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Abstract

A matroid is a combinatorial structure that provides an abstract and flexible model for dependence

relations between elements of a set. One way of studying matroids is via geometry: one associates

a polytope to a matroid, then uses both combinatorics and geometry to understand the polytope and

thereby the original matroid. By a polytope, we mean a bounded convex set in Euclidean space Rn

defined by a finite list of linear equations and inequalities, or equivalently as the convex hull of a fi-

nite set of points. The best-known polytope associated with a matroid M is its base polytope P(M),

first introduced by Gel’fand, Goresky, Macpherson and Serganova in 1987 [9]. This dissertation

focuses on a closely related construction, the independence polytope Q(M), whose combinatorics

is much less well understood. Both P(M) and Q(M) are defined as convex hulls of points corre-

sponding to the bases or independence sets, respectively; defining equations and inequalities were

given for P(M) by Feichtner and Sturmfels [8] in terms of the “flacets” of M, and for Q(M) by

Schrijver [24]. One significant difference between the two constructions is that matroid basis poly-

topes are generalized permutahedra as introduced by Postnikov [23], but independence polytopes

do not a priori share this structure, so that fewer tools are available in their study.

One of the fundamental questions about a polytope is to determine its combinatorial structure as

a cell complex: what are its faces of each dimension and which faces contain others? In gen-

eral it is a difficult problem to extract this combinatorial structure from a geometric description.

For matroid base polytopes, the edges (one-dimensional faces) have a simple combinatorial de-

scriptions in terms of the defining matroid, but faces of higher dimension are not understood in

general. In Chapter 2 we give an exact combinatorial and geometric description of all the one-

and two-dimensional faces of a matroid independence polytope (Theorems 2.9 and 2.11). One

consequence (Proposition 2.10) is that matroid independence polytopes can be transformed into
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generalized permutahedra with no loss of combinatorial structure (at the cost of making the geom-

etry slightly more complicated), which may be of future use.

In Chapter 3 we consider polytopes arising from shifted matroids, which were first studied by

Klivans [16, 15]. We describe additional combinatorial structures in shifted matroids, including

their circuits, inseparable flats, and flacets, leading to an extremely concrete description of the

defining equations and inequalities for both the base and independence polytopes (Theorem 3.12).

As a side note, we observe that shifted matroids are in fact positroids in the sense of Postnikov [22],

although we do not pursue this point of view further.

Chapter 4 considers an even more special class of matroids, the uniform matroids U(r,n), whose

independence polytopes TC(r,n) = QU(r,n) are hypercubes in n truncated at “height” r. These

polytopes are strongly enough constrained that we can study them from the point of view of Ehrhart

theory. For a polytope P whose vertices have integer coordinates, the function i(P, t) = |tP∩n |

(that is, the number of integer points in the tth dilate) is a polynomial in t [7], called the Ehrhart

polynomial. We give two purely combinatorial formulas for the Ehrhart polynomial of TC(r,n),

one a reasonably simple summation formula (Theorem 4.9) and one a cruder recursive version

(Theorem 4.6) that was nonetheless useful in conjecturing and proving the “nicer” Theorem 4.9.

We observe that another fundamental Ehrhart-theoretic invariant, the h∗-polynomial of TC(r,n),

can easily be obtained from work of Li [18] on closely related polytopes called hyperslabs.

Having computed these Ehrhart polynomials, we consider the location of their complex roots. The

integer roots of i(QM, t) can be determined exactly even for arbitrary matroids (Theorem 4.17),

and extensive experimentation using Sage leads us to the conjecture that for all r and n, all roots

of TC(r,n) have negative real parts. We prove this conjecture for the case r = 2 (Theorem 4.21),

where the algebra is manageable, and present Sage data for other values in the form of plots at the

end of Chapter 4.
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Chapter 1

Background

1.1 Matroids

Definition 1.1. A matroid, M, is an ordered pair (E,I ) where E is a finite set and I is a collection

of subsets of E with the properties:

1. ∅ ∈I .

2. If I ∈I and J ⊆ I, then J ∈I .

3. If I,J ∈I and |J|< |I|, then there exists x ∈ I \ J such that J∪{x} ∈I .

The set E is referred to as the ground set of M. The elements of I are called independent sets,

and subsets of E not in I are called dependent.

Matroids arise naturally in a variety of contexts. Some common examples of matroids are as fol-

lows.

Definition 1.2 (Vector Matroids). Let X be an m× n matrix over the field F and E be the set of

columns of X . Define I to be set of subsets of E that are linearly independent. Then M(X) =

(E,I ) is a matroid. We will refer to such matroids as vector matroids.
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Example 1.3. Consider the real matrix

X =



1 0 1 0

−1 1 0 0

0 −1 −1 1

0 0 0 −1


.

Label the columns 1,2,3,4 from left to right. A is an independent set of M(X) if A is contained in

one of the following three sets: {1,2,4},{1,3,4},{2,3,4}.

Definition 1.4 (Uniform Matroids). The uniform matroid, U(r,n), of rank r of size n has as its

ground set [n] and its independent sets all subsets of [n] of size at most r.

Definition 1.5 (Graphic Matroids). Let G be a finite graph with edge set E. The graphic matroid,

M(G), is the ordered pair (E,I ) where I consists of sets of edges containing no cycles.

Example 1.6. Let G be the graph pictured below. Then the graphic matroid M(G) has independent

sets: ∅,1,2,3,4,12,13,14,23,24,34,124,134,234 where 234 is shorthand for {2,3,4}.

1

2

3

4

When there exists a bijection between the ground sets of two matroids that induces a bijection

between their independent sets, we will say that the matroids are isomorphic. A matroid that is

isomorphic to a vector matroid over F is said to be representable over F. For example, the graphic

matroid in Example 1.6 is representable over R since it is isomorphic to the matroid M(X) in
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Example 1.3.

The similarity between the words matroid and matrix is no accident. The term matroid was coined

in 1935 by [27]. Whitney’s definition only included properties 2 and 3 in Definition 1.1, allowing

for a matroid with no independent sets. He notes that these two properties are shared by linear

independent collections of vectors and acyclic edge sets of graphs. For this reason, much of the

terminology used to describe matroids are terms from Linear Algebra or Graph Theory.

Let M = (E,I ) be a matroid.

• A basis of M is an independent set maximal with respect to inclusion. By property 3 of

Definition 1.1, all bases have the same cardinality. For vector matroids, bases correspond

to column bases of the corresponding matrix. For graphic matroids, bases correspond to

spanning forests of the graph. Let B(M) denote the set of bases of M. Given distinct bases

A,B ∈B(M), and a ∈ A \B, then there exists b ∈ B \A such that A \ {a}∪ {b} ∈B(M).

This property is called the basis exchange property and will be used a number of times in

this thesis.

• Every matroid comes equipped with a rank function, r : 2E → Z≥0 where rk(A) = max{I ∈

I | I ⊆ A}. In terms of vector matroids, rk(A) is precisely the rank of the matrix whose

columns are the elements of A. For a graphic matroid, r(A) = |V (A)|− c(A) where V (A) is

the set of vertices which are incident to an edge in A and c(A) is the number of connected

components of the subgraph induced by A.

• The closure of A⊆ E is defined as A := {x ∈ E | rk(A∪{x}) = rk(A)}.

• A circuit of M is a minimal dependent set. In other words, a circuit is a dependent set for

which every proper subset is independent. The terminology comes from the fact that circuits

in graphic matroids correspond to cycles in the graph.

• The set A ⊂ E is called a flat of M if for all x /∈ A, we have that rk(A∪ {x}) > rk(A).

Alternatively, A is a flat if A = A. In terms of vector matroids, you can think of a flat of M as
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the collection of all vectors contained in some subspace of the span of E.

The notions of bases, rank functions, closures, circuits, and flats can be axiomatized independently

of each other. These are a few of the many cryptomorphic1 ways of defining matroids.

The dual matroid of M, denoted M∗, is the matroid on ground set E whose bases are complements

of bases of M.

Later on, we will be concerned with the inseparable flats of M. The set A⊂ E is called separable if

there are disjoint subsets R and S such that A = R∪S and rk(A) = rk(R)+ rk(S). The pair (S,T ) is

referred to a separation. Otherwise, A is called inseparable. Of particular interest for my purposes

are certain inseparable flats that are referred to as flacets, following the terminology [8]. A flat

∅( A( E is called a flacet if A is inseparable, and Ac is inseparable in M∗.

1.2 Simplicial Complexes

Simplicial complexes are interesting examples of highly combinatorial topological spaces. Sin-

gular homology of topological spaces is often very difficult to compute directly. However, with

the tools of simplicial homology, the computations can be accomplished with fairly simple linear

algebra [10]. Simplicial complexes also enjoy a deep and beautiful connection with commutative

algebra via the Stanley-Reisner correspondence. A wealth of information can be gathered about a

Stanley-Reisner ring by studying the combinatorial and topological properties of its corresponding

simplicial complex, and vice versa [25].

Definition 1.7. A collection ∆ of finite subsets of a set V is an abstract simplicial complex if for

all X ∈ ∆ and Y ⊆ X , Y ∈ ∆.

We will often conflate the notion of an abstract simplicial complex with its geometric realization.

The geometric realization is comprised of points, line segments, triangles, tetrahedra, etc... corre-

1Two systems of axioms are cryptomorphic if they are equivalent, but not obviously so. The term was coined by
Birkhoff, and popularized by Rota in the context of matroid theory.
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sponding to singletons, doubletons, triples, quadruples, etc... in ∆. For this reason, the elements of

∆ are called faces, with singletons and doubletons referred to as vertices and edges, respectively.

The faces of ∆ that are maximal with respect to inclusion are called facets. A complex is deter-

mined by its facets and therefore we will write 〈F1, . . . ,Fs〉 to be the simplicial complex whose

facets are F1, . . . ,Fs. A simplicial complex is pure if all facets have the same cardinality.

For F ∈ ∆, the dimension of F is dim(F) = |F |− 1. This definition of dimension aligns with the

dimension of faces in the geometric realization. For example, the dimension of a tripleton (which

corresponds to a triangle in the geometric realization) is two. The dimension of ∆ is

dim(∆) = max{dim(F) | F ∈ ∆}.

The f-vector of ∆ is the vector whose ith entry is the number of faces of ∆ of dimension i.

Example 1.8. One-dimensional simplicial complexes are precisely simple graphs. Consider the

graph G from Example 1.6. As a simplicial complex, G= {∅,a,b,c,d,ab,ac,bc,cd}= 〈ab,ac,bc,cd〉.

a

b
c

d

The facets of a graph are the edges and the isolated vertices. Since G has no isolated vertices, the

facets of G are the four edges. Therefore G is pure.

5



1.3 Shifted Complexes

We will be concerned with a class of simplicial complexes whose structure depends highly on the

ordering of the vertex set.

Definition 1.9. Let n ∈ N and let
([n]

k

)
denote the subsets [n] of size k. Define the shifted ordering

� on
([n]

k

)
by S = {s1 < · · ·< sk} � T = {t1 < · · ·< tk} if si ≤ ti for all i ∈ [k].

Definition 1.10. A simplicial complex ∆ with vertices [n] is said to be shifted if its facets form an

order ideal of 2[n] under �.

This definition can be extended to non-pure complexes as well by suitably modifying �. For

example, the complex with 〈12,3〉 is shifted. However, for our purposes, we will only be dealing

with pure shifted complexes. This is because independence complexes of matroids are necessarily

pure.

Shifted complexes are interesting objects that show up in a variety of contexts. In [12], Kalai

defined the notion of algebraic shifting which takes a simplicial complex ∆ and associates to it

a shifted complex, S(∆). S(∆) shares many combinatorial and topological properties with the

original complex such as Betti numbers and f-vector. The advantage of making this associa-

tion is that S(∆) is topologically and algebraicly simpler in some sense. For instance, S(∆) is a

wedge of spheres and non-pure shellable in the sense of [4]. Shifted complexes and matroid com-

plexes share the property of being Laplacian integral [6], [17]. This means that their Laplacians

have integer eigenvalues, which is an uncommon property. In the case of one-dimensional com-

plexes, i.e., graphs, being shifted is equivalent to a number of properties such as threshold and

chordal. In higher dimensions, threshold implies shifted, but they are not equivalent. For example,

〈〈178,239,456〉〉 is not threshold [14].

Let 〈〈T1, . . . ,Ts〉〉 denote the shifted complex whose maximal facets with respect to the shifted or-

dering � are T1, . . . ,Ts. A shifted complex is a matroid if and only if it has a unique facet maximal

with respect to the shifted ordering [16]. The ordering�∗ is defined by S�∗ T if and only if T � S.
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Let 〈〈T1, . . . ,Ts〉〉∗ denote the shifted complex whose maximal facets with respect to the ordering�∗

are T1, . . . ,Ts. The complex 〈〈T1, . . . ,Ts〉〉∗ can be thought of as a shifted complex under the reverse

ordering on [n].

Example 1.11. 〈〈35〉〉 is the matroid complex with facets/bases

35,25,15,34,24,14,24,23,13,12.

〈〈35〉〉∗ is the matroid complex with facets/bases

35,45.

Proposition 1.12. Let M = ([n],〈〈a1 . . .ar〉〉) be a shifted matroid. Then M∗ = ([n],〈〈b1 . . .bn−r〉〉∗)

with {b1, . . . ,bn−r}= [n]\{a1, . . . ,ar}.

Proof. The bases of M∗ are complements of bases of M. It is clear that for all the complements

of bases of M, we have that B = {b1, . . . ,bn−r} is the least under �. Therefore under �∗, B is the

largest complement of a basis of M.

1.4 Polytopes

Definition 1.13. A convex polytope, P, is the convex hull of finitely many points. Alternatively, a

polytope can be described as the bounded intersection of finitely many closed half-spaces.

Figure 1.1 shows a polytope in R3. Given a linear functional ϕ on Rn, let

F = {x ∈ P | ϕ(x)≥ ϕ(y) for all y ∈ P}.

Any set F of this form is called a (closed) face of P and we will say that ϕ is "maximized on F".

The sets obtained in such a fashion are called the faces of P. The dimension of F , dimF , is defined

7



Figure 1.1: A polytope in R3

to be the dimension of the affine hull of F . The zero-dimensional faces of P are called vertices.

Note that P is itself a face of P (take ϕ = 0).

We will now restrict our focus to integral polytopes, that is, polytopes whose vertices lie in Zn.

The tth dilate of P is

tP = {tx | x ∈ P}.

Definition 1.14. Given an integral convex polytope P, define the lattice point enumerator as

i(P, t) = |tP∩Zn|.

Example 1.15. Let P = [0,1]n be the 0/1 cube in Rn. Then tP = [0, t]n and i(P, t) = (t +1)n.

For integral convex polytopes, i(P, t) is a polynomial [7]. Thus it is often referred to as the Ehrhart

Polynomial of P.

A well known fact about Ehrhart polynomials is Ehrhart reciprocity.

8



Theorem 1.16 (Ehrhart Reciprocity). [3] Suppose P is a convex integral polytope. Then

i(P,−t) = (−1)dim(P)i(P◦, t)

where P◦ is the relative interior of the polytope P.

Example 1.17. Let P = [0,1]n be the 0/1 cube in Rn. Then i(P,−t) = (1− t)n = (−1)n(t− 1)n.

When n = 2, we can see that for t = 1,2,3 we get |i(P,−t)|= 0,1,4 = |i(P◦, t)| respectively.

Definition 1.18. The Ehrhart Series of P, EhrP(x), is the generating function for the lattice point

enumerator of P. That is,

EhrP(x) = ∑
k=0

i(P,k)xk.

The Ehrhart Series of integral convex polytopes bear a striking resemblance to the Hilbert series

of Stanley-Reisner rings/ Simplicial Complexes. EhrP(x) can be expressed as a rational function,

h∗0 +h∗1x+ · · ·+h∗dxd

(1− x)d+1

where d = dim(P). The vector h∗(P) = (h∗0,h
∗
1, . . . ,h

∗
d) is called the h∗ vector of P (similar to the

h-vector of a simplicial complex).

Example 1.19. Recall that for the 0/1 cube in Rn, i(P, t) = (t +1)n. Then

EhrP(x) =
∞

∑
k=0

(k+1)nxk =
1
x

∞

∑
j=1

jnx j =

n−1
∑

m=0
A(n,m)xm+1

x(1− x)n+1 =

n−1
∑

m=0
A(n,m)xm

(1− x)n+1 .

Here A(n,m) are the Eulerian Numbers [26] which count the elements of the symmetric group Sn

with m ascents.

For the 0/1 cube in R4, EhrP(x) =
x3 +11x2 +11x+1

(1− x)5
.

We will present some facts about the h∗ vector of an integral convex polytope in the following

9



theorem. The interested reader can consult [11] for more details.

Theorem 1.20. [11] Suppose P⊆ Rn is an integral convex polytope of dimension d. Then

1. h∗0 = 1, h∗1 = i(P,1)− (d +1)

2. Suppose h∗d− j = 0 for j = 0, . . . ,k. Then i(P,− j) = 0 for j = 0, . . .k, and h∗d−(k+1) =

i(P,−(k+1)).

3. (Stanley) h∗i ≥ 0.

4. h∗0+···+h∗d
n! = vol(P).

10



Chapter 2

Independence Polytopes of Matroids

Let [n]. For A⊆ E, let χA = ∑
i∈A

ei where ei is the ith standard basis vector in Rn.

Definition 2.1. Let M = (E,I ) be a matroid. The Matroid Independence Polytope of M is defined

as

QM = conv(χI | I ∈I ).

The main results of this section are characterizations of the 1−skeleton 2.9 and 2−skeleton 2.12

of QM. My study of the independence polytope was inspired by the study of matroid base poly-

topes. Therefore, before continuing with the proofs of the main results, we will enter into a brief

discussion of the base polytope.

Definition 2.2. Let M = (E = [n],I ) be a matroid. The Matroid Base Polytope of M is defined as

PM = conv(χB | where B is a basis of M).

Matroid base polytopes are very well-studied objects with beautiful mathematics surrounding

them. For example, base polytopes are generalized permutohedra in the sense of [23] and [21].

There are many results describing ways to decompose base polytopes into gluings of smaller base

polytopes of associated matroids [5]. Additionally, every face of a base polytope is again a base

polytope. Many of the facets of matroid base polytopes are known to be indexed by flacets.

Definition 2.3. A flat ∅( A( E is a flacet if A is inseparable and Ac is inseparable in M∗.

With this definition in hand, we present the following theorem:

11



Theorem 2.4. [8] The following system of inequalities defines PM:

1. x1 + · · ·+ xn = rk(M).

2. xe ≥ 0 for all e ∈ E.

3. ∑e∈F xe ≤ rk(F) where F is a flacet of M.

It should be noted that the above system of inequalities is not minimal, in general. Often times

some of the inequalities of the form xe ≥ 0 are redundant.

I like to think of QM as the "shadow" of the base polytope. QM is everything below (as in on the

side of the origin) the base polytope and within the 0/1 cube.

(1,1,0)

(1,0,1)

(0,1,1)

PM (front triangle) and QM for M =U(2,3).

Much less is known about matroid independence polytopes than base polytopes. In fact, many of

the useful properties of base polytopes do not hold for independence polytopes. For instance, not

every face of an independence polytope is an independence polytope. Also, independence poly-

topes are not generalized permutohedra. However, using Theorem 2.9 it can be shown that through

a unimodular transformation, the independence polytope and be lifted to become a generalized

permutohedra 2.10. This could perhaps provide a new approach to studying independence poly-

topes. On the other hand, a description of the facets of independence polytopes exists and is very

similar to the result for base polytopes. In fact, this description is better than 2.4 in that it provides

a minimal system of inequalities describing QM.

Theorem 2.5 (Theorem 40.5). [24] If M is loopless, the following is a minimal system of inequal-

ities for QM:
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1. xe ≥ 0 for all e ∈ E.

2. ∑e∈F xe ≤ rk(F) for each non-empty inseparable flat, F, of M.

It is immediate from this theorem that independence polytopes are geometrically shifted: that is,

for any point in QM decreasing a coordinate without making it negative does not leave the polytope.

For a general matroid, understanding its lattice of flats is a daunting task. In later sections, we will

tackle the more tractable problem of understanding the inseparable flats of shifted matroids.

2.1 The 1-Skeleton of QM

The rest of this section will be dedicated to giving a complete characterization of the 1-skeleton

and 2-skeleton of QM.

Lemma 2.6. If A⊆ B∈I , then F := conv({χC
∣∣A⊆C⊆ B}) is a cubical face of QM of dimension

|B|− |A|. In particular, if A ⊆ B ∈I , then conv(χA,χB) is an edge if and only if B = A∪{e} for

some e ∈ E \A.

Proof. The linear functional T (v) = (χA− χBc) · v is maximized on F , so F is a face of QM. It is

clear that F is a cube of dimension |B|− |A|.

Lemma 2.7. Let A,B ∈I with A* B and B* A. If conv(χA,χB) is an edge of QM then |A|= |B|

and A = B.

Proof. Assume that conv(χA,χB) is an edge of QM. Suppose, for the sake of contradiction that

|A| < |B|. Then there exists e ∈ B \A such that A∪{e} ∈ I . Then χA,χB,χA∪{e},χB\{e} are all

vertices of QM. Furthermore, their convex hull is a parallelogram.

To see this, note that A \ (B \ {e}) = A \ B = (A ∪ {e}) \ B. Therefore conv(χA,χB\{e}) and

conv(χA∪{e},χB) are parallel and of equal length. Similarly for conv(χA,χA∪{e}) and conv(χB\{e},χB).
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This contradicts the fact that conv(χA,χB) is an edge of QM, since conv(χA,χB) is interior to the

parallelogram. Therefore |A|= |B|.

Now suppose A 6= B. If B ⊆ A, then B ⊆ A = A. But rk(A) = |A| = |B| = rkB, so B ⊆ A implies

B = A. This is a contradiction, so assume that B is not containted in A. Then there exists e∈ B such

that e /∈ A. Since e /∈ A, it must be that A∪{e} ∈ I . So χA,χB,χA∪{e},χB\{e} are all vertices of

QM. As before, the convex hull of these points is a parallelogram containing the edge conv(χA,χB)

in its interior. This is a contradiction, therefore A = B.

Lemma 2.8. For any F ⊆ E, PM|F is a face of QM.

Proof. The linear functional T (v) = (χF −χFc) · v will be maximized precisely on

conv{χB | B is a basis of M|F}.

Theorem 2.9. Let A,B ∈I with |A| ≤ |B|. Then conv(χA,χB) is an edge of QM if and only if one

of the following holds:

1. B = A∪{e} for some e ∈ B\A.

2. A = B and B = (A\{ f})∪{e} for some f ∈ A\B and e ∈ B\A.

Proof. (⇒) Assume conv(χA,χB) is an edge of QM. Suppose that A⊆ B. By 2.6, B = A∪{e} for

some e ∈ B\A. Now, suppose that A* B. By Lemma 2.7, |A|= |B| and A = B. By considering A

and B as bases in the restricted matroid M|A, we can use basis exchange to see that B = (A\{ f})∪

{e} for some f ∈ A\B and e ∈ B\A.

(⇐) If B = A∪{e} for some e ∈ B\A, then again by Lemma 2.6, conv(χA,χB) is an edge of QM.

Now, assume that A = B and B = (A\{ f})∪{e} for some f ∈ A\B and e ∈ B\A. By Lemma 2.8,

PM|A is a face of QM. Since edges of PM|A are given by basis exchange [8], conv(χA,χB) is an edge

of PM|A .
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Note that the second type of edge in the above theorem comes from basis exchange within flats.

That is, these edges correspond to a basis exchange in the restriction M|F where F is a flat of M.

Generalized permutohedra are characterized by every edge lying in a direction ei− e j. Matroid

base polytopes have this property as edges of PM correspond to basis exchange [8]. Viewing base

polytopes as generalized permutohedra provides useful tools for their study. While QM is not a

generalized permutohedron, it is not far off.

Proposition 2.10. Define Q̃M := conv{((rank(M)− |I|),χI) ∈ R×R|E|
∣∣I ∈ I }. Then Q̃M is a

generalized permutohedron.

Q̃M is the result of embedding QM into R|E|+1 by lifting each vertex to height equal to its co-rank.

QM contains an edge from χA to χA∪{x} for all A,A∪{x} ∈ I . Lifting rectifies the direction for

such edges. Lifting does not affect the edge direction of the edges of type 2 in Theorem 2.9.

2.2 The 2-Skeleton of QM

Theorem 2.11. Label each edge of QM with an a or b depending on whether the edge corre-

sponds to adding an element of E or corresponds to basis exchange within a flat of M. The two-

dimensional faces of QM must be of one of the following forms:

1.
b

b

b

b
2.

a

a

a

a
3.

b

a

a

b

4. a

b

a 5. b

b

b

Proof. The only two-dimensional 0/1 polytopes are triangles and quadrilaterals. Let F be a two-

dimensional face of PM. Since the faces of a 0/1 polytope are again 0/1 polytopes, we must have
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that F is a triangle or quadrilateral. Note that F must contain an even number of ’a’ edges. For if

not, starting at a vertex v ∈ F and walking around the boundary of F would result in a disparity in

the value of χv ·1. Therefore the only possible missing figure in the list above is

a

a

b

b

χA∪e

χA∪ f

χAχB

We will demonstrate that no 2-face has this form in due course. Suppose F has the above form.

Note that B differs from both A∪ e and A∪ f by a basis exchange. That is,

B = (A∪ e)\g1∪h1

= (A∪ f )\g2∪h2

If e = g1, then B = A∪h1. Therefore QM has an edge from χA to χB, contradicting the fact that F

is a face. Thus e 6= g1 (and similarly, f 6= g2). Now

B = (A\g1)∪{e,h1}

= (A\g2)∪{ f ,h2}

So e, f ∈ B and hence h1 = f , and h2 = e. Therefore g1 = g2 and B = (A\g)∪{e, f}. This is a

contradiction, for the following reason. χA,χA∪e, and χA∪ f all live in the hyperplane χ{g} = 1,

therefore so should any two-dimensional face containing them. However, χB does not lie in this

hyperplane.

Observation: The quadrilaterals of Type 1 and 2 are squares and the quadrilaterals of type 3 are

rectangles.
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Theorem 2.11 only says that two-dimensional faces must be of one of five forms (Fig. 2.11), but

tt does not guarantee that every polygon of one of these forms is a two-dimensional face. We will

investigate this now.

Theorem 2.12. The following statements characterize the 2-skeleton of QM:

1. Every 2−dimensional face of QM is of type 1,2,3,4, or 5 (Fig. 2.11)

2. Let F a parallelogram of type 1 with vertices χA,χB,χC,χD where A = Y ∪ {a,c}, B =

Y ∪{b,c}, C = Y ∪{b,d}, and D = Y ∪{a,d}.

b

b

b

b

χY∪{b,d}

χY∪{a,c}

χY∪{a,d}χY∪{b,c} F

Then F is a face of QM iff M|Y∪{a,b,c,d}/Y �U(2,4).

3. Every polygon of type 2,3,4, or 5 is a face of QM.

Proof. Assertion 1: This is the content of Theorem 2.11.

Assertion 2: Parallelograms of type 1 sometimes are not faces as is evidenced in QU(2,4). The

convex hull of the characteristic vectors of any four bases of this matroid lies in the interior of the

octahedron that is the base polytope of U(2,4). In general, the existence of a U(2,4) minor is the

only obstruction to a parallelogram of type 1 being a face of QM.

Let V = Y ∪{a,b,c,d} and ε be a sufficiently small positive number. If Y ∪{a,b} is not indepen-

dent, then the linear functional ϕ obtained by taking the dot product with χV − χV c + εχ{a,b} is

maximized on F and so F is a face. To see this, note that all subsets of V of cardinality greater

than |Y |+2 are dependent since A,B,C,D are all bases of the same flat. Therefore the vertices of

QM on which ϕ might be maximized must be among the 6 subsets of V that contain Y and are of

cardinality exactly |Y |+2. We can compute that ϕ(χA) = ϕ(χB) = ϕ(χC) = ϕ(χD) = |Y |+2+ε ,
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while ϕ(χY∪{c,d}) = |Y |+2.

Similarly if Y ∪{c,d} is not independent, then the linear functional ϕ obtained by taking the dot

product with χV −χV c + εχ{c,d} is maximized on F and so F is a face.

If however, Y ∪{a,b} and U ∪{c,d} are both independent, then M|V/Y ∼=U(2,4) and

conv(χA,χB,χC,χD,χY∪{a,b},χY∪{c,d}) is an octahedral face of QM with F in its interior.

Assertion 3:

Type 2: Lemma 2.6 guarantees that every square of type 2 is a face of QM.

Type 3: Let F be a parallelogram of type 3 in Theorem 2.11. Then we have the following picture:

b

a

a

b

χU\{ f}∪{e,g}

χU

χU∪{e}χU\{ f}∪{g} F

Define the linear functional ϕ(v) = (χU∪{g}− χ(U∪{e, f ,g})c) · v. Since U and U\{ f} ∪ {g} are

bases of the same flat, and this flat contains U ∪{g}, it follows that U ∪{g} must be dependent.

So χU∪{g} is not a vertex of QM. Therefore the largest value ϕ could take at a vertex of QM is |U |.

Note that ϕ(χU) = ϕ(χU∪{e}) = ϕ(U\{ f}∪{g}) = ϕ(U\{ f}∪{e,g}) = |U |. Also for any other

subset V ⊆U ∪{e, f ,g}, ϕ(χV )< |U |. Therefore ϕ is maximized on F .

Type 4: Let F be a triangle of type 4 in Theorem 2.11. Then we have the following picture

χU

χU∪{e} χU∪{ f}

a

b

a

Define the linear functional ϕ(v) = (χU −χ(U∪{e, f})c) · v. Note that ϕ(U) = ϕ(U ∪{e}) = ϕ(U ∪

{ f}) = ϕ(U ∪{e, f}) = |U |. However, U ∪{e} and U ∪{ f} are bases of the same flat, and this
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flat contains U ∪{e, f}. Therefore, U ∪{e, f} is not independent. Hence ϕ is maximized on F .

Type 5: Let F be a triangle of type 5 in Theorem 2.11. Then we have the following picture

χU∪{a,b}

χU∪{a,c} χU∪{b,c}

b

b

b

Define the linear functional ϕ(v) = (χU∪{a,b,c}−χ(U∪{a,b,c})c) · v.

Note that ϕ(χU∪{a,b,c}) = |U |+3 and ϕ(χU∪{a,b}) = ϕ(χU∪{a,c}) = ϕ(χU∪{b,c}) = |U |+2.

However, U ∪{a,b},U ∪{a,c},U ∪{b,c} are bases of the same flat, and that flat contains U ∪

{a,b,c}. So U ∪{a,b,c} must be dependent and χU∪{a,b,c} is not a vertex of QM. Therefore ϕ is

maximized on F .

At this point, we have fully characterized the 1-skeleton and 2-skeleton of independence polytopes.

One could use the theorems in this section to create an (admittedly inefficient) algorithm for com-

puting the 2-skeleton of QM. After computing all edges of QM via the criterion in Theorem 2.9,

one then searches for all triangles and parallelograms of types presented in Theorem 2.11. For

parallelograms of type 2, one must additionally check for the existence of the specified U(2,4)

minor.

One could pursue a characterization of the 3-skeleton of independence polytopes. Up to combi-

natorial equivalence, there are 8 three-dimensional 0/1 polytopes [28]. While possible, such an

effort would involve extensive case analysis.
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Chapter 3

Shifted Matroids and their Independence Polytopes

This chapter is dedicated to the study of shifted matroids as well as their Independence Polytopes.

Here we characterize circuits (Theorem 3.6), characterize inseparable flats (Corollary 3.10), and

characterize flacets (Theorem 3.11). Together, these results allow us to state a concise hyperplane

description of the base and independence polytopes of shifted matroids (Theorem 3.12). After that

we enter into a brief discussion of shifted matroids and their connection to positroids.

3.1 Shifted Matroids

Shifted matroids were characterized in [16] as shifted complexes with a single facet that is maximal

with respect to the shifted ordering �.

Observation: For the shifted matroid M = ([n],〈〈a1 . . .ar〉〉),

1. M is loopless if and only if ar = n

2. M is coloopless if and only if a1 6= 1.

This is because if an 6= n, then n is not contained in any basis and is therefore a loop. Similarly if

a1 = 1, the 1 is contained in every basis and is therefore a coloop.

In general, M∗ is loopless if and only if M is coloopless. Similarly M∗ is coloopless if and only

if M is loopless. This can be seen very explicitly for shifted matroids by combining the above

observation with Proposition 1.12.

20



To represent shifted matroids, we will choose "sufficiently random" vectors of a certain form. The

notion of sufficiently random can be made precise as follows.

Definition 3.1. [1] Let x1, . . . ,xk ∈ R. For S ⊆ [k], define xS := ∏
i∈S

xi. Consider the 22k
possible

sums of xS’s. If these sums are all distinct, then the collection x1, . . . ,xk is called generic.

The following theorem states that shifted matroids are generically representable.

Theorem 3.2. Theorem 5.2 [1] Let a1 < a2 < · · · < ar be arbitrary positive integers. Let X =

(xi j)1≤i≤r,1≤ j≤ar where {xi j | 1≤ i≤ r and 1≤ j≤ ai} is generic and the rest of the xi j’s are equal

to 0. Then the vector matroid M(X) is isomorphic to the shifted matroid 〈〈a1 . . .ar〉〉.

We will use ∗’s to denote generic entries in a matrix.

Example 3.3. U(r,n) is the shifted matroid M = ([n],〈〈(n− r+ 1)(n− r+ 2) . . .n〉〉). Below is a

generic representation of U(3,5) 
∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗


Example 3.4. Let M be the shifted matroid 〈〈245〉〉. The following generic matrix represents M.

The ith column corresponds to the element i of the ground set of M.


∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗



The bases of M are: 123,124,134,234,125,135,235,145,245

The flats of M are: ∅,1,2,3,4,5,12,13,14,15,23,24,25,345,12345.

The circuits of M are: 1234,345,1245,1235.

The bases of M∗ are: 45,35,25,15,34,24,14,23,13.
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3.2 Structure of Shifted Matroids

Definition 3.5. Let M be a shifted matroid. Consider a generic matrix representing M (as in

Theorem 3.2). The height of k, denoted ht(k), with respect to M is the number of stars in the kth

column of the matrix. The kth block, Bk, is the collection of elements of height k. Finally, the kth

terminal segment, Tk, is the union of B1, . . . ,Bk.

Theorem 3.6. Let M be a shifted matroid with independence complex 〈〈a1 . . .ar〉〉. Let C be a set of

cardinality k+1. Then, C is a circuit of M if and only if |C∩Ti| ≤ i for all i < k and |C∩Ti|= k+1

for all i≥ k.

Proof. Let C be a circuit of M of cardinality k + 1 and x be the smallest element of C. Then

C̃ =C \{x} is a rank k independent set. Since C̃ is an independent set rank k, adding any element

of height greater than k to C̃ would result in an independent set. Therefore ht(x)≤ k. However, x is

the smallest element of C and so C⊆ Tk. Note that |C̃∩Ti| ≤ i for all i ∈ [k] (otherwise there would

be a dependence). Since C̃⊆ Tk, we get that |C̃∩Tk|= k and since x is smaller than all elements of

C̃, we get that ht(x) = k. Consequently, |C̃∩Ti| ≤ i for all i < k and |C̃∩Ti|= k+1 for all i≥ k.

Now, assume |C∩ Ti| ≤ i for all i < k and |C∩ Ti| = k+ 1 for all i ≥ k. Since C contains k+ 1

elements of height at most k, C is dependent. Let x be the smallest element of C and C̃ =C \{x}.

Then |C̃∩Ti| ≤ i for all i ∈ [k]. So the restricted matroid M|C̃ is represented by a lower-triangular

generic matrix, which is non-singular. Therefore C̃ is independent. Note that C \ {y} � C̃ for all

y 6= x. Therefore C \{y} is independent for any y 6= x. Thus C is a circuit.

Theorem 3.7. Let F be an inseparable flat with |F | ≥ 2. Let x ∈ F be of greatest height, k. Then

F = Tk and |Bk|> 1.

Proof. Note that F ⊆ Tk since the elements of F have height at most k.

Since F is inseparable, M|F is coloopless. Therefore x is contained in some circuit, C, of M|F .

Note that C is also a circuit of M. Suppose |C| = l + 1. By Theorem 3.6, |C∩Tl−1| ≤ l− 1 and
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|C∩Tl| = l + 1. So |C∩Bl| ≥ 2 and C∩Bl+1 = ∅ since x is of greatest height, l = k. Therefore

|Bk| ≥ |C∩Bk| > 1. Note that C is a circuit of cardinality k+ 1 so rk(C) = k. Since C ⊂ Tk and

rk(C) = k = rk(Tk), C contains Tk. Since F is a flat and C ⊆ F , it follows that Tk ⊆C ⊆ F .

So F = Tk and |Bk|> 1.

Lemma 3.8. Let r > 1 and M = ([n],〈〈a1 . . .ar〉〉) be a loopless (ar = n) shifted matroid. Then E is

separable if and only if |Br|= 1.

Proof. If x∈ E is a coloop, then E = {x}∪E\{x} is a separation. Note that |Br|= 1 means exactly

that 1 is a coloop of M.

Now assume E = R∪ S is a separation of E. Let c = rk(R) and d = rk(S). I.e. c+ d = r. If

R intersected more than c blocks, then rk(R) would exceed c. Therefore R intersects at most c

blocks. Similarly S intersects at most d blocks. But there are r = c+ d blocks in total, so R

must intersect exactly c blocks and S must intersect exactly d blocks. Thus R = Bi1 ∪ ·· ·∪Bic and

S = B j1 ∪ ·· · ∪B jd . So without loss of generality, Br ⊆ R. Choosing one element from each Bil

results in an independent set, I, of cardinality c. If |Br| > 1, then one could augment this set with

a generic vector of height r. Since c < r, the resulting set would be a rank c+ 1 independent set

contained in R. This contradicts the fact that rk(R) = c. Therefore |Br|= 1.

Theorem 3.9. Let M = ([n],〈〈a1 . . .ar〉〉) be a loopless and coloopless shifted matroid and k ∈ [r].

1. Tk is a flat of M.

2. T1 is inseparable.

3. If k > 1: Tk is inseparable if and only if |Bk|> 1.

Proof. 1. The first fact is easy to see from the generic matrix representation of M (see Theorem

3.2). Tk is the set of elements of height at most k. Any element outside of Tk has height at

least k+1 and so by genericity will increase the rank when added to Tk.
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2. Since M is loopless and rk(T1) = 1, we have that rk(R) = 1 for any non-empty subset R⊆ T1.

Therefore rk(R)+ rk(S) = 2 > rk(T1) for any non-empty R,S partitioning T1.

3. Assume k > 1. Consider M′ = M|Tk . M′ is a rank k shifted matroid with independence

complex 〈〈ar−k+1 . . .ar〉〉 on ground set Tk. The kth block of this shifted matroid is Bk. By

Lemma 3.8, M′ is inseparable if and only if |Bk|> 1. But M′ is inseparable if and only if Tk

is inseparable in M.

Corollary 3.10. Let M =([n],〈〈a1 . . .ar〉〉) be a loopless and coloopless shifted matroid. ∅ 6=F ⊆E

is an inseparable flat of M if and only if one of the following hold:

1. F = {x} where x /∈ T1

2. F = T1

3. F = Tk for some k with |Bk|> 1.

Proof. ( =⇒ ) Assume F is an inseparable flat.

If |F |> 1, then by Theorem 3.7, for some k, we have F = Tk with |Bk|> 1.

If |F | = 1, then F = {x} for some x ∈ E. If x /∈ T1, then we are done. Suppose x ∈ T1. Since

rk(T1) = 1 = rk(F), we have that F spans T1. But F is a flat, so F must contain T1. Therefore

F = T1.

(⇐= ) If F = T1 or F = Tk with |Bk|> 1, then by Theorem 3.9, F is an inseparable flat. If F = {x}

for x /∈ T1, then clearly F is inseparable. Since x /∈ T1, the height of x is at least 2. Therefore

rk(F ∪{y}) = 2 for all y 6= x. So F is a flat.

Recall that a flat F is a flacet if ∅ 6= F 6= E, F is inseparable, and Fc is inseparable in M∗. Using

the previous results leads to a characterization of the flacets of a shifted matroid.

Theorem 3.11. Let M = ([n],〈〈a1 . . .ar〉〉) be a loopless and coloopless shifted matroid.
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1. Let F 6= E be an inseparable flat with |F | ≥ 2. Then F is a flacet.

2. (a) If ar−1 = n−1, then [n]\{x} is inseparable in M∗ for all x ∈ [n].

(b) If ar−1 6= n−1, then [n]\{x} is inseparable in M∗ if and only if x 6= n−1,n.

Consequently, any singleton flat is a flacet.

Proof. Note that M∗= 〈〈b1 . . .bn−r〉〉∗ where {b1, . . . ,bn−r}= [n]\{a1, . . . ,ar}. Since M is loopless

and coloopless, so is M∗. For ease of notation, define a0 := 0 and b(n−r)+1 := n+1.

Statement 1: Let F 6= E be an inseparable flat with |F | ≥ 2. By Theorem 3.7, F = Tk where |Bk|>

1. Since F 6= E, we have k < r. Because |Bk| > 1, it must be that ak > ak−1 + 1. Consequently,

ak−1 + 1 = bi for some i ∈ [n− r]. The blocks of M are of the form B j = {a j−1 + 1, . . . ,a j} for

j = 1, . . . ,r. The blocks of M∗ are of the form B∗(n−r)− j+1 = {b j, . . . ,b j+1−1} for j = 1, . . . ,n− r.

So

Tk =
n−r⋃
j=i

B∗(n−r)− j+1 and T c
k =

i−1⋃
j=1

B∗(n−r)− j+1 =
n−r⋃

j=(n−r)−(i−1)+1

B∗j .

So T c
k is a terminal segment in M∗. By Theorem 3.9, T c

k is inseparable in M∗ if |B∗(n−r)−(i−1)+1|> 1.

This is indeed the case since B∗(n−r)−(i−1)+1 = {bi−1, . . . ,bi−1} and bi−1 = ak−1 6= bi−1.

Statement 2: Let x ∈ [n]. Consider B∗1 = {bn−r, . . . ,n}, the first block of M∗. The first block of

M∗|[n]\{x} is then B∗1 \{x}. Therefore [n]\{x} is inseparable in the dual if and only if |B∗1 \{x}|>

1. If ar−1 = n− 1, then bn−r < n− 1 and so |B∗1| ≥ 3 and so this holds for all x. Otherwise

B∗1 = {n−1,n} and so |B∗1 \{x}|> 1 if and only if x /∈ {n−1,n}.

We are now prepared to state the pièce de résistance of this section.

Theorem 3.12. Let M = ([n],〈〈a1 . . .ar〉〉) be a loopless and coloopless shifted matroid. Let Bk and

Tk be as in Definition 3.5.

The following is a system of inequalities for PM:

• x1 + · · ·+ xn = rk(M)
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• xi ≥ 0 for all i ∈ [n]

• xi ≤ 1 for all i /∈ T1

• ∑i∈T1 xi ≤ 1

• ∑i∈Tk
xi ≤ k where |Bk|> 1.

The following is a minimal system of inequalities for QM:

• xi ≥ 0 for all i ∈ [n]

• xi ≤ 1 for all i /∈ T1

• ∑i∈T1 xi ≤ 1

• ∑i∈Tk
xi ≤ k where |Bk|> 1.

Proof. Regarding PM, the first bullet point comes from 1. in Theorem 2.4, the second bullet point

comes from 2., and the final three bullet points come from 3.

Regarding QM, the first bullet point comes from 1. while the final three come from 2. in Theorem

2.5.

3.3 Shifted Matroids are Positroids

Definition 3.13. [2] Let X be an r× n matrix with real entries such that all maximal minors are

non-negative. Such a matrix is called totally non-negative and the vector matroid M(X) is called a

positroid.

Positroids were first introduced by Alexander Postnikov in [22] (though he did not use the term

positroid) where he linked them to the study of planar directed networks. Postnikov gave bijec-

tions among positroids, grassmann necklaces, and decorated permutations. We will employ the

following technical lemma to prove that shifted matroids are positroids.
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Before stating the lemma, we define the t − cyclic ordering on [n] by t <t t + 1 <t · · · <t n <t

1 <t · · · <t t−1. You may think of <t as the ordering obtained from the usual ordering on [n] by

"rotating" [n] until t is the smallest element.

Lemma 3.14. [19] Let M be a matroid of rank k on ground set [n]. Let B(M) denote the set of

bases of M. M is a positroid if and only if it satisfies the following condition:

Let W be any k− 2 element independent set of [n]. For each a,b,c,d ∈ [n] \W such that a <t

b <t<c<d for some t ∈ [n], the following relation holds. W ∪{a,c},W ∪{b,d} ∈B(M) if and

only if W ∪{a,b},W ∪{c,d} ∈B(M) or W ∪{a,d},W ∪{b,c} ∈B(M).

Theorem 3.15. Shifted matroids are positroids.

Proof. Let M be a shifted matroid of rank k on ground set [n]. Let W ⊆ [n] be an independent set

of size k−2. Suppose a,b,c,d ∈ [n]\W are such that a <t b <t c <t d for some t ∈ [n]. By Lemma

3.14 it is enough to show that

W ∪{a,c},W ∪{b,d}∈B(M) ⇐⇒ W ∪{a,b},W ∪{c,d}∈B(M) or W ∪{a,d},W ∪{b,c}∈B(M).

Notice that the conditions on both sides are invariant under cyclically shifting a,b,c,d. Therefore

WLOG assume a < b < c < d.

(⇒) If W ∪{a,c},W ∪{b,d} ∈B(M) then by applying the definition of shiftedness to W ∪{b,d}

we see that W ∪{a,d} and W ∪{b,c} are in B(M).

(⇐) Suppose W ∪{a,b},W ∪{c,d} ∈B(M). Then by applying the definition of shiftedness to

W ∪{c,d} we see that W ∪{a,c} and W ∪{b,d} are in B(M).

Suppose W ∪{a,d},W ∪{b,c} ∈B(M). Applying the shifted property to W ∪{b,c} gives that

W ∪{a,c} ∈B(M). Since M is a shifted matroid, B(M) is a principal order ideal in the poset
([n]

k

)
under � [16]. Therefore the join of W ∪{a,d} and W ∪{b,c}, W ∪{b,d}, must be in B(M).
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Initially, I had hopes of using the structure of positroids to help study shifted matroids. In [20] hy-

perplane descriptions are presented for the independence and base polytopes of positroids. These

hyperplane descriptions come from certain structures called counter-clockwise arrows on the dec-

orated permutation corresponding to the positroid in question. However, this point of view was

unhelpful in the study of the structure of shifted matroids.
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Chapter 4

Truncated Cubes

Let C(n) denote the 0/1 cube in Rn. That is, C(n) = [0,1]n = {(x1, . . . ,xn) ∈ Rn : 0≤ xi ≤ 1}.

Definition 4.1. Let r be a non-negative integer. By slicing C(n) with the hyperplane
n
∑

i=1
xi = r, we

split the cube into a lower piece

TC(r,n) = {(x1, . . . ,xn) ∈C(n) |
n

∑
i=1

xi ≤ r}.

We will call TC(r,n) a truncated cube.

Example 4.2. TC(1,n) is an n-simplex. TC(n,n) is the 0/1 cube in Rn.

Figure 4.1: TC(r,3) for r = 0,1,2,3

Because the vertices of QU(r,n) satisfy the required inequalities defining TC(r,n), the matroid in-

dependence polytope of U(r,n) is contained in TC(r,n). The reverse inclusion also holds and is

proven in the following theorem.

Theorem 4.3. The truncated cube TC(r,n) is the independence polytope of U(r,n).

Proof. Note that U(r,n) = 〈〈(n− r+ 1)(n− r+ 2) . . .n〉〉. By Corollary 3.10, the inseparable flats
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of U(r,n) are: ∅, [n] and {i} for each i ∈ [n]. Therefore by Theorem 3.12, a minimal system of

hyperplanes describing QU(r,n) are 0 ≤ xi ≤ 1 for each i ∈ [n] and ∑
i∈[n]

xi ≤ r. These inequalities

precisely describe TC(r,n).

Using the description of TC(r,n) established in the previous theorem, we can compute the Ehrhart

polynomial of TC(2,n) using the known formula for the Ehrhart polynomials of simplices, together

with Inclusion-Exclusion.

Proposition 4.4. The Ehrhart polynomial of TC(2,n) is
(2t+n

n

)
−n
(t+n−1

n

)
.

Proof. Let T n
k = conv(0,ke1, . . . ,ken). That is, T n

k is the kth dilate of the full dimensional standard

simplex in Rn. Let B = {(x1, . . . ,xn) ∈ T n
2 | xi > 1 for some i ∈ [n]} and B be its closure. Here is a

picture in the case of n = 3:

Figure 4.2: T 3
2 (red) with TC(2,3) sitting inside (blue).

B is the union of the three red, half-open tetrahedra.

By Theorem 4.3, TC(2,n) = T n
2 −B. Therefore tTC(2,n) = tT n

2 − tB. So

i(TC(2,n), t) = i(T n
2 , t)− i(B, t) = i(T n

1 ,2t)− i(B, t) =
(

2t +n
n

)
− i(B, t).
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Now, B is the disjoint union of n half-open regions Bi where Bi = ei +T n
1 . Note that

Bi∩TC(2,n) = {(x1, . . . ,xn) | xi = 1, ∑
j 6=i

x j ≤ 1, and 0≤ x j ≤ 1 for all j 6= i}.

By 4.3, this is affinely isomorphic to QU(1,n−1) which is a full dimensional n−1 simplex. Therefore

|t(Bi∩TC(2,n))∩Zn|=
(t+n−1

n−1

)
.
Hence

|tB∩Z|=
n

∑
i=1
|tBi∩Z|

=
n

∑
i=1

(
|tBi∩Zn|− |t(Bi∩TC(2,n))∩Z|

)
=

n

∑
i=1

((
t +n

n

)
−
(

t +n−1
n−1

))
=

n

∑
i=1

(
t +n−1

n

)
= n
(

t +n−1
n

)
.

Finally combining this with Equation 4 we see that

i(TC(2,n), t) =
(

2t +n
n

)
−n
(

t +n−1
n

)
.

The leading coefficient of the Ehrhart polynomial is the normalized volume of the polytope. The

leading coefficient of i(TC(2,n), t) is 2n−n
n! and so we obtain the following corollary.

Corollary 4.5. The volume of TC(2,n) is 2n−n
n! .

The previous argument can be made more general by viewing TC(r,n) as sitting inside a properly

scaled simplex. This provides a recursive formula for the Ehrhart polynomial of TC(r,n). While

this formula is unwieldy, it led to the development of a non-recursive formula (Theorem 4.9).
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Theorem 4.6. The Ehrhart polynomial of TC(r,n) is

(
rt +n

n

)
+

r

∑
k=1

(−1)k
(

n
k

)[(
(r− k)t +n

n

)
− i(TC(r− k,n− k), t)

]
.

Proof. Given S⊆ [n], let

BS = {(x1, . . . ,xn) ∈ T n
r | xi > 1, ∀i ∈ S} and

CS = {(x1, . . . ,xn)−χS | (x1, . . . ,xn) ∈ BS}.

Note that t(T n
r \TC(r,n)) =

⋃
/0 6=S⊂[n]

tBS. Therefore

i(T n
r \TC(r,n), t) = ∑

/0 6=S⊆[n]
|S|<r

(−1)|S|−1i(BS, t).

Let RS = BS∩TC(r,n). Then i(BS, t) = i(BS, t)− i(RS, t) = i(CS, t)− i(RS, t).

Claim: CS = T n
r−|S|.

Suppose (x1, . . . ,xn) ∈ BS. Since ∑
i∈[n]

xi ≤ r and xi ≥ 1 for i ∈ S, we have that 1 ≤ xi ≤ r−|S|+1

for i∈ S, and 0≤ x j ≤ r−|S| for j /∈ S. Now consider (y1, . . . ,yn) = (x1, . . . ,xn)−χS. By the above

observation, 0≤ yi ≤ r−|S| for all i ∈ [n] and ∑
i∈[n]

yi ≤ r−|S|. Hence,

CS = {(y1, . . . ,yn) | ∑
i∈[n]

yi ≤ r−|S|, and 0≤ yi ≤ r−|S|}= T n
r−|S|.

With this in hand, we see that

i(CS, t) =
(
(r−|S|)t +n

n

)
.

We now turn our attention to computing i(RS, t):
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RS = {(x1, . . . ,xn) ∈ TC(r,n) | xi = 1, ∀i ∈ S}

∼=aff T n−|S|
r−|S| ∩ [0,1]

n−|S|

= QU(r−|S|,n−|S|)

Where ∼=aff means affinely isomorphic.

This observation yields i(RS, t) = i(QU(r−|S|,n−|S|), t).

Finally we have that:

i(TC(r,n), t) = i(T n
r , t)− i(T n

r \TC(r,n), t)

=

(
rt +n

n

)
− ∑

/0 6=S⊆[n]
|S|<r

(−1)|S|−1i(BS, t)

=

(
rt +n

n

)
− ∑

/0 6=S⊆[n]
|S|<r

(−1)|S|−1[i(CS, t)− i(RS, t)]

=

(
rt +n

n

)
+ ∑

/0 6=S⊆[n]
|S|<r

(−1)|S|
[(

(r−|S|)t +n
n

)
− i(QU(r−|S|,n−|S|), t)

]

=

(
rt +n

n

)
+

r

∑
k=1

(−1)k
(

n
k

)[(
(r− k)t +n

n

)
− i(QU(r−k,n−k), t)

]
.

Again, we can pick off the leading coefficient of i(TC(r,n), t) which yields the following corollary.

Corollary 4.7. The volume of TC(r,n) is

r−1
∑

k=0
(−1)k(n

k

)
(r− k)n

n!
.
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The recursive nature of the formula presented in Theorem 4.6 leaves much to be desired. Using

SAGE and this recursion, the following was conjectured:

i(TC(r,n), t) =
r−1

∑
k=0

(−1)k
(

n
k

)(
(r− k)t− k+n

n

)
.

This formula does, in fact, hold. Before presenting the proof, we present a useful lemma.

Lemma 4.8. Let A,B ∈ N. Then for any m ∈ N,

m

∑
i=0

(
i−A+B−1

B−1

)
=

(
m−A+B

B

)

Proof. Note that for i < A,
(i−A+B−1

B−1

)
= 0, so the result holds if m < A. In the case of m = A, the

equality holds since
(B−1

B−1

)
= 1 =

(B
B

)
. Suppose that the equation holds for some m≥ A Then

m+1

∑
i=0

(
i−A+B−1

B−1

)
=

m

∑
i=0

(
i−A+B−1

B−1

)
+

(
m−A+B

B−1

)
=

(
m−A+B

B

)
+

(
m−A+B

B−1

)
=

(
m−A+B+1

B

)
=

(
m+1−A+B

B

)

By induction, the formula holds for all m ∈ N.

Theorem 4.9. The Ehrhart polynomial of TC(r,n) is

i(TC(r,n), t) =
r−1

∑
k=0

(−1)k
(

n
k

)(
(r− k)t− k+n

n

)
.

Proof. Integer points in the tth dilate of TC(r,n) correspond to monomials xa1
1 . . .xan

n of degree at

most tr with 0 ≤ ai ≤ t. Let [xi] f (x) denote the coefficient of xi in the formal power series f (x).

34



Then

i(TC(r,n), t) =
tr

∑
i=0

[xi](1+ x+ · · ·+ xt)n

=
tr

∑
i=0

[xi]

(
1− xt+1

1− x

)n

=
tr

∑
i=0

[xi]

(
n

∑
k=0

(−1)k
(

n
k

)
x(t+1)k

)(
∞

∑
j=0

x j
(

j+n−1
n−1

))

By setting j = i− (t +1)k,

=
tr

∑
i=0

n

∑
k=0

(−1)k
(

n
k

)(
i− tk− k+n−1

n−1

)
=

n

∑
k=0

(−1)k
(

n
k

) tr

∑
i=0

(
i− tk− k+n−1

n−1

)
By Lemma 4.8,

=
n

∑
k=0

(−1)k
(

n
k

)(
tr− tk− k+n

n

)
=

n

∑
k=0

(−1)k
(

n
k

)(
(r− k)t− k+n

n

)
.

Definition 4.10. The hypersimplex HS(r,n) is defined as

HS(r,n) = {(x1, . . . ,xn) ∈ Rn |
n

∑
i=1

xi = r and 0≤ xi ≤ 1 ∀i ∈ [n]}.

HS(r,n) is the base polytope of U(r,n). A formula for the Ehrhart polynomial was previously

known and bears a striking similarity to the Ehrhart polynomial of TC(r,n).

Theorem 4.11. [13] The Ehrhart polynomial of the hypersimplex HS(r,n) is

r−1

∑
k=0

(−1)k
(

n
k

)(
(r− k)t− k+n−1

n−1

)
.
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The following result gives a curious connection between the normalized volumes of the two poly-

topes.

Theorem 4.12. Let V (r,n) denote the normalized volume of TC(r,n). Then ∂V
∂ r is the normalized

volume of HS(r,n).

Proof. The normalized volume of a polytope is the leading coefficient of its Ehrhart polynomial.

Thus,

V (r,n) =
1
n!

r−1

∑
k=0

(−1)k
(

n
k

)
(r− k)n.

Then,

∂V
∂ r

=
n
n!

r−1

∑
k=0

(−1)k
(

n
k

)
(r− k)n−1

=
1

(n−1)!

r−1

∑
k=0

(−1)k
(

n
k

)
(r− k)n−1.

The above is the leading coefficient of i(HS(r,n), t).

This relationship is somewhat intuitive because hypersimplices are the "outer-most" face of trun-

cated cubes so slightly perturbing r should change the volume roughly in proportion with the

volume of the hypersimplex.

We will now give a formula for the h∗ polynomial of TC(r,n).

Definition 4.13. The hyperslab S(r,n) is defined as

S(r,n) = {(x1, . . . ,xn) ∈ [0,1]n | r−1≤
n

∑
i=1

xi ≤ r}

The half-open hyperslab S′(r,n) is defined as
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S′(r,n) = {(x1, . . . ,xn) ∈ [0,1]n | r−1 <
n

∑
i=1

xi ≤ r}.

Theorem 4.14. [18] The h∗-polynomial of S′(r,n) is

∑
w∈Sn

exc(w)=r−1

tdes(w).

Theorem 4.15. The h∗-polynomial of TC(r,n) is

∑
w∈Sn

exc(w)≤r−1

tdes(w).

Proof. Note that TC(r,n) is the disjoint union of half-open hyperslabs, TC(r,n) =
r⋃

k=1
S′(k,n).

Therefore the h∗-polynomial of TC(r,n) is the sum of the h∗-polynomials of the S′(k,n). These are

computed in [18] as

∑
w∈Sn

exc(w)=k−1

tdes(w).

Note that this theorem implies that the degree of the h∗ polynomial of TC(r,n) is n−1 for r > bn
2c

since des([n n−1 . . . 2 1]) = n−1 and exc([n n−1 . . . 2 1]) = bn
2c.

4.1 Roots of the Ehrhart Polynomials of Truncated Cubes

We will now turn our attention to studying the roots of the Ehrhart polynomials of truncated cubes.

Later in this section we will present a conjecture about the location of roots of the Ehrhart poly-

nomials of truncated cubes. Together with the following elementary lemma, the conjecture would

imply that the coefficients of these polynomials are positive.
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Lemma 4.16. Let f (x) be a polynomial with real coefficients. If Re(z) < 0 for all roots of f (x),

then f (x) has positive coefficients.

Proof. Suppose Re(z)< 0 for all roots of f (x). If f has degree 1, then f (x) = x−a for some a∈ R.

Then a the root of f so a = Re(a)< 0. So the coefficients of f are positive.

Suppose f has degree 2. If f has two real roots, a and b. Then a = Re(a)< 0 and b = Re(b)< 0.

So f (x) = (x− a)(x− b) = x2 +(−a− b)x+ ab and we see that f has positive coefficients. If

f (x) is irreducible, then the roots of f are a+ bi and a− bi for some a,b ∈ mathbbR. So f (x) =

(x− (a+bi))(x− (a−bi)) = x2−2ax+ |a+bi|2 and we see that f has positive coefficients.

If f has degree greater than 2, we may factor f into a product of linear and irreducible quadratics.

The roots of each factor are roots of f and by the previous verifications, each factor will have

positive coefficients. Therefore f will have positive coefficients.

The first main result of this section concerns the integer roots of Ehrhart polynomials of any inde-

pendence polytope.

Theorem 4.17. Let M be a loopless and co-loopless matroid. Then the integer roots of i(QM, t)

are −1, . . . ,−q, where q = max{b |F |r(F)c | F is a non-empty inseparable flat of M}.

Proof. Let k ∈ Z≥0. It is clear that i(QM,k)> 0. By Ehrhart reciprocity, i(QM,−k) is the number

of lattice points in the interior of the kth dilate. As kQM ⊆ `QM for k ≤ `, and QM contains no

interior lattice point, the integer roots of i(QM, t) must form an interval −1, . . . ,−q where q+1 is

the smallest integer such that (q+ 1)QM contains an interior lattice point. Note that the all ones

point, 1, must be an interior point of (q+1)QM (since QM and its dilates are geometrically shifted).

The facets of QM that are not of the form xi = 0 must be of the form ∑i∈F xi ≤ r(F) where F is a

non-empty inseparable flat of M. Thus |F |= 1 ·χF < (q+1)r(F) for each non-empty inseparable

flat F . As well, qr(F)≤ 1 ·χF = |F | for each non-empty inseparable flat F . So

q≤ |F |
r(F)

< q+1 for all non-empty inseparable flats F.
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Thus q = max{b |F |r(F)c | F is a non-empty inseparable flat of M}.

Corollary 4.18. The integer roots of i(Q〈〈a1...ar〉〉, t) are located at − j for j = 1, . . . ,q, where q =

max{b|Tk|
k c | k = 1, . . . ,r}.

This corollary may seem out of left field since we have not mentioned the Ehrhart polynomials

of shifted matroids beforehand. I have thought about these polynomials extensively, and have

computed many examples. However, I was unable to come up with a unified theory describing

these polynomials. I hope in the future that someone might find a way to do so. These polytopes

are beautiful and elusive. Perhaps when viewed under a different lens than my own, someone

might discover the pattern.

Corollary 4.19. The integer roots of i(TC(r,n), t) are located at − j for j = 1, . . . ,bn/rc.

Conjecture 4.20. Let z ∈ C be a root of the Ehrhart polynomial of TC(r,n). Then

Re(z)< 0.

A consequence of this conjecture would be that the coefficients of i(TC(r,n), t) are positive, a fact

that is not at all obvious from the formula given in Theorem 4.9. The following theorem establishes

the conjecture in the case of r = 2.

Theorem 4.21. Let z be a root of the Ehrhart polynomial of TC(2,n). Then Re(z)< 0.

Proof. Define

fn(z) = n!
(

2z+n
n

)
= (2z+n)(2z+n−1) . . .(2z+1)

and

gn(z) = n!n
(

z−1+n
n

)
= n(z+n−1)(z+n−2) . . .(z).

Then i(TC(2,n),z) = ( 1
n!( fn(z)−gn(z)). So i(TC(2,n),z) = 0 precisely when fn(z) = gn(z). Ob-

serve that z = 0 is not a root of i(TC(2,n), t) since zero is never a root of an Ehrhart polynomial.

Assume Re(z)≥ 0 and z 6= 0; we will show that | fn(z)|> |gn(z)|.
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Define ϕ j = 2z+ j and γ j = z+ j−1. Then fn(z) =
n
∏
j=1

ϕ j and gn(z) = n
n
∏
j=1

γ j. Observe that

|ϕ j|2 = (2z+ j)(2z+ j)

= 4|z|2 +4Re(z) j+ j2,

|γ j|2 = (z+ j−1)(z+ j−1)

= |z|2 +2Re(z)( j−1)+( j−1)2.

We will now show that
|ϕ j|
|γ j|
≥ j2

( j−1)2

for j ≥ 2.

Let A = 4|z|2,B = 4Re(z) j,C = j2,D = |z|2,E = 2Re(z)( j−1), and F = ( j−1)2.

Then
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F
j2

( j−1)2 = ( j−1)2 j2

( j−1)2

=C,

E
j2

( j−1)2 = 2Re(z)( j−1)
j2

( j−1)2

= 4Re(z) j
(

j
2( j−1)

)
≤ 4Re(z) j

= B,

D
j2

( j−1)2 = |z|2 j2

( j−1)2

≤ 4|z|2

= A.

Therefore for j ≥ 2

|ϕ j|2

|γ j|2
=

A+B+C
D+E +F

≥
j2

( j−1)2 (D+E +F)

D+E +F
=

j2

( j−1)2 .

Note that |ϕ1|2 ≥ 4|z|2 = 4|γ1|2. Therefore

| fn(z)|2

|gn(z)|2
=

1
n

n

∏
j=1

|ϕ j|2

|γ j|2
≥ 1

4n

n

∏
j=2

j2

( j−1)2 =
1

4n
n!2

(n−1)!2 =
n2

4n
=

n
4
> 1 if n≥ 5.

This proves the result for n≥ 5. We now verify the result for n = 1,2,3,4.
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n = 1:

| f1(z)|2 = 4|z|2 +4Re(z)+1

> |z|2

= |g1(z)|2.

n = 2:

| f2(z)|2 = (4|z|2 +4Re(z)+1)(4|z|2 +8Re(z)+4)

= 16|z|4 +48Re(z)|z|2 +20|z|2 +32Re(z)2 +24Re(z)+4

> 2|z|4 +4Re(z)|z|2 +2|z|2

= |g2(z)|2.

n = 3:

| f3(z)|2 = 64|z|6 +384Re(z)|z|4 +224|z|4 +704Re(z)2|z|2 +768Re(z)|z|2 +196|z|2 +384Re(z)3

+576Re(z)2 +264Re(z)+36

> 3|z|6 +18Re(z)|z|4 +15|z|4 +24Re(z)2|z|2 +36Re(z)|z|2 +12|z|2

= |g3(z)|2

n = 4:
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| f4(z)|2 = 256|z|8 +2560Re(z)|z|6 +1920|z|6 +8960Re(z)2|z|4 +12800Re(z)|z|4 +4368|z|4

+12800Re(z)3|z|2 +25856Re(z)2|z|2 +16480Re(z)|z|2 +3280|z|2 +6144Re(z)4

+15360Re(z)3 +13440Re(z)2 +4800Re(z)+576

> 4|z|8 +48Re(z)|z|6 +56|z|6 +176Re(z)2|z|4 +384Re(z)|z|4 +196|z|4 +192Re(z)3|z|2

+576Re(z)2|z|2 +528Re(z)|z|2 +144|z|2

= |g4(z)|2

Hence fn(z) 6= gn(z). So z is not a root of i(TC(2,n), t).

Corollary 4.22. The coefficients of i(TC(2,n), t) are non-negative.

One could try to employ the previous method to prove Conjecture 4.20 for other values of r.

However, this argument is very ad hoc in nature, and it is even difficult to make it work for r = 3.

So there seems to be little hope for this method generalizing to arbitrary r.

Conjecture 4.20 was made based upon computing roots of hundreds of Ehrhart polynomials of var-

ious truncated cubes. Plotting the roots in the complex plane yield rather beautiful and intriguing

pictures. I will include some of these pictures below.
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Figure 4.3: The roots of i(TC(6,9), t).
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Figure 4.4: The roots of i(TC(4,20)).

45



In the following figures, the roots of TC(2,n) are plotted in the same figure for various n. The

red/orange points correspond low values of n while dark blue corresponds to the higher values of

n. Notice that as n grows, the non-real roots tend to lie in an ovular shape, with an exceptional few

near the origin. A description of this ovular shape still proves elusive, but would be interesting to

know. The data suggests that increasing n results in roots with real parts becoming increasingly

negative, while increasing r has the opposite effect. For the code used to generate these figures,

see SAGE appendix near the end of the document.

Figure 4.5: The Roots of TC(2,n) for n≤ 20.
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Figure 4.6: The Roots of TC(2,n) for n≤ 40.

47



Figure 4.7: The Roots of TC(2,n) for n≤ 60.
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Figure 4.8: The Roots of TC(2,n) for n≤ 80.

49



4.2 Concluding Remarks

The research conducted in this thesis leaves a number of interesting avenues for continued study.

We will conclude this thesis with a brief discussion of these possibilities. One possibility is to

extend the results on the skeletons of independence polytopes. I believe that the methods used to

characterize the 1 and 2-skeletons can be used for higher skeletons. This should be a straightfor-

ward, but highly cumbersome task. Therefore it may be well suited for REU students or early grad

students.

Another possible topic to explore is the polytope Q̃M which is a generalized permutohedron. Per-

haps the Hopf structure could be useful in studying QM.

One very exciting idea is to try to extend the base polytope constuction into other Coxeter types.

Hypersimplices can be viewed as the convex hull of fundamental weights in the Type A root lattice.

I explored the idea of taking the convex hull of fundamental weights in the Type B root lattice, and

there does seem to be interesting connections between the h∗ vectors and Type B descent and

excedence statistics. The hope would be for some theorem akin to Theorem 4.15. However, I

haven’t quite made this work yet.

A very obvious source of future work is the study of the roots of the Ehrhart polynomials of

truncated cubes. Proving Conjecture 4.20 would be a lovely result. Additionally describing the

equation of the "oval" formed by many of the roots would be interesting as well. I also attempted

to develop results on the Ehrhart polynomials of shifted matroids. I think that something can be

done here, and it is worth searching for a similar formula to 4.9.

The last idea I have is a relatively recent thought. In discussion with Kevin Marshall, I learned of

an object similar to a matroid called a greedoid. The analogue of independent sets in a greedoid are

called feasables. Define the greedoid feasable polytope as the convex hull of the χF for feasables

F of the greedoid.I think that would be extremely interesting to study these polytopes and if Kevin

doesn’t work on it, then I probably will.
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SAGE Code Appendix

def Ehr_Poly(r,n):

i, k = var(’i,k’)

return (1/factorial(n))*sum(((-1)^k)*binomial(n,k)* \

product((r-k)*t+i, i, -k+1, n-k) ,k,0,r-1)

t=var(’t’) #### Plot roots of Ehrhart Polynomials for TC(2,n), n=2,..., 80

plotty = point([(0,0)])

r = 2

max = 80

for n in range(r,max+1):

if n%10 ==0:

print n

f = Ehr_Poly(r,n)

rooty = f.roots(ring = CC, multiplicities = False)

plotty += sum( point([(foo.real_part(),foo.imag_part())], hue=(n/(1.5*max))) \

for foo in rooty)

plotty
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