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Background: Severe asthma is a heterogeneous condition, as
shown by independent cluster analyses based on demographic,
clinical, and inflammatory characteristics. A next step is to
identify molecularly driven phenotypes using ‘‘omics’’
technologies. Molecular fingerprints of exhaled breath are
associated with inflammation and can qualify as noninvasive
assessment of severe asthma phenotypes.
Objectives: We aimed (1) to identify severe asthma phenotypes
using exhaled metabolomic fingerprints obtained from a
composite of electronic noses (eNoses) and (2) to assess the
stability of eNose-derived phenotypes in relation to within-
patient clinical and inflammatory changes.
Methods: In this longitudinal multicenter study exhaled breath
samples were taken from an unselected subset of adults with
severe asthma from the U-BIOPRED cohort. Exhaled
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metabolites were analyzed centrally by using an assembly of
eNoses. Unsupervised Ward clustering enhanced by similarity
profile analysis together with K-means clustering was
performed. For internal validation, partitioning around
medoids and topological data analysis were applied. Samples at
12 to 18 months of prospective follow-up were used to assess
longitudinal within-patient stability.
Results: Data were available for 78 subjects (age, 55 years
[interquartile range, 45-64 years]; 41% male). Three eNose-
driven clusters (n 5 26/33/19) were revealed, showing
differences in circulating eosinophil (P 5 .045) and neutrophil
(P 5 .017) percentages and ratios of patients using oral
corticosteroids (P 5 .035). Longitudinal within-patient cluster
stability was associated with changes in sputum eosinophil
percentages (P 5 .045).
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Abbreviations used

eNose: Electronic nose

ERS: European Respiratory Society

GC-MS: Gas chromatography–mass spectrometry

IQR: Interquartile range

OCS: Oral corticosteroid

PAM: Partitioning around medoids

TAC: Transcriptomic cluster

TDA: Topological data analysis

VOC: Volatile organic compound
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Conclusions: We have identified and followed up exhaled
molecular phenotypes of severe asthma, which were associated
with changing inflammatory profile and oral steroid use. This
suggests that breath analysis can contribute to the management
of severe asthma. (J Allergy Clin Immunol 2019;143:1811-20.)

Key words: Electronic nose technology, exhaled breath, volatile
organic compound, follow-up, severe asthma, unbiased clustering,
eosinophils, neutrophils, oral corticosteroids

From a clinical point of view, asthma is defined as a disease of
episodic and recurrent chest symptoms and variable airflow
limitation, including features of airways inflammation and
structural changes.1 When considering clinical management,
international guidelines distinguish different levels of asthma
control and severity.2,3 Patients with severe asthma comprise
nearly 5% of the total asthmatic population.4 It is well recognized
that severe asthma is a heterogeneous chronic inflammatory
disease with several clinical presentations, physiologic
characteristics, inflammatory and structural profiles, and
outcomes.5,6 This heterogeneity of severe asthma shows the
need to recognize distinct phenotypes, which might allow more
personalized management.

Disease phenotyping is based on classification of patients into
subgroups by using clinical and/or biological parameters.7,8

Identification of such subgroups can be accomplished through
unbiased or hypothesis-driven methods,7,9,10 resulting in clusters
that might or might not be linked to currently known
pathophysiologic pathways. Based on clinical, physiologic, and/or
cellular disease features (eg, disease onset, sex, body mass index,
lung function, and eosinophilic profile), independent studies have
revealed remarkably similar clusters of severe asthma.11,12 This
supports the clinical potential of improving long-term disease
outcomes by tailoring individual treatment.13-15

A next step toward tailoring asthma management is to
phenotype patients based on multimolecular profiles. The
availability of high-throughput large-scale analytic methods and
complex statistical and computational procedures is making the
search for new biomarkers at a high-dimensional ‘‘omics’’ level a
tangible option.7,16 Omics concerns the acquisition and analysis
of such large-scale biological data sets with the aim to discover
and identify biomarkers of diseases and new pathophysiologic
mechanisms. This approach purposely avoids a priori
assumptions about markers that might be associated with a
particular disease or phenotype.8 The omics field has
been demonstrated to be valuable in asthma research.
A transcriptomics study on airway epithelial brushings identified
2 asthma subgroups defined by the degree of TH2 inflammation,17

whereas gene expression profiling of induced sputum samples
from patients with severe asthma showed not only 3 distinct
phenotypes9 but also its capability to distinguish TH2-high and
TH2-low subtypes of asthma.18 Furthermore, clustering of sputum
cytokine-high profiles revealed 5 unique asthma molecular
phenotypes.19 Although these data demonstrate the merit of
molecular profiling in asthmatic patients, the technologies are
analytically demanding and far from being applicable in daily
medical care. Therefore there is a need to bridge the gap between
omics technologies and clinical diagnostics and monitoring.

Metabolomics of exhaled air (breathomics) can serve the
purpose of molecular profiling in asthma at point of care. Exhaled
breath contains a complex gas mixture of volatile organic
compounds (VOCs), which can be measured noninvasively. These
composite VOC samples can be analyzed by detecting individual
molecular compounds by using gas chromatography–mass spec-
trometry (GC-MS) or through pattern recognition of exhaledVOCs
using cross-reactive sensor arrays with electronic nose (eNose)
technology.20 Indeed, GC-MS has been applied in the discovery of
biomarkers for the prediction of eosinophilic versus noneosino-
philic asthma,21 the discrimination between clinically stable and
unstable episodes of asthma,22 and the inflammatory phenotyping
of patients with chronic obstructive pulmonary disease (COPD).23

Notably, when using the faster eNose technology,20 based on a
combination of cross-reactive sensors and pattern recognition
algorithms, exhaled breath from patients with asthma, patients
with COPD, and healthy control subjects could be discriminated
in several independent studies.24-26 Moreover, cluster analysis
with an eNose among a study population of both asthmatic patients
and patients with COPD resulted in clusters that are not determined
based on diagnosis but rather based on clinical and inflammatory
characteristics.27 This raises the questions of whether
phenotyping of patientswith severe asthmabased on solely exhaled
breath profiles is possible and what the within-patient stability of
those phenotypes is over time.

We hypothesized that eNose technology is suitable for
noninvasive identification of severe asthma phenotypes.
Therefore our aims were (1) to identify severe asthma phenotypes
using unbiased and benchmarked cluster analysis based on
metabolomic fingerprints from exhaled breath by a composite
of different brands of eNoses (U-BIOPRED eNose platform) and
(2) to assess within-patient stability in eNose-derived clusters in
relation to changes in clinical and inflammatory characteristics
after 12 to 18 months of prospective follow-up.
METHODS

Subjects
In this study an unselected subset of adult subjects (aged >_18 years) from

the pan-European U-BIOPRED cohort study was included.28 All participants

were given a diagnosis of severe asthma according to Innovative Medicines

Initiative criteria.5 In short, these patients had a prescription for high-dose

inhaled corticosteroids (>_1000 mg of fluticasone propionate or equivalent)

plus at least 1 other controller medication and symptoms defined as

uncontrolled according to Global Initiative for Asthma guidelines and/or 2

or more severe exacerbations per year and/or required prescription of oral

corticosteroids (OCSs) minimally daily to achieve asthma control. Subjects

were excluded if they changed asthma medication or required high-dose

OCSs or a doubling ofmaintenanceOCS for at least 3 days because of a severe

asthma exacerbation in the month before study visits. The study was approved

by all local medical ethics committees, and all patients provided written
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informed consent. The study was registered at ClinicalTrials.gov under the

identifier NCT01976767.
Design
The U-BIOPRED study in adults consisted of 3 visits in the severe asthma

cohorts.28 At the first visit, participants were screened for eligibility to partic-

ipate according to the inclusion and exclusion criteria. For the purpose of the

present study, several measurements were performed. At the baseline visit and

at the 12- to 18-month prospective follow-up visit, fraction of exhaled nitric

oxide (FENO) values were measured, followed by exhaled breath collection.

Subsequently, prebronchodilator and postbronchodilator spirometry and

sputum induction were performed. Finally, allergy tests, blood draws, and

questionnaires were performed, as outlined previously.28
Measurements
Exhaled breath collection. Exhaled breath of patients with

severe asthma was collected at 7 participating sites, as previously

described.24,25,29 After refraining from eating, drinking, and smoking for

at least 2 hours, patients breathed for 5 minutes at tidal volume through a

3-way nonrebreathing valve and an inspiratory carbon VOC filter (A2; North

Safety, Middelburg, The Netherlands). Next, the subjects exhaled a single

vital capacity volume into a 10-L Tedlar bag (SKC, Eighty Four, Pa). The

VOCs in the Tedlar bag were trapped on thermal desorption tubes containing

Tenax (Tenax GR SS 6 mm3 7 in; Gerstel, M€ulheim an der Ruhr, Germany)

by drawing air through the Tenax tube with a peristaltic pump at a flow rate

of 250 mL/min. Such storage of VOCs preserves the exhaled marker

signal.30

Tubes were sent to the Academic Medical Centre Amsterdam for central

analysis. After desorption of VOCs with a thermal desorption oven (TDS 3;

Gerstel, M€ulheim an der Ruhr, Germany), the stored VOCs were trans-

ferred into a Tedlar bag with nitrogen as a carrier gas. Subsequent analysis

was carried out with the composite U-BIOPRED eNose platform. This

eNose platform consists of an assembly of 4 eNoses, all from different

developers, using distinct sensor technologies: (1) Cyranose C320 using

carbon black-polymer sensors (32 sensors),31 (2) Tor Vergata eNose using

quartz crystal microbalances (QMBs) covered with metalloporphyrins (8

sensors),32 (3) Common Invent eNose using metal oxide semiconductor

sensors (8 sensors),33 and (4) Owlstone Lonestar based on field asymmetric

ion mobility spectrometry (110 data points).34 For all samples analyzed

with the U-BIOPRED eNose platform, the structure of the output is similar:

a 158-data-point counting profile based on responses of all 4 eNoses.

Lung function. Spirometry was performed before and 10 minutes

after inhalation of 400 mg of salbutamol through a spacer according to

European Respiratory Society (ERS) recommendations using daily calibrated

equipment.35

Sputum induction. Sputum was induced by means of inhalation of

hypertonic saline, according to the ERS recommendations.36 Selected samples

were processed with 0.1% dithioerythritol, and differential cell counts were

expressed as percentages of nonsquamous cells.

Blood. Blood eosinophil and neutrophil percentages were obtained from
standard complete blood counts.

Allergic status. Allergy testing was performed with total and specific

serum IgE measurements and skin prick test (SPTs) to a panel of common

aeroallergens. Atopy was defined as the presence of sensitization on SPTs

(wheal >_3 mm) or serum specific IgE (>_0.35 kU/L).

FENO. Fraction of exhaled lower respiratory nitric oxide values were

measured with a portable analyzer (NIOX Mino System; Aerocrine, Solna,

Sweden) at a constant flow rate of 50 mL/s, according to American Thoracic

Society/ERS recommendations.37

Questionnaires. Asthma control was assessed by using the Juniper

Asthma Control Questionnaire, which is a validated 5-item questionnaire,38

whereas the 20-Item Sino-Nasal Outcome Test questionnaire was used as a

measure for rhinosinusitis status.39
Statistical analysis
Repeatability testing. For the purpose of repeatability testing,

means 6 SDs of the within-subject coefficient of variation among all 158

sensors was calculated based on available duplicate samples from the present

study.

Data preprocessing. After ComBat40 batch correction, a Box-

Cox41 power transformation was applied to achieve optimal data distribu-

tion. Data were normalized by adjusting the average and SD of each

eNose sensor to 0 and 1, respectively, to avoid data from different eNoses

being disparate.42

Principal component analysis. Principal components (PCs)

were derived from a total of 158 eNose sensors (1) to achieve an optimal eNose

platform fingerprint based on individual sensor deflections using a limited

number of variables43 and (2) to suppress noise because the variance captured

by the least important principal components represents noise that should be

rejected. Considering the Kaiser criterion,44 only PCs with eigenvalues of

greater than 1 were retained for further analysis.

Cluster analysis. Cluster analysis was performed based on a strategy

reported by Amelink et al.45 First hierarchicalWard clustering, combinedwith

similarity profile analysis was used to assess the number of significant cluster

groups.46 Then the actual grouping based on K-means clustering was

performed. Nonhierarchical K-means clustering partitions the input space

(ie, centroid locations are calculated) instead of building a dendrogram, which

makes it suitable for longitudinal modeling.

Between-cluster comparisons. Between-cluster comparisons

and pairwise post hoc analyses of clinical, physiologic, and inflammatory

variables at baseline were performed by using the Kruskal-Wallis test for

continuous data and the Pearson x2 test for categorical data. Clinical variables

were considered statistically significant at a P value of .05 or less.

Furthermore, the distribution of patients from individual clinical sites among

the revealed clusters was evaluated by using Pearson x2 testing.

Cluster benchmarking. Clustering results of the baseline data set
were benchmarked by using 2 more clustering techniques, partitioning around

medoids (PAM) and topological data analysis (TDA), with the Ayasdi

Workbench (version 7.5.0; Ayasdi, Menlo Park, Calif).10,16 Concordance

between K-means and TDA was qualitatively assessed by combining results

in a graphic display. Similarity of outcomes between Ward, K-means, and

PAM clustering was quantified by means of Rand indexing, which results in

a value between 0 (complete disagreement) and 1 (complete agreement).47

Follow-up. Data workup to appraise the longitudinal behavior of

the clusters consisted of 3 steps: (1) data preprocessing similar to

baseline, (2) calculation of PCs based on loading factors of the

baseline data set, and (3) cluster membership prediction for each

patient by using the former K-means clustering results for modeling.

Baseline and longitudinal clustering outcomes were cross-tabulated.

Absolute D values between baseline and follow-up visits (ie, changes over

time) regarding clinical, physiologic, and inflammatory variables were

evaluated by using the Mann–Whitney–Wilcoxon test for continuous data or

the Pearson x2 test categorical variables to compare the characteristics

between ‘‘cluster-stable’’ patients versus ‘‘cluster-migrating’’ patients.

Exploratory analyses. A series of exploratory analyses was

performed through partial least-squares discriminant analysis (PLS-DA) and

cross-validated partial least-squares regression (PLS regression):

1. analysis of correlation between the 158 eNose sensors using PLS-DA

at the eNose sensor level versus obtained clusters;

2. examination of the relationship between significantly different inflam-

matory parameters and VOC patterns through PLS regression; and

3. testing of association between the U-BIOPRED sputum transcriptomic

clusters (TACs; TAC1, TAC2, and TAC3) delineated by Kuo et al9 and

VOC patterns reported here through PLS-DA.

Apart from TDA analysis, all analyses were performed in R studio (version

1.1.383) with R software (version 3.3.3) as the engine and supported by R

packages: caret, clue, clustsig, ConsensusClusterPlus, data.table, fossil,

Hmisc, MASS, stringr, sva, tableone, mixOmics, plsdepot and boot.

http://ClinicalTrials.gov


TABLE I. Demographic data and baseline and longitudinal

characteristics of study population

Baseline Longitudinal

Subjects (no.) 78 51

Age (y), median (IQR) 55.5 (45.0-64.0) 57.0 (49.5-64.5)

Male sex (%) 41.0 43.1

Body mass index (kg/m2),

median (IQR)

27.8 (24.4-32.6) 27.8 (25.1-32.3)

Age of onset (y), median (IQR) 27.5 (7.0-40.5) 30.0 (10.5-41.5)

Smoking status, current smoker/

ex-smoker/nonsmoker (%)

12.8/33.3/53.8 15.7/35.3/49.0

Pack years, median (IQR) 14.5 (7.8-21.3) 13.9 (4.6-22.3)

OCS use (%) 42.3 36.7

Total daily OCS dose (median [IQR]) 10.0 (10.0-12.5) 10.0 (10.0-12.5)

Exacerbations/year, median (IQR) 1.0 (0.0-2.8) 1.0 (0.0-2.0)

Atopy, positive (%) 67.9 62.7

ACQ-5 score, median (IQR) 2.5 (1.4-3.4) 1.6 (0.7-3.0)

PbFEV1 (% predicted), median (IQR) 76.5 (60.9-88.5) 71.8 (60.6-86.2)

PbFEV1/FVC actual ratio,

median (IQR)

80.3 (69.7-89.8) 77.8 (70.6-87.5)

FENO (ppb), median (IQR) 28.5 (14.4-49.0) 29.0 (17.5-52.0)

SNOT-20 score, median (IQR) 1.60 (1.10-2.25) 1.58 (1.05-2.05)

Sputum eosinophils (%), median (IQR) 5.0 (1.3-19.4) 2.0 (0.8-17.4)

Sputum neutrophils (%), median (IQR) 52.2 (37.2-69.6) 51.9 (34.5-75.0)

Blood eosinophils (%), median (IQR) 3.1 (1.4-6.6) 3.7 (1.1-5.5)

Blood neutrophils (%), median (IQR) 61.6 (54.3-73.2) 60.7 (53.8-68.4)

ACQ-5, Juniper 5-item Asthma Control Questionnaire; Atopy, presence of

sensitization on SPT (wheal >_3 mm) or serum specific IgE (>_0.35 kU/L); FENO,

fraction of exhaled nitric oxide; FVC, forced vital capacity; OCS use, regular daily use

of oral corticosteroids; PbFEV1, postbronchodilator FEV1; SNOT-20, 20-item

Sino-Nasal Outcome Test Questionnaire; Total daily OCS dose, daily OCS dose

normalized to prednisolone among OCS users.
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RESULTS
With a success rate of 100%, baseline breath samples of 80

patients with severe asthma recruited from 7 different sites across
5 countries in Europe were available. Two samples were lost
because of wet-laboratory technicalities, resulting in complete
data for 78 patients. Baseline characteristics are summarized in
Table I.
Unbiased cluster analysis of exhaled breath profiles
From the original data set based on 158 eNose sensors

(mean 6 SD within-subject coefficient of variation,
6.28% 6 1.70%; n 5 11), 34 principal components with an
eigenvalue of greater than 1 were derived. By applying K-means
clustering with a predefined number of clusters based on Ward
clustering, 3 groups of patients with severe asthma were
delineated solely based on their exhaled breath profiles (Fig 1).
Cluster 1 consists of 26 patients, cluster 2 consists of 33 patients,
and cluster 3 consists of 19 patients.
Clinical characteristics of clusters
Clinical data for each cluster are shown in Table II, and

between-cluster post hoc analyses are presented in Fig E1 in
this article’s Online Repository at www.jacionline.org. There
were significant differences between the clusters in chronic
OCS use and eosinophil and neutrophil percentages in blood, as
outlined in the following cluster profiles. No significant
relation between sample origin (sites) and revealed clusters
was found (see Table E1 in this article’s Online Repository at
www.jacionline.org).

Cluster 1. The first group includes 33% of the patients
(n 5 26) and is the middlemost cluster. With blood eosinophil
percentages of 4.1% (interquartile range [IQR], 1.8% to 6.9%),
blood neutrophil percentages of 57.8% (IQR, 54.0% to 67.1%),
and an OCS user percentage of 39%, it represents the second
highest/lowest levels at all 3 discriminating variables among the
clusters.

Cluster 2. The second cluster includes 42% (n 5 33) of the
study population and can be described as neutrophilic
inflammation predominant, with the highest blood neutrophil
percentage of the 3 clusters being 65.6% (IQR, 60.0% to 76.2%).
With an OCS use of 58%, this is the cluster with the greatest
number of patients using OCS maintenance therapy.

Cluster 3. The final cluster comprises 24% of the patients
(n 5 19). This phenotype differentiates from the other 2 because
only 4 (21%) of 19 patients are chronically using OCSs, and it
shows the highest percentages of peripheral blood eosinophilia
4.7% (IQR, 2.64% to 8.00%) among the 3 groups.
Benchmarking
TDA demonstrated largely similar findings compared with

K-means clustering. Data points in Fig 2 are color coded based on
the 3 significant clusters revealed by K-means clustering to
demonstrate coherence between both methods. Quantitative
assessment of the similarity between K-means versus Ward and
PAM clustering resulted in Rand index scores of 0.82 and 0.74,
respectively.
Follow-up
Fifty-one of the 78 patients included in the baseline visit

provided a breath sample at the 12- to 18-month follow-up visit
(Table I). When comparing baseline clustering results with the
longitudinal allocation, 21 (41%) patients were cluster stable,
whereas 30 patients migrated to another cluster (Table III). There
was a significant difference between these 2 groups in their
change (absoluteD) of sputum eosinophil percentages (Table IV).
Exploratory analyses
The Partial Least Square Discriminant Analysis (PLS-DA)

correlation plot (Fig E2 in this article’s Online Repository at
www.jacionline.org) indicates how the 158 sensors correlate
with each other. Four of 8 sensors from the Tor Vergata eNose
have a high correlation with a large number of sensors from the
Cyranose C320.

Based on clustering outcomes (significantly different
inflammatory parameters between the eNose clusters), PLS
regression of blood neutrophils and eosinophils (as percentages)
at baseline versus VOC patterns and absolute D values of sputum
eosinophils (as a percentage) versus absolute D values of VOC
patterns was performed, resulting in R2 values of 0.63 (95% CI,
0.52-0.74), 0.41 (95% CI, 0.13-0.75), and 0.87 (95% CI,
0.76-0.99), respectively (see Fig E3-E5 in this article’s Online
Repository at www.jacionline.org).

From a total of 28 patients, complete data concerning sputum
transcriptomic profile9 and exhaled breath pattern were available.
Based on VOC patterns, the 3 TAC clusters could be

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 1. Upper panel, Three delineated clusters (red, green, and blue) during Ward clustering combined with

similarity profile analysis (SPA) based on exhaled breath samples. Lower panel, K-means clustering results

with a predefined number of clusters based on Ward clustering combined with SPA. Rand index scoring

resulted in a similarity measure between K-means versus Ward clustering of 0.82. Coloring for both panels

is according to the included legend.
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discriminated with an accuracy of 0.93 (see Fig E6 in this article’s
Online Repository at www.jacionline.org).
DISCUSSION
This study shows that unbiased clustering of exhaled breath

profiles captured by using eNose technology identifies 3
phenotypes of severe asthma. These clusters significantly differed
with respect to systemic inflammatory markers and use of
anti-inflammatory medication. These findings were benchmarked
by using different clustering techniques. Follow-up at 12 to
18 months showed a significant difference between cluster-stable
and cluster-migrating patients with regard to their longitudinal
changes in sputum eosinophil values. Our results support the
concept of using exhaled breath analysis with the eNose for quick
and noninvasive inflammatory phenotyping of patients with
severe asthma, which can be of clinical value with respect to
personalizedmanagement or monitoring of these difficult-to-treat
patients.

To our knowledge, this is the first study that establishes clusters
of patients with severe asthma based on exhaled breath analysis
by using eNose technology. The second novelty of this study is the

http://www.jacionline.org


TABLE II. Characteristics of baseline clusters

Cluster no. Cluster 1 Cluster 2 Cluster 3 P value

Subjects (no.) 26 33 19

Age (y), median (IQR) 59.0 (50.3-63.8) 55.0 (43.0-62.0) 56.0 (44.5-68.5) .405

Male sex (%) 42 46 32 .640

Body mass index (kg/m2), median (IQR) 28.1 (25.2-32.3) 28.2 (24.9-33.4) 25.8 (23.6-33.0) .618

Age of onset (y), median (IQR) 30.0 (15.0-44.0) 18.0 (6.0-39.0) 27.0 (17.5-34.5) .702

Smoking status, current smoker/ex-smoker/nonsmoker (%) 11.5/46.2/42.3 9.1/33.3/57.6 21.1/15.8/63.2 .233

Pack years (median [IQR]) 10.0 (5.8-20.5) 13.8 (4.1-23.8) 20.5 (11.4-31.3) .479

OCS use (%) 38.5 57.6 21.1 .035

Total daily OCS dose, median (IQR) 3.0 (1.0-11.0) 4.0 (2.0-14.5) 10.0 (4.5-19.5) .428

Exacerbations/year, median (IQR) 1.5 (0.0-3.0) 1.0 (1.0-2.0) 1.0 (0.0-2.0) .785

Atopy, positive (%) 57.7 72.7 73.7 .393

ACQ-5, median (IQR) 2.5 (1.4-3.4) 2.2 (1.4-3.4) 2.8 (1.1-3.6) .958

PbFEV1 (% predicted), median (IQR) 74.7 (52.0-84.2) 76.6 (62.5-92.1) 75.4 (66.9-87.7) .531

PbFEV1/FVC actual ratio, median (IQR) 75.8 (66.9-85.9) 81.5 (70.1-90.4) 82.7 (77.7-94.9) .146

FENO (ppb), median (IQR) 25.5 (14.0-53.0) 33.0 (16.9-46.5) 28.0 (14.5-49.5) .840

SNOT-20 score, median (IQR) 1.7 (1.1-2.0) 1.5 (1.1-2.2) 1.9 (1.2-2.5) .550

Sputum eosinophils (%), median (IQR) 4.8 (1.6-15.9) 5.3 (2.1-16.5) 2.2 (1.0-29.5) .915

Sputum neutrophils (%), median (IQR) 52.2 (39.0-65.4) 52.8 (45.0-65.8) 44.2 (9.4-85.8) .733

Blood eosinophils (%), median (IQR) 4.1 (1.8-6.9) 2.3 (1.0-4.4) 4.7 (2.6-8.0) .045

Blood neutrophils (%), median (IQR) 57.8 (54.0-67.1) 65.6 (60.0-76.2) 55.5 (52.3-64.0) .017

Differences between clusters were tested by using Kruskal-Wallis testing for continuous data and Pearson x2 tests for categorical data.

Statistically significant values are in boldface.

ACQ-5, Juniper 5-item Asthma Control Questionnaire; Atopy, presence of sensitization on SPT (wheal >_3 mm) or serum specific IgE (>_0.35 kU/L); FENO, fraction of exhaled nitric

oxide; FVC, forced vital capacity; OCS use, regular daily use of oral corticosteroids; PbFEV1, postbronchodilator FEV1; SNOT-20, 20-item Sino-Nasal Outcome Test

Questionnaire; Total daily OCS dose, daily OCS dose normalized to prednisolone among OCS users.
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assessment of stability of patients in those clusters during
longitudinal follow-up. Previously, clustering techniques have
been used to describe and monitor phenotypes of asthma based on
clinical characteristics12,48-51 and for eNose technology focused
on phenotyping broad cohorts of obstructive pulmonary
diseases.27,52 However, the present studymerged both approaches
by using unbiased molecular profiling as a starting point for the
follow-up of severe asthma phenotypes.

At a cross-sectional level, this concept is similar to the sputum
gene expression profiling by Baines et al,53 Kuo et al,9 and Seys
et al,19 as well as the serum cytokine profile clustering by
Liang et al54 or imaging-based cluster analysis by Choi et al.55

These approaches cluster patients solely based on manifest mo-
lecular mechanisms and pathophysiology, thereby allowing the
biology to drive the classification. In this way omics technologies
are used to generate clusters based on both known and unknown
pathophysiologic pathways rather than examining a
priori–defined molecular mechanisms, such as TH2 or TH17
pathways.9,10,17 The present eNose clusters show that exhaled
metabolites yield differential signals mainly related to
inflammatory profiles, which extends similar observations based
on profiling at RNA levels in sputum.9,53 Therefore our data
suggest that breathomics can bridge the gap between clinical
and laboratory assessments in the phenotyping of severe asthma.

Our study has a number of strengths. First, exhaled breath
samples were analyzed on the U-BIOPRED eNose platform
according to the most recent standards for quality control,20 an
assembly of eNoses from 4 different brands, all driven by
different sensor techniques. Using this composite system, we
expect to have approximated an optimal data set from VOC
mixtures based on available eNose technology.

Second, the participants were carefully characterized and
recruited from 7 different sites across 5 European countries in
this study. This international and multicenter character
strengthens the general validity of the observed eNose phenotypes
of severe asthma.

Finally, we used distinct clustering techniques to test the
stability of clusters and added similarity profile analysis for
determining the number of significant clusters with the
assumption of no a priori groups. The latter strengthens the
validity of our findings.

Our study also has limitations. First, an external validation in a
new and independent cohortwas lacking. Thiswould have required
us to repeat the U-BIOPRED study, which understandably is a
future goal. The second best option would have been a split into a
training and validation set,56 but this resulted in sample sizes too
small for adequate cluster analysis, thereby promoting inevitable
overfitting. However, we did validate our findings by bench-
marking 3 specifically different clustering techniques: hierarchical
methods versus partitioning versus clumping (continuous) varia-
tion combined with similarity testing by means of Rand indexing.
The consistency of these results adds to the plausibility of our
findings.

Second, eNose technology seems to be suitable for the
noninvasive identification of severe asthma phenotypes but is
principally unable to identify the individual VOCs driving the
distinction between the subgroups. Specific analysis with GC-MS
will then be necessary to unravel the identity of the combination
of VOCs. Recent GC-MS studies have shown that asthma in
particular features exhaled VOCs that are associated with lipid
peroxidation and inflammatory phenotypes,21,57 the distribution
of which is likely to drive the distinction among the 3 clusters.

Finally, given the nature of the project, there is an inevitable
influence of medication and smoking in addition to endogenous
biological mechanisms. Inhaled and systemic corticosteroids, as
well as short-acting b2-agonists, are likely to affect metabolomic



FIG 2. TDA network clustering results. Data points are colored in accordance with K-means clustering

outcomes. PCA, Principal components analysis.

TABLE III. Cross-table of clustering results among 51 patients

with both a baseline and follow-up visit based on exhaled

breath profiles: 21 patients are cluster stable (in boldface), and

30 patients migrate between clusters

Baseline clusters

1 2 3

Longitudinal clusters 1 6 2 1 9

2 12 10 4 26

3 4 7 5 16

22 19 10

Baseline clusters, Cluster allocation of patients at baseline visits; Longitudinal

clusters, cluster allocation of patients at the 12- to 18-month follow-up visit.
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fingerprints58,59 and thereby patients’ ‘‘breathprints.’’ Notably,
the present analysis picked this up by showing that systemic
steroid use was one of the distinguishing features. Therefore we
believe that including real-life patients with varying levels of
treatment is not a major limitation of the present study.

How can we interpret these results? It appears that the eNose
platform predominantly captured features of inflammation and
anti-inflammatory treatment, such as eosinophil and neutrophil
percentages and oral steroid use. Similar to several previous
studies on exhaled VOC analysis in patients with obstructive
pulmonary diseases,21-23,27,52,60 our data confirm that exhaled
VOCs appear to be associated with both systemic and local
airway eosinophilic inflammation. Apparently, both types of
inflammation express themselves through a different set of
exhaled VOCs because there is little to no agreement in
outcomes between the 2 inflammatory features among our
reported clusters. This might be caused by the distinct molecular
pathways underlying eosinophilic inflammation.61 Furthermore,
differences in metabolic profiles between clusters 2 and 3 might
particularly be linked to a combination of blood eosinophil
percentages and OCS use (see Table II), whereas cluster 1 does
not show specific distinctive characteristics, as measured based
on the available clinical and inflammatory features. Nevertheless,
the latter group differs with regard to its exhaled VOC-driven
profile, which points toward a complementary value of molecular
assessment on top of what we know from our patients by
commonly used assessment. Considering the aims of the
U-BIOPRED consortium, such a discovery of previously
unknownmolecular phenotypes is key to increased understanding
of severe asthma. Additional explorative analysis concerning



TABLE IV. Cluster-stable versus cluster-migrated patients: D (abs[Baseline–Longitudinal])

Cluster stable Cluster migrated P value

Subjects (no.) 21 30

OCS use, yes/no (%) .477

No/no 10 17

Yes/no 4 2

Yes/yes 7 11

Total daily OCS dose, median (IQR) 1.0 (1.0-1.8) 1.0 (0.0-1.0) .283

Exacerbations/year, median (IQR) 1.0 (0.0-2.0) 1.0 (0.0-2.0) .418

ACQ-5 score, median (IQR) 0.8 (0.4-1.2) 0.6 (0.3-1.0) .430

PbFEV1 (% predicted), median (IQR) 9.0 (4.3-11.9) 6.0 (2.3-12.8) .752

PbFEV1/FVC actual ratio, median (IQR) 5.4 (2.0-8.7) 5.4 (2.3-9.6) .863

FENO (ppb), median (IQR) 10 (6.8-18.5) 7.8 (4.0-14.4) .181

SNOT-20 score, median (IQR) 0.49 (0.19-0.81) 0.30 (0.13-0.50) .204

Sputum eosinophils (%), median (IQR) 2.2 (1.0-3.8) 7.2 (3.3-12.3) .046

Sputum neutrophils (%), median (IQR) 16.5 (12.4-26.1) 12.3 (4.0-20.0) .166

Blood eosinophils (%), median (IQR) 1.5 (0.8-4.5) 1.2 (0.7-2.5) .803

Blood neutrophils (%), median (IQR) 4.4 (1.9-11.1) 7.9 (2.8-13.7) .216

ACQ-5, Juniper 5-item Asthma Control Questionnaire; FENO, fraction of exhaled nitric oxide; FVC, forced vital capacity; OCS use, regular daily use of oral corticosteroids at

baseline/follow-up; PbFEV1, postbronchodilator FEV1; SNOT-20, 20-item Sino-Nasal Outcome Test Questionnaire; Total daily OCS dose, daily OCS dose normalized to

prednisolone among OCS users.

Statistically significant values are in boldface.
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identification of sputum transcriptomic phenotypes (TAC1,
TAC2, and TAC3) based on exhaled breath patterns resulted in
an accuracy of 0.93. This identification of sputum transcriptomics
clusters is driven by different PCs than those most relevant for the
primary clusters reported in this article. We believe this
underlines the wealth of information available in exhaled breath.

What are the clinical implications of our data? When eNose
technology is capable of identifying clinically revealed and
unrevealed asthma phenotypes, it can serve a transitional
role between omics technologies and clinical medicine.
Transcriptomics, proteomics, and metabolomics in tissue,
sputum, or blood have demonstrated their value through
identification of distinct phenotypes in asthmatic patients.*
Because pathophysiologic mechanisms have been linked to these
phenotypes, new specifically targeted treatments are being
developed. This leads to an increasing need for point-of-care
biomarkers to predict and monitor the responsiveness of patients
to particular interventions. Althoughmost omics technologies are
difficult to implement in daily medical care, gas sensor–based
exhaled breath analysis is developing toward clinical
implication,27,63 thereby having the potential to fulfill this
increasing clinical need. In addition, even though biomarkers
for capturing the eosinophilic phenotype and predicting
responsiveness to common therapies are available, these are
either not widely used because of laborious procedures (sputum
eosinophilia) or exhibit insufficient accuracy (exhaled nitric
oxide).64,65 We believe that the present study adds to
strengthening the clinical utility of eNose measurements by
showing that migration of patients between the clusters is
associated with changes in sputum eosinophilia, whereas we
observed relatively high correlations between the exhaled breath
profiles and eosinophilic and neutrophilic inflammation. This fits
in with the predictive capacity of eNose assessment for steroid
responsiveness66 and its potential to discriminate between
clinically stable and unstable episodes of asthma.22 It will require
*References 7,9,10,16,17,19,23,53, and62.
longer-term follow-up studies to examine the clinical course of
the cluster-stable and cluster-unstable patients, as identified by
using the eNose.

In conclusion, this study reveals unbiased clusters of patients
with severe asthma based on exhaled breath profiles captured by
the U-BIOPRED eNose platform. Three significant clusters with
differences regarding eosinophilic/neutrophilic inflammation and
systemic steroid use were delineated. Notably, after 12 to
18 months of follow-up, cluster-stable and cluster-migrating
patients differed with regard to their longitudinal changes in
sputum eosinophil values. These results warrant prospective
studies on the potential of exhaled breath fingerprinting by using
eNose technology as point-of-care procedure for (therapeutic)
management of patients with severe asthma.

Key messages

d Unbiased clustering of exhaled breath profiles captured
by using eNose technology revealed 3 phenotypes of
severe asthma, which significantly differ with respect to
systemic inflammatory markers and use of anti-
inflammatory medication.

d Follow-up at 12 to 18 months showed a significant
difference between cluster-stable and cluster-migrating
patients with regard to longitudinal changes in sputum
eosinophils.
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FIG E1. Left panel, PLS-DA results based on 78 exhaled breath profiles of patients with severe asthma by

using the U-BIOPRED eNose platform and the 3 revealed clusters. Blue circles, Cluster 1; orange triangles,
cluster 2; gray plus signs, cluster 3). x-axis, PLS-DA component I; y-axis, PLS-DA component II. Right panel,
Correlation plot based on components I (x-axis) and II (y-axis) of the U-BIOPRED eNose platforms outcomes

by using PLS-DA. Strongly associated (or correlated) variables are projected in the same direction from the

origin. The greater distance from the origin, the stronger the association. Green, Cyranose 320; black, Tor

Vergata eNose; red, Comon Invent eNose; blue, Owlstone Lonestar.
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FIG E2. Box plots of all variables listed in Table II of the main document. Between-cluster comparison of

clinical, physiologic, and inflammatory variables at baseline was performed by using the Kruskal-Wallis

test for continuous data and the Pearson x2 test for categorical data.
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FIG E3. PLS-DA results based on 28 exhaled breath profiles of patients with severe asthma by using the

U-BIOPRED eNose platform at the PC level and their sputum transcriptomic phenotypes by Kuo et al.9

Blue circles, TAC1; orange triangles, TAC2; gray plus signs, TAC3. x-axis, PLS-DA component I; y-axis,
PLS-DA component II. Right panel, Correlation plot based on components I (x-axis) and II (y-axis) of the
U-BIOPRED eNose platforms outcomes by using PLS-DA. Strongly associated (or correlated) PCs are

projected in the same direction from the origin. The greater the distance from the origin, the stronger the

association. Note: colorization of PC labels 1 to 34 (red, green, blue, and black) serves no other goal than

improvement of readability.
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FIG E4. Associations between exhaled markers by using the U-BIOPRED eNose platform versus blood

neutrophil percentages with PLS regression analysis: R2 5 0.63 (95% CI, 0.52-0.74). Gray area, 95% CI;

dashed lines, 95% prediction interval.
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FIG E5. Associations between exhaled markers by using the U-BIOPRED eNose platform versus blood

eosinophil percentages by using PLS regression analysis: R2 5 0.41 (95% CI, 0.13-0.75). Gray area, 95% CI;

dashed lines, 95% prediction interval.
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FIG E6. Associations between absolute D values of exhaled breath profiles by using the U-BIOPRED eNose

platform versus absolute D values of sputum eosinophil percentages by using PLS regression analysis:

R2 5 0.87 (95% CI, 0.76-0.99). Gray area, 95% CI; dashed lines, 95% prediction interval.
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TABLE E1. Distribution of patients from the same centers

among the 3 clusters

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7

Cluster 1 2 3 3 6 1 0 4

Cluster 2 3 2 15 6 2 4 1

Cluster 3 3 1 10 5 3 0 2

A x2 analysis resulted in a P value of .079.
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