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Abstract

The paper presents the application of Grade Correspondence Analysis (GCA) and Grade

Correspondence Cluster Analysis (GCCA) for ordering and grouping -omics datasets, using

transcriptomic data as an example. Based on gene expression data describing 256 patients

with Multiple Myeloma it was shown that the GCA method could be used to find regularities

in the analyzed collections and to create characteristic gene expression profiles for individ-

ual groups of patients. GCA iteratively permutes rows and columns to maximize the tau-

Kendall or rho-Spearman coefficients, which makes it possible to arrange rows and columns

in such a way that the most similar ones remain in each other’s neighbourhood. In this way,

the GCA algorithm highlights regularities in the data matrix. The ranked data can then be

grouped using the GCCA method, and after that aggregated in clusters, providing a repre-

sentation that is easier to analyze–especially in the case of large sets of gene expression

profiles. Regularization of transcriptomic data, which is presented in this manuscript, has

enabled division of the data set into column clusters (representing genes) and row clusters

(representing patients). Subsequently, rows were aggregated (based on medians) to visual-

ise the gene expression profiles for patients with Multiple Myeloma in each collection. The

presented analysis became the starting point for characterisation of differentiated genes

and biochemical processes in which they are involved. GCA analysis may provide an alter-

native analytical method to support differentiation and analysis of gene expression profiles

characterising individual groups of patients.

Introduction

Modern high-throughput methods produce large volumes of -omics data. Efficient processing

of such data, in conjunction with other available biomedical datasets, is one of the main chal-

lenges facing modern biostatisticians and bioinformatics experts [1]. To extract information

from such datasets, multidimensional analysis is commonly applied. Classical statistical meth-

ods are adapted to process large volumes of data, or data may be preprocessed–with the use of

biological knowledge–as a preliminary step in statistical processing pipelines [2] [3] [4]. It is
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also becoming more and more common to adopt an integrative approach based on specialied

databases, with various configurations of analytical methods facilitating simple and efficient

extraction of relevant information using custom analysis platforms [5] [6]. Nevertheless, in

spite of the dynamic evolution of data analytics, the capabilities of existing IT frameworks lag

behind the sheer volume of data sets produced by modern research tools.

This manuscript presents the Grade Correspondence Analysis (GCA) application, which is

custom-tailored for transcriptomics data and addresses the aforementioned challenges. GCA

exemplifies the rapidly expanding field referred to as data mining and constitutes an essential

step towards the integration of statistics, data exploration, taxonomy and measurement theory,

with continuous and discrete data treated in a similar manner [7]. The GCA process involves

identifying regularities and dependencies between variables and observations and helps define

data clusters in predictive analysis problems. Regularity metrics are used to subdivide each

dataset into clusters, based on different monotonic models than in the source matrix. Grade

analysis methods can be applied to search for trends (hidden structure), groups and outliers.

GCA analysis has so far been successfully used in (a) identifying concentrations of vital ele-

ments (calcium, magnesium, zinc, iron and copper) and two toxic elements (lead and cad-

mium) in hair tissue (over 20 thousand subjects); (b) analysis of parliamentary election results

in selected electoral circuits [8], and (c) processing of images where pixels are described by

selected variables [9].

GCA may also constitute a valuable exploratory and analytical tool for -omics data, facilitat-

ing proper data classification and therefore increasing the accuracy of decisions related to, e.g.

custom therapies for patients with specific transcriptomic profiles.

This paper discusses the results of GCA and Grade Correspondence-Cluster Analysis car-

ried out on gene expression datasets obtained from Multiple Myeloma patients. The analysis

resulted in a reduction in the dimensionality of input data while enabling patient records to be

assigned to regular layers and uniform, well-ordered clusters. The outcome was a set of distinct

patient groups and gene clusters with characteristic levels of expression, providing input for

further analysis of biochemical pathways. The Multiple Myeloma example, presented here as a

case study, shows how to isolate groups of patients (rows) and sets of genes (columns) from a

large transcriptomics dataset to characterise patients with specific genetic profiles.

Materials and methods

Data analysis scheme

Data analysis workflow consists of the following stages (Fig 1):

• Data preprocessing. The data used for analysis must be subjected to quality analysis and nor-

malisation to remove outliers and to allow comparison of samples.

• Statistical analysis (GCA and GCCA). The normalised data is sorted and grouped according

to GCA and GCCA methodology, respectively.

• Functional analysis. The grouped data allows the analysis of a narrower number of data (in

groups) regarding their e.g. function in biological processes.

• Biological Interpretation.

• The most important stage of the analysis is the interpretation of the results, supported by the

results obtained from the app assessing the function that the products of the analysed genes

meet.

Regularisation and grouping data by GCA method
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The individual steps of the workflow are described below.

Microarray data. Gene expression data used in the study was publicly available and

deposited at the NIH Gene Expression Omnibus (GEO) National Center for Biotechnology

Information. The accession number of the source of data: GSE2658. The data concerned the

U133 Plus 2.0 Affymetrix oligonucleotide microarray data from 256 newly diagnosed MM

patients undergoing total therapy 2 (TT2), provided by the Donna D. And Donald M. Lambert

Laboratory of Myeloma Genetics, the University of Arkansas for Medical Sciences, Little Rock,

AR, USA [10]. The data set of 559 myeloma patients (GSE2658) is composed of a patient

enrolled in two different therapies, total therapy 2 (TT2) and total therapy 3 (TT3). The micro-

array analysis was performed on malignant plasma cells at diagnosis of the disease and in con-

sequence the gene expression profile analysed in the manuscript is not influenced by any kind

of therapy. Thus, there is no difference in the expression profile between TT2 and TT3 group

at starting point but the differences are expected once the treatment has been completed. Tak-

ing into consideration that the relation between particular expression profile and the clinical

parameters as overall survival and progression free survival needs to be analysed separately for

TT2 and TT3 group, the one of two groups, exactly the TT2, has been selected for analysis.

Pre-processing data. For background correction and normalisation of gene expression

data the limma library [11] for the R, environment was used [12] [13]. To reduce the variability

of log-ratios for low-intensity spots the ’normexp’ background correction method was used,

while to preserve comparability of distributions across samples the ‘quantile’ normalisation

method was applied.

Statistical analysis: Grade Correspondence Analysis (GCA) and Grade Correspon-

dence-Cluster Analysis (GCCA). Data analysis proceeded with the use of the Grade Corre-

spondence Analysis algorithm (GCA), which seeks regularities in data matrices and identifies

correspondences between their rows and/or columns [14].

The GCA algorithm accepts a data matrix consisting of n rows (patients), each of which

comprises k normalized nonnegative values (columns) which correspond to individual genes.

This input is transformed into a matrix with dimensions n�k which can be formally treated as

a probability matrix Pn�k = [pij] for a two-dimensional distribution. Quantification of measure

(3) yields, for each unit square, a nonnegative function called grade density. Subsequently,

GCA iteratively permutates rows and columns in order to maximize either Kendall’s tau or

Spearman’s rho, arranging them in such a way as to ensure that similar rows and/or columns

are proximate to each other. For the bigger n�k tables permutations randomly rows and col-

umns and reorders them to achieve a local maximum of the tau-Kendall (tau) or rho-Spear-

man (rho) coefficients is time-consuming and computationally demanding. In that cases, to

reach a global maximum of tau or rho within a reasonable time, simulations are used, e.g.

Monte Carlo. In effect, GCA uncovers regularities and monotonicity present in the input

matrix, revealing hidden trends.

When the data structure is irregular and contains no strong monotonic dependencies, out-

lier detection may be applied to single out disruptive elements and subsequently identify regu-

lar subsets referred to as layers.

The subsequent phase, called Grade Correspondence-Cluster Analysis (GCCA), involves

decomposition of each regular data layer produced by GCA into more uniform subsets. At this

point, segmentation becomes bidirectional and yields segments consisting of successive, adja-

cent cases (rows or records) as well as variables (columns). The number of clusters is arbitrarily

defined. Clusters are formed by variance coefficients, maximising the variance between each

Fig 1. Data analysis workflow.

https://doi.org/10.1371/journal.pone.0206608.g001
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pair of groups, i.e. between objects formed by aggregating all elements which comprise each

cluster. The target number of clusters is determined by commonly used scree plots.

The data can be graphically represented as a heatmap.

Grade Correspondence-Cluster Analysis also enables a reduction in data volume by aggre-

gating adjacent rows and columns within each cluster, or by singling out representative cases

for each cluster.

Grade analysis is based on the so-called grade transformation [14] defined for the cumula-

tive distribution function F of a random variable X as follows (1):

F�ðu; xÞ ¼

1

u � Fðx� Þ
FðxþÞ � Fðx� Þ

0

;

if FðxþÞ � u;

if Fðx� Þ � u < FðxþÞ

if Fðx� Þ > u

ð1Þ

8
>>><

>>>:

u 2 ½0; 1�; x 2 R

Where F(x+) is the right-handed limit while G(x-) is the left-handed limit of F at point x.

The grade transformation is, therefore, the only transformation of a random function

through F which is independent of distribution type. It results in a uniform distribution over

the unit range, i.e. F�(u) = u; u belongs to [0,1].

Assuming that the cumulative distribution function H(x,y) describes the joint distribution

of the random vector H(X,Y); F(x) and G(y) are distribution functions which correspond to

edge distributions X and Y; while F�(u,x) and G(v,y) are their corresponding grade transfor-

mations; the grade transformation of the cumulative distribution function H(2), given as

H�ðu; vÞ ¼
RR

R2F�ðu; vÞG�ðv; yÞdHðx; yÞ; ð2Þ

u; v 2 ½0; 1�; x; y 2 R

Maps H onto an unambiguous two-dimensional copula H� referred to as the grade distri-

bution (X,Y). Wherever the edge distribution functions F and G remain continuous this cop-

ula coincides with Sklar’s copula. [15].

The edge distributions for copulas are monotonous over the [0,1] range. The grade distribu-

tion is continuous; the grade density of vector (X,Y) is defined as the distribution density of its

corresponding column. Coefficients which result from applying the aforementioned transfor-

mation to vector parameters are also referred to as grade coefficients.

When the distribution of (X,Y) is discrete, with a probability matrix Pn�k

Pn�k ¼ ðPi;jÞ; i ¼ 1; 2; . . . n; j ¼ 1; 2; . . . k

grade density can be defined as follows (3):

h�ðu; vÞ ¼
pij

pi � pj
; ðu; vÞ 2 Rij; Rij ¼ ½Si� 1; SiÞ � ½Tj� 1;TjÞ ð3Þ

Where Si = p1.+. . ...+pi., Tj = p.1+. . ...+p.j, S0 = T0 = 0, i = 1, . . . n, j = 1, . . . k

pi: ¼ S1
kpi;j p

:j ¼ S1
npi;j

is the density of the two-dimensional distribution with monotonous edges, uniform over each

rectangular region Rij which belongs to the unit square.
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When X and Yare independent, pij = pi.p.j, grade density becomes equal to 1. Accordingly,

grade density at point (u,v) may be interpreted as the measure of local overrepresentation of

the distribution corresponding to pair (X,Y) with respect to the independent distribution

(sharing the same edge values). Charting the grade density for the unit square, using color-

coded values, results in the so-called overrepresentation map. Overrepresentation may adopt

any nonnegative value; however, values from the [0,1) range are sometimes referred to as

underrepresentation.

An important example of a parameter which is invariant to the (X,Y) grade transformation

is the grade correlation coefficient, also known as Spearman’s rho: it directly maps to the grade

distribution correlation coefficient (Spearman’s correlation coefficient for the copula) while

retaining its value. Spearman’s rho is one of the nonparametric measures of a monotonic rela-

tionship between random variables.

For probability matrix Pn�k this coefficient is given by (4):

r�ðPn�kÞ ¼ 3
Xk

j¼1

Xn

i¼1

ðSi� 1 þ Si � 1ÞðTj� 1 þ Tj � 1Þpi;j ð4Þ

Where pi., p,j, Si and Tj are defined as above.

Another measure of the monotonic relationship between random variables which is invari-

ant to the grade transformation is Kendall’s tau coefficient, which, for an arbitrary probability

matrix Pn�k, can be expressed as (5):

tðPn�kÞ ¼ 2
Xn

r¼2

Xr� 1

i¼1

Xk

s¼2

Xs� 1

j¼1

ðpijprs � prjpisÞ ð5Þ

Both rho (6) and tau (7) may also be expressed as measures of variance of rows (or col-

umns) in probability matrix Pn�k in the following manner [7]:

r�ðPn�kÞ ¼ 3
Xn

r¼2

Xr� 1

i¼1

ðSr þ Sr� 1 � Si þ Si� 1Þpi�pr�arðr : iÞ ð6Þ

tðPn�kÞ ¼ 2
Xn

r¼2

Xr� 1

i¼1

pi�pr�arðr : iÞ ð7Þ

Where ar(r:i) is the value of the vector variance coefficient:

pr1
pr�
;
pr2
pr�
; . . .;

prn
pr�

� �

and
pi1
pi�
;
pi2
pi�
; . . .;

pin
pi�

� �

and is defined as (8):

arðr : iÞ ¼
Xk

s¼2

Xs� 1

j¼1

ðpijprs � prjpisÞ
pr�pi�

ð8Þ

Monotonic regularity is expressed by the so-called regularity index [16] (9):

reg ¼
tmaxðpÞ

tabsðPÞ
ð9Þ
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Where tau max is the peak value of τ over all possible permutations of rows and columns

from Pn�k, while tau abs (10) is defined as:

tabsðPn�kÞ ¼ 2
Xn

r¼2

Xr� 1

i¼1

Xk

s¼2

Xs� 1

j¼1

pijprs � prjpisj j ð10Þ

and describes the total variance for all columns and rows in Pn�k

This measure is also invariant to cupola transformation.

The basic tool of grade analysis is the GCA (Grade Correspondence Analysis) algorithm,

which attempts to maximise regularity within a data matrix and also identify the strongest cor-

relations between its rows and columns.

Functional analysis. To analyse and visualise the gene terms for large clusters of genes in

a functionally grouped network the ClueGo (Cytoscape plug-in) was used [17]. The ClueGo

improve biological interpretation of large lists of UP and DOWN regulated genes. It has imple-

mented enrichment tests based on the hypergeometric distribution with Benjamini-Hochberg

correction for multiple testing.

Comparision of GCA versus CUR and random results. The GCA results were compared

with an additional way of analysis of gene expression and discriminant gene selection which

was the CUR-based matrix decompositions method implemented in the rCUR package [18].

Based on the CUR methodology [19], 10% the probes being the of the whole dataset were iden-

tified (k = 4) (rCUR results). Then this subset was sorted by the GCA method and clustered

for 6 clusters in a similar way to the whole original dataset. The rCUR results were compared

to the original data. The GCA results were also compared with the randomly selected probes

divided into six clusters.

Results and discussion

Grade Correspondence Analysis (GCA) results

By maximising the Rho gradation correlation, the GCA algorithms “sorts” the rows and col-

umns of the input matrix. As a result, regular distribution of gene expression profiles (columns

representing probes) for individual patients (rows) is obtained (Fig 2). This ordering is such

that the “trend structure” shows up as darker shading running from the top left to the bottom

right corner, concentrating at these opposite corners. It reveals dependencies whose strength is

measured by global differentiation (peak value of the “rho” coefficient for the input dataset).

The overrepresentation map is composed of 256 horizontal rows where each row represents a

patient. 54 677 columns correspond to 54 677 variables (genes).

The value range is represented by shading. Darker areas mean “higher than expected” val-

ues in the expression matrix. In the presented case, the overrepresentation map obtained after

using the GCA algorithm indicates a higher number of transcripts genes (columns) in areas

marked by intense shading, and a lower number of transcripts in relation to the expected value

in lightly shaded areas (Fig 2B). It can be seen that in some patients the expression of certain

genes is stronger than in other patients.

Grade Correspondence-Cluster analysis (GCCA)

To distinguish groups of patients, with the most extreme differences in gene expression pro-

files, cluster analysis was performed using the GCCA method. The group of patients was

divided into six clusters. Similarly, in the case of genes, to differentiate groups of genes with a

similar level of expression, they were also divided into six clusters (Fig 3A).
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The data presented in Fig 3A is divided into six cluster groups, both horizontally (rows)

and vertically (columns). These variable clusters are a permutation of the 54 677 columns rep-

resenting genes (probes) and 256 rows previously ordered by GCA. As clusters are formed by

Fig 2. Gene expression maps for 54 677 probes in columns (genes) and 256 patients (rows). A) raw data distribution, before applying GCA; B)

overrepresentation map revealing the dominant trend after GCA has been applied. Specific values are represented by shades of grey (with darker shades

corresponding to greater values). The lighter the shading (d,e), the closer the value is to 0; the darker the shading (a,b), the greater the ratio; c–ideal

representation.

https://doi.org/10.1371/journal.pone.0206608.g002

Fig 3. Overrepresentation maps of gene expression after GCCA A) clustering previously ordered data in rows and columns on six groups B) aggregation

data in row clusters by median; bold vertical bars separate gene clusters (1p-6p); bold horizontal lines separate patient clusters (1g-6g). The lighter the

shading (d,e), the closer the value is to 0; the darker the shading (a,b), the greater the ratio c–ideal representation.

https://doi.org/10.1371/journal.pone.0206608.g003
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computing variance coefficients and maximizing the variance between each pair of clusters,

the resulting width of each cluster may vary.

In the next step, a median value was calculated for each cluster (Fig 3B). This approach

increases the readability of the obtained result. Our focus then shifted to those representations

for which the observed differences were the largest, i.e. they contained the level of the most dif-

ferentiating genes expression. Visualization of data after GCCA revealed groups of patients

(rows) whose expression profiles significantly differed from the expected values, i.e. they were

significantly higher or lower (clusters 1/2 and 5/6 respectively). The clusters of genes (in col-

umns) reveal genes whose expression was either higher or lower (clusters 1/2 and 6 respec-

tively) depending on the group of patients (Fig 3B). Hence, the further analysis focused on

patient clusters 1, 2 and 5, 6, while the central rows 3 and 4 were omitted (Fig 4). Gene clusters

3, 4 and 5 (columns) were similarly omitted, leaving only the strongly differentiated clusters 1,

2 and 6 (Fig 4).

Properties of over- or underexpressed genes. Gene expression among patients with Mul-

tiple Myeloma is not very diverse (expression profiles are similar). However, the results of

GCA sorting allowed us to distinguish two groups of patients with slightly different profiles:

the group represented by clusters 1 and 2, and another group consisting of clusters 5 and 6

(Fig 4).

To present quantitative differences in the level of gene expression in the selected groups of

patients, differential analysis of genes was performed. We calculated the relative difference in

the expression of individual genes in clusters 1 and 2 compared to clusters 5 and 6. Genes for

which the difference factor was lower than 1.3 were omitted in the further analysis under the

assumption that they do not have a qualitative impact on the phenotype of the analysed

patients. Consequently, we focused on those genes whose expression was the most diverse (dif-

fering by a factor of at least 1.3). In the following step, we analysed the processes in which

those genes are involved. For the underexpressed genes, statistically significant involvement

(p<0.05) was reported for the following processes (Fig 5A):

• regulation of systemic arterial blood pressure by renin-angiotensin

Fig 4. Overrepresentation map showing the most diverse clusters of genes (columns– 1g, 2g and 6g) and patients (rows aggregated by median– 1p,

2p, 5p and 6p). The lighter the shading (d,e), the closer the value is to 0; the darker the shading (a,b), the greater the ratio c–ideal representation.

https://doi.org/10.1371/journal.pone.0206608.g004
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• embryo development

• morphogenesis of anatomical structures

• detection of chemical stimulus involved in sensory perception of smell

• multicellular organismal development

• regulation of the multicellular organismal process

In contrast, overexpressed genes were found to participate in the following processes (Fig

5B):

• microtubule anchoring at the centrosome

• histone H3-K27 methylation

• cell activation involved in immune response

• peptidyl-lysine modification

It is important to note that the processes in which differentiated genes are involved may be

important for the progression of multiple myeloma. For example, genes whose protein prod-

ucts are associated with embryonic development undergo incorrect regulation during the

development of myeloma, thus contributing to the progression of this cancer [20]. Particularly

noteworthy is the renin-angiotensin system, which in classical terms is responsible for pressure

regulation [21]. However, recent studies indicate that deregulation of the renin-angiotensin

system is observed in some diseases, including cancer [22]. Changes in the expression of genes

Fig 5. Biological processes affected by gene expression differences between both study groups of patients. A) underexpressed genes; B) overexpressed

genes.

https://doi.org/10.1371/journal.pone.0206608.g005
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related to the renin-angiotensin system are observed in parental tumour cells, which indicate

their importance in the process of carcinogenesis [23]. Among the overexpressed genes, a group

associated with the centrosome was demonstrated. This may be important for the prognosis for

multiple myeloma since previous studies have shown that the expression of genes associated

with centrosomes is an independent predictor of myeloma patients [24]. The lysine 27 methyla-

tion process in histone 3 is a modification associated with gene repression and plays a key role

in regulation that ensures a balance between differentiation and proliferation [25]. Accordingly,

any aberrations associated with methylation of lysine 27 in histone 3 may translate into func-

tional changes of myeloma cells, leading to the progression of this cancer. Based on these few

examples, it can be seen that the processes which involve the differentiated genes are important

in the development of myeloma, and that this knowledge may lead to therapies which target

intensified or inhibited processes for specific groups of patients, as appropriate.

Comparison of GCA versus CUR matrix decompositions and random results. To eval-

uate the GCA method described in the manuscript, the results obtained by the GCA method

were compared with the alternative method, i.e. CUR decomposition matrix and with a ran-

dom data set. For this purpose, based on the CUR methodology, a subset of samples (genes)

being representants of the original set was generated (k = 4). A random subset of samples

(genes) was independently generated.

The subsets were grouped by the GCA method on six clusters (similarly to the original set)

and then compared the overlapping samples (genes) in clusters.

The results were in the range of 72% -86% of compatibility of samples in clusters depending

on the cluster for GCA and rCUR results. GCA results in comparison to CUR results for clus-

ters 1 and 6 (from UP and DOWN regulated genes) showed compliance at the level of nearly

82% (Fig 6). In the case of the comparison of GCA results with the randomly selected samples

(genes), compatibility was in the range of 43%-52%. For Cluster 1 and 6, the result was 52.9%

compatibility and 47.1% non-compatibility (Fig 6).

Without penetrating the biological interpretation of the obtained results it was carried out

analyzes on various data sets. Similar results of the method’s effectiveness were obtained. In

the case of data from the GDS2771 (Large airway epithelial cancer from suspect lung cancer)

experiment, that the sorting of cancer data for GCA vs rCUR gives nearly 86% similar results

while the case of GCA vs randomly "sorted" received compliance level: 46%. Based on a set

derived from the GDS4337 (Type 2 diabetic and hyperglycemic pancreatic islets) experiment,

narrowing the analysis to non-diabetic patients, the similarity of the obtained results: GCA vs

rCUR -> 84%; GCA vs random -> 51%

Conclusion

The Grade Correspondence Analysis method is an example of such an approach to an analysis

of gene expression, which includes all probes and treats them independently. In gene expres-

sion microarray studies, hundreds of thousands of probe expressions are measured for a large

number of samples. Not every probe for a particular gene gives a proportional result. Some

probes show that a given gene has a higher expression, other lower. In a typical research meth-

odology, the result for individual genes is the averaging of results obtained for all probes of a

given gene. The publication of studies with dissimilar or contradictory results has raised con-

cerns about the reliability of this way of analysis.

The Grade Correspondence Analysis is a method that can be overcome this problem. Itis

an exploratory method which reveals hidden information by sorting all probes and all patients.

By computing overrepresentation coefficients, the presented method can reveal the degree of

discordance between the expected and observed values, assuming that the distribution remains
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perfectly proportional. The ordering of columns may be thought of as a representation of their

relative “importance” for the structure of the data. Edge cases (located on either side of the

sorted matrix) are more strongly indicative of the observed trends than items in the middle.

Based on the Multiple Myeloma example it was shown how to distinguish groups of patients

and sets of probes (being representatives of genes), to identify particularly interesting patients

and genes that can be used as a starting point for further studies.

GCA and GCCA can be used as an alternative to popular data grouping methods [26] [27],

e.g. gene expression profiles. Processing data with the GCA algorithm may provide an impor-

tant step in the analysis of various biological processes. GCA results integrated with another

biological data (e.g. biochemical pathways, protein interactions, gene signatures) [28] [29] [26]

may constitute a valuable tool in the analysis of the interesting processes. The Grade Corre-

spondence Analysis may be used to regularize and sort matrices including large -omics arrays

(not only transcriptomics data).

In the case of large data resources (including large -omics arrays), to maintain a maximum

amount of information, GCA method used to regularize and sort matrices seems to be a useful

tool for analysis.
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