importance. [6] Figure 1 
shows the Pareto optimal solutions for a simplified 
case of two objectives, f1 (x) and f2 (x). In Figure 1, 
solutions 1 and 3 are non-dominated Pareto optimal 
solutions. Solution 1 has a smaller f1 value f1 (1) than 
the value f1 (3) of solution 3 but f2 (1) of solution 1 is 
bigger than f2 (3) of solution 3. Solution 1 has both 
objectives smaller than solution 2 simultaneously. 
Therefore, solution 2 is not Pareto optimal. The aim 
of multiobjective optimization is to find a 
representative set of non-dominated solutions. 

Several investigators have studied multiobjective 
optimization for both external beam radiation therapy 
(EBRT) and brachytherapy with different 
optimization strategies [6-18]. For example, 
Milickovic et al. [6] studied the multiobjective 
anatomy based dose optimization for high dose rate 
(HDR) brachytherapy with constraints free 
deterministic algorithms. Schreibmann et al. [9] 
proposed a hybrid multiobjective evolutionary 

optimization algorithm for intensity-modulated 
radiotherapy inverse planning. Craft et al. [14], used 
convex multicriteria dose optimization to make the 
planning of volumetric modulated arc therapy faster 
and explored the tradeoffs between planning 
objectives and delivery efficiency. In the recent study 
by Giantsoudi et al., [15] authors studied the 
feasibility of a new inverse planning technique based 
on the generalized equivalent uniform dose for 
image-guided HDR prostate cancer brachytherapy in 
comparison to conventional dose-volume based 
optimization. In another study by Pardo-Montero [16] 
et al., an approach to multiobjective optimization of 
rotational therapy treatments was investigated.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Pareto front graph: (a) Example of bi-objective 
space (f1, f2) and (b) Pareto front graph of DVH based 
multi-objective optimization (MDVHO). Solutions 1 and 3 
(a) are non- dominated Pareto optimal solutions. Solution 1 
has a smaller f1 value f1(1) than the value f1(3) of solution 
3 but f2(1) of solution 1 is bigger than f2(3) of solution 3. 
Solution 1 has both objectives smaller than solution 2 
simultaneously. Therefore solution 2 is not Pareto optimal. 
The aim of multiobjective optimization is to find the 
representative set of non-dominated solutions.  

 

However, to the best of our knowledge, the 
multiobjective optimization techniques along with 
clinically relevant strategy for HDR brachytherapy of 
prostate remain to be addressed, especially with focus on 
real-time intra-operative procedures. For real-time 
procedures, the algorithm should be fast enough to produce 
a clinically optimal plan within a reasonable amount of 
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time, preferably in less than five minutes. Although 
deterministic algorithms are fast, the final result depends 
on the initial starting point and can be trapped in the local 
minima if such minima are in the objective function [18]. It 
has been reported that multiple local minima may occur in 
radiotherapy optimization problems with dose volume 
constraints [18]. To overcome this issue, the planner has to 
run the optimization several times with different starting 
points. Stochastic algorithms, such as simulated annealing 
(SA) or genetic algorithm (GA) are slow but can escape 
from local minima and will converge to a global minimum 
if allowed to execute for a sufficient amount of time [10]. 
The problem with these algorithms is the significant 
amount of time they require to optimize, which may not be 
achievable in real clinical environment.  

For instance, the graphical optimization (GRO) is a 
manual optimization technique [12], and the quality of 
final plan heavily depends on the experience and expertise 
of the planner. This optimization technique is most 
commonly used by the clinicians including at our 
institution.  Since GRO is a manual technique, it takes 
significant amount of time to achieve a clinically 
acceptable plan, and such long process may not 
particularly desirable in real time procedures. The purpose 
of this study is to investigate an alternative technique 
which is robust, fast and can create comparable if not 
better plans than the plans created manually by an 
experienced brachytherapy team without further manual 
intervention. The algorithms chosen for the present study 
are multisolutions dose volume histogram based 
optimization (MDVHO) and multisolutions variance based 
optimization (MBVO). The DVH and variance based 
objective functions have been chosen to study the 
quality of plans with the choice of objective function. 
Additionally, both the MDVHO and MBVO are 
gradient based fast deterministic algorithms, which 
can create several hundred plans in few minutes time.  

Materials and Methods 

This is a retrospective study consisting of data from 
20 patients who underwent ultrasound based real time 
HDR Brachytherapy of the prostate at institution. The 
clinical treatment plans were all carried out 
intraoperatively with real-time live ultrasound images 
and real-time dynamic dosimetry using treatment 
planning system (TPS) called Oncentra Prostate 
(SWIFT, version 3.0) by Nucletron [12]. The TPS is 
dedicated to ultrasound based real-time HDR 

brachytherapy of the prostate. The TPS is equipped 
with several classes of optimization algorithms, 
ranging from manual adjustment of dwell times to 
multiobjective evolutionary inverse optimization. 
Catheters were implanted with the guidance of 
transrectal ultrasound (TRUS) based on the clinical 
experience, and post implant optimization was carried 
out with inverse DVHO utilizing default importance 
factors stored in the TPS. The default importance 
factors were determined for first clinical case with a 
trial and error approach and then defaulted in the TPS. 
Most of the times, the plans were not clinically 
acceptable and further improvement of plans was 
performed using GRO. The isodose lines in GRO are 
manipulated slice by slice and the TPS adjusts the 
dwell times accordingly. Manipulation of isodose line 
in particular slice may adversely affect to the 
neighboring slices and the process goes on till planner 
comes up with acceptable plan. This is a tedious 
process and may take significant amount of time 
which is particularly undesirable in real time 
procedures. The data from the original treatment 
plans were retrieved and the treatment plans were 
re-optimized using MDVHO and multiobjective 
MVBO algorithms under identical conditions.  

Multiobjective dose volume histogram based 

optimization 

The MDVHO algorithm is an anatomy based inverse 
optimization using gradient based fast deterministic 
algorithm [12]. Its goal is to create an ideal DVH 
based on user defined dose and dose volume limits to 
different structures and moves straight downhill 
iteratively based on user defined convergence setting 
[12]. For multiobjective optimization technique, it 
requires the planner to have some prior knowledge of 
relative weights and their influence in the final result 
[12]. However, in general, this is not possible for the 
planner to have prior knowledge of set of importance 
factors that map from important space to optimization 
space with desirable dosimetric results. Even if the 
solution obtained for particular set of importance 
factors is global optimum, using other set of 
importance factors, other better results can be 
obtained. This often requires the repetition of 
optimization algorithm several times with different 
set of importance factors till the planner feels that the 
optimized plan is clinically acceptable in trial and 
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error fashion. If the planner finds some of the 
objectives not satisfactory, then he/she increases the 
corresponding weight to make it acceptable. Often, 
this has the deteriorating effect in other objectives 
and the process can be very tedious especially if one 
is dealing with several objectives. To get around this 
issue, we have adopted different optimization 
approach in this study. In this approach, we define the 
range of importance factors for each objective 
considered instead of single fixed set of importance 
factors.    

Dose limits and range of importance factors used 
for different objectives in this study are DL, PTV = 
(100% of PD and range, 0.1 -1.0), DH, PTV = (150% 
of PD and range, 0.001- 1.0), DH, URETHRA = 
(120% of PD and range, 0.001-1.0), DH, RECTUM 
=( 85 % of PD and range, 0.001-1.0), DH, 
BLADDER = (85% of PD and range, 0.001-1.0), and 
DH, NORMAL TISSUE = (120% of PD and range, 
0.001-1.0) respectively. Based on user defined 
number of steps per objective, the optimization 
algorithm finds several solutions with different 
combinations of importance factors and stores them 
in the database of TPS. The planner has to choose one 
of the solutions that best meet the clinical goals from 
the pool of these solutions. The range of importance 
factors chosen for the prostate low (conformity 
objective) is 0.1 to 1.0. This is for the purpose of 
scanning the subset of Pareto front which is clinically 
relevant. This means, we do not want the solution at 
the extreme end of Pareto front where conformity is 
very low. 

Multiobjective variance based optimization 

algorithm  

The concept of MVBO is exactly same as the 
MDVHO as explained before with the only difference 
in the form of objective function used [12].  The 
MVBO is based on variance based objective and its 
goal is to minimize variance between dose at the 
sampling point and mean dose on the region of 
interest (ROI) chosen. The range of importance 
factors and dose limits chosen for MVBO algorithm 
are exactly same as in MDVHO algorithm. The 
conformity and homogeneity objectives in MVBO 
algorithm correspond to PTV low and PTV high 
objectives in MDVHO algorithm. For details on the 
optimization strategies employed for both MDVHO 

and MVBO, readers are advised to refer to Baltas et 
al. [12]. 

Execution of optimization algorithms 

Both MDVHO and MVBO are deterministic 
algorithms which move straight downhill in the 
search space and converge at nearby minima [12]. 
The difference between these two optimization 
algorithms is the form of objective function 
penalization mechanism. The penalization in MVBO 
is quadratic when the dose is outside the acceptable 
limit as opposed to linear in MDVHO [12].  

In either of the multiobjective optimization 
algorithms considered in this study, the algorithm 
runs several times with different set of importance 
factors based on user defined range of importance 
factors with finite increments for several objectives 
considered in composite objective function. Several 
Pareto optimal solutions are stored in the database of 
TPS forming the pool of alternative solutions. The 
Pareto front graph for several objectives after the 
completion of optimization is as shown in Figure1(a). 
In Figure 1 (b), several objectives are plotted against 
the objective of prostate low thereby reducing 
multidimensional polyhedron into simple two 
dimensional plots. From the pool of these solutions, 
one with best dosimetric distribution is to be selected 
by the planner. The planner can select the final 
solution using decision engine as per the requirement 
of clinical needs.   

Dosimetric evaluation 

Isodose distribution and several dosimetric quality 
indexes obtained from cumulative DVH were used 
for the evaluation and qualitative and quantitative 
comparison of different treatment plans optimized by 
GRO, MDVHO, and MVBO. The following are the 
dosimetric indices calculated to compare the 
treatment plans quantitatively. 
 

1. D90:  the dose that covers 90% of PTV  
2. V100, V150 and V200:  the volume of PTV 

receiving 100%, 150% and 200% of the PD, 
respectively. 

3. D10 and Dmeanof OARs:  D10 is the 
minimum dose to 10 % of the OAR volume 
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(urethra, bladder or rectum).  Dmean is the 
mean dose to a given volume of an OAR. 

4. Homogeneity Index (HI) [19]:   defined as 
HI = (V100- V150)/V100.  This index is 
used to assess the volume of hot spot 
generated relative to the treatment volume 
[19].  

5. Conformal Index (COIN) [20]:  a unique 
quality index that describes how well the 
reference isodose covers the target volume 
and excludes non-target volumes.  It is 
defined as COIN = (PTVref/PTV) x (PTVref/ 
Vref), where PTVref is the volume of PTV 
that receives dose equal to or greater than PD.  
Vref is the volume receiving the PD [19].  
The ideal situation is that in which COIN is 
equal to 1.  In real clinical situations it is 
always less than 1, and if all other parameters 
are comparable then a treatment plan with 
higher COIN should be favored. 

Selection criteria for the final solution 

Decision engine in the treatment planning system was 
used to select the final solution in case of both 
MDVHO and MVBO [12]. The decision engine has 
all the user defined evaluation/ decision dosimetric 
parameters obtainable from cumulative DVH for both 
PTV and OARs. The decision engine filter out only 
those solutions which satisfy the user defined 
dosimetric criteria in the evaluation/ decision protocol. 
The same dosimetric criteria were used to select the 
final solution in case of both MDVHO and MVBO. 
We first filtered only those solutions with D90 for 
PTV from 100% to 115% of the prescription dose 
(PD). Then from the remaining solutions, we filtered 
only those solutions with PTV V100≥ 95% of the PD. 
It was followed by constraining solutions with PTV 
V150≤ 30% of the PD. Then from the left over 
solutions, we chose the one with highest COIN. We 
followed this strategy in sequence to select the final 
solution in this study. Figure 2 shows DVHs 
corresponding to several potential solutions left after 
many others got filtered out by decision engine for 
not fulfilling the dosimetric criteria set by the planner.  
However, MVBO resulted most of the solutions in 
most of the cases with D90 and V100 less than the 
above mentioned limits. Under this condition 
dosimetric requirements were decreased in steps of 

2% for D90 and V100 and increased in steps of 2% 
for V150. The final solution among the left over was 
selected with COIN as before. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2 Dose-volume Histograms (DVHs) corresponding 

to several potential solutions due to DVH based 

multi-objective optimization (MDVHO). Several others got 

filtered out by a decision engine for not fulfilling the 

dosimetric criteria set by the planner. The final solution can 

be selected among these solutions either selecting the DVH 

graphically which best fulfills the clinical goals or by 

forcing the decision engine to single out the solution by 

stringent dosimetric requirements. 

Statistical analysis 

Paired Student’s t-test at 5 % level of significance 
was used to make statistical comparison of different 
dosimetric quality indices of treatment plans 
optimized by different optimization algorithms. The 
statistical analysis was carried out using Microsoft 
Excel. The statistical comparisons were carried out 
between MDVHO vs. MDVO, and MDVHO vs. 
GRO. 

Results  

The average number of catheters implanted was 14 
(range, 11-17) and the average clinical target volume 
(CTV) was 43.27cc (range, 12.50 -67.56 cc), which 
in our case served as the PTV as well. The average 
time taken to perform MDVHO and MVBO 
optimization with about 260 solutions were 5.6 
minutes (range, 3-9 minutes) and 1.9 minutes (range, 
1-3 minutes), respectively. The average time taken for 
optimization using GRO for clinical plans was 25 
minutes (range, 20-35 minutes). In MDVHO and 
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MVBO optimizations, the number of dose sampling 
points for prostate was 500 and number of dose 
sampling points for all other structures considered in 
optimization such as urethra, bladder, rectum and 
normal tissue were 300 each. This sampling was used 
only for the optimization processes. For an evaluation 
purpose, we increased sampling points for each of the 
objectives to 1000.  The above sampling strategy 
was employed to reduce the overall calculation time 
without compromising the final dose calculation 
accuracy. Most of the pareto optimal plans get filtered 
out for not fulfilling the clinical objectives. The goal 
was to reduce the time spent on those solutions. The 
goal was to reduce the time spent on those solutions.  
Most of the treatment planning systems uses coarse 
calculation (either reducing the sampling points or 
approximating the dose calculation or both) in 
optimization and increase the dose calculation 
accuracy in final dose calculation to speed up the 
overall calculation time. The end result is slightly 
different DVH in final calculation than in 
optimization stage. Once the optimized plans meet 
the clinical objectives, the dose calculation accuracy 
has to be increased for final evaluation. The above 
sampling strategy removes unwanted solutions 
quickly without compromising final dose calculation 
accuracy for clinically relevant plans. The above 
sampling strategy neither changes result nor 

conclusion. 
Figure 3 shows the isodose distribution of the same 

axial slice of a particular patient with plan optimized 
by (a) MDVHO, (b) MVBO, and (c) GRO, 
respectively. From isodose distribution, it can be 
observed that all three optimization algorithms have 
resulted adequate PTV coverage with MVBO being 
most conformal and highly inhomogeneous for this 
particular reference slice. Most of the MVBO 
optimized plans in this study have resulted adequate 
coverage with high conformity in central slices and 
lacked adequate coverage to the slices towards base 
and apex of the prostate.  This is due to the variance 
reduction in MVBO in which any dose outside the 
acceptable range gets penalized quadratically. 
Similarly, Figure 4 (a) shows the cumulative DVH 
comparison between treatment plans optimized by 
MDVHO and MVBO of the same patient with same 
range of importance factors, dosimetric constraints 
and selection strategy for the final solution. From the 
DVH comparison, it appears that MDVHO algorithm 
has produced higher V100 (96.89% vs.86.18 % of 
PD) with smaller V150 (33.44% vs. 42.18% of PD) 
with clinically acceptable doses to the OARs. Figure 
4 (b) shows that MDVHO has resulted smaller 
bladder dose with comparable dose to prostate, 
urethra, and rectum in comparison to GRO. 

 

 

 

 

 

 

 

 

 
Figure 3 Isodose distribution in color-wash form with treatment plan optimization algorithms (a) MDVHO, (b) MVBO, 
and (c) GRO for the same axial slice. The planning target volume (PTV) is enclosed with red contour and blue = 100% 
isodose, yellow = 125% isodose, green = 150% isodose, red = 200% isodose.  
Abbreviations: MDVHO = dose volume histogram based multiobjective optimization, MVBO = multiobjective variance 
based optimization, GRO = graphical optimization. 
 

The statistical analysis of dosimetric quality 
indices for both PTV and OARs is presented in 
Tables 1 and 2, respectively.  The results are 
averaged over 20 analyzed patients. The average D90 
(106.42 Gy vs. 93.33 Gy) was statistically higher (P 
=0.002) with MDVHO in comparison to MVBO. 

However, the average D90 (106.42  Gy vs. 110.88 
Gy) was statistically lower (P =0.015) with MDVHO 
in comparison to GRO. This signifies that inverse 
anatomy based MDVHO algorithm can create more 
homogeneous plan than the manual GRO algorithm 
for similar target coverage. The average V100 (95.05% 
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vs.86.72%) for MDVHO was statistically higher (P= 
0.002) in comparison to MVBO. This suggests that 
even though MBVO can create highly conformal 
plans due to the dominance of variance reduction, it 

lacks an adequate target coverage to be clinically 
acceptable. In contrast, the average V100 (95.03 vs. 
97.56) was not statistically significant (P = 0.066) 
with MDVHO in comparison to GRO.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Dose-volume histogram (DVH) comparison between: (a) MDVHO (broken lines) and MVBO (solid lines). 
MDVHO based optimization resulted in higher V100 together with significant reduction in V150 compared to MVBO 
optimization. (b) MDVHO (broken lines) and GRO (solid lines). MDVHO resulted smaller bladder dose with comparable 
dose to prostate, urethra and rectum compared to GRO. Abbreviations: MDVHO = DVH based multiobjective 
optimization, MVBO = multiobjective variance based optimization, GRO = graphical optimization 

  

Table 1 Dosimetric indices for the PTV with different optimization algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: MDVHO = dose volume histogram based multiobjective optimization, MVBO = multiobjective variance 
based optimization, GRO = graphical optimization. PTV = planning target volume; PD = prescription dose;   σ = 
standard deviation; COIN = conformal index; HI = homogeneity index; D90 = minimum dose to 90% of PTV; V100, V150 
and V200 = PTV receiving 100%, 150% and 200% of prescription dose respectively. (The values are averaged over 20 
analyzed patients) 

 

Optimization 
algorithm 

D10 (Urethra) Dmean 
(Urethra) 

D10 (Bladder) Dmean (Bladder) D10 (Rectum) Dmean (Rectum) 

GRO 
Average 
Median 
σ 
Minimum 
Maximum 
 

 
127.09 
123.84 
13.54 
117.01 
181.94 
 

 
113.47 
112.14 
8.05 
101.98 
141.84 

 
76.47 
69.92 
20.26 
51.18 
118.96 

 
55.80 
55.85 
14.53 
36.17 
87.66 

 
69.40 
69.02 
8.77 
50.32 
85.66 

 
48.99 
47.57 
7.03 
36.52 
62.18 
 

MDVHO 
Average 
Median 
σ 
Minimum 
Maximum 
P-value 

 
130.01 
124.66 
17.69 
109.35 
166.03 
0.56 

 
114.89 
112.20 
13.20 
97.89 
153.70 
0.40 

 
71.06 
64.13 
31.07 
38.19 
181.95 
0.45 

 
58.18 
56.61 
18.75 
32.70 
112.06 
0.56 

 
68.95 
67.80 
8.39 
53.24 
92.72 
0.810 

 
48.87 
48.62 
6.96 
36.52 
66.17 
0.935 

MVBO 
Average 
Median 
σ 
Minimum 
Maximum 
p-value 

 
131.35 
131.65 
15.10 
102.09 
162.04 
0.756 

 
107.39 
110.74 
11.33 
83.16 
123.14 
0.04 

 
53.79 
51.11 
11.95 
37.67 
72.40 
0.01 

 
39.84 
37.98 
9.42 
26.36 
55.96 
0.0004 

 
61.21 
61.79 
9.25 
46.37 
82.41 
<0.001 

 
42.10 
42.49 
6.95 
30.54 
56.29 
<0.001 
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Table 2 Dose (Gy) to the OARs with different optimization algorithms. 

 

Abbreviations: MDVHO = dose volume histogram based multiobjective optimization, MVBO = multiobjective variance 
based optimization, GRO = graphical optimization. D10 = minimum dose to 10% of urethra (or bladder or rectum) volume. 
Dmean = mean dose to given volume of interest, here urethra, bladder and rectum; σ = standard deviation. (The values are 
averaged over 20 analyzed patients) 

 

The D90 and V100 comparisons in the form of box 
plots are presented in Figure 5. The average V150 
(23.87% vs. 35.61%) and average V200 (8.16% vs. 
13.68%) were both statistically lower (P<0.001) with 
MDVHO in comparison to MVBO (Table 1 and 
Figure 6). The average V150 (23.87% vs. 31.94%) and 
average V200 (8.16% vs. 10.46%) were both 
statistically lower  with MDVHO in comparison to 
GRO (Table 1 and Figure 6).The average 
homogeneity index (0.75 vs. 0.59) was statistically 
higher (P<0.001) with MDVHO in comparison to 
MVBO (Table 2 and Figure 7). However, average 

conformal index (0.65 vs. 0.76) was statistically 
lower (P<0.001) with MDVHO in comparison to 
MVBO. The COIN and HI both were statistically 
higher with MDVHO in comparison to GRO (Table 2 
and Figure 7). The average  Dmean to urethra (114.89 
Gy vs. 107.39 Gy) was slightly higher statistically 
(P=0.04) with MDVHO in comparison to MVBO. 
However, the minimum dose to 10% volume (D10) of 
urethra, (130.01 Gy vs.131.35 Gy) was essentially 
same (P = 0.756) with both MDVHO and MVBO 
(Table 2 and Figure 8).  

 

 

 

 

 

 

 

 

 

Figure 5 Box and whisker plots of the PTV D90 (a) and V100 (b) for the four optimization algorithms covered in this study.  

MVBO has the widest range of D90 and V100 rendering clinically unacceptable most of the time.  The plots present the 10th 

percentile, 25th percentile, median, 75th percentile and 90th percentile of data used.  

Abbreviations: MVBO = multiobjective variance based optimization. 

Optimization algorithm D90  (Gy) (% PD) V100  (%) (% PTV) V150 (%) (% PTV) V200 (%) (% PTV) COIN HI 

GRO 
Average 
Median 
σ 
Minimum 
Maximum 

 
110.88 
112.18 
4.85 
102.43 
119.50 

 
97.56 
97.73 
1.77 
94.04 
99.72 

 
31.94 
30.78 
7.31 
19.87 
50.10 

 
10.46 
10.44 
2.69 
6.26 
17.50 

 
0.50 
0.50 
0.18 
0.19 
0.81 

 
0.67 
0.68 
0.07 
0.48 
0.79 

MDVHO 
Average 
Median 
σ 
Minimum 
Maximum 
P-value 

 
106.42 
107.52 
5.63 
91.69 
113.77 
0.015 

 
95.03 
96.77 
5.73 
76.17 
99.11 
0.066 

 
23.87 
22.97 
8.01 
10.80 
43.36 
0.007 

 
8.169 
7.17 
3.73 
2.83 
16.59 
0.059 

 
0.65 
0.64 
0.06 
0.49 
0.76 
0.002 

 
0.75 
0.76 
0.08 
0.56 
0.89 
0.011 

MVBO 
Average 
Median 
σ 
Minimum 
Maximum 
P-value 

 
96.33 
96.28 
8.90 
81.05 
114.46 
0.002 

 
86.72 
87.15 
6.49 
72.83 
97.38 
0.002 

 
35.61 
37.76 
8.41 
15.17 
55.17 
<0.001 

 
13.68 
13.76 
4.68 
4.93 
25.69 
<0.001 

 
0.76 
0.77 
0.09 
0.61 
0.92 
<0.001 

 
0.59 
0.59 
0.08 
0.43 
0.79 
<0.001 
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Figure 6 Box plots for V150 and V200 for MDVHO, MVBO and GRO: (a) V150 comparison and (b) V200 comparison. 

Average V150 (a) and V200 (b) are both significantly smaller with MDVHO compared to both MVBO and GRO.  

Abbreviations: MDVHO = dose volume histogram based multiobjective optimization, MVBO = multiobjective variance 

based optimization, GRO = graphical optimization 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 COIN and HI for MDVHO, MVBO and GRO: (a) COIN comparison and (b) HI comparison. GRO has 

significantly lower COIN (a) compared to both MDVHO and MVBO and HI (b) somewhere in between MDVHO and 

MVBO. Abbreviations: MDVHO = dose volume histogram based multiobjective optimization, MVBO = multiobjective 

variance based optimization, GRO = graphical optimization, COIN = conformity index, HI = homogeneity index. 

 

 

Figure 8 D10 for critical structures for MDVHO, MVBO and GRO: (a) Urethra, (b) Bladder and (c) Rectum.  

Abbreviations: MDVHO = dose volume histogram based multiobjective optimization, MVBO = multiobjective variance 

based optimization, GRO = graphical optimization 
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Figure 9 Mean Dose for critical structures for MDVHO, MVBO and GRO: (a) Urethra, (b) Bladder and (c) Rectum. 

Abbreviations: MDVHO = dose volume histogram based multiobjective optimization, MVBO = multiobjective variance 

based optimization, GRO = graphical optimization 

 
The D10 and Dmean for both rectum and bladder 

were statistically higher with MDVHO in comparison 
to MVBO (Table 2, Figures 8 and 9). This is again 
due to highly conformal but the inhomogeneous plans 
created by MDVO. No statistically significant 
difference was observed in case of OARs dosimetry 
in between MDVHO and GRO (Table 2). The box 
plots for GRO algorithm are included for visual 
comparison to show the capability of the optimization 
algorithms in producing a clinically acceptable plan 
without user’s further intervention.  

Discussion 

There are mainly two critical points unanswered 
when we use a composite objective function 
expressed as a weighted sum.  First, how can a user 
know the most appropriate values for the penalties/ 
importance factors? Second, are the penalization 
values independent of individual anatomy of the 
patient?  In fact, it is not possible to answer both of 
these queries for any implant and for any patient prior 
to the execution of optimization itself. The only way 
to sort out above mentioned queries is to investigate 
the Pareto front by making several runs of 
optimization algorithm for given aggregate objective 
with different sets of importance factors.  To get 
around these issues, we adopted a new optimization 
strategy in this study. In this strategy, several efficient 
solutions were created and stored in the database of 
TPS using both DVH and variance based objectives. 
The subset of Pareto front which is of clinical interest 
was only scanned with finite resolutions between two 
solutions. This is because all Pareto optimal plans are 

not of clinical interest such as the one in the extreme 
end of Pareto front with very low PTV conformity. 
Even within this subset, there may be infinite number 
of solutions as the dose distributions continuously 
change with the change in importance factors and 
difference between two Pareto optimal plans can 
become infinitesimal small. This is the reason we 
changed the importance factors of composite 
objective function in steps with sufficient resolution 
such that two plans stored in the database become 
distinct dosimetrically as well as visually in DVHs 
and isodose distribution. The final solution was 
chosen from the pool of solution using the decision 
engine with the dosimetric constrains as mentioned 
before. 

The quality of optimized treatment plan depends 
on the objective function, constraints, free variables 
and the algorithm used to optimize the plan. The 
MDVHO and MVBO considered in this study are 
both deterministic algorithms and can converge only 
to the convex part of the objective space. To make 
fair comparison, no manual adjustments of any forms 
were performed.  The MDVHO and MVBO plans 
were optimized under exactly identical conditions and 
selection of final solution was subjected to same 
dosimetric constraints. In case of MDVHO algorithm, 
the final solution selected under the aforementioned 
conditions, resulted clinically acceptable dosimetric 
indices in nearly all of the cases in this 
study.Clinically acceptable plans include PTV 
coverage of at least 90% PD while meeting non-target 
tissue constraints.In fact, 18 out of 20 cases studied 
were clinically acceptable without user further 
intervention to improve the plan manually.   
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However, some extreme cases in which the pool of 
solutions with highest V100 for the PTV as low as 
76.17 % of PD were also observed. This is probably 
due to the deterministic nature of the algorithm in 
which all the solutions get converged in the convex 
part of the solution space.  

However, even with the scanning of clinically most 
relevant part of Pareto front in this study, V100 for 
PTV in most of the cases due to MVBO algorithm 
resulted, the pool of solutions with less than 90% of 
the prescription dose. The solutions with V100 for 
PTV with less than 90% of the prescription dose are, 
in general, not acceptable clinically. In fact, only 6 
out of 20 cases met clinical acceptable criteria with 
MVBO. Due to the dominance of conformity 
objective fS on the surface of PTV, the higher value of 
V100 achievable is limited even with the maximum 
value of importance factor assigned to it. This 
signifies the importance of the form of objective 
function and penalty mechanisms in particular 
application in optimization algorithm. The objective 
function must capture the essence of clinical goals in 
order to produce the desired results for particular 
application. It is however possible that, the form of 
objective function efficient for particular application 
under particular conditions may not be equally 
efficient in other form of applications. So, most of the 
MVBO plans in this study under the stated conditions 
need further user’s intervention to make them 
clinically acceptable.  These results signify that 
scanning pareto front is of little help if we do not 
have a suitable form of objective function. Even if we 
have a suitable form of objective function for a 
particular application, scanning clinically relevant 
part of pareto front does not always give us clinically 
acceptable plans. This is probably due to the 
convergence of all the solutions in the convex part of 
objective function for a given dose and dose volume 
constraints. This means all the solutions got 
converged in local minimum in solution space. This 
agrees with deterministic nature of the algorithm. 
Probably due to this reason, two cases did not meet 
clinically acceptability criteria without user further 
intervention optimized with MDVHO. 

Conclusion 

The MDVHO algorithm can create a spectrum of 
alternative solutions and the final solution chosen 
from the spectrum using the decision engine is 
clinically acceptable in most of the cases without 
planner's further interventions. In addition, the 
MDVHO can provide comparable solutions to typical 
clinical optimizations with GRO within a clinically 
reasonable amount of time regardless of planner's 
experience and expertise. MDVHO algorithm is 
appealing in real time intraoperative procedures as it 
can create clinically acceptable plans in fraction of 
time to that of GRO independent of planner 
experience and expertise. The MVBO can create a 
spectrum of solutions that are highly conformal but 
the upper limit of dosimetric parameter such as V100 
is limited by the dominance of the variance reduction 
objective on the surface (i.e., conformity objective 
even if we scan the clinically relevant part of  Pareto 
front). Most of the plans optimized by MVBO 
algorithm did not meet the clinical acceptable criteria. 
Thus, scanning even clinically relevant Pareto front is 
of little help, if we do not have the suitable form of 
objective function in real clinical applications.  
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