

SC
H

O
O

L
O

F

M
A

N
A

G
EM

EN
T

A
N

D

TE
C

H
N

O
LO

G
Y

P
O

LY
TE

C
H

N
IC

 O
F

P
O

R
TO

 M

M
A

ST
ER

C
O

M
P

U
TE

R
 E

N
G

IN
EE

R
IN

G

António Miguel Gonçalves Costa. Optimising User Experience With

Conversational Interfaces

O

p
ti

m
is

in
g

U
se

r
Ex

p
er

ie
n

ce

W
it

h
 C

o
n

ve
rs

at
io

n
al

In
te

rf
ac

es

A
n

tó
n

io
 M

ig
u

el
 G

o
n

ça
lv

es
 C

o
st

a

1
2

/2
0

1
9

SCHOOL OF

MANAGEMENT AND

TECHNOLOGY

POLYTECHNIC OF

PORTO

Optimising User Experience With
Conversational Interfaces

António Miguel Gonçalves Costa

MASTER

COMPUTER ENGINEERING

12/2019

M

SCHOOL OF

MANAGEMENT AND

TECHNOLOGY

POLYTECHNIC OF
PORTO

M

MASTER

COMPUTER ENGINEERING

 Optimising User Experience With

Conversational Interfaces
António Miguel Gonçalves Costa
Fábio André Souto da Silva, Marco Filipe Vieira Gomes

Abstract

User Experience is one of the main aspects that maintain a customer loyal to cloud based

solutions or SaaS (Software as a Service). With the rise of the natural language processing

techniques, the industry is looking at automated chatbot solutions to boost and expand their

services. This thesis presents a practical case study of the implementation of a chatbot solution to

complement a CRM (Customer Relationship Management) software called FOXAIO, and then

quantify, following the most appropriate guides and solutions available, the User Experience

(UX) optimisation.

In order to create a robust and scalable solution based on the constraints created by the

company in the case, we reviewed the current deep learning techniques, tools and libraries

available to help the development process. The most proven techniques in the field of Natural

Language Processing (NLP) will be introduced.

To achieve the goals of this solution without "reinventing the wheel", we present possible

architectures to use at the top of some open source and available tools on the market, with a

special relief in the framework RASA. Also we discussed some of possible techniques to create

the intent classifier, where we detail the better performance in the top of the rasa tensorflow

embedding pipeline for this particular case.

The conversational system, also, required a channel to interact with the final user. To achieve

that, we also implemented a basic chat interface created on the top of the socket protocol, which

communicate with the conversation system. In any case, it would be possible to extend to the

other channel’s available on the market, like messenger, slack, telegram.

Finally, we detail with a few use cases, that’s hypothetically possible to improve the user

experience of an existing software system (FOXAIO) using a conversational interface on the top

of that. Also, we achieved some highlights about the preference to use a conversational interface

because of his simplicity, defended by a better score in the SUS scale, 70 against 58 to the

traditional UI, and good indicatives by the HEART framework.

Keywords: Conversational Interfaces, Deep Learning, Natural Language Processing, Chat-

bots, User Experience, CRM.

I

Resumo

O User Experience é possivelmente um dos principais aspetos para fidelizar um cliente numa

solução cloud, as chamadas soluções SaaS (Software as a Service). O crescimento acentuado

deste tipo de soluções aquece a rivalidade entre competidores e cada vez mais pretende-se oferecer

as formas mais revolucionárias para premiar a qualidade de um serviço. Com o crescimento

acentuado das técnicas na área do NLP (Natural Language Processing) a indústria começa a

olhar para os chatbots como uma possível solução de automatizar, impulsionar e expandir as

suas ofertas. A presente tese visa a apresentar uma implementação prática de um chatbot sobre

um software com semelhanças de um CRM (Customer Relationship Management) existente

intitulado por FOXAIO.

Com o objetivo de desenvolver uma solução robusta e escalável tendo em atenção as condições

elaboradas pela empresa em questão, um longo e detalhado estudo foi elaborado sobre as mais

diversas técnicas de deep learning usadas no ramo de Processamento de Linguagem Natural

(NLP). Atribuindo um particular ênfase às redes neurais recorrentes (RNN) e com a devida

extensão Long Short Term Memory (LSTM) que juntas, formam e trabalham muito bem na

resolução dos problemas de um sistema de inteligência artificial, como é o caso.

Para a sua implementação sobre um software já existente, foi necessário o desenvolvimento

de uma pequena interface conversacional com o objetivo de mais tarde a complementar sobre a

interface do utilizador do mesmo. Para esse efeito, foi implementado um canal sobre o sistema

conversacional de comunicação em protocolo de socket, criando uma classe para o efeito que

mais tarde seria útil para gerar logs de análise.

Durante a implementação do sistema conversacional foram feitas várias comparações sobre as

variantes dos seus módulos desde o Dialog Management (DM) ao Intent Classifier onde várias

arquiteturas foram expostas e comparadas com o intuito de corresponder à melhor solução

possível para um chatbot de língua portuguesa em primeira instância, foi optado pela escolha de

um Dialog Management híbrido face ao domínio e à existência de conversas contextuais contínuas

onde, por exemplo, se torna bastante difícil de desenvolver sobre outros paradigmas. Quanto ao

Intent Classifier, foi usada a técnica rasa tensorflow embedding, esta técnica (que treina palavras

do princípio) usada obteve melhores resultados para o particular caso estudado na presente tese

(CRM), do que por exemplo o uso um modelo de dados com palavras já treinadas.

II

Finalmente, conseguimos apresentar hipoteticamente, possíveis melhorias do UX no uso de

uma interface conversacional sobre uma interface tradicional, usando as várias ferramentas de

análise disponíveis, onde por exemplo com o auxílio da framework HEART (criada pelo Google),

conseguimos obter indicativos bastante satisfatórios por 34 pessoas que fizeram os primeiros

testes no chatbot desenvolvido.

Examinando o feedback desses mesmos utilizadores em ambiente de teste, conseguimos obter

um resultado na escala de SUS (System Usability Scale) com um valor de 70, enquanto a interface

tradicional arrecadou 58, notando então que as pessoas se sentiram mais capazes no uso do

sistema conversacional.

Palavras-Chave: CRM, Sistemas Conversacionais, Deep Learning, Processamento da Lin-

guagem Natural, Redes Neuras Recorrentes, Experiência do Utilizador.

III

Contents

1 Introduction 1

1.1 Work Context . 1

1.2 A Brief Summary of the Conversational Systems 2

1.3 Motivation . 3

1.4 The opportunity . 5

1.5 Goals . 5

1.6 Document Structure . 7

2 Literature Review 9

2.1 High-level schematic view of a conversational interface 9

2.2 Machine Learning Techniques . 11

2.2.1 Word embedding . 11

2.2.2 Tensorflow Embedding by RASA . 14

2.2.3 Recurrent Neural Networks . 16

2.2.4 Long Short Term Memory Networks . 17

2.3 Intent Classification . 21

2.3.1 Metrics . 21

2.3.2 Metrics Implementation . 24

2.4 Dialog Management . 25

2.4.1 High-level view of the DM . 25

2.4.2 Approach’s and Tools to the DM . 26

2.5 Responses Generation . 28

IV

2.6 User Experience . 29

2.7 Measuring the User Experience . 30

2.7.1 The PULSE metrics . 31

2.7.2 The HEART metrics framework . 32

2.7.3 The System Usability Scale (SUS) Case 33

3 Software Features, Architecture & Implementation 35

3.1 Identified Features and Use Cases . 35

3.2 Standardized Architecture . 39

3.3 Architecture Proposals . 41

3.3.1 Rule-based DM system architecture . 41

3.3.2 Hybrid DM system architecture . 42

3.4 Programming Languages and Libraries . 44

3.4.1 Technology Choices . 44

3.4.2 The Open Source Machine Learning Framework, Rasa 45

3.5 Extracting the Portuguese Words to the NLU Model 46

3.5.1 Training Intents . 46

3.5.2 Pre-trained word vectors . 48

3.6 Generating the Responses (NLG) . 48

3.7 Conversational Widget Implementation . 49

3.7.1 Socket Channel Constraints . 49

3.7.2 Widget User Interface . 49

4 Experiments and Results of the Conversational Interface 52

4.1 Intent Classification . 52

4.1.1 Preprocessing . 52

4.1.2 Performance Metrics . 53

4.2 Manual Testing . 61

4.2.1 Test getting a specific client balance conversation flow 61

4.2.2 Test getting the won value by opportunities to a specific client from a

specific year conversation flow . 62

V

4.2.3 Test getting the the most debtors entities conversation flow 63

4.2.4 Test social conversation flow . 64

5 Measuring the Optimisation of the User Experience 66

5.1 Considerations to measure the UX . 66

5.2 HEART Framework Case . 67

5.2.1 Setting Goals, Signals and Metrics . 67

5.2.2 Applying Metrics and Analyzing Results 68

5.3 System Usability Scale Case . 75

5.3.1 Interpreting the Results . 75

5.3.2 Analyzing the Results . 75

5.4 Review of Results . 76

6 Conclusion 78

6.1 Summary of Accomplished Work . 78

6.2 Future Work . 79

6.3 Final Thoughts . 80

VI

List of Figures

2.1 High-level schematic flow of a conversational interface 10

2.2 Continuous Bag-of-words Model architecture, source: Word Embeddings and

Their Use In Sentence Classification Tasks [39] 12

2.3 Skip-gram Model architecture, source: Word Embeddings and Their Use In Sen-

tence Classification Tasks [39] . 13

2.4 RASA tensorflow embedding in depth, source: Tobias Wochinger, Rasa NLU in

Depth [45] . 14

2.5 A chunk of an RNN, source: Cristopher Olah, Understanding LSTM Networks [31] 16

2.6 Unrolled loop of an RNN, source: Cristopher Olah, Understanding LSTM Net-

works [31] . 16

2.7 Repeating module in a standard RNN, source: Cristopher Olah, Understanding

LSTM Networks [31] . 17

2.8 Repeating module in the LSTMs, source: Cristopher Olah, Understanding LSTM

Networks [31] . 18

2.9 LSTM forget gate unit, source: Cristopher Olah, Understanding LSTM Networks

[31] . 19

2.10 LSTM input gate layer, source: Cristopher Olah, Understanding LSTM Networks

[31] . 19

2.11 LSTM cell state update, source: Cristopher Olah, Understanding LSTM Net-

works [31] . 20

2.12 LSTM cell output gate, source: Cristopher Olah, Understanding LSTM Networks

[31] . 21

VII

2.13 True/false positive and true/false negatives visualization, source: [35] 22

2.14 Confusion Matrix example, source: [36] . 23

2.15 Dialog Management system architecture, source: Approaches for Dialog Manage-

ment in Conversational Agents [17] . 25

2.16 Dialog Management available tools based on different approach’s, source: Ap-

proaches for Dialog Management in Conversational Agents [17] 28

2.17 User Experience diagram, source: A Wide Perspective for Designing User Expe-

rience [21] . 30

3.1 Use Case for the feature to obtain the client balance 37

3.2 Use Case for the feature to obtain the latest task 37

3.3 Use Case for the feature to obtain the most debtor’s clients 38

3.4 Use Case for the feature to obtain the the values won by opportunities 38

3.5 Conversation Interface typical architecture, source: Standardized Architecture

for Conversational Agents a.k.a. ChatBots [22] 39

3.6 Rule-based system architecture . 41

3.7 Rasa Core DM architecture, source: Rasa: Open Source Language Understanding

and Dialogue Management [30] . 43

3.8 Dataset intent distribution . 47

3.9 Widget UI to connect with conversational system 50

3.10 Widget UI button to interact with traditional UI 51

4.1 Confusion Matrix to the pre-trained embedding approach 54

4.2 Histogram Confidence Distribution to the pre-trained embedding approach 56

4.3 Confusion Matrix to the rasa tensorflow embedding approach 57

4.4 Histogram Confidence Distribution to the rasa tensorflow embedding approach . . 59

4.5 Graph with F1-Score of the pre-trained spacy model vs rasa tensorflow embedding 60

5.1 Happiness Metric survey question 1 (Did you find the chatbot easy to use?) . . . 69

5.2 Happiness Metric survey question 2 (Did the chatbot help you to perform the

requested tasks?) . 69

VIII

5.3 Happiness Metric survey question 3 (At performing the requested tasks, would

you prefer to use the chatbot or the traditional interface ?) 70

5.4 Adoption Metric Results Graph . 70

5.5 Retention Metric Results Graph . 71

5.6 Task Success Metric Chart . 71

IX

List of Tables

1.1 Cloud World Public Services Revenue Forecast (Billions of dollars) [10] 2

2.1 SUS likert scale items . 34

3.1 Initial identified features for the development of the conversational interface . . . 36

4.1 Metrics values to the pre-trained embedding approach 55

4.2 Metrics values to the rasa tensorflow approach 58

5.1 HEART framework categories plot against goals-signal-metrics 68

5.2 SUS results table . 76

X

Nomenclature

AI Artificial Intelligence

API Application Programming Interface

CBOW Continuous Bag-of-Words

CRM Customer Relationship Management

DM Dialog Management

GloV e Global Vectors for Word Representation

LSTM Long Short-term Memory

ML Machine Learning

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

RNN Recurrent Neural Network

SaaS Software as a Service

SUS System Usability Scale

UI User Interface

UX User Experience

XI

Chapter 1

Introduction

This chapter will briefly introduce the context of the present document and the idea in develop

a conversational system at section 1.1. Then a brief review of the history of the conversational

agents in section 1.2. Afterwards, in section 1.3 the motivation for this research theme will be

explained, in section 1.4, we will highlight a brief description of the opportunity created by an

implementation of a conversational interface, then in section 1.5, we will list the objectives that

were agreed upon with the startup company. Finally in section 1.6, the chronological order of

the structure to the present document will be summarized.

1.1 Work Context

The idea of investing and studying the concept of developing a conversational interface in the

top of a regular system using the UI’s to communicate, was born due the proved market growth

of the cloud services, more precisely, in the SaSS section.

The world market for cloud services is projected to grow by 17.5 % to a market value of 214.3

billion from 182 billion of dollar’s by 2019 according to Gartner, Inc. This growth is detailed in

table 1.1 [10].

"Cloud services are definitely shaking up the industry", according to Sid Nag, vice president

researcher at Gartner [10]. Also, according to the latest Gartner surveys, more than a third

of organizations look at cloud service investments as a top-priority investment, impacting on

market offers. By the end of 2019, more than 30% of technology providers are expected to

1

move from the cloud-first to the cloud-only methodology, meaning that these 30% intend to

offer services entirely cloud, causing the license-based software consumption to go down, while

subscription-based cloud will continue to rise [10].

2018 2019 2020 2021 2022

Cloud Business Process Services (BPaaS) 45.8 49.3 53.1 57.0 61.1

Cloud Application Infrastructure Services (PaaS) 15.6 19.0 23.0 27.5 31.8

Cloud Application Services (SaaS) 80.0 94.8 110.5 126.7 143.7

Cloud Management and Security Services 10.5 12.2 14.1 16.0 17.9

Cloud System Infrastructure Services (IaaS) 30.5 38.9 49.1 61.9 76.6

Total Market 182.4 214.3 249.8 289.1 331.2

Table 1.1: Cloud World Public Services Revenue Forecast (Billions of dollars) [10]

With this rapid growth of cloud services, more precisely on the SaaS applications, the way

customers communicate and perform their tasks on that service becomes increasingly an impor-

tant element in their loyalty to the service. This opens up an opportunity to enhance the user

experience using different solutions, breaking away from traditional ones.

Exposing that, the conversational interfaces system’s can increasingly be taken as a solution

to apply over the SaaS applications in order to improve the overall user experience of the

product.

1.2 A Brief Summary of the Conversational Systems

The idea of building a computer or program capable of communicating with a person came

about in the 1950s, when Alan Turin, a mathematician, proposed the Turin test, which aims to

determine if a machine is capable of exhibiting human-equivalent behaviour. This test is still

used for the same purposes these days [26].

One of the first chatbots created was the ELIZA created by Weizenbaum in 1966, and it was

also one of the first to pass the Turing Test. ELIZA simply answers the user’s questions with

other vague questions, sometimes rudely, thus trying to mislead the user into believing they

would be interacting with another human [26].

2

Developments in automatic voice recognition arouses the interest of academics and the indus-

try began to emerge in the 1980s. Conversation then jumped from the context of text to voice,

which presumably became more natural and easier to interact with. ATIS, a phone scheduled

to book flights, was founded by DARPA in 1990 [26].

The 90’s are marked by the success of chat browsers, started by IRC. By the end of the decade,

these were extended by AOL Instant Messaging, Yahoo! Messenger and MSN Messenger, in

which chats it was already possible to add bots as contacts, and exchange simple messages [26].

Only recently the smart assistants began to gain public attention. According to McTear,

different reasons have influenced this success, the advance in assistive technologies of artificial

intelligence, such as speech and image recognition, the emergence of the term semantic web, the

interest of the major technology players worldwide, launching wizards like Siri a product from

the Apple (the first smart assistant with voice), Microsoft Cortana, Google Now, and Amazon

Alexa are the main actors of the last five years in the convergence of conversational interfaces [26].

The last few years have been marked by the strong growth of the conversational systems, with

the same characteristics of their predecessors, where in addition to gaining some capabilities, they

are also developed in the cloud. In 2014 several online text messaging systems (KIK, Telegram,

Wechat) opened their services to third parties by exposing their APIs to other programmers,

allowing them to build their own chatbots with access to various high level services (online

payments, messaging, authentication, etc.) as well as graphics (images, locations, etc), thus

offering the possibility to build innovative services through conversational interfaces [26].

As shown in this summary, a lot of progress has been made since the early days of NLP.

However, in the real user’s perception, this does not imply that current solutions are perfect, as

we present in section 1.3.

1.3 Motivation

In a recent study made by Drift in collaboration with SurveyMonkey Audience, Salesforce and

Myclever, they asked over 1,000 people to try to identify the biggest frustrations in services web,

websites and mobile applications in the last month [12].

The following conclusions can be drawn from the same study.

3

• 34 % of the users consider the websites / applications hard to navigate.

• 31 % of the users say it is difficult to get answers to simple questions.

• 28 % of the users consider the basic details about a business, like address, hours of opera-

tions, and phone number being hard to find.

Still on the same survey, the following question was asked, "If chatbots were available (and

effectively) for the online services that you use, which of these benefits would you expect to

enjoy?"

From this question we can highlight the following points.

• 64 % of the users would enjoy from a 24 hour service.

• 55 % highlights the opportunity to get instant answers.

• 55 % also highlights the possibility of getting answers to simple questions.

In short, users need’s for web solutions are not being matched by the current traditional

solutions. Also, the users see the advantages of using a chatbot over other solutions.

Although they can identify these advantages, another study by Chatbots.org [9], which is

a community focused on researching, technology and innovation to drive the success of the

developers, academics and users, points out that most users still do not find chatbots properly

effective, as they should be.

Summarizing this survey, across all generations, 53 % of consumers find the chatbots "not

effective" or just "somewhere effective". Further discriminating these results, it appears that

younger generations are more optimistic in using conversational interfaces, according to the

study, the "millienials" and "generation Z " generations find chatbots 56 % and 53 % respectively

as "effective" or "very effective", while generations called "boomers" and "silent generation" only

assign 38 % and 49 % respectively.

Given the following studies and surveys, it is clear that the population still does not see

conversational interfaces as an efficient solution, so all research and advances in this subject will

be essential for chatbots to be able to offer a conversational system as an effective and efficient

service.

4

1.4 The opportunity

As we already presented in the section 1.1, the online cloud services are growing from year to

year, and in order to provide the best possible experience in a paid service, we should consider

all the alternatives on the way we want to give that service.

For a better context, we are introducing the FOXAIO1 which is the software that we are

going use to create the conversational interface in to retrieve the in formations of the intents of

their users. This is a software with a virtue of a CRM, where we can manage the opportunities,

third-parties, contacts, etc. But where is also possible to track other processes inherent on the

track of a customer, such as route management, contracts, tasks/tickets. This same software is

available to be accessed everywhere through any modern browser or via the smartphone app.

There‘s an authentication system obviously, implemented on the top of OAuth2 paradigm, which

is an authorization protocol that allow third-party access to limited system resources [14].

Since the FOXAIO system can work as a CRM, there are some tasks and processes that we

repeat every day which can be automated. The purpose of the implementation of a conversational

interface in the top of the FOXAIO is to speed up some of these "boring" tasks on the system,

which the user does daily or almost, like search for a specific customer to check the current

balance value, search again for a specific customer to search a specific task, sending an email to

a specific customer with the overdue bills, and the processes go on.

The idea is to create for the first version a chatbot widget on the current UI where the client

of the software can use freely, optimising the execution of these same repetitive processes and

renouncing from a psychical operator.

1.5 Goals

The high-level view of the main goal is to implement a scalable, easily maintainable chatbot

which will work in Portuguese at the first instance, but with the possibility of having other

languages in the future. It should interact with the current software system called FOXAIO

which we already introduced, and in short, it should have the possibility of answer correctly on

a few use cases at the start, and then it should be possible to grow in the features. Obviously it
1Startup company related to the project (www.foxaio.com)

5

should never disable the main features of the software itself, but it should complement the way

the user do the tasks on it.

Ideally the conversational interface should satisfy the following list:

• Recognize utterances the most as possible to the specific domain intent correctly.

• Should provide a way to interact with the failed intents messages, in order to optimise

these intents.

• Have an appropriate format data to train the machine learning solution.

• Be implemented in a programming language that can be deployed on multiple platforms

with little effort.

• Be able to reply to the users in real-time.

• The interaction with the API should always be with the appropriate authentication of the

user.

• Ask the user for more details if the intended message is not clear enough.

• Allow to customize the chatbot responses.

• Support the Portuguese language in the first instance, but with the possibility to grow and

extend to the other languages.

• Have a small widget on the current software to interact with the conversational interface

which is accessed only after the correctly authentication of the system, but also, with the

possibility of employment in another message platform in the future, such system’s like

Slack, Facebook Messenger, etc.

On the other way, the implementation of the conversational agent must also follow some

guidelines implemented by the company in question.

• Should be easy to understand the code, so in the future, other developers can easily pick

up this project and extend with other features or just maintain.

6

• Should be implemented with active tool-kits and frameworks which should be well doc-

umented and not obsolete in the present year, they must be open source if possible and

allow to be deployed on any server.

• Should have, the less errors as possible, even if it should start with only one or two

features, and should also be possible to have a reasonable fallback response if the chatbot

is not trained yet to a specific user’s intent.

• The responses should be fully controlled by the maintainers or the developers.

In resume of the previous extensive list, we should consider the most proper technologies,

frameworks and tools to create the solution, however, it may possibly not corresponding to every

point, but without compromising an extendable and scalable solution which can be deployed in

any server at the moment.

1.6 Document Structure

It will be important to highlight now the main sections that constitute the document to be noted

the evolution of the concept of the conversational interface.

This document will consist of a section of literature review, with the theoretical foundation

of conversational interfaces, such as the state-of-art of machine learning techniques practiced in

the conception of chatbots, and how it should interact with the user experience.

We now enter into sections on the conversational agent design, where we will introduce

the main features and the use case of each feature detailed, after, we will feature a discussion

on software architecture and implementation, the main programming languages, libraries or

frameworks which were used for the conversational agent implementation. A description will be

presented of the service flow, since the first message from a client to chatbot, as well as a class

diagram where each agent module will be described in detail, and the steps taken to provide a

correct implementation based on the requirements.

Once the conversational agent is implemented, analysis of the results is presented, firstly a

subsection of the experimental phase, where various methodologies for predicting the intentions

of the users was used and which includes an extensive justification of the best option chosen.

7

Moreover, there is a section with the results and intent’s prediction performance, used in the

real environment of the agent system.

With the analysis and the tests of the conversational system described, we will have, then,

a section to discuss the possible progress in optimizing the overall user experience and present

the obtained feedback from the real users based on the most appropriated tools/methods to

quantify.

Finally, there will be a concluding section that will serve to recap the progress made, as well

as an overview of the service / system implemented and the main points of development for the

future work will be presented.

8

Chapter 2

Literature Review

In this chapter, we will formally introduce the theory behind the conversational interfaces and

how it can interfere with the optimisation of the user experience in the current era, as well as

the main techniques and their state of the art in the field of artificial intelligence, more precisely

the machine learning techniques used in the conception of conversational agents.

One area of improvement in the field of conversational interfaces we can identify, is the

performance assessment and metrics used to quantify the quality of a chatbot. The article

"How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation

Metrics for Dialogue Response Generation" gives the focus on how uncorrelated standard metrics

in the field tend to be against the human judgment, The fundamental issue is that speech and

eloquence is subjective and it is therefore very difficult to quantify it [34].

2.1 High-level schematic view of a conversational interface

Conceptually, a conversational interface is composed of several components working together

to accomplish a common goal, in this case to provide the most correct response. Figure 2.1

which is inspired by the article in [23], should visually summarize the relationships of these

conversational system’s components.

9

Figure 2.1: High-level schematic flow of a conversational interface

Note that a message received by a conversational interface always originates from a specific

system-available channel. Once this message is received, it should be rerouted to a Natural

Language Understanding (NLU) component, as this component is responsible for assigning the

meaning of the text, extracting its intentions and entities.

After the NLU component, the message should then be handled by the DM, which is the

most important and unique component of a conversational interface, as the whole conversational

interface experience depends on its performance. In order to maintain a good conversational

experience, the DM should manage the conversation context and user profile and preferences [22].

The same DM will also be responsible for predicting the next action or sequence of actions

to be performed. For example a chatbot may answer with a question if the intention is not

entirely clear, or it may objectively answer the message formulated by the user. This same

component may also request external services to complement and enrich the response. There

are several types of DM that differ in the way the context of the conversation flows, which will

be introduced later.

Finally, having an action already indicated intention of the message, it should have a proper

format based on the channel that the user is using to communicate with the conversational inter-

face, this formatting may vary according to the agent’s environment, for example, this response

can be specifically formatted if you are communicating with this chatbot via the Messenger

platform or a chat from a website.

10

2.2 Machine Learning Techniques

The chatbots come in two flavors, rule-based and AI bots. Rule-based bots answer to questions

based on the predefined rules developers embed into them, unfortunately rule-based bots aren’t

able to answer questions that exhibit patterns for which these bots weren’t designed, that’s

why machine learning techniques holds such a potential in the area of chatbots, these machine

learning techniques are helping chatbots get closer where the customers will find it difficult to

distinguish between a human and a bot [16], these techniques should unlock the possibility of

learning from the interactions of the end users.

This section will briefly introduce the most promising deep learning techniques used in NLP,

particularly techniques such as word embedding, a new tensorflow embedding pipeline technique

introduced by the framework Rasa, and RNN. The first and last techniques are present in

almost all frameworks in order to provide a decent ecosystem to start the development of new

conversational system’s.

2.2.1 Word embedding

There are several definitions to the term word embedding, but in a general notion it can be defined

as the numerical representation of words, usually in a vector form. Being more specific, these are

word representation vectors, where relative similarities correlate with semantic similarities [39].

Afterwards, these vectors could be a resource for feeding a machine learning algorithm.

There are two popular methods for the described operation, GloVe which is a unsupervised

learning method (a method which should have an input (X) data and no corresponding output

variables), and Word2Vec, which is an efficient predictive model for learning word embedding of

raw text [39].

GloVe, introduced by Pennington is an famous word embedding method which is essentially a

"count-based" model. The word co-occurrence count matrix is pre-processed by normalizing the

counts and log-smoothing operation, then the matrix is factorized to get the lower dimensional

representation. [7] A detailed explanation of this method can be found in the article "Glove:

Global Vectors for Word Representation".

The Word2Vec is of particular interest to the present thesis, as it has already proven to work

11

efficiently in the field of conversational interfaces. More specifically, this technique comes with

two models, the Continuous Bag-of-Words model (CBOW) and the skip-gram model. The skip-

gram model technique is present in the library Keras [20], which is used in various frameworks

to create conversational agents.

2.2.1.1 Continuous Bag-of-Words Model

The objective of the CBOW technique is pretty simple: computing the conditional probability

of a target word given the context words surrounding it across a window of size k [7]. On that

technique, the the non-linear hidden layer is removed and the projection layer is shared for all

words, thus, all words get projected into the same position (their vectors are averaged). We call

this architecture a bag-of-words model as the order of words in the history does not influence

the projection [11].

Figure 2.2: Continuous Bag-of-words Model architecture, source: Word Embeddings and Their Use In

Sentence Classification Tasks [39]

2.2.1.2 Skip-gram Model

Initially introduced in Efficient Estimation of Word Representations in Vector Space [11], where

the under-laying principle is simple, predicting the surrounding context words given the central

12

target word. which is the exact opposite of the CBOW technique.

More precisely, each word is used as an input to a log-linear classifier with a continuous

projection layer, and then words are predicted within a range before and after the current

word [11]. Increasing the range improves the quality of the applied word vectors, but also

increases the computational complexity. As the most distant words are less related to the

current word than the words closest to it [11].

The figure 2.3, its a schematic image of the model architecture skip-gram.

Figure 2.3: Skip-gram Model architecture, source: Word Embeddings and Their Use In Sentence Classi-

fication Tasks [39]

Referring to the figure 2.3, essentially artificial training examples are generated in the form

of (wt,[wt-2,wt-1,wt+1,wt+2]), considering the window size is 5. The principle goes through the

sequence of words, the middle is the size target word (input) and the words that proceed it,

while the following words then form the context of the target word. The main purpose is to

extract the inner layer and use as a vector representation of the word for the trained vocabulary,

if the words are in one-hot encoding (a process by which categorical variables are converted into

a form that could be provided to ML algorithms to do a better job in prediction), then it will

13

serve only as a lookup table for the vector representations.

In practice, the vocabulary is converted to index sequences first, then the skip-gram model

is trained on those same sequences and finally these index sequences are converted to vector

sequences, so the final algorithm can be trained.

2.2.2 Tensorflow Embedding by RASA

The bag-of-words approach proved to be a good baseline, we can find some results in the following

article "Baselines and Bigrams: Simple, Good Sentiment and Topic Classification", but it can

have some limitations on the practice case, lack of vector words of some important words for

example, is one of the better known problems, that’s especially true if we work with languages

other than English [29].

Meanwhile, the framework RASA, introduced a new technique, called Tensorflow Embedding

Pipeline, which instead of using pre-trained embeddings and training a classifier on top of that,

it trains word embeddings from scratch. It is typically used with a bag-of-words technique to

count how often distinct words of the training data appear in a message, and provides that as

an input for the classifier, later. The figure 2.4 explains how the count vectors would differ [45].

Figure 2.4: RASA tensorflow embedding in depth, source: Tobias Wochinger, Rasa NLU in Depth [45]

Furthermore, another count vector is created for the intent label. This method learns sep-

arate embeddings for feature and intent vectors, and both vectors have the same dimensions,

which makes it possible to measure the vector distance between the embedded features and the

14

embedded intent labels using cosine similarity [45].

This new technique presented in 2018 was developed by the team RASA, but was inspired

by the paper "StarSpace: Embed All The Things!".

The StarSpace is a general neural model purpose with the objective of efficient learning entity

embeddings for solving a wide variety of the problems, one of the case that can be applied is in

intent classification for a conversational AI system [32].

The StarSpace model, created by Facebook, consists of learning entities, each of which is

described by a set of discrete features (bag-off-features) coming from a fixed-length dictionary,

where an entity such as a document or a sentence can be described by a bag-of-words or n-grams,

an entity such a user can be described by the bag of documents, movies or items they have liked.

The model is free to compare entities of different kinds. A user entity can be compared with an

item entity (recommendation), or a document entity with label entities (text classification) and

so on. This is possible by learning to embed them in the same space such that comparisons are

meaningful [44].

In short StarSpace embeds entities of different types into a vectorial embedding space, so the

word star (*), meaning all the types and the space name, in that common space compares them

against each other [32].

For an AI conversation agent, the embedding intent classifier, embeds user inputs and intent

labels into the same space as already explained, the user inputs can be considered by a bag-of-

words. Also during the training model user inputs should be compared and the following loss

should be minimized [32].

∑
Lbatch(sim(a, b), sim(a, b−1), ..., sim(a, b−k)) (2.2.1)

In the equation 2.2.1 we can identify the following points, if applied in a AI conversational

system [32].

• a are the documents (bag-of-words).

• b are the labels (intents) from the training set.

• Negative entities b are sampled from the set of possible labels.

15

• (a, b) is positive entity pairs, comes directly from a training set of labeled data specifying

(a, b) pairs.

• sim(·,·) is the similarity function. In the case the Rasa default uses cosine similarity.

• L is the loss function that compares the positive pair (a, b) with the negative pairs.

2.2.3 Recurrent Neural Networks

The RNNs or Recurrent Neural Network is a neural network model proposed in the 80’s by

(Rumelhart et al., 1986; Elman, 1990; Werbos, 1988) for modelling time series [2]. The main

feature of this type is that it can retain past information from received input, allowing to discover

temporal correlations between events that could possibly be distant from each other input in

the data. It can be also said, they’re a neural network with loops allowing the information to

persist.

Figure 2.5: A chunk of an RNN, source: Cristopher Olah, Understanding LSTM Networks [31]

In figure 2.5, A looks at some input, in this case, Xt and outputs a value ht. This loop allows

the information to be passed from one step of the network to the next. A RNN can be thought

of as multiple copies of the same network, each passing a message to the successor [31].

Figure 2.6: Unrolled loop of an RNN, source: Cristopher Olah, Understanding LSTM Networks [31]

16

Looking at the figure 2.6 which depicts an unrolled loop of an RNN, we can realize the nature

of that neural network is related to the sequences and lists. They’re the natural architecture of

the neural network to use for such data.

In recent years there has been a quite good success applying RNNs in the most variable

problems, speech recognition, translation, image captioning [31].

This success comes from the use of Long Short Term Memory Networks (LSTMs), which

are a type of RNNs that work in many cases, much better than the standard model, almost all

exciting results gained from the use of RNNs are complemented by their use.

2.2.4 Long Short Term Memory Networks

The Long Short Term Memory Networks are used extensively in NLP, they were first introduced

in 1997 by Hochreiter and Schmidhuber [38]. The LSTMs are designed to avoid a problem present

in the RNN version already explained in the section 2.2.3, the long-term dependency problem,

in a nutshell, the simple RNNs can contain a gap on transporting the contextual information

between the networks, this problem has been explored in depth by Bengio [3], who found some

pretty fundamental reasons why it must be difficult.

If we compare the repeating module from the standard RNN as the Cristopher Colah [31]

mentions, we can observe such a simple structure, with a single tanh layer, reffering in the image

2.7 .

Figure 2.7: Repeating module in a standard RNN, source: Cristopher Olah, Understanding LSTM

Networks [31]

However, if we compare it for the chain structure of the LSTMs, we can observe the differ-

17

ences on the repeating module, instead of having a single neural network layer, there are four,

interacting in a very special way, those layers are presented in figure 2.8.

Figure 2.8: Repeating module in the LSTMs, source: Cristopher Olah, Understanding LSTM Networks

[31]

The main components of the LSTMs are the forget gate, input gate, cell state and output

gate, all the them will be explained on this section for a better understanding of the flow at

LSTMs neural network’s.

The first state, called as forget gate layer, which is responsible to decide what information

should throw away from the cell state, and its provided by the equation 2.2.2.

ft = (Wf·[ht−1, xt] + bf) (2.2.2)

It looks at ht−1 and the xt and then outputs a number between 0 and 1 for each number in

the cell state Ct−1. [31] Logically the number 1 represents to keep the value, while the number

0 represents to forget the value. The figure 2.9 illustrates the process.

18

Figure 2.9: LSTM forget gate unit, source: Cristopher Olah, Understanding LSTM Networks [31]

The input gateťs will decide what information should store in cell state, which is segmented

by two sections. The first which its called by input gate layer decides which values should

update, provided by the equation 2.2.3, denoted by C̃t scaled by it as the figure 2.10 shown [31].

it = (Wi·[ht−1, xt] + bi) (2.2.3)

Figure 2.10: LSTM input gate layer, source: Cristopher Olah, Understanding LSTM Networks [31]

The old cell state is then updated according to the equation 2.2.4, donated by C̃t−1 into the

new state donated by Ct. The previous steps already decided it, so we should only execute it.

It should multiply the old state by ft, forgetting the values we decided at first step, then we

add it∗Ct. This should be the new values of the cell state. The connections of this update are

highlighted in figure 2.11 [31].

19

Ct = ftCt−1 + ittanh(WC·[ht−1, xt] + bC) (2.2.4)

Figure 2.11: LSTM cell state update, source: Cristopher Olah, Understanding LSTM Networks [31]

In the final step, it should decide what the output should be. The output is based on the

current cell state, but a filtered version. It runs a sigmoid layer which decides what parts of the

state it should output, and then, the cell state should be putted through tanh and multiply it

by the output of the sigmoid gate function. It is reveled by the equations 2.2.5, 2.2.6 and the

figure 2.12 [31].

ot = (Wo·[ht−1, xt] + bo) (2.2.5)

ht = ot ∗ tanh(Ct) (2.2.6)

20

Figure 2.12: LSTM cell output gate, source: Cristopher Olah, Understanding LSTM Networks [31]

2.3 Intent Classification

Once received a new message input, the conversational interface should be able to identify the

goal the user is trying to accomplish. This is usually modelled as a multi-classification problem

where we have labels as the names of the possible user intentions. There are several techniques to

solve this problem. Can vary from a simple keyword extraction to an Bayesian inference in order

to determine the users request based on multiple messages. The LSTMs networks are proven

to work well [18], however, the new RASA tensorflow classifier also provides such good metric

results that can be detailed observed at publication "Supervised Word Vectors from Scratch in

Rasa NLU " [29], which will be used at the conception of the chatbot.

2.3.1 Metrics

To measure as possible, the performance of the existed intents at the conversational system

it’s necessary to apply some metrics. We can identify the following important metrics for that,

precision, recall and F1-Score, macro-average measure and finally the micro-average

measure. The calculation of these metrics is based upon four categories, true positive, true

negative, false positive and false negative, which will be explained in the next section [33].

21

2.3.1.1 True/false positives, true/false negatives

The positive/negative identifies the declared solution for the data point. For example a data

point is declared positive if the system declares they have the condition, while the true/false

refers to the success or failure of the prediction.

For example, the true negative means that the data point we classified doesn’t belong to the

class and that’s exactly what was predicted. For a better visualization of the explanation we

can observe the figure 2.13 [33].

Figure 2.13: True/false positive and true/false negatives visualization, source: [35]

2.3.1.2 Precision

The precision identifies the frequency of the correct answers, when the prediction is A, we can

imagine as the answer of the question, "In all of the predictions to A, how many were correct?",

this is defined by the equation 2.3.1, where we can identify tp for the true positives and fp to

false positives [33].

Precision =
tp

tp+ fp
(2.3.1)

2.3.1.3 Recall

The recall identifies the frequency of detecting A out of all examples to A in the reality, it

answers to "out of all examples in A, how many were detected?", which is given by the following

22

equation 2.3.2 where the tp is the true positives, and fn is the false negatives respectively [33].

Recall =
tp

tp+ fn
(2.3.2)

2.3.1.4 F1-Score

Finally the F1-Score, calculates the harmonic mean (type of numerical average, it is calculated

by dividing the number of observations by the reciprocal of each number in the series) of the

precision and recall, in short, it should answer to the question, "What is the global perfor-

mance of prediction with respect to the class A ?", which can be defined by the equation 2.3.3

citeclassification-metrics.

F1Score = 2 · Precision ∗Recall

Precision+Recall
(2.3.3)

2.3.1.5 Confusion matrix

The confusion matrix is a table that helps to recognize more precisely the issues in the prediction

on the classifier, it‘s based on the metrics which were explained before [33].

Figure 2.14: Confusion Matrix example, source: [36]

Reading the confusion matrix is easy, we can observe in figure 2.14, it‘s a simple table with

rows and columns, the rows represent the true labels while the columns represent the detected

23

labels. The perfect confusion matrix should be brightly colored at main diagonal without scores

in any other areas [33].

2.3.1.6 Macro-average measure

In the macro-average measure we sum the individual true positives, true negatives, false pos-

itives and false negatives of the system and then we apply them for getting the statistics.

Macro-average gives the equal weight to each class. Considering the equation 2.3.4, where the

B(tp, tn, fp, fn) is the binary evaluation measure, that is calculated based on the number of

true positives, true negatives, false positives and false negatives, let tpλ, fpλ, tnλ and fnλ be

the number of true positives, false positives, true negatives and false negatives after binary

evaluation for a label λ [1].

Bmacro =
1

q

q∑
λ=1

B(tpλ, fpλ, tpλ, fnλ) (2.3.4)

2.3.1.7 Micro-average measure

While Macro-average gives equal weight to each class, Micro-average gives equal weight to each

per-document (aggregate the contributions of all classes) classification decision, because, the

F1 measure ignores true negatives and its magnitude is mostly determined by the number of

true positives, generally the micro-average measures the effectiveness on the large classes for

a test collection (will give a closer number to the highest number of the collection) while the

macro-average should measure the sense of effectiveness of the small classes. Considering the

equation to compute the micro-average in 2.3.5 which uses the same expressions in the formula

at 2.3.1.6 [1].

Bmicro = B

(q∑
λ=1

tpλ,

q∑
λ=1

fpλ,

q∑
λ=1

fnλ,

q∑
λ=1

tnλ

)
(2.3.5)

2.3.2 Metrics Implementation

All of these metrics gives different insights about the performance of each intent, as well as the

chatbot as a whole (since the NLU component is considered in the performance of the solution).

24

It should be separated calculated over each intent and combined in order to correctly measure

the performance of a conversation system. To detect the issues with more precision, the intent

confusion matrix should be considered, it should work as a visual tool to identify problems and

inconsistencies at intent classification presented on a chatbot.

2.4 Dialog Management

In order to communicate, a conversational interface should have the ability to reply. The conver-

sational agent receives requests from users, either through spoken language or direct text input

and outputs also a text or vocal response [17].

2.4.1 High-level view of the DM

The management of the responses generated by a conversational interface is done from the Dialog

Management (DM) component, for a better understanding of the flow at the DM present on a

conversational interface we can observe figure 2.15.

Figure 2.15: Dialog Management system architecture, source: Approaches for Dialog Management in

Conversational Agents [17]

The first step on the flow of a conversational agent should be converting the user input

message received to a user action, also called by intent. This step is processed by the NLU

component of the agent. The NLU output can also carry data fields, also called slots or entities.

For a better understanding, lets imagine the following example, the Dialog System is a travel

25

planning service, and if that service receives an input of user like (e.g, "Book a flight to Oporto"),

it should be labeled with an input name at the first step, (e.g., "FlightBook"), the slots or entities

on that intent should be the (e.g., "Oporto") [17].

It’s important to refer the NLU and DM (Dialog Management) are separate components,

but they influence each other’s performance.

The Dialog State should be tracking any information throughout the conversation, which is

provided for the NLU output‘s and it should form the foundation for identifying the next action

to take and interpreting the conversation. Also, The dialog state can also be influenced by the

goal of the dialog agent itself, for example, if we want to sell any specific product on the dialog

system, the dialog state can be influenced by these proposals of the dialog agent [17].

When the Dialog State is updated, the Dialog Policy should be triggered which takes a new

state and decide the next action or actions the dialog agent should execute. The Dialog Policy is

the central part of the DM, it should build the bridge between, the conversation context (NLU

output‘s), third-party services and the dialog agent response‘s [17]. Also, the Dialog Policy

should pick from the dialog, internal and external actions. The dialog corresponds to a message

output to the user, which can be a template (e.g, "There‘s a flight at {departure_time}") or in

the more robust and complex systems, a dialog act, for example, in order to inform the user

(e.g., inform(departure_time= "1 PM")), and then this output will be converted by the Natural

Language Generation (NLG) component to a textual or voice response for the user. While the

internal action is one that the agent orchestrates with the objective to modify his behaviour or

improve the performance, for example, improve the policy by retraining the system or seeking

for external information for performance improvement. The external action should interact with

a service provider (API) in order to provide a useful response to the user‘s request, by requesting

data or triggering some other application event [17].

2.4.2 Approach’s and Tools to the DM

In the document "Approaches for Dialog Management in Conversational Agents" [17], there are

3 referred types of approach’s to create a Dialog Management System.

• Handcrafted (rule-based) approach.

26

• Probabilistic (statistical) approach.

• Hybrid approach.

The handcrafted approach is designed by the handcrafted dialog managers. They define the

state of the system and the policy by a set of rules which are created by the developers and the

domain experts. It’s called the simplest subset of the dialog system which is modelled by a finite-

state automata where the conversations are always one of defined states of the conversation at

the time, also each state has a fixed number of transitions to the other state. Such dialogues have

system-directed initiative, so the system can ask information from the user step-by-step [17].

The probabilistic approach, instead of defining the set of the rules to the dialogue system,

probabilistic the DM learns for the rules from the actual conversations. The example-based

systems learn the appropriate answers from a large corpus by matching the last query in an

example of the training dataset, also extracts the response‘s for the training dataset. Imagine

we have a training corpus like [user: "Hello", system: "Hi, how are you?"], if the user says

"Hello", then the system will reply with the other message. However, this approach has several

limitations in the terms of error handling [17].

The hybrid approach is next to the purely rule or statistical approach, but since that some

work has been done to combining the advantages of the both approach’s. These hybrid ap-

proaches are an important step toward introducing data-driven elements into available dialogue

agents. This approach should use a neural network combined with coded constraints and rules.

The intuition is that some parts of goal-oriented dialogues, like sorting the data returned by

external service providers, is very hard to learn by example dialogues, so it should be much

simpler to implement in a few lines of code [17].

The next figure 2.16 , from the article [17], it will suggests the available tools/frameworks to

work on each approach already described.

27

Figure 2.16: Dialog Management available tools based on different approach’s, source: Approaches for

Dialog Management in Conversational Agents [17]

The figure 2.16, suggests an overall comparison between the different available approach’s

with respective frameworks or tool-kits, with special reference to the dialog structure which

influences the complexity of the possible dialogs and the naturalness because rigid dialogs are

also repetitive [17]. We highlight also, the domain independence referred, which is one of the

influencing factors for scalability of the overall dialog system [17], it define the possibility of the

sequences to the messages. Overall, the figure 2.16 details the best available tools to create a

modern conversational system, but we will keep the focus on the Rasa tool, since it corresponds

to the all the constraints cited in 1.5.

2.5 Responses Generation

In order to define the appropriate response chosen by the Dialog Management system it’s nec-

essary to have the properly method or service which will take the care of responding with the

natural language of the humans, this can be called by the Natural-language Generation (NLG)

service.

28

This problem can be tackled using two different modules, the retrieval-based models or the

generative-based models [8].

The retrieval-based technique simply rely on a large database or dataset of candidate

responses and matches them with the information from the data message of the user to find

the most appropriate message. The main advantage of this technique is the full control of the

responses to the specific domain of the conversational system and then avoid inappropriate

responses [8].

On the other hand, the generative-based technique rely on generative models to generate

new replies without the need of an extensive database or dataset. This can be used when a

large amount of data is available and the system can be trained on that data, the response is

generated based on an algorithm used on the NLP, like the Recurrent Neural Network or the

LSTMs can be used in this model. However, it’s not possible yet to have purely generative

models. Even the most advanced systems like Alexa, Siri or Cortana are semi-rule based [8].

2.6 User Experience

So, now that we already have identified the main techniques to create the conversational inter-

faces, we need to know if these interfaces can be a possibility to optimise the user experience. We

need a better understanding of what is user experience and how it’s related to the conversational

interface.

In fact, defining UX is a difficult task as it is dynamic, context dependent and subjective,

suggested in Understanding, Scoping and Defining User Experience, A Survey Approach [25].

Following the ISO (International Organization for Standardization) definition, in 2008, was

defined with the following sentence, "A person’s perceptions and responses that result from the

use or anticipated use of a product, system or service", so we can immediately assuming that is

something narrated about the use of a system, product or service [25].

According to the Don Normal and Jakob Nielsen, in the The Definition of User Experience

(UX), the first requirement for the user experience design is the hassle-free satisfaction of cus-

tomer needs, while adding simplicity and elegance that makes a product captivating to the user.

True UX goes beyond giving what customer‘s what they want or want to be done in common

29

tasks or processes, to deliver the best UX possibly it should exist a fusion on multiple areas of

an organization, such as engineering, marketing, graphic design and interface design [13].

Figure 2.17: User Experience diagram, source: A Wide Perspective for Designing User Experience [21]

Figure 2.17 intends to idealize all the process of the optimisation of the UX with the fusion

of the mentioned areas.

Mentioned by Golden Krishna in The Best Interface is no Interface [24], "The User Experi-

ence has currently stagnated with graphical interfaces, instead of looking for the most creative,

inventive and useful ways to solve problems, we limit them by solving them with graphic inter-

faces, when we see a problem we put an interface, UX is no longer about people and it’s about

round rectangles and parallax animations" .

If we analyse this criticism by Golden Krishna to the state-of-art of the UX, it’s pretty

straight that a conversational interface can change how we solve the problems in other way than

the using of graphic interfaces.

2.7 Measuring the User Experience

Since we have reviewed the most important techniques and topics to create a conversational

interface, we should consider the most consistent methods to evaluate the performance on the

30

optimisation of UX over the current user interface.

Nowadays, it’s possible to do a wide range of common tasks "in the cloud", some of them

which were only possible to do in native client applications (e.g, "Photo Editing") [15].

For the professionals of the UX, one of the keys of this shift is the ability to use the web server

log data to track the product usage on a large scale. If we apply additional instrumentation it’s

also possible to run the famous A/B controlled tests that can compare the interface alternatives

(a method of comparing two versions of a webpage or app against each other to determinate which

one is better), but this raises a important question. What criteria should they be compared from

an user-centered perspective [15] ?

Also, despite the large body of work done on the proper design and analysis of the controlled

tests A/B where we can find in the article Practical Guide to Controlled Experiments on the

Web: Listen to Your Customers not to the HiPPO [37], it’s still challenging to use this tool

effectively, the standard web analytics may be too generic to apply on a particular product goal

or research question [15].

We still have the low-level and direct metrics, the Pulse Metrics, While businesses should

still track these metrics, they should remember that they lack context for measuring UX, we can

define that by a simple example, an average time of 5 minutes on the website might mean users

are extremely engaged with the product, or they are just not finding the content they need.

2.7.1 The PULSE metrics

These metrics are mainly focused on the business or technical aspects of the product, in fact

they are the mostly large-scale metrics used by the organizations to track the overall product

health [15].

The PULSE metrics can be divided in 5 aspects.

• Page Views, reflects the amount of users visiting the product.

• Uptime, percentage of time the server is up, running and serving content.

• Latency, gives a proper indication of the overall performance.

• Seven-day active users, can be for example, the number of unique users who used the

product at least once in the last week.

31

• Earnings, gives a good indication if the product works or not.

These metrics are extremely important and also related to the UX, if we go in depth with a

simple example, a product that has a lot of outages or is very slow will be hard to attract the

users, in the other way, the excellent user experience on the product obviously is more likely

to increase the page views and unique users. However, they’re all low-level or indirect metrics

of the UX, making them problematic when used to evaluate the impact of the user interface

changes. Also, they can be ambiguous interpreted, the most basic example, a rise in the page

views of the particular feature may occur because the feature is popular by itself [15].

2.7.2 The HEART metrics framework

Created by Google, and based on the problems which were introduced on the PULSE metrics,

this metrics should work as a complementary framework.

The HEART framework comes from five categories, Happiness, Engagement, Adoption,

Retention and Task Success. These categories should be from each team must define the

metrics that will use to track progress towards goals [15].

• Happiness, this term should describe the metrics that are attitudinal in nature, they’re re-

lated to the subjective aspects of the user experience, satisfaction, visual appeal, likelihood

to recommend, and perceived ease of use. In this category a general well-designed survey

should be possible to track some metrics to see the progress as changes are made [15].

• Engagement, is the user level of involvement with a product, in the metrics context the

term is normally used to refer to the behaviour intermediaries like the frequency, intensity

or depth of the interaction over some time period. If we intend to use on examples, might

include the number of visits per user per week or the number of photos uploaded per user

per week [15].

• Adoption and Retention metrics can be used to provide a stronger insight into counts of

the number of the unique users in a given time of period (e.g, seven-day active users) which

will address the problem of distinguishing the new users from existing users, the adoption

metrics should track how many new users start using a product during a determined time

32

period, the retention in the other way, should track how many of the users in the determined

time period are still present in some later time period, (e.g, the percentage of seven-day

active users in a given week who are still seven-day active three months later) [15].

• Task Success which centres the several user experience traditional behaviour metrics,

like the efficiency (e.g, time to complete a task) or effectiveness (e.g, percentage of the

tasks successfully completed) and the error rate, to measure these on a large scale, should

be via a remote usability or a benchmarking study, where users can be assigned to some

specific tasks over the product [15].

We believe the HEART metrics, should be capable enough to highlight the UX of a conver-

sational system in the user-centered perspective.

2.7.3 The System Usability Scale (SUS) Case

The usability is a narrower concept than UX since it’s focused on the goal achievement. However,

still very important in order to measure the overall UX of a system.

The requirement to evaluate the usability of a system mean that in the most of the cases

is neither cost-effective nor practical to perform a full-blown context analysis and selection of

suitable metrics. Often, all that is necessary is a general indication of the overall level of usability

of a system compared to its competitors or its predecessors. [6]

The System Usability Scale is targeted to provide a "quick and dirty" reliable tool to measure

the usability of a system. It’s a simple ten-item in Likert scale with five response options for

respondents, from strongly agree to strongly disagree, and then, giving a global view of subjective

assessments of usability. [6]

The SUS has become an industry standard, with many references to articles and publications,

the global benefits of using this scale refers to the following list [42].

• Is a very easy scale to administer to participants.

• Can be used on small sample sizes with reliable results.

• Is valid it can effectively differentiate between usable and unusable systems.

33

The participants are asked to score the following 10 items (table 2.1) with one of five responses

that range from Strongly Agree to Strongly disagree. [6]

Item Description

1 I think that I would like to use this system frequently.

2 I found the system unnecessarily complex.

3 I thought the system was easy to use.

4 I think that I would need the support of a technical person to be able to use this

system.

5 I found the various functions in this system were well integrated.

6 I thought there was too much inconsistency in this system.

7 I would imagine that most people would learn to use this system very quickly.

8 I found the system very cumbersome to use.

9 I felt very confident using the system.

10 I needed to learn a lot of things before I could get going with this system.

Table 2.1: SUS likert scale items

Interpreting the scores can be complex, the scores for each question are converted to a new

number, added together and then multiplied by 2.5 to convert the original scores of 0-40 to

0-100. Though the scores are 0-100, these are not percentages and should be considered only in

terms of their percentile ranking [42].

Based on the research Determining what individual SUS scores mean: adding an adjective

rating scale [28], the SUS score above 68 should be considered above average and any number

below 68, as below average, however the best way to interpret the results should be normalizing

the results to produce a percentile ranking [42].

34

Chapter 3

Software Features, Architecture &

Implementation

This chapter will talk about the main features and the overall architecture of the conversational

interface and his implementation. More specifically, we will identify the main features of the

first version of the conversational interface in the section 3.1. After, we will introduce an overall

standardization that how a conversational interface architecture should be implemented in the

section 3.2, and then we will purpose the practical architecture cases which we will implement in

the section 3.3, in the section 3.3 will be explained each module of the final architecture. After,

we will justify the use of the programming languages and libraries/frameworks at the section

3.4, after that, the section 3.5 will be introduced where we will explain how we extracted the

Portuguese words, then we will explain the choices made to create the NLG in the section 3.6, and

finally, in the section 3.7 will be explained how the communication between the conversational

system and the current software interface was created.

3.1 Identified Features and Use Cases

In order to start the implementation of the conversational interface we should define a few

features which the agent should be able to respond it correctly or ask some more details if

needed.

A few user scenarios were defined which we provide in the following table 3.1 .

35

Feature Description

Obtain the balance of a specific customer at

the moment.

It should be possible to identify the

customer name or number, ask if it’s not

correctly provided, search for the customer

on the client database, and provided the

correct current balance.

Get the latest task for a specific customer. It should be possible to identify the

customer name or number, ask if it‘s not

correctly provided, search for the customer

in the client database, and get the latest

task available on the system.

Get the most debtor customers. It should be possible to provide a short list

with the most debtor customers on the

system, it should also be possible to get the

fixed number of the list. (E.g, "I want the

top 8 of my customer debtor‘s")

Get the won values by opportunities for a

specific customer in a specific year.

It should be possible to identify the

customer name or number, ask if it’s not

correctly provided, search for the customer

in the client database, and then get the

opportunities value for the specified year or

the current year if the year is not specified.

Table 3.1: Initial identified features for the development of the conversational interface

To reinforce or summarize the visualization of the features we also provide the practical use

case’s, where the actor is the user of the system, which can contextual asks for a specific feature

that we already identified, each of which should interact with the Service Provider of the system,

in this case, the FOXAIO API.

36

Figure 3.1: Use Case for the feature to obtain the client balance

In figure 3.1 we can detail the feature to obtain the current balance for a customer on the

system, once the intent is correctly identified by the dialog system, it will communicate with

the service provider where it will be responsible to authenticate correctly the user on the API,

and also search for the specified entity which should be a customer, if the search on the system

obtain more than one customer, it should provide the list of available customer’s and let the

user pick the intended one.

Figure 3.2: Use Case for the feature to obtain the latest task

Similar to the feature to get the balance, in figure 3.2 the flow is exactly the same, the only

difference in the practical case, it’s the communication to the API, where it should request for

the latest task to the client as the name elucidates.

37

Figure 3.3: Use Case for the feature to obtain the most debtor’s clients

The figure 3.3 explain the flow of the feature to fetch the most debtor’s customers on the

system, once the intent is correctly identified, it will communicate with the Service Provider,

this will get the most debtor’s customers based on the provided ranked number (e.g, top 10 most

debtors clients), if the ranked number is empty it will fetch by a default number defined on the

conversational interface system.

Figure 3.4: Use Case for the feature to obtain the the values won by opportunities

Once more the flow at the figure 3.4 is identical to the flow of the figure 3.1, the differences

here remains to the request to the API, and also to the custom entities with the intent that

served to filter correctly the query, for example, we could fetch the won value at opportunities

only at the year of 2018 for a specified customer, it should also, let the possibility of the client

to pick the customer from a provided list if it’s necessary.

Summarizing, the conversational agent must be born with simple features, but with a good

and stable implementation structure in order to easily maintain the system, and also enrich his

skills without the need to create new modules.

38

3.2 Standardized Architecture

In order to identify how an architecture of a conversational interface should be in depth, it should

be better to study and introduce a standardized architecture proposed by Roshan Kan [22] for

the typical chatbots.

In figure 3.5, we introduce how Roshan Kan thinks how an architectural view of a typical

conversational agent solution and its processing ecosystem should look like.

Figure 3.5: Conversation Interface typical architecture, source: Standardized Architecture for Conversa-

tional Agents a.k.a. ChatBots [22]

In the Presentation Layer it should contains all the components that implement and display

the user interface and manage the user’s interaction [22].

Also, it should correspond to the following points:

• Multi-Channel Support

• Multi-Platform Support

• User Interface Components

39

The Business Layer should take care of the Data Processing which should be the transfor-

mation of the data from the Service Layer to the real-word business entities, such a product or

orders and not as database entities. Also the Business Layer should take care of the Data For-

matting which is the component who has the responsibility to convert the data into the required

format to the specific channel. And finally, The Dialog Management which was being already

explained, which is the component responsible to manage the dialog with the final user. [22]

The Service Layer provides access to internal and external services, business functionality,

middleware connectivity and other services. The NLP service should be a part of the Service

Layer where it should be the most efficient as possible using the most advanced state-of-art

artificial intelligence algorithms. Also should have the Data Access Services, when the messages

are being passed between a service and a consumer, most of the times, the message needs to

be transformed into a format that the consumer can understand. As the agent would need

to integrate with different set of services, we need to implement adapters to provide access to

these services which converts the data from services in a format that the other components also

understands. Finally, we should also have the External Service Interfaces, which depends on the

context of the chatbot, it might need to integrate with different set of external services. [22]

Then we have the Data Layer (Storage) module, it is very critical to have an efficient and

secure data access and that is why it is of utmost importance to have a well-defined approach

in designing the data layer. Since the chatbot need a lot of operations with data, it should be

important to have a fast data access. There are lots of services and components which rely

on this data storage and access at all times, e.g., storage of all communication with the users,

analysis of the data collected, performing machine learning techniques on the data. [22]

And finally, we have the Utility Layer, which is not considered a functional part of the system,

but it’s also important. Since we can have a solution that can be exposed to a multitude of

systems, itself, its highly vulnerable, and we should need to monitor all the inherit risks. It

should also have tools to scale and optimise the deployment of the solution. [22]

Of course, all of these components cannot be present in a specific architecture of a conversa-

tional agent, it always depends on the context of the agent and also on the choice of the Dialog

Management System. It’s an overall view of how the flow should work on a typical chatbot.

40

3.3 Architecture Proposals

In order to implement the conversational system, it was required to design the best approach

possible following the research done in the chapter 2. We divided that in two proposals, the

first one is the architecture for the rule-based DM system, and the second one, is nothing more

than the product core provided by the framework Rasa. It’s a hybrid approach where we will

explain, since it is important to explain how the conversational system works in the depth, in

the end, we explain the choice we made justifying to the specific domain of the conversational

system we wanted to implement.

3.3.1 Rule-based DM system architecture

In figure 3.6, we introduce the design of the architecture for the conversational system using the

tool-kit Botkit linked to the NLU component.

Figure 3.6: Rule-based system architecture

This was the first architecture which we implemented in order to obtain the first practical

results of the conversational system.

As required, we could have multiple channels from where the user has been logged in, from

41

the CRM itself or from another message platform available. Once the authenticated user sends a

message, the DM implemented on the top of the Botkit framework would listen to it, specifically

the middleware should redirect the received message text to the intended NLP component

implemented with the Rasa NLU, this component would be responsible to convert the raw text

into meaningful information back to the Botkit, with due intent and entities. Once we have the

intent or entities in the dialog management system, we would need to code every possible flow

of the conversation based on every intent.

The difficulties at this system version came when, for example, the user identifies correctly

the first intent he wants, but at the middle of the conversation for the specified intent we could

say some other intent which is out-of-scope in the scripted conversation by the developer, but

in fact with a semantic correct context for the domain of the agent, it would originate an error

or a wrong response. Now if we imagine the specific domain of the conversational system has a

lot of intents scripted, how hard it should be to maintain and scale a correct script flow from

one intent to another. Ideally, this rule-based approach would be the best solution to a Q&A

agent or a very simple chatbot who would only resolve a few tasks.

3.3.2 Hybrid DM system architecture

We learned from the first architecture view at figure 3.6, that modelling a conversation system

can become a difficult task, an interesting explanation about this case can be found in the

research [27].

In fact, following the requirements of the project and the domain of the conversational

system, we found easier to use a different approach than the rule-based system. We used the

Rasa Core component as the DM system, which works on the top of a neural network, this

means, controlling the conversation flow can be learned by the conversational system by itself.

For a better explanation of the DM architecture, we must observe the figure 3.7, which is

the public available architecture of the Rasa Core.

42

Figure 3.7: Rasa Core DM architecture, source: Rasa: Open Source Language Understanding and

Dialogue Management [30]

In this architecture (figure 3.7), when the messages come in should be passed to the NLU

component on the step 1, which is a aside component of the DM, in this case the Rasa Core,

this component will extract the intent and entities or any other structured information [30].

After the step of the interpreter has been done, the Tracker comes in at the step 2, it will

maintain the conversation state, and it will also receive a notification when a new message comes

in [30].

Then we have the policy on the step 3, it will receives the current state at the moment of

the tracker, also in the step 4, the policy is responsible to choose which action to take based on

the current state of the tracker.

Finally, the action comes in, it should firstly be logged by the tracker and updates the

current state as the figure 3.7 shows at the step 5, and finally in the step 6, it should execute

the predicted action by the policy, this may include sending a response back to the user, or call

an external service to fill specific slots in the state and then send the response with these slots

filled [30].

If the predicted action fails for some reason (api error for example), the flow will back to the

step 3 [30].

We think that hybrid DM option would be the ideal structure to implement in our case, since

the domain of the conversation, it’s almost completely about the final customer, so it should be

43

important to transport the context from one message to the other, this kind of implementation

become’s hard to implement and especially to maintain in the architecture presented in the

section 3.3.1.

3.4 Programming Languages and Libraries

In order to understand the context of the related programming languages and libraries choices,

we will discuss briefly the available languages and libraries to develop the conversational system

and the inherit structure, of course, these, were chosen based on the goals and the constraints

already discussed in the section 1.5.

3.4.1 Technology Choices

Considering the context of the project and the company‘s software environment, initially has

been chosen the framework RASA NLU which is an open source library for build a conversational

software using the language Python [30], should not have any interference with the company

tools and languages, since the language itself can be deployed in any server, indeed the mainly

languages of the company is PHP, .NET and Javascript, however, since there’s an API interface

provided over HTTP protocol, this should not be a problem. The RASA NLU component should

be able to handle the Natural Language Understanding of the conversation interface, in fact, this

component uses other‘s Python libraries to provide a consistent API.

For the Dialog Management, the first tests were made by a simple rule-based tool-kit based

in Node.js called Botkit [19], were this DM would interact with the NLP (NlU) component,

however this rule-based system has some limitations which we will explain further ahead. The

second option would be using the Rasa Core (DM) which is a hybrid approach already explained

in section 2.4 that run’s on the top of a LSTM neural network.

We ended up using the second option since it’s best suited for the present domain of the

conversational system, and also, it should easily to maintain and scale a DM which learns

from the intent and current state of the conversations, instead of scripting all the flow of the

conversation in an option like the Botkit, especially when the conversation can complicates on

the context of the conversation agent domain, Ideally the Botkit rule-based approach would fit

44

well in a simple Q&A conversation system which is not the case. The Rasa Core DM system is

also implemented in Python programming language so it should be required to extend or script

some of the actions at this same programming language.

3.4.2 The Open Source Machine Learning Framework, Rasa

Conversational systems are becoming pervasive as a basis for human computer interaction as

we seek more natural ways to integrate automation into everyday life [30].

The modern open source libraries are held to a high standard of professionalism, and this

extends to implementations of machine learning algorithms. There is a large amount of non-

research work involved in maintaining a widely used project, also generally the code produced

by research groups often falls short of expectations. The Rasa NLU and Core aim to bridge the

gap between the research and the final application [30] .

The Rasa‘s API uses third-party libraries already with some recognition in the study area.

The scikit-learn [46] focused on the consistent API‘s and the Keras [20] the high-level neural

networks API (specially used in the DM). The Rasa NLU component provides some out of the

box techniques used in the deep learning on the NLP processing explained in the section 2.2, like

the bag-of-words technique. Rasa‘s language understanding and dialog management are fully

decoupled, this means that each one of them can be used independently of the other [30].

For a better understanding of the Rasa ecosystem, we will detail a little bit of each component

on the framework.

Each conversation session on Rasa has a tracker object, this tracker object is responsible to

handle the Dialog state which is detailed explained in 2.4, this tracker stores the slots (that can

be the entities of the NLU service) and the log of all events that led to the determined state of

the conversation [30].

Then we have the actions, each iteration predicted by Rasa Core, it should also predict which

action should take off from a predefined list of actions. Those actions can be a simple utterance,

message, or an arbitrary function to execute. All of those actions executed are passed to the

tracker instance, so it can update the relevant state of the conversation [30].

The Natural Language Understanding module, which is decoupled and can work indepen-

dently of the Rasa Core DM, this module works as the interpreter of the conversation system, it

45

should take care of the raw text provided by the user and convert it into meaningful information

to the DM.

And finally the Policies, the policy is an element of the DM from the Rasa Core where the

job is to select the next action to execute given the tracker object [30]. The default policy defined

in the Rasa Core is the KerasPolicy which works at top of the Keras [20], and if we go depth,

this policy should work at top of a RNN network, more precisely an LSTM network, where we

already explained in section 2.2.4.

3.5 Extracting the Portuguese Words to the NLU Model

The starting point to get a good model for the NLU data will be the collecting data where we

will train with the explained deep learning algorithms. In order to train some generic intents

for the NLU model we started to write and fetch some text from the Portuguese words on the

domain for our main intents. the main intents for our use case tests would be something like

the following numeration.

3.5.1 Training Intents

Since we already had the scenarios of the main features for the first version of the conversational

system described in section 3.1, we will now discuss the main identified intents at the conversa-

tional system, as well as the casual intents, these should take care of the conversational context

to the main intents. The main intents are the following items.

• check_balance_client, the intent which would be responsible to identify the goal to get

the current balance of a specified client.

• check_last_task_client, the intent that would classify the goal to fetch the latest task

details for a specified client.

• who_owes_more_money, the intent that would classify the goal to get a top listing of client’s

debtors on the system.

• won_by_opportunities, the intent which would classify the goal to get the final value of

the won opportunities for a specified client in a specified year.

46

Of course, we would need more generic intents for the simple casual conversation before

reaching these goals, like the greeting intent.

So we created a list of casual intents which are related to the Domain of the conversational

agent. This list will contain intents like (the intent name label should specify the contex-

tual mean by itself), greet, how_are_you, iam_fine, iam_not_fine, goodbye, who_are_you,

none_of_these, what_you_can_do, thanks, affirm. These intents (which we didn’t enumerate

all of them) should be able to handle the contextual conversation before and after reaching the

specified goals of the user cases identified in section 3.1

To generate the data for the main intent goals and the casual one‘s we tried to write some

of them, and then to be more efficiently and generally, we fetched some of the utterances for

external people of the conversational system. Figure 3.8 summarizes the counts of extracting

utterances we had for the model of our NLU component.

Figure 3.8: Dataset intent distribution

As can be clearly seen, the dataset does not have a lot of utterances for each intent identified

in the list, however this was the start point to get the decent results for the model, in order to

make it more accurate and robust logically we need to log the failed intent prediction results

and re-train a new model with these failed intents in the appropriate context.

47

3.5.2 Pre-trained word vectors

It would be important to create a comparison from the dataset where has been generated from

the raw text to the specific context of a more generic dataset, for that, we used a pre-trained

word vector model from the Spacy [41] open-source software, this pre-trained model would have

the advantage of the predicting for example some synonymous words in the utterances which

are not trained in the first model, since the model already has a lot of corpus text from the

Wikipedia on the Portuguese language, however, we suspect that can also have the disadvantage

of being in trouble to clearly identify some specific intents for the CRM domain, since there’s a

vector of millions of words that can be in trouble to identify the context. The details of the full

model can be found in [40].

3.6 Generating the Responses (NLG)

Due to the constraints outlined in section 1.5, the technique taken to generate responses is the

retrieval-based model (already explained in section 2.5). Indeed, doing that allows the developers

or maintainers of the conversational system, control properly his behaviour in answering to the

messages. Also, since we are using the Rasa Core DM system, the responses can be generated in

an instance of an action, more precisely for example the action can retrieve the data information

from the external database to ensure that the response is meaningful to the user. These responses

were implemented in the MD (Markdown) format, which is a lightweight markup language with

plain text formatting syntax, would be the ideal case to main the possible responses.

For example, in order to respond to a casual greeting from the user, the domain had a few

examples to pick once the action is called by the tracker of the DM, the following items are the

generic Portuguese responses template for the greeting intent action.

• Hello, {greetPrefix} {username}!, all good?

• {greetPrefix} **{username}** , how are you?

• Hi **{username}**, it’s everything ok?

• Hello, {greetPrefix}, how have you been?

48

We can identify in these possible responses the inclusion of variables which in the response

action would be filled by the respective slots of the conversational system, these slots should be

the entities filled with the conversations messages or the actions of the DM, the DM would pick

one of these responses randomly.

3.7 Conversational Widget Implementation

Following the requirements of the section 1.5, would also be necessary to create a small widget

to interact with the conversational system from the current UI of the software.

This small conversational widget would require an interface to interact with the conversa-

tional system which can also be called by a channel so we have implemented a socket_channel

class in the language Python on the top of the conversational system to interact with the core

system by a socket protocol.

3.7.1 Socket Channel Constraints

This class would be responsible to accept the connections from the UI widget of the interface

from socket protocol, transporting the required details for a correct accessing to the API of the

CRM, however, it should not be a good practice on transporting for example the Authentication

Token from a socket protocol, respecting that, this class would be responsible only to send a

user id of the connected user, and then, the conversational system would be responsible to do

the appropriate authentication to use the API by itself.

Having this class implemented, this provides the possibility of interacting in other ways to

the connected users on the system, like logging the connected users per day to estimate the

usage of the system, and so on.

3.7.2 Widget User Interface

Since we implemented the socket channel on the conversational system, we would need to design

the (UI) of the widget to write and receive the messages on the system, also, it would have to

be necessarily volatile in order to be able to serve as many systems as needed.

Due to the demanding of the conversational system by itself, the ideal would be to use an

49

active project with some of the implementation already done, and that’s what we did, we used

the project from GitHub called rasa-webchat 1, where it already implements the connection to

the specific endpoint by a socket protocol.

The final UI widget interface can be visualized at figure 3.9, it should only be visible after

opening from a small button on the bottom of the system, otherwise it should never intrude on

the daily user actions over the system.

Figure 3.9: Widget UI to connect with conversational system

Deep down, we had to make some changes in the design of the channel to match the current

layout of the software FOXAIO, but also, we had to implement some changes in the core code to

implement the security architecture of this specific system, and also to interact with the current

user interface, for example having the ability to open a modal box or navigate to a specific page

as a response for the user’s intent.

In order to connect to the correct way into to socket channel created previously explained in

the section 3.7.1, this widget would be responsible to observe the user id of the authenticated user

in the software FOXAIO, and then transporting it to the socket channel in the server side, so this

class would be responsible to properly authenticate the user in the API. Also, we have created

a custom component in the library React JS (a Javascript library to create user interfaces), if

in some cases would be necessary to open something from the traditional user interface, this
1https://github.com/mrbot-ai/rasa-webchat

50

component would be responsible to transport the action in the final user interface, and then,

deliver the most appropriate action/information for the user request (can be a simple text, or

for example opening a modal box to show something particular for the case).

In figure 3.10, we can observe the conversational interface, responding with a custom com-

ponent at the end, with the ability to open the latest task (in this case) from the traditional

user interface.

Figure 3.10: Widget UI button to interact with traditional UI

51

Chapter 4

Experiments and Results of the

Conversational Interface

This chapter will focus on the experiments, results and performance performed on the conver-

sational system modules as well as the results obtained from using two different techniques and

methods explained in the previous chapters.

More precisely, we will experiment two different methods for the intent classification, a pre-

trained embedding approach for the Portuguese words, and the rasa tensorflow embedding which

trains the words from the scratch, wherein a high-view it shows more acceptable results in this

particular domain of the conversational system.

4.1 Intent Classification

The first problem to solve is the intent classification, since it should be from Portuguese text,

it would be necessary to tuning the best as possible, it’s necessary to test with the different

methods or techniques.

4.1.1 Preprocessing

Before the actual training of the data and due to their design, generally the textual data cannot

be fed directly into a neural network, they require an extra step to preprocessing. In depth they

need to be transformed into sequences of integers with the same length. The preprocessing steps

52

are listed below.

• Turn all characters to lowercase

• Filter the insignificant punctuation characters. (e.g, "?!,̂...)

• Tokenize the utterances by using words as list of tokens.

• Convert the tokens into word vectors, at the end of this step we will have a list of numbers

only.

At the end of these steps the result obtained will be suitable to train into the machine

learning algorithm.

4.1.2 Performance Metrics

To achieve or identify the main problems/errors of the NLU component in the conversational

interface, logically would be necessary to quantify the quality of the training data. Also, in order

to evaluate the model performance would be necessary to obtain more utterances for each intent

from real people who are in the context with the domain of the conversational system, so we

made some online surveys to trying to fetch the test dataset, we achieved something like 25/35

utterances for each intent, of course, would be perfect to test with a bigger number of utterances

in each intent on the dataset, but since the domain is specific we think these utterances would

be enough to identify the problems and compare the solutions.

4.1.2.1 Pre-trained embedding approach with Spacy Portuguese Model

Since we wanted to compare more than one approach to identify the best classifier pipeline to

our NLU component, we tested the test datatest with the pre-trained vector approach from the

model which can be found in [40].

53

Figure 4.1: Confusion Matrix to the pre-trained embedding approach

If we observe the figure 4.1, the classifier seems to correctly identify the intents for the test

dataset, however, if we observe it more precisely, we can figure out some misses on some in-

tents, also some of trained intents on the model (do_you_know, greet+iam_fine, joke) appears

without an utterance from the test dataset which it defines some other intent was incorrectly

predicted. Overall, this approach is not perfect, but looks viable and robust enough to work

with the values obtained from the confusion matrix, it would be interesting in fact, in fetching

more results and test it out.

Table 4.1, shows the values of precision, recall and f1-score obtained for each intent used on

the test dataset using this current approach.

54

intent precision recall f1-score support

goodbye 0.965 0.933 0.949 30

greet 0.969 0.969 0.969 33

none_of_these 0.954 1.0 0.976 22

what_you_can_do 0.947 0.947 0.947 19

iam_fine 1.0 0.909 0.952 22

check_balance_client 0.958 1.0 0.978 23

won_by_opportunities 1.0 1.0 1.0 19

who_are_you 1.0 0.952 0.975 21

who_owes_more_money 1.0 1.0 1.0 22

check_last_task_client 1.0 0.9 0.947 20

how_are_you 1.0 1.0 1.0 27

iam_not_fine 0.956 1.0 0.977 22

micro average 0.978 0.967 0.972 279

macro average 0.979 0.967 0.972 279

Table 4.1: Metrics values to the pre-trained embedding approach

If we observe in detail the table 4.1, these values are in fact very accurate, however, to make

the solution totally viable, we should now observe the confidence levels of the intents, which will

be introduced in figure 4.2.

However, despite the good results on the intent confusion matrix for the pre-trained embedding

approach, if we evaluate the confidence on the distribution intents at the test dataset, as we can

observe at the figure 4.2, it‘s visually noticeable that the confidence is not so good as we already

expected at the section 3.5.2, this is because there‘s a lot of words already pre-trained from the

Spacy Model where will be confused with some words that we expect to be meaningful on this

specific context.

55

Figure 4.2: Histogram Confidence Distribution to the pre-trained embedding approach

In a real word case would be very dangerous to identify an intent with the level of confidence

around the 0.5 (50%), this could generate an out of the context conversation, and also there are

a lot of misses on predicting the intent correctly. So if we define the threshold for a fallback

action over the 0.7/0.8 (should be the action to take when the NLU component is not able to

identify correctly the intent defined by the threshold on the system), this approach should not

be so good for our conversational system domain.

4.1.2.2 Rasa tensorflow embedding

One of the main advantages on using this technique, the fact that is inherently language in-

dependent and it’s not reliant on good word embedding for a certain language [45], also it’s

adoptable on the specific domain since it trains the words from the scratch, we can expect good

results from the current context of the conversational system, however we can also expect some

gaps once the user says some new word that is not trained on the current dataset.

56

Figure 4.3: Confusion Matrix to the rasa tensorflow embedding approach

Observing the figure 4.3, again the classifier presents good results in identifying the correct

intents from the test dataset, in fact, it also looks more accurate than the pre-trained model

approach from the figure 4.1 where only one intent who are not on the test dataset appears

(deny). Overall we expect to perform well on the real use case for this specific domain of the

conversational agent.

The presented table in 4.2 shows the values of precision, recall and f1-score obtained for each

intent used on the test dataset.

57

intent precision recall f1-score support

goodbye 1.0 0.966 0.983 30

greet 0.970 1.0 0.985 33

none_of_these 1.0 1.0 1.0 22

what_you_can_do 0.863 1.0 0.926 19

iam_fine 1.0 0.954 0.976 22

check_balance_client 1.0 0.956 0.977 23

won_by_opportunities 1.0 1.0 1.0 19

who_are_you 1.0 0.904 0.950 21

who_owes_more_money 1.0 1.0 1.0 22

check_last_task_client 1.0 1.0 1.0 20

how_are_you 1.0 1.0 1.0 27

iam_not_fine 0.954 0.954 0.954 22

micro average 0.982 0.978 0.980 279

macro average 0.982 0.978 0.979 279

Table 4.2: Metrics values to the rasa tensorflow approach

Observing in depth the table 4.2 the values are also pretty decent from these metrics, in

fact, if we compare to the table of the pre-trained model approach in 4.1, we can notice a slight

improvement.

Observing the figure 4.4, we can detail a noticeable improvement over the results obtained

from the pre-trained model approach in the 4.2, almost all of the intents from the test dataset

were predicted over 0.85 (85%) of confidence, which is a satisfactory accurate value for a real

use case.

58

Figure 4.4: Histogram Confidence Distribution to the rasa tensorflow embedding approach

It’s important to refer that all of the utterances obtained from the surveys to origin the

test dataset were people that are in the context of the conversation system domain (CRM),

the disadvantage in using this approach would be the possibility of failing some specific words

which are not present on the training dataset yet, this means this model can contain in some

cases a gap of overfitting where it would be necessary to train with more data, in fact, we can

observe some fails with intents in the histogram, falling below 50%, we expect these failed intents

increasing if we manage to get some out of the context people of a CRM software, interacting

to this particular case.

However, in this particular case, it’s suggested this approach would be the most robust and

appropriate classifier model to be used on the real conversational interface.

59

4.1.2.3 Comparing the pre-trained embedding and the rasa tensorflow embedding

approachs

In figure 4.5, we observe the F1-Score graph for the intents classification (explained in the section

2.3), the process to make this graph was the following, we create/split a new test dataset from

the original training dataset five times (0%, 25%, 50%, 75%, 90%) and then we train multiple

times each pipeline with the percentage of data excluded from the training dataset. Finally we

get the F1-Score of each exclusion percentage recorded.

Figure 4.5: Graph with F1-Score of the pre-trained spacy model vs rasa tensorflow embedding

If we observe the detail in figure 4.5, obviously increasing the percentage of the data training

from the split data the F1-Score will also increase gradually, however, it’s clearly visible that

the rasa tensorflow embedding gets better results with this same growth than the pre-trained

bag-of-words approach. Once again this affirms that the approach of the embedding words from

the scratch is more exciting for this specific context domain and the Portuguese language of the

conversational system.

60

4.2 Manual Testing

Despite all the presented metrics in the previous section, the article How NOT To Evaluate

Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue

Response Generation [34] as stated previously, mention the performance metrics do not tell the

effective story when it comes to the conversational agents.

Thus, In order to make sure the conversational system exhibits the expected behaviour from

the designed use cases at section 3.1 and using the widget created which is detailed explained

in section 3.7.2 as the mockup environment testing it would be possible to test the actual

conversational system, to simulate the authenticated user on the CRM software, we created a

new test user on the system with some dummy data to simulate those use cases.

In the following sections we expose some of the conversations that we had with the conver-

sational system implemented.

4.2.1 Test getting a specific client balance conversation flow

The following conversations are transcripts exchanges between the user and the conversational

agent in the widget mockup environment trying to get a balance from a specific entity in the

context.

USER: Olá

CHATBOT: Olá Miguel Costa !, Bom dia, está tudo bem contigo?

USER: está sim tudo bem, e contigo?

CHATBOT: Ainda bem que estás bom, comigo também está tudo ótimo!

CHATBOT: Então, em que posso ser útil?

USER: poderias me dar a conta corrente do cliente Mapex ?

CHATBOT: Estou só a fazer uma breve pesquisa na tua base de dados por Mapex ...

61

CHATBOT: Encontrei várias empresas parecidas.. |MAPEX S.A| |MAPEX ANGOLA, LDA|

USER: MAPEX S.A

CHATBOT: A atual conta corrente da entidade MAPEX, S.A. é de 6542.99 euros

USER: Obrigado

CHATBOT: Sem problema, estou cá para isto..

In this scenario the user starts the conversation with a greet intent, then the conversational

system automatically knows who he is, since the user id has been shared from the socket pro-

tocol, so he can be authenticated upon the CRM software and obtain more details about him,

important to highlight when we correctly asks for a balance of the entity MAPEX, the bot will

search for this keyword on the system, then gives an answer with buttons to choose the correct

wanted entity, however, the user isn’t bound to pick from the given buttons, we can write the

client name more precisely and then the system with pick the best option, or in anoother way,

can just stop the conversation by giving the intent none_of_these in raw text.

Finally and after the system identifying the correctly entity that the client asked for, will

get the client balance from the CRM and give it at the next response.

4.2.2 Test getting the won value by opportunities to a specific client from a

specific year conversation flow

The next conversation was made with the goal to fetch the won value based on the opportunities

to a specific entity on the CRM system.

USER: olá rob, tudo bem?

CHATBOT: Olá, Boa tarde, eu estou ótimo, e tu como tens andado?

USER: está tudo otimo comigo, obrigado :)

CHATBOT: Ainda bem que estás bem! Fico satisfeito por saber..

62

USER: da-me o valor ganho em oportunidades de vendas para a entidade ARP

Advogados em 2017

CHATBOT: Ok, deixa-me fazer uma pesquisa rápida por ARP Advogados ...

CHATBOT: Ao cliente ARP Advogados - Lda foi vendido cerca de 3,867.55 euros em

oportunidades de negócio calculado no ano de 2017

USER: muito obrigado rob :)

CHATBOT: Não tens de quê Miguel Costa, é um prazer ajudar

In this case the user start once again with the greet intent and then has a normal conversa-

tion until the user reach’s the main goal, asking for the values won by opportunities to a specific

entity in the year of 2017, the conversational system search’s for the provided keyword by the

user and identities, there’s only one entity with this keyword, so he fetches automatically the

won value by the software API and generate the appropriate response with the data obtained

from the service provider.

Once again we had a decent conversation flow with a beginning, middle and an end.

4.2.3 Test getting the the most debtors entities conversation flow

Here the user tried to get the most debtors entities on the system available, also, he made some

social conversation before that.

USER: boa tarde, tudo bem?

CHATBOT: Boa tarde Miguel Costa , está tudo bem, obrigado, e contigo?

USER: comigo também está tudo..

CHATBOT: Fico feliz por saber que estás bem!

CHATBOT: Poderei ser útil em alguma coisa? em que posso ajudar?

63

USER: porque te chamas ROB?

CHATBOT: Boa questão, eu na verdade não gosto muito do meu nome, mas foi o nome

que me deram.

USER: diz-me os 3 clientes que mais me devem dinheiro..

CHATBOT: Ora aqui tens a lista com as top 3 entidades mais devedoras do momento

CHATBOT: 1. MAPEX, S.A. - 6542.99

2. MAGICPRINT - IMPRESSORAS, LDA - 5595.81

3. Publicidades João - LDA - 5535.00

As expected, the chatbot correctly identifies every intent at the flow of this conversation

and responds conveniently to the user identify the intent who_owes_more_money where the

conversational system will fetch the most debtors on the system for this specific user based on

the top rank number provided if exists, otherwise he will generally fetch the top 5 entities by

default.

Overall, it shows a decent conversation between the user and the chatbot, of course the

problems will come when the user starts to write something randomly where the system cannot

understand, but we don’t get it as a big problem, since we only want to provide some complemen-

tary method to interact with the CRM software, in short the goal of this specific conversational

system isn’t driven to talk socially, but in a business context.

However, this does not invalidate the possibility of having a social conversation with the

chatbot without a main purpose over the FOXAIO system, as we can observe in the next section.

4.2.4 Test social conversation flow

In this conversation, the user talks to the chatbot without any specific purpose in getting more

details from the CRM system.

USER: Olá, boa tarde, tudo bem?

64

CHATBOT: Olá, Boa tarde Miguel Costa!, Eu estou bem e tu como estás?

USER: também estou bem obrigado :)

CHATBOT: Ainda bem que estás bem! Fico satisfeito por saber..

CHATBOT: Então, em que posso ser útil?

USER: qual o teu nome?

CHATBOT: Eu sou o Rob, prazer Miguel Costa

USER: és capaz de me fazer rir?

CHATBOT: Qual a diferença entre um sapo e um príncipe? As cinco cervejas que a

princesa tomou.

USER: meh, não teve grande piada ..

CHATBOT: Bem.. se achas isso, eu posso tentar-te dizer outra piada..

USER: diz lá outra piada então

CHATBOT: O que não pode faltar no meio da festa? A letra s.

As we see, we still had a decent conversation based on some social intents trained on the

conversational system, however the focus still on the business goals over the social chit-chat

conversations.

Overall, within these experiments, we can see the chatbot performing well in identifying the

user intents defined on the use cases in section 3.1. It even displays a somewhat robustness when

he is not clear enough about what he should do, as we detailed on the conversation 4.2.1, in this

particular case the chatbot didn’t had enough certain in which entity he should’ve picked, so he

asks the user with a list of possible entities to pick one.

65

Chapter 5

Measuring the Optimisation of the

User Experience

This chapter will analyze the possible optimal measure of the user experience over the software

described by the conversational interface, we will discuss the obtained results based on the

available tools to quantify the optimisation of UX.

5.1 Considerations to measure the UX

In order to analyze if the conversational interface implemented had potential to effectively opti-

mise the overall user experience of the FOXAIO software in that specific case we had to gather

some user details and feedback to feed some metrics, and also logging some actions on the con-

versational agent, important to mention, we managed to log these actions for approximately a

month and a half. Since the software FOXAIO, does not have a large base of active users yet,

currently we have like 50 active users daily, exposing that, the main objective is in the first

instance, expose how to apply the use of the HEART framework discussed in the section 2.7.2,

and then present the obtained results of this user-centered framework, however, these results

shouldn’t be considered meaningfully until the software reach a larger base of active users. In

this specific case would be better to use another tool to measure the user experience with a small

sample of data, applying that we had implemented the System Usability Scale (SUS) already

discussed at section 2.7.3 which is focused on the usability and the goal achievement. Since

66

we had a few use cases implemented, it should be reliable to analyze the feedback of the users,

achieving these goals in the conversational system, in comparison to the regular UI interface of

the software.

5.2 HEART Framework Case

The HEART framework is a set of user-centered metrics, itťs accurate to identify the quality of

the user experience and help the product manager or the teams to measure the impact of the

UX changes [4].

5.2.1 Setting Goals, Signals and Metrics

To understand correctly the impact of the changes that conversational interface brought to the

current stage of the software, it’s important to identify clearly the goals of that feature on that

case, since the most important aspect of this particular situation is the ease of the use comparing

to the traditional UI process, we will focus on the task success of the identified features at the

section 3.1.

The next step was defining signals, every goal has related user actions, mapping the goals for

the intended actions can help to understand if the respective feature is doing well. Was also a

good moment to think about data collection (surveys). Those signals should closely correspond

to their respective goals.

Finally, the last stage of implementing the HEART framework over this specific feature, was

the definition of the metrics, it should transform the signals into measurement scales, where we

can observe for some time, in this case, it was necessary to log all the user actions over the

conversational system.

Corresponding to this process, the following table presented in 5.1 is intended to plot the

HEART categories against the respective Goals-Signal-Metrics.

67

Goals Signals Metrics

Happiness Users find the chat-

bot helpful and easy

to use

• The level of user

satisfaction

• Ratings submitted by sur-

veys

Engagement The chatbot must fa-

cilitate the execution

of the identified fea-

tures

• Spending more

time on the

chatbot

• Calculate the average ses-

sion length

Adoption New users see the the

value in the chatbot

• Increasing num-

ber of users

launching the

conversational

interface

• How many new users de-

cided to check a customer

balance within 7 days

compared to the number

of all users

Retention Users keep talking to

the chatbot

• The number of

users who talks to

the chatbot

• How many users that

checked a customer bal-

ance within 7 days decided

to check it again on the

next 7 days

Task Success Users complete the

identified features

goals easily

• The number of er-

rors on achieving

the features

• The number of displayed

error messages compared

to the success messages

Table 5.1: HEART framework categories plot against goals-signal-metrics

5.2.2 Applying Metrics and Analyzing Results

After defining the methods and tools to obtain the results over the HEART metrics, we will

now present how we gathered the data for the metrics and analyze the results that was possible

to obtain.

68

5.2.2.1 Results

In this section, we will present the meaningfully visual results (charts) for all the metrics we

explained in the section 5.2.1, it should work as an introduction for the explanation we will have

further ahead.

Figure 5.1: Happiness Metric survey question 1 (Did you find the chatbot easy to use?)

Figure 5.2: Happiness Metric survey question 2 (Did the chatbot help you to perform the requested

tasks?)

69

Figure 5.3: Happiness Metric survey question 3 (At performing the requested tasks, would you prefer to

use the chatbot or the traditional interface ?)

Figure 5.4: Adoption Metric Results Graph

70

Figure 5.5: Retention Metric Results Graph

Figure 5.6: Task Success Metric Chart

5.2.2.2 Applying the HEART metrics

We will now explain how we managed to get the results from the section 5.2.2.1, applying all

the metrics set in the section 5.2.1, to analyze properly the results, we had 34 persons to test

out the conversational system, in order to obtain the necessary feedback to fill these metrics.

In order to analyze the happiness metric, was created a small survey with main objective

to identify the satisfaction level, some of them in a Likert scale and others with a short text or

multiple choice, with the following questions:

71

1. Did you find the chatbot easy to use?

2. Did the chatbot help you to perform the requested tasks?

3. At performing the requested tasks, would you prefer to use the chatbot or the traditional

interface ?

4. Did you find it hard to perform the requested tasks?, if yes, why?

5. What other skills would you like the chatbot to do?

On the first question "Did you find the chatbot easy to use?" the responses were generated

by a Likert scale from 1 to 5.

Observing the results in figure 5.1, it’s clearly visible the persons in the study are pleased

with the ease of the use of the conversational interface as expected.

For the question "Did the chatbot help you to perform the requested tasks", the results of

the survey are represented in figure 5.2.

The results elucidate the people who used and answered the survey the conversational inter-

face were satisfied with their overall performance on that first version deployed.

The results for the question "At performing the requested tasks, would you prefer to use the

chatbot or the traditional interface ?" can be analyzed in the plot graph at the figure 5.3, and

can be visually detected the persons prefer to execute the tasks in the conversational interface

rather than the traditional user interface.

For the question "Did you find it hard to perform the requested tasks?, if yes, why?" we

obtained 45.6 % of positive responses, where the problems fall mostly on responses like, "he didn’t

recognize the company name, and had to ask me", however, we had some responses detecting some

hypothetical problems on intent classifier "He didn’t understand the way i asked my customer

balance". We still think the 45 % is not so bad for the first version of the chatbot.

Finally, in an optical way of perceiving what kind of abilities users want for the conversational

interface and for the question "What other skills would you like the chatbot to do?" we can

enumerate the most wanted skills for the users.

• I want the chatbot to send an email with the customer balance if i ask for it after obtaining

it.

72

• I want to open a client sheep over the bot.

• I want to create a task or a business opportunity.

This can be a good point to continue developing the abilities of the conversational interface,

detecting what people would like to see on a chatbot and corresponding with that, improving

the overall experience of itself.

To evaluate the engagement metric, we considered for logging the session length on the

conversational interface that meet the following conditions.

• The user sent at least 5 messages to the conversational system .

• The user strictly sent messages to the system with the goal to reach the provided abilities

identified at 3.1.

Exposing that, to quantify the session length we created these conditions in the logging

system, and if these same conditions were validated, we saved on an external database the user

details and the start and end timestamp of the conversation, so we could calculate the overall

session length.

We gathered around 100 entries in the database, we obtained an average session length of

236 seconds, which represent a session length around 4 minutes, we identify this number as a

good start point, since the first version of the conversational system only provides a few abilities,

however we expect this number will grow as the skills of the conversational interface grow. In

the future, it should be important to compare and evaluate this number over the time.

To interpret the adoption metric on the conversation interface, we had to implement the

logging system to save for an external database the actions of users with the current date and

time.

The total users of the system who logged in within 30 days are around 70/80, the figure (5.4)

shows how many new sessions on the system archived the goal of "get client balance" within 7

days that ran for a month and half.

Based on the number of users, we can interpret the users are keeping trying the conversational

system which is good, it did not enter the trend of having a higher number at the beginning and

then decreasing over the time.

73

Following the same method to retrieve the adoption results, we have implemented the that

for the retention metric too, but for this one, we removed the condition of being a "new user"

talking to the system, and added the condition of the user who reached the goal of getting a

client balance, repeated the same goal on the following 7 days.

The following graph in 5.5 was the data stored by the logging class of the conversational

interface in order to measure the same quantification, and has been stored for approximately a

month and a half.

It’s visible that the number of users using the conversational interface with the purpose of

getting the information by talking is increasing easily over the time, it represents the users in

some way actually find the abilities useful on their daily tasks, even when there are only a few

abilities available.

Finally, to achieve the task success metric, it was pretty simple, we logged every successfully

goal reached on the database, as well as the failed actions, we intended by a failed action when

a user tried to reach the goal of the use cases available and the conversational interface was

not able to identify that correctly, once the entity extraction failed, or even worse, the intent

prediction failed, on the second scenario we had manually to detect these failings and re-train

the model, the graph in figure 5.6 is identifying the task success ratio versus the error ratio

stored by a month and a half.

It’s noticeable the higher success ratio over the error ratio, however, we didn’t measure the

error ratio with the number of failed intents predicted by the social/casual conversations or some

other messages with the goal to achieving other functionalities which are not available on that

version of the conversational interface, still the number of errors are still high at our perspective,

since half of the failed intents was because of incorrectly entity extraction, where the users for

example, are spelling the name of a company with a lowercase letter, and we have like 90 % of

the company names in our data training set for the entity extraction of a company name with

a start uppercase letter.

74

5.3 System Usability Scale Case

For a different view and perspective of the user experience optimisation it would be good to

analyze the usability of the system in the userťs perspective, thatťs the main goal of the SUS,

in a high view and from a single number, understand what the users feel about the usability.

Important to mention, in order to compare the conversational interface against the current

user interface of the software, it was necessary to create the 10-item Likert scale for each version,

obviously it was mentioned to the users, the questionnaire was targeted to the specific features

created and identified in the section 3.1, and not for the all features at whole.

5.3.1 Interpreting the Results

To obtain the result of the System Usability Scale (SUS) tool, and remembering it should yield

a single number representing the overall usability of the conversational interface, the following

operations were made with the individual items on the scale, it was necessary to sum the score

contribution of each item, noting each item’s score contribution was ranged from 0 to 4, for the

item’s 1,3,5,7 and 9 the score contribution was the scale position minus 1. For the item’s 2,4,6,8

and 10 the score was 5 minus the scale position, and finally multiplying the sum of scores by

2.5 it generated the overall value of the SUS [6].

5.3.2 Analyzing the Results

The following results were generated by the proposed Likert scale which has been filled by 29

persons, the current users who are familiar with the software, the questionnaire in cause can be

found in the section 2.7.3.

The following table 5.2 represents the scores obtained against each question on the ques-

tionnaire implementing the proper interpretation which can be found in the article [6], higher

is better in any question following these guidelines, to obtain the final score, every number of

each row of the table was divided by the number of responses referring to the number within

parentheses (obtaining the number between 0 and 4), to obtain the final result, every score was

been normalized and summed, and finally multiplied by 2.5.

75

Question Chatbot Score UI Score

I think that I would like to use this system frequently 86 (2.97) 72 (2.48)

I found the system unnecessarily complex 73 (2.52) 71 (2.45)

I thought the system was easy to use 79 (2.72) 50 (1.72)

I think that I would need the support of a technical

person to be able to use this system

84 (2.90) 61 (2.10)

I found the various functions in this system were well

integrated

58 (2.00) 62 (2.13)

I thought there was too much inconsistency in this

system

70 (2.41) 58 (2.00)

I would imagine that most people would learn to use

this system very quickly

83 (2.86) 61 (2.10)

I found the system very cumbersome to use 74 (2.55) 71 (2.45)

I felt very confident using the system 77 (2.66) 66 (2.28)

I needed to learn a lot of things before I could get

going with this system

89 (3.07) 65 (2.24)

Final Score 70 58

Table 5.2: SUS results table

In the SUS scale perspective, the Chatbot is clearly the winner, which has a result of 70,

according to the study at [28] this number is above average, in the other case, the traditional

user interface of the software scored 58 which is below the average, however, these scores should

be only considered as a sample of the experience, since the results were only considered using

the use cases on the study, expanding this to a complex use case scenario, it should probably be

quite different.

5.4 Review of Results

In a review of the obtained results, we can detect some hypothetical improvement on the user

experience, however, it should be highlighted the small number of active users on the software

76

for this experiment, so it should not be considered by an effective affirmation, still the feedback

obtained by the HEART framework and the SUS scale was good and promising in an overall

perspective.

In fact, we believe these results and numbers obtained at the end could have several changes,

if the conversational interface in the case had more capabilities and if the number of the active

users in the experience were higher.

Still, we consider all of these methods applied in order to measure the user experience of the

conversational system should be considered as an effective way to obtain the real user-centered

feedback in chatting to a chatbot, and they should work for a higher sample of feedback data.

77

Chapter 6

Conclusion

This chapter will summarize the content of all previous chapters in order to recap what has

been accomplished. It will highlight the most important steps of the project we had in order

to have an operational conversational system, we will briefly detail the pointers for the future

development of the subject.

6.1 Summary of Accomplished Work

After the study and review of the main techniques used on the development for the conversational

systems, more precisely in the area of the Natural Language Processing, the subjective definition

of the chatbot goal’s has come, a set of the objectives and constraints from the company we

worked with were laid down on the paper in the chapter 1.5. After that in the chapter 3 a

scalable software solution was designed and presented as well with other possible architecture

based on the Dialog Management system architecture, also the implementation of the widget on

the current software UI was created and developed, that required the implementation of a new

specific channel on the conversational system to receive the messages based on a socket protocol.

Then in the chapter 4 we discussed the most robust techniques based on the chosen libraries

to implement the intent classifier of the system, all decisions were made based on the results

of the metrics that we have shown, however, and since the way we analyze the performance of

a chatbot can be very subjective, we made some manual tests on the current chatbot system.

Finally, in the chapter 5, we analyzed in a detailed view the results of the possible optimisation

78

of the current CRM system with the conversational interface based on the Google framework

HEART.

Looking back at the accomplished work, it can be said the actual developed solution is

satisfying and also allows the easy continuous development if changes need to be performed,

still, the solution is easy to deploy in any available server on the present year, since we only need

a Python environment on the top of that which is available to the all OS. Furthermore, and also

because of the framework used, Rasa, it has allowed possibly to extend to the other programming

languages, for example a specific action on the conversational system can be redirected to any

other external service (coded in Java or PHP for example) as long as it returns the required

object for that. However, there might be a few cases where the chatbot might not behave in the

best manner possible, so it’s important for the future maintainers or developers to be aware of

that.

We can also relate with a high view of the results obtained by applying the tools to measure

the optimising of the user experience the conversational interface actually was received well

by the active user’s on the software used in this case, they actually found some improvements

on their daily tasks using the chatbot, however, the current solution is not a panacea, several

improvements can be made to obtain the most precise feedback as possible, and therefore,

improving the UX in a better way.

6.2 Future Work

Since the presented solution will not resolve all the problems, several improvements could be

made in order to boost the robustness of that solution. The following list, which will act more

like a brainstorming than an actual roadmap (since there are no extensive research’s to confirm

they’re indeed viable in that specific case), will highlight some of the possible improvements.

• Restructure of the software architecture in order to identify the user language authenti-

cated to the system and then redirect it to the matched NLP covered language.

• Possibility to extend the current components in the conversational system, for example, a

sentiment analyzer can be implemented to identify the positive or negative responses from

the authenticated user.

79

• Extend the actual channel implemented to other Message Platforms available, like Slack,

Facebook Messenger, however, in that case, it would require somehow an authentication

method on the CRM system, to fetch the meaningful data from the system.

• If the user is unable to clarify itself, instead of going to a fallback action, before that, the

chatbot could suggest potential problems to the user in the form of a selection list with

common problems.

• Request a human agent in the case that the user gets frustrated from the conversation.

• Exploring other methods and tools to evaluate the user experience improvement, like

applying the famous A/B tests.

6.3 Final Thoughts

Some of the enthusiasts in this particular area, call the chatbot system as the New Apps, this

address a lot of responsibility on their shoulders, In the 2016 the chatbots was considerate a

new trend, but a little time after this trend has faded and still living in the background. In all

of the cases, there is still a long way to go for conversational systems before they can be used

completely untouched by the human hands.

At this specific context domain, the CRM systems, the use of a chatbot to complement the

way a user interact to the software can be very exciting, the example of that is the attention of

the most recognized CRM software Salesforce is given on that [5].

The future holds promising results in the field of the Natural Language Processing, new

methods are born (like the rasa tensorflow embedding created in the past year and used in the

implementation) and older methods become even better, in fact the future of the success or

failure upon the chatbot it’s depended on that field. However, the growth of the chatbot’s left a

mark on the History, and also in the mind of the consumers, it might be entirely possible in a

near future to see the roles reversed between the bots and humans, we might see one day a bot

interaction with a human using the human language in order to take care of the daily tasks of

human’s life, an excited example of that can be found at [43].

In any case, after the difficulties I have found in working with such technology, I am still

80

optimistic of these types of implementations and developments and how they would shape the

future of our societies. I think we will see one day this kind of technology indispensable for the

human’s life, and obviously, substantially improving the overall user experience.

81

References

[1] Vincent Van Asch. Macro-and micro-averaged evaluation measures [[ba-

sic draft]], 2013. URL: https://pdfs.semanticscholar.org/1d10/

6a2730801b6210a67f7622e4d192bb309303.pdf.

[2] Razvan Pascanu, Tomas Mikolov, Yoshua Bengio. On the difficulty of training recurrent

neural networks, 2012. URL: https://arxiv.org/abs/1211.5063, arXiv:1211.5063.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994.

doi:10.1109/72.279181.

[4] Emily Bonnie. How to use the google heart framework to measure and improve your apps

ux, 2018. [Online accessed in 21 of August, 2019]. URL: https://clevertap.com/blog/

google-heart-framework/.

[5] James Boutel. Einstein chatbots build your own automated salesforce robot!, 2018.

[Online; accessed in 15 of August, 2019]. URL: https://www.salesforceben.com/

einstein-chatbots-build-your-own-automated-salesforce-robot/.

[6] John Brooke. Sus - a quick and dirty usability scale, 1986. URL: https://hell.meiert.

org/core/pdf/sus.pdf.

[7] Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria. Recent trends in deep

learning based natural language processing. CoRR, abs/1708.02709, 2017. URL: http:

//arxiv.org/abs/1708.02709, arXiv:1708.02709.

82

https://pdfs.semanticscholar.org/1d10/6a2730801b6210a67f7622e4d192bb309303.pdf
https://pdfs.semanticscholar.org/1d10/6a2730801b6210a67f7622e4d192bb309303.pdf
https://arxiv.org/abs/1211.5063
http://arxiv.org/abs/1211.5063
http://dx.doi.org/10.1109/72.279181
https://clevertap.com/blog/google-heart-framework/
https://clevertap.com/blog/google-heart-framework/
https://www.salesforceben.com/einstein-chatbots-build-your-own-automated-salesforce-robot/
https://www.salesforceben.com/einstein-chatbots-build-your-own-automated-salesforce-robot/
https://hell.meiert.org/core/pdf/sus.pdf
https://hell.meiert.org/core/pdf/sus.pdf
http://arxiv.org/abs/1708.02709
http://arxiv.org/abs/1708.02709
http://arxiv.org/abs/1708.02709

[8] Ketakee Nimavat, Tushar Champaneria. Chatbots: An overview types, architecture,

tools and future possibilities. IJSRD - International Journal for Scientific Research De-

velopment, 5, 2017. URL: https://www.researchgate.net/publication/320307269_

Chatbots_An_overview_Types_Architecture_Tools_and_Future_Possibilities.

[9] Chatbots.org. Consumers say no to chatbot silos in us and uk survey. [Online; accessed in

20 of January, 2019]. URL: https://www.chatbots.org/images/news/chatbot_survey_

2018.pdf.

[10] Katie Costello. Gartner forecasts worldwide public cloud revenue to

grow 17.5 percent in 2019. [Online; accessed in 13 of January,

2019]. URL: https://www.gartner.com/en/newsroom/press-releases/

2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g.

[11] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. Efficient estimation of word rep-

resentations in vector space, 2013. URL: https://arxiv.org/abs/1301.3781.

[12] Erik Devaney. The 2018 state of chatbots report: How chatbots are reshaping online

experiences. [Online; accessed in 10 of January, 2019]. URL: https://www.drift.com/

blog/chatbots-report/.

[13] Jakob Nielsen Don Normal. The definition of user experience (ux). [Online;

accessed in 15 of December, 2018]. URL: https://www.nngroup.com/articles/

definition-user-experience/.

[14] freeCodeCamp. Oauth2 protocol. [Online; accessed in 6 of June, 2019]. URL: https:

//guide.freecodecamp.org/security/oauth2/.

[15] Kerry Rodden, Hilary Hutchinson, Xin Fu. Measuring the user experience on a large

scale: User-centered metrics for web applications. In Proceedings of CHI 2010, 2010. URL:

http://www.rodden.org/kerry/heart-metrics-chi2010.pdf.

[16] Mateusz Hapon. Ai chatbot: How artificial intelligence and ma-

chine learning can improve your chatbot, 2018. [Online; ac-

83

https://www.researchgate.net/publication/320307269_Chatbots_An_overview_Types_Architecture_Tools_and_Future_Possibilities
https://www.researchgate.net/publication/320307269_Chatbots_An_overview_Types_Architecture_Tools_and_Future_Possibilities
https://www.chatbots.org/images/news/chatbot_survey_2018.pdf
https://www.chatbots.org/images/news/chatbot_survey_2018.pdf
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-forecasts-worldwide-public-cloud-revenue-to-g
https://arxiv.org/abs/1301.3781
https://www.drift.com/blog/chatbots-report/
https://www.drift.com/blog/chatbots-report/
https://www.nngroup.com/articles/definition-user-experience/
https://www.nngroup.com/articles/definition-user-experience/
https://guide.freecodecamp.org/security/oauth2/
https://guide.freecodecamp.org/security/oauth2/
http://www.rodden.org/kerry/heart-metrics-chi2010.pdf

cessed in 13 June, 2019]. URL: https://www.netguru.com/blog/

ai-chatbot-how-artificial-intelligence-and-machine-learning-can-improve-your-chatbot.

[17] J. Harms, P. Kucherbaev, A. Bozzon, G. Houben. Approaches for dialog management in

conversational agents. IEEE Internet Computing, 23(2):13–22, March 2019. doi:10.1109/

MIC.2018.2881519.

[18] Lian Meng, Minlie Huang. Dialogue intent classification with long short-term memory

networks, 2018. URL: http://tcci.ccf.org.cn/conference/2017/papers/1158.pdf.

[19] XOXCO Inc. Botkit: Building blocks for building bots. [Online; accessed in 1 of May,

2019]. URL: https://botkit.ai/.

[20] Keras. Keras: The python deep learning library. [Online; accessed in 3 May, 2019]. URL:

https://keras.io/.

[21] Ecem Keskin. A wide perspective for designing user experience. [On-

line; accessed in 5 of January, 2019]. URL: https://stories.jotform.com/

a-wide-perspective-for-designing-user-experience-1fac19643c5.

[22] Roshan Khan. Standardized architecture for conversational agents a.k.a. chat-

bots. International Journal of Computer Trends and Technology (IJCTT), 50(2),

2017. URL: https://www.researchgate.net/publication/321637578_Standardized_

Architecture_for_Conversational_Agents_aka_ChatBots.

[23] Ravindra Kompella. Conversational ai chat-bot architecture overview, 2018.

[Online; accessed in 15 June, 2019]. URL: https://towardsdatascience.com/

architecture-overview-of-a-conversational-ai-chat-bot-4ef3dfefd52e.

[24] Golden Krishna. The Best Interface Is No Interface. New Riders, 2015.

[25] Law, Lai-Chong, Roto, Virpi, Hassenzahl, Marc, Vermeeren, Arnold, and Kort, Joke. Un-

derstanding, scoping and defining user experience: A survey approach. pages 719–728, 04

2009. doi:10.1145/1518701.1518813.

[26] Lorenz Cuno Klopfenstein, Saverio Delpriori, Alessandro Bogliolo, Silvia Malatini. Rise of

bots: A survey of conversational interfaces, patterns, and paradigms, 2017.

84

https://www.netguru.com/blog/ai-chatbot-how-artificial-intelligence-and-machine-learning-can-improve-your-chatbot
https://www.netguru.com/blog/ai-chatbot-how-artificial-intelligence-and-machine-learning-can-improve-your-chatbot
http://dx.doi.org/10.1109/MIC.2018.2881519
http://dx.doi.org/10.1109/MIC.2018.2881519
http://tcci.ccf.org.cn/conference/2017/papers/1158.pdf
https://botkit.ai/
https://keras.io/
https://stories.jotform.com/a-wide-perspective-for-designing-user-experience-1fac19643c5
https://stories.jotform.com/a-wide-perspective-for-designing-user-experience-1fac19643c5
https://www.researchgate.net/publication/321637578_Standardized_Architecture_for_Conversational_Agents_aka_ChatBots
https://www.researchgate.net/publication/321637578_Standardized_Architecture_for_Conversational_Agents_aka_ChatBots
https://towardsdatascience.com/architecture-overview-of-a-conversational-ai-chat-bot-4ef3dfefd52e
https://towardsdatascience.com/architecture-overview-of-a-conversational-ai-chat-bot-4ef3dfefd52e
http://dx.doi.org/10.1145/1518701.1518813

[27] Michael McTear. Conversation modelling for chatbots: current approaches and future

directions. In André Berton, Udo Haiber, and Wolfgang Minker, editors, Studientexte

zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2018, pages 175–185.

TUDpress, Dresden, 2018.

[28] Aaron Bangor, Philip T. Kortum, James T. Miller. Determining what indi-

vidual sus scores mean: adding an adjective rating scale. Journal of Usabil-

ity Studies, 4(3):114–123, 2009. URL: https://pdfs.semanticscholar.org/3399/

f83ff6149dc65b52600f52ed372be5a6aa86.pdf.

[29] Alan Nichol. Supervised word vectors from scratch in rasa nlu, 2018.

[Online; accessed in 10 of May, 2019]. URL: https://blog.rasa.com/

supervised-word-vectors-from-scratch-in-rasa-nlu/.

[30] Tom Bocklisch, Joey Faulkner, Nick Pawlowski, Alan Nichol. Rasa: Open source language

understanding and dialogue management. CoRR, abs/1712.05181, 2017. URL: http://

arxiv.org/abs/1712.05181, arXiv:1712.05181.

[31] Christopher Olah. Understanding lstm networks. [Online; accessed em 15 of May, 2019].

URL: http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[32] Tatiana Parshina. Understanding rasa tensorflow intent classifier, 2019. [On-

line; accessed in 11 may, 2019]. URL: https://medium.com/@tatiana.parshina/

understanding-rasa-tensorflow-intent-classifier-e9d4ef019c6.

[33] PAUL PINARD. Classification metrics (part 1) how to boost your bot performance through

data, 2018. [Online; accessed in 10 June, 2019]. URL: https://cai.tools.sap/blog/

classification-metrics/.

[34] Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Michael Noseworthy, Laurent Charlin, Joelle

Pineau. How NOT to evaluate your dialogue system: An empirical study of unsupervised

evaluation metrics for dialogue response generation. CoRR, abs/1603.08023, 2016. URL:

http://arxiv.org/abs/1603.08023, arXiv:1603.08023.

85

https://pdfs.semanticscholar.org/3399/f83ff6149dc65b52600f52ed372be5a6aa86.pdf
https://pdfs.semanticscholar.org/3399/f83ff6149dc65b52600f52ed372be5a6aa86.pdf
https://blog.rasa.com/supervised-word-vectors-from-scratch-in-rasa-nlu/
https://blog.rasa.com/supervised-word-vectors-from-scratch-in-rasa-nlu/
http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/1712.05181
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/@tatiana.parshina/understanding-rasa-tensorflow-intent-classifier-e9d4ef019c6
https://medium.com/@tatiana.parshina/understanding-rasa-tensorflow-intent-classifier-e9d4ef019c6
https://cai.tools.sap/blog/classification-metrics/
https://cai.tools.sap/blog/classification-metrics/
http://arxiv.org/abs/1603.08023
http://arxiv.org/abs/1603.08023

[35] Niranjana Ragurama. What is the best example for false negative, false positive, true

negative and true positive in machine learning?, 2018. [Online; accessed in 20 of February,

2019]. URL: https://qr.ae/TWKF3c.

[36] Sebastian Raschka. Confusion matrix, 2019. [Online; accessed in 10 June, 2019]. URL:

http://rasbt.github.io/mlxtend/user_guide/plotting/plot_confusion_matrix/.

[37] Kohavi, Ron, Henne, Randal, and Sommerfiel, Dan. Practical guide to controlled experi-

ments on the web: Listen to your customers not to the hippo. In Proceedings of the 13th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’07, pages 959–967, New York, NY, USA, 2007. ACM. URL: http://doi.acm.org/10.

1145/1281192.1281295, doi:10.1145/1281192.1281295.

[38] Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term memory. Neural Comput.,

9(8):1735–1780, November 1997. URL: http://dx.doi.org/10.1162/neco.1997.9.8.

1735, doi:10.1162/neco.1997.9.8.1735.

[39] Amit Mandelbaum, Adi Shalev. Word embeddings and their use in sentence classification

tasks. CoRR, abs/1610.08229, 2016. URL: http://arxiv.org/abs/1610.08229, arXiv:

1610.08229.

[40] Spacy. Available pretrained statistical models for portuguese. [Online; accessed in 10 of

May, 2019]. URL: https://spacy.io/models/pt.

[41] Spacy. spacy - industrial-strength natural language processing in python. [Online; accessed

in 5 of May, 2019]. URL: https://spacy.io/.

[42] usability.gov. System usability scale (sus). [Online; accessed in 10 of

September, 2019]. URL: https://www.usability.gov/how-to-and-tools/methods/

system-usability-scale.html.

[43] Chris Welch. Google just gave a stunning demo of assistant making an actual phone call,

2018. [Online; accessed in 20 of August, 2019]. URL: https://www.theverge.com/2018/

5/8/17332070/google-assistant-makes-phone-call-demo-duplex-io-2018.

86

https://qr.ae/TWKF3c
http://rasbt.github.io/mlxtend/user_guide/plotting/plot_confusion_matrix/
http://doi.acm.org/10.1145/1281192.1281295
http://doi.acm.org/10.1145/1281192.1281295
http://dx.doi.org/10.1145/1281192.1281295
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1610.08229
http://arxiv.org/abs/1610.08229
http://arxiv.org/abs/1610.08229
https://spacy.io/models/pt
https://spacy.io/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.theverge.com/2018/5/8/17332070/google-assistant-makes-phone-call-demo-duplex-io-2018
https://www.theverge.com/2018/5/8/17332070/google-assistant-makes-phone-call-demo-duplex-io-2018

[44] Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, Jason Weston.

Starspace: Embed all the things! CoRR, abs/1709.03856, 2017. URL: http://arxiv.org/

abs/1709.03856, arXiv:1709.03856.

[45] Tobias Wochinger. Rasa nlu in depth: Part 1 intent classification,

2019. [Online; accessed in 10 may, 2019]. URL: https://blog.rasa.com/

rasa-nlu-in-depth-part-1-intent-classification/.

[46] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Pe-

ter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David

Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay. Scikit-learn: Ma-

chine learning in python. Journal of Machine Learning Research, pages 2825–2830, 2012.

URL: https://arxiv.org/abs/1201.0490.

87

http://arxiv.org/abs/1709.03856
http://arxiv.org/abs/1709.03856
http://arxiv.org/abs/1709.03856
https://blog.rasa.com/rasa-nlu-in-depth-part-1-intent-classification/
https://blog.rasa.com/rasa-nlu-in-depth-part-1-intent-classification/
https://arxiv.org/abs/1201.0490

	Introduction
	Work Context
	A Brief Summary of the Conversational Systems
	Motivation
	The opportunity
	Goals
	Document Structure

	Literature Review
	High-level schematic view of a conversational interface
	Machine Learning Techniques
	Word embedding
	Tensorflow Embedding by RASA
	Recurrent Neural Networks
	Long Short Term Memory Networks

	Intent Classification
	Metrics
	Metrics Implementation

	Dialog Management
	High-level view of the DM
	Approach's and Tools to the DM

	Responses Generation
	User Experience
	Measuring the User Experience
	The PULSE metrics
	The HEART metrics framework
	The System Usability Scale (SUS) Case

	Software Features, Architecture & Implementation
	Identified Features and Use Cases
	Standardized Architecture
	Architecture Proposals
	Rule-based DM system architecture
	Hybrid DM system architecture

	Programming Languages and Libraries
	Technology Choices
	The Open Source Machine Learning Framework, Rasa

	Extracting the Portuguese Words to the NLU Model
	Training Intents
	Pre-trained word vectors

	Generating the Responses (NLG)
	Conversational Widget Implementation
	Socket Channel Constraints
	Widget User Interface

	Experiments and Results of the Conversational Interface
	Intent Classification
	Preprocessing
	Performance Metrics

	Manual Testing
	Test getting a specific client balance conversation flow
	Test getting the won value by opportunities to a specific client from a specific year conversation flow
	Test getting the the most debtors entities conversation flow
	Test social conversation flow

	Measuring the Optimisation of the User Experience
	Considerations to measure the UX
	HEART Framework Case
	Setting Goals, Signals and Metrics
	Applying Metrics and Analyzing Results

	System Usability Scale Case
	Interpreting the Results
	Analyzing the Results

	Review of Results

	Conclusion
	Summary of Accomplished Work
	Future Work
	Final Thoughts

