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Aleksandra Szopa1 & Ewa Poleszak1 & Karolina Bogatko1
& ElżbietaWyska2 & SylwiaWośko1

&Urszula Doboszewska3 &

Katarzyna Świąder1 & Aleksandra Wlaź4 & Jarosław Dudka5 & Andrzej Wróbel6 & Piotr Wlaź3 & Anna Serefko1

Received: 26 April 2018 /Accepted: 27 July 2018 /Published online: 9 August 2018
# The Author(s) 2018

Abstract
The main goal of the present study was to evaluate the influence of the adenosine A1 receptor (A1R) antagonist — DPCPX — on
depressive-like behavior in mice, as well as the effect of DPCPX on the activity of imipramine, escitalopram, and reboxetine, each at
non-effective doses. The influence of DPCPX on behavior and its influence on the activity of selected antidepressants was evaluated in
the forced swim test (FST) and the tail suspension test (TST) in mice. Locomotor activity was measured to verify and exclude false-
positive data obtained in the FSTand TST. Moreover, serum and brain concentrations of tested antidepressants were determined using
HPLC. DPCPX, at doses of 2 and 4 mg/kg, exhibited antidepressant activity in the FSTand TST, which was not related to changes in
the spontaneous locomotor activity. Co-administration of DPCPX with imipramine, escitalopram, or reboxetine, each at non-active
doses, significantly reduced the immobilization period in the FST and TST in mice, which was not due to the increase in locomotor
activity. Both antagonists of 5-HT receptors (WAY 100635 and ritanserin) completely antagonized the effect elicited by DPCPX in the
behavioral tests. Results of assessment of the nature of the interaction between DPCPX and test drugs show that in the case of DPCPX
and imipramine or reboxetine, there were pharmacodynamic interactions, whereas the DPCPX-escitalopram interaction is at least
partially pharmacokinetic in nature. Presented outcomes indicate that an inhibition of A1Rs and an increase of monoaminergic
transduction in the CNS may offer a novel strategy for the development of antidepressant drugs.
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Introduction

It is known that adenosine is involved not only in the regula-
tion of a wide range of behaviors, moods, and emotions
(Boison 2008; Cunha et al. 2008; El Yacoubi et al. 2000;
Ruby et al. 2010; Asatryan et al. 2011), but also cognitive
processes (Kopf et al. 1999) and motor activity (Brockwell
and Beninger 1996). Adenosine as a neuromodulator exerts
its functions through the activation of four G-protein-coupled
adenosine receptors (AR) — A1, A2A, A2B, and A3
(Fredholm et al. 2001, 2005a, b; Jacobson and Gao 2006;
Boison 2008). Their roles and pharmacology have been ana-
lyzed in detail, with respect to control of transmitter release,
modulation of neuronal excitability, and regulation of ion
channel function (Fredholm et al. 1999, 2005a, b; Ferré et
al. 2010).

Adenosine, adenosine analogs, and adenosine degrada-
tion inhibitors, which cause the non-selective AR activa-
tion, induce depressive-like behaviors in some animal
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models of depression (Kulkarni and Mehta 1985;
Woodson et al. 1998). On the other hand, much data in-
dicate that a non-selective pharmacological inhibition of
adenosine receptors (e.g., administration of methylxan-
thines such as caffeine, theophylline) may reduce
depressive-like behaviors in laboratory animals (Minor et
al. 1994a, b; El Yacoubi et al. 2003; Minor and Hanff
2015; Szopa et al. 2016). However, Kaster et al. (2004,
2005a, b, 2007) presented the contrary data, which indi-
cated that the non-selective activation of adenosine recep-
tors decreased the immobilization period in the forced
swim test (FST) and tail suspension test (TST) in mice.

Nowadays, due to the high stress accompanying every-
day life, the number of patients suffering from mental
illness increases annually. As a consequence, psychiatric
disorders, including depression, have become one of the
biggest problems worldwide (Wittchen et al. 2011; Olesen
et al. 2012; WHO 2017). Despite the availability of a
wide range of drugs for mental diseases with various
mechanisms of action, therapeutic effects are still not op-
timal, and there is an urgent need to develop alternative
therapeutic options. Recently, a particular attention has
been given to a relationship between adenosine, adenosine
receptors, and processes occurring in the brain under nor-
mal and disease conditions (Yamada et al. 2014), so they
are perceived as important therapeutic targets (Chen et al.
2013; Sachdeva and Gupta 2013; Yamada et al. 2014;
Vincenzi et al. 2016).

Considerable literature indicates that inhibition of
adenosine neurotransmission may decrease the symptoms
of mental illness, including depression, so it is of interest
to determine the effect of A1R antagonist on the activity
of commonly used antidepressants. The main goal of this
study was to assess the effect of DPCPX — a selective
A1-receptor antagonist — on animal behavior during
short-term exposure to inescapable and uncontrollable
stress. A further goal was to evaluate the influence of
DPCPX on the activity of three common antidepressants
representing different classes, imipramine — a tricyclic
antidepressant (TCA), escitalopram — a selective seroto-
nin reuptake inhibitor (SSRI), and reboxetine — a selec-
tive noradrenaline reuptake inhibitor (SNRI). Two behav-
ioral tests widely used to determine antidepressant prop-
erties of drugs, the FST, and TST, were used. To verify
and exclude false-positive/negative outcomes, spontane-
ous locomotor activity was measured. In order to
elucidate the role of serotoninergic receptors 5-HT1A
and 5-HT2 in the actions of tested substances, we used
selective antagonists of these receptors — WAY 100635
and ritanserin, respectively. The effect of DPCPX on the
level of antidepressants in murine serum and brain ho-
mogenates was estimated using high-performance liquid
chromatography (HPLC).

Materials and methods

Animals

Adult male albino Swiss mice weighing 25–30 g form li-
censed breeder (Kołacz, Warsaw, Poland) were used for all
experiments. The animals were housed in environmentally
controlled rooms (temperature maintained at 21–25 °C and
humidity 40–60%) in groups of ten in standard cages with
unlimited access to water and food, with a 12 h light/dark
cycle. The procedures began after at least a 1-week acclima-
tization period in the facility and were performed between 8
a.m. and 3 p.m. to minimize circadian influences. All proce-
dures were conducted in accordance with the European
Communities Council Directive and Polish legislation acts
concerning animal experimentations. The procedures and pro-
tocols were approved by the First Local Ethics Committee at
the Medical University of Lublin (license no 5/2015).

Drug administration

DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 1, 2, and 4 mg/
kg, Sigma-Aldrich, Poznań, Poland) was suspended in a 1%
aqueous solution of Tween 80 (POCH S.A., Gliwice, Poland).
Imipramine hydrochloride (15 mg/kg, Sigma-Aldrich),
reboxetine mesylate (2.5 mg/kg, Ascent Scientific,
Cambridge, UK), escitalopram oxalate (2 mg/kg, Sigma-
Aldrich), WAY 100635 (0.1 mg/kg, Sigma-Aldrich), and
ritanserin (4 mg/kg, Sigma-Aldrich) were dissolved in 0.9%
NaCl. All solutions were administrated intraperitoneally (ip)
60 min, whereas DPCPX suspension was injected ip 30 min
prior to behavioral testing. The volume of all administrated
solutions/suspension was 10 ml/kg. Time of drugs administra-
tion was chosen so that the behavioral tests were performed at
the point of maximum effect of these substances. The doses
and pretreatment schedules were selected on the basis of the
literature and prior results (Poleszak 2007; Poleszak et al.
2005, 2011; Szewczyk et al. 2002, 2009; Szopa et al. 2016;
Poleszak et al. 2016). In the studies in which the influence of
DPCPX on the activity of common antidepressants was ex-
amined the non-active doses of DPCPX (1 mg/kg), and tested
antidepressants were injected. In turn, in experiments with 5-
HT receptor antagonists, an effective dose of DPCPX (2 mg/
kg) was used to show whether the serotoninergic receptors 5-
HT1A and 5-HT2 are involved in the operation of DPCPX
antidepressant-like activity. Control groups received ip injec-
tions of saline.

Forced swim test

The FSTwas carried out according to the method of Porsolt et
al. (1977). Each mouse was placed individually for 6 min into
a glass cylinder (height 25 cm, diameter 10 cm) containing
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15 cm of water at 23–25 °C. After the first 2 min of the test,
total duration of immobility was measured. A mouse was
judged to be immobile when it ceased struggling and
remained floating motionless and making only movements
allowing to keep the head just above the surface of water.
FST results are presented as the average duration of immobil-
ity time (seconds) ± standard error of the mean (SEM) for each
experimental group.

Tail suspension test

The TST was carried out according to the method of Steru et
al. (1985). Each mouse was suspended individually for 6 min
by the tail (2 cm from the end of the tail) using adhesive tape.
After the first 2 min of the test, total duration of immobility
was measured. A mouse was judged to be immobile when it
ceased moving limbs and body, making only movements re-
quired to breathe. TST results are presented as the average
duration of immobility time (seconds) ± SEM for each exper-
imental group.

Spontaneous locomotor activity

Spontaneous locomotor activity was measured using Opto-
Varimex-4 Auto-Track (Columbus Instruments, Columbus,
OH, USA) which consist of four cages made of Plexiglas with
lids (43 × 43 × 32 cm). The cages were equipped with a set of
four infrared emitters and four detectors, which monitor ani-
mal movements. Each mouse was placed individually for
6 min into a cage to determine the distance traveled by the
animal between 2 and 6 min, which corresponds with the time
interval analyzed in the FST and TST. Results obtained in the
spontaneous locomotor activity test are presented as the aver-
age distance traveled by mice (cm) ± SEM for each experi-
mental group.

Determination of antidepressant drugs levels
in serum and brains homogenates of mice

To obtain blood and brain for pharmacokinetic studies, mice
were decapitated 60 min after administration of antidepressant
drug with or without DPCPX. The blood was collected into
Eppendorf tubes and allowed to cloth. Samples were then
centrifuged for 10min at 1000 rpm, and the centrifuged serum
were collected into polyethylene tubes and frozen at − 25 °C.
Brains, just after decapitation, were dissected from the skulls,
rinsed with 0.9% NaCl, and frozen at − 25 °C.

Brain and serum concentrations of antidepressants were
assayed by HPLC as described previously (Poleszak et al.
2016; Szopa et al. 2016).

Calibration curves constructed on the basis of the ratios of
the peak heights of the tested drugs to the peak heights of the
appropriate internal standards versus the known drug

concentrations were linear in the tested concentration ranges.
No interfering peaks were observed in the chromatograms.
Assays were reproducible with low intra- and inter-day varia-
tion (a coefficient of variation less than 10%). The extraction
efficiencies of the analyzed compounds and internal standards
ranged from 66 to 97%. Concentrations of antidepressants
were expressed in ng/ml of serum and ng/g of wet brain tissue.

Statistical analysis

Statistical analysis was performed using one-way ANOVA
with Dunnet t’s post hoc, two-way ANOVA with
Bonferroni’s post hoc test, or Student’s t test, depending on
the study design. Results are considered statistically signifi-
cant when the p values were ≤ 0.05.

Results

Forced swim test

DPCPX and antidepressants

DPCPX, at doses of 1, 2, and 4 mg/kg, was administered to
ascertain the dose-effect relationship in the FST (Fig. 1a).
DPCPX at doses of 2 and 4 mg/kg, but not 1 mg/kg, caused
a significant shortening of the duration of immobility in the
FST vs saline-treated group [one-way ANOVA F(3,33) =
9.196; **p < 0.01, ***p < 0.001, p > 0.05 respectively].

Imipramine (15 mg/kg) did not statistically significant
changes in the FST (p > 0.05). Significant immobility time
reduction was noted when DPCPX and imipramine were co-
administered in non-effective doses (1 and 15 mg/kg, respec-
tively) (p < 0.0001 vs DPCPX-treated group, p < 0.001 vs
imipramine-treated group) (Fig. 2a). A significant effect of
imipramine [F(1,36) = 18.33, p = 0.0001], a significant effect
of DPCPX [F(1,36) = 10.52, p = 0.0025], and a significant in-
teraction between imipramine and DPCPX [F(1,36) = 7.27,
p = 0.0106] were shown in the two-way ANOVA analysis.

Escitalopram (2 mg/kg) did not cause statistically signifi-
cant changes in the FST (p > 0.05). Significant immobility
time reduction was noted when DPCPX and escitalopram
were co-administered in non-effective doses (1 and 2 mg/kg,
respectively) (p < 0.05 vs DPCPX-treated group and
escitalopram-treated group) (Fig. 2b). A significant effect of
escitalopram [F(1,35) = 6.115, p = 0.0184], a significant effect
of DPCPX [F(1,35) = 4.435, p = 0.0424], and no interaction
between escitalopram and DPCPX were shown in the two-
way ANOVA analysis.

Reboxetine (2.5 mg/kg) did not cause statistically signifi-
cant changes in the FST (p > 0.05). Significant immobility
time reduction was noted when DPCPX and reboxetine were
co-administered in non-effective doses (1 and 2.5 mg/kg,
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respectively) (p < 0.01 vs DPCPX-treated group and
reboxetine-treated group) (Fig. 2c). No effect of reboxetine
[F(1,36) = 3.55, p = 0.0676], a significant effect of DPCPX
[F(1,36) = 8636, p = 0.0057], and a significant interaction be-
tween reboxetine and DPCPX [F(1,36) = 5.617, p = 0.0233]
were shown in the two-way ANOVA analysis.

5-HT receptor antagonists and intrinsic effects of DPCPX

WAY 100635 influenced DPCPX antidepressant-like activity
in the FST as demonstrated in Fig. 4a. DPCPX (2 mg/kg), but
not WAY 100635 (0.1 mg/kg), produced a statistically signif-
icant change in animal behavior in the FST (p < 0.01 and p >
0.05, respectively). The antidepressant-like effect of DPCPX
(2 mg/kg) was reduced by the injection of WAY 100635 at a
dose of 0.1 mg/kg (p < 0.0001 vs DPCPX-treated group). A
significant effect of WAY 100635 [F(1,26) = 15.91; p =
0.0005], no effect of DPCPX [F(1,26) = 3.748; p = 0.0638],
and a significant interaction between WAY 100.635 and
DPCPX [F(1,26) = 9.273; p = 0.0053] were shown in the
two-way ANOVA analysis.

Ritanserin influenced DPCPX antidepressant-like activity
in the FST as demonstrated in Fig. 4b. DPCPX (2 mg/kg), but

not ritanserin (4 mg/kg), produced a statistically significant
change in animal behavior in the FST (p < 0.01 and p > 0.05,
respectively). Antidepressant-like effect of DPCPX (2 mg/kg)
was reduced by the injection of ritanserin at a dose of 4 mg/kg
(p < 0.001 vs DPCPX-treated group). A significant effect of
ritanserin [F(1,25) = 16.41; p = 0.0004], no effect of DPCPX
[F(1,25) = 3.094; p = 0.0908], and a significant interaction

Fig. 2 Effect of combined administration of DPCPX and antidepressants
in the FST in mice. Antidepressants and saline were administered ip
60 min, whereas DPCPX ip 30 min prior to the test. The data are
presented as the means + SEM. Each experimental group consisted of
ten animals. a. ****p < 0.0001 vsDPCPX-treated group, ***p < 0.001 vs
imipramine-treated group. b. *p < 0.05 vs DPCPX-treated group and
escitalopram-treated group. c. **p < 0.01 vs DPCPX-treated group and
reboxetine-treated group (two-way ANOVA followed by Bonferroni’s
post hoc test)

Fig. 1 The antidepressant activity of DPCPX in the FST (a) and TST (b)
in mice. DPCPX and saline were administered ip 30 min prior to the test.
The data are presented as the means + SEM. Each experimental group
consisted of ten animals. *p < 0.05, **p < 0.01, ***p < 0.001 vs control
group (one-way ANOVA followed by Dunnett’s post hoc test)
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between ritanserin and DPCPX [F(1,25) = 8.298; p = 0.0080]
were shown in the two-way ANOVA analysis.

Tail suspension test

DPCPX and antidepressants

DPCPX, at doses of 1, 2, and 4 mg/kg, was administered to
ascertain the dose-effect relationship in the TST (Fig. 1b).
DPCPX at doses of 2 and 4 mg/kg, but not 1 mg/kg, caused
a significant shortening of the duration of the animals’ immo-
bility in the FST vs saline-treated group [one way ANOVA
F(3,36) = 6.239, *p < 0.05, **p < 0.01, p > 0.05 respectively].

Imipramine (15 mg/kg) did not cause statistically signifi-
cant changes in the TST (p > 0.05). Significant immobility
time reduction was noted when DPCPX and imipramine were
co-administered in non-effective doses (1 and 15 mg/kg, re-
spectively) (p < 0.0001 vs DPCPX-treated group, p < 0.01 vs
imipramine-treated group) (Fig. 3a). A significant effect of
imipramine [F(1,36) = 21.39, p < 0.001], a significant effect
of DPCPX [F(1,36) = 6.255, p = 0.0171], and a significant in-
teraction between imipramine and DPCPX [F(1,36) = 5.217,
p = 0.0284] were shown in the two-way ANOVA analysis.

Escitalopram (2 mg/kg) did not cause statistically signifi-
cant changes in the TST (p > 0.05). Significant immobility
time reduction was noted when DPCPX and escitalopram
were co-administered in non-effective doses (1 and 2 mg/kg,
respectively) (p < 0.05 vs DPCPX-treated group and
escitalopram-treated group) (Fig. 3b). A significant effect of
escitalopram [F(1,36) = 6.006, p = 0.0192], no effect of
DPCPX [F(1,36) = 3.179, p = 0.0830], and no interaction be-
tween escitalopram and DPCPX [F(1,36) = 2.383, p = 0.1314]
were shown in the two-way ANOVA analysis.

Reboxetine (2.5 mg/kg) did not cause statistically signifi-
cant changes in the TST (p > 0.05). Significant immobility
time reduction was noted when DPCPX and reboxetine were
co-administered in non-effective doses (1 and 2.5 mg/kg, re-
spectively) (p < 0.001 vs DPCPX-treated group, p < 0.01 vs
reboxetine-treated group) (Fig. 3c). A significant effect of
reboxetine [F(1,36) = 20.08, p < 0,001], no effect of DPCPX
[F(1,36) = 4.072, p = 0.0511], and no interaction between
reboxetine and DPCPX [F(1,36) = 3.262, p = 0.0793] were
shown in the two-way ANOVA analysis.

5-HT receptor antagonists and intrinsic effects of DPCPX

WAY 100635 influenced DPCPX antidepressant-like activity
in the TST as demonstrated in Fig. 4c. DPCPX (2 mg/kg), but
not WAY 100635 (0.1 mg/kg), produced a statistically signif-
icant change in animal behavior in the FST (p < 0.01 and p >
0.05, respectively). The antidepressant-like effect of DPCPX
(2 mg/kg) was reduced by the injection of WAY 100635 at a
dose of 0.1 mg/kg (p < 0.001 vs DPCPX-treated group). A

significant effect of WAY 100635 [F(1,28) = 10.99; p =
0.0025], no effect of DPCPX [F(1,28) = 3.567; p = 0.0693],
and a significant interaction between WAY 100635 and
DPCPX [F(1,28) = 7.058; p = 0.0129] were shown in the
two-way ANOVA analysis.

Fig. 3 Effect of combined administration of DPCPX and antidepressants
in the TST in mice. Antidepressants and saline were administered ip
60 min, whereas DPCPX ip 30 min prior the test. The data are
presented as the means + SEM. Each experimental group consisted of
ten animals. a. ****p < 0.0001 vs DPCPX-treated group, **p < 0.01 vs
imipramine-treated group. b. *p < 0.05 vs DPCPX-treated group and
escitalopram-treated group. c. ***p < 0.01 vs DPCPX-treated group, *p
< 0.05 vs reboxetine-treated group (two-way ANOVA followed by
Bonferroni’s post hoc test)
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Ritanserin influenced DPCPX antidepressant-like activity in
the TSTas demonstrated in Fig. 4d. DPCPX (2 mg/kg), but not
ritanserin (4 mg/kg), produced a statistically significant change
in animal behavior in the TST (p < 0.01 and p > 0.05, respec-
tively). The antidepressant-like effect of DPCPX (2 mg/kg)
was reduced by the injection of ritanserin at a dose of 4 mg/
kg (p < 0.0001 vs DPCPX-treated group). A significant effect
of ritanserin [F(1,28) = 15.55; p = 0.0005], no effect of DPCPX
[F(1,28) = 0.9525; p = 0.3374], and a significant interaction be-
tween ritanserin and DPCPX [F(1,28) = 12.62; p = 0.0014]
were shown in the two-way ANOVA analysis.

Spontaneous locomotor activity

The effect of DPCPX (1, 2, and 4 mg/kg) and combined ad-
ministration of DPCPX and the tested antidepressants on
spontaneous locomotor activity in mice is shown in Tables 1
and 2. DPCPX (1, 2, and 4 mg/kg), imipramine (15 mg/kg),
escitalopram (2 mg/kg), reboxetine (2.5 mg/kg), and WAY
100635 (0.1 mg/kg) given alone or in combination had no
statistically significant effects on locomotor activity in mice.
A single injection of ritanserin (4 mg/kg) and combined ad-
ministration of DPCPX with ritanserin significantly (p <
0.001) shortened the locomotor activity in mice.

The two-wayANOVA demonstrated: (A) no effect of imip-
ramine [F(1,28) = 0.1096, p = 0.7431], no effect of DPCPX

[F(1,28) = 0.2924, p = 0.5930], and no interaction [F(1,28) =
0.2503, p = 0.6208]. (B) no effect of escitalopram [F(1,28) =
0.7513; p = 0.3934], no effect of DPCPX [F(1,28) =
0.0001025, p = 0.9920], and no interaction [F(1,28) =
0.001185, p = 0.9728]. (C) no effect of reboxetine
[F(1,28) = 0.08898, p = 0.7677], no effect of DPCPX
[F(1,28) = 0.04666, p = 0.8305], and no interaction
[F(1,28) = 0.06826, p = 0.7958]. (D) no effect of WAY
100635 [F(1,28) = 0.1493, p = 0.7021], no effect of DPCPX
[F(1,28) = 0.001156; p = 0.9731], and no interaction
[F(1,28) = 0.1178, p = 0.7340]. (E) a significant effect of
ritanserin [F(1,27) = 59.45, p < 0,001], no effect of DPCPX

Fig. 4 Effect of combined
administration of DPCPX and
selective antagonists of serotonin
receptors 5-HT1A and 5-HT2 in
the FST (a, b) and TST (c, d) in
mice. WAY 100635, ritanserin,
and saline were administered ip
60 min, whereas DPCPX ip
30 min prior to the test. The data
are presented as the means +
SEM. Each experimental group
consisted of ten animals. **p <
0.01 vs control group, ***p <
0.001, ****p < 0.0001 vs
DPCPX-treated group (two-way
ANOVA followed by
Bonferroni’s post hoc test)

Table 1 Effect of DPCPX on locomotor activity in mice

Treatment (mg/kg) Distance traveled (cm)

Saline (control group) 638.4 ± 85.12

DPCPX 1 589.4 ± 60.34

DPCPX 2
DPCPX 4

425.6 ± 60.13
487.6 ± 78.95

DPCPX and saline were administered ip 30 min prior to the test. Distance
traveled was recorded between the 2nd and the 6th min of the test. The
data are presented as the means ± SEM. Each experimental group
consisted of eight animals. The results were considered statistically sig-
nificant if p < 0.05 (one-way ANOVA followed by Dunnett’s post hoc
test)
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[F(1,27) = 0.009954, p = 0.9213], and no interaction
[F(1,27) = 0.2720, p = 0.6062].

Pharmacokinetic studies

The effect of DPCPX on serum and brain concentrations of
antidepressants in mice is shown in Table 3. In the case of
combined administration of DPCPX with imipramine and
reboxetine, no significant changes in drug concentration were
observed in murine serum and brain homogenates. DPCPX
increased the concentration of escitalopram (t test p < 0.01) in
brain tissue without significant changes in serum (t test p >
0.05).

Discussion

DPCPX and antidepressant drug activity in the FST
and TST

Behavioral despair and learned helplessness are typical symp-
toms of depressive disorders, and adenosine systems may be
involved. Outcomes obtained by Woodson et al. suggested
that an essential constituent in behavior induced by stress are
adenosine and its receptor activation (Woodson et al. 1998).
Moreover, Minor et al. indicated that depression-like effects in
rodents are induced by administration either of a non-selective
AR agonist (NECA) or a highly selective A1R agonist (R-
PIA) (Minor et al. 1994b). Antidepressant-like activity of the

non-selective ARs antagonist caffeine has been demonstrated
in the FST and TST, and such effects were comparable with
that of TCAs (Enríquez-Castillo et al. 2008; Vieira et al. 2008;
Gan 2009; Szopa et al. 2016).

In the present study, the antidepressant-like effect of
DPCPX in the FST and TST in mice has been shown. Doses
of 2 and 4 mg/kg produced a significant reduction in the im-
mobility time of animals in carried out behavioral tests, where-
as the lowest dose of DPCPX − 1 mg/kg — did not exhibit
antidepressant-like activity. The highest density of A1Rs is
found in the brain, especially in the hippocampus, cortex,
and striatum (Ochiishi et al. 1999; Hoyer et al. 2002;
Hannon and Hoyer 2008; Wei et al. 2011). A1Rs stimulation
leads to an inhibition of several neurotransmitter release and a
reduction in postsynaptic excitability (Dunwiddie and Masino
2001). Inversely, an inhibition of these receptors causes a
stimulation of neurotransmitter release (e.g., ACh, 5-HT,
NA, DA) (Nestler et al. 2002). Shortening of the immobility
duration in the FST and TST after administration of the selec-
tive A1R antagonist DPCPX, which has a xanthine structure,
is probably the result of increased serotonergic, noradrenergic,
and dopaminergic transduction (Müller and Scior 1993; Ferré
et al. 1996; Müller and Stein 1996; Fredholm et al. 2005b;
Górska and Gołembiowska 2015). These outcomes seem to be
in disagreement to data that enhancement of adenosine is a
possible treatment strategy for depression (Kaster et al. 2004).

The present findings demonstrate that DPCPX affects the
action of imipramine, escitalopram, and reboxetine, and these
are novel observations. Simultaneous administration of
DPCPX and these agents at non-active doses resulted in a
statistically significant reduction in the immobility times in
either the FSTor TST. Also, Herbet et al. have shown recently
that co-administration of other selective A1R antagonist —
CPT (8-cyclopentyl-1,3-dimethylxanthine, 3 mg/kg) — with
imipramine at a non-active doses resulted in a statistically
significant reduction in the immobility times during the be-
havioral test using short-term exposure to inescapable and/or
uncontrollable stress (Herbet et al. 2018). Synergism of anti-
depressant actions was also observed using concomitant ad-
ministration of TCAs, SSRIs, and SNRIs and the non-
selective AR antagonist — caffeine — at ineffective doses
in the mice FST (Szopa et al. 2016). The excitation of AR
by adenosine, adenosine analogs, and selective AR agonists
modulates serotonergic and dopaminergic neurotransmission
(Regenold and Illes 1990; Okada et al. 2001; Yamato et al.
2002), and consequently decreases levels of ACh, 5-HT, and
DA in the CNS (Okada et al. 2002). Furthermore, these sub-
stances suppress medicinal effects of commonly used antide-
pressants (Barcellos et al. 1998). Drugs which increase levels
of monoamines such as 5-HT, NA, and DA in the CNS play a
vital role in antidepressant therapy. DPCPX selectively influ-
ences A1Rs, which are presented on serotonergic neurons in
the locus coeruleus (Regenold and Illes 1990) and the dorsal

Table 2 Effect of treatments on spontaneous locomotor activity in mice

Treatment (mg/kg) Distance traveled (cm)

(A) Saline + saline 490.6 ± 50.75

DPCPX 1 + saline 487.9 ± 72.85

Imipramine 15 + saline 547.1 ± 64.74

DPCPX 1 + imipramine 15 476.4 ± 80.00

Escitalopram 2 + saline 542.0 ± 58.06

DPCPX 1 + escitalopram 2 543.5 ± 63.09

Reboxetine 2.5 + saline 456.6 ± 68.06

DPCPX 1 + reboxetine 2.5 485.6 ± 47.43

(B) Saline + saline 538.9 ± 72.09

DPCPX 2 + saline 516.0 ± 53.41

WAY 0.1 + saline 494.6 ± 41.80

DPCPX 2 +WAY 0.1 513.4 ± 70.12

Ritanserin 4 + saline 92.43 ± 36.67***

DPCPX 2 + ritanserin 4 126.1 ± 43.53***

Antidepressants, WAY, ritanserin, and saline were administered ip
60 min, whereas DPCPX ip 30 min prior to the test. Distance traveled
was recorded between the 2nd and the 6th min of the test. Each experi-
mental group consisted of eight animals. Data are presented as the means
± SEM. ***p < 0.001 vs DPCPX-treated and control group (two-way
ANOVA followed by Bonferoni’s post hoc test)
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raphe nucleus (Mössner et al. 2000). The non-selective and
selective blockage of A1Rs inhibits effects of endogenous
adenosine and cause the opposite effect with regard to the
NA and 5-HT transduction (Müller and Scior 1993; Müller
and Stein 1996; Fredholm et al. 2005a, b). Preclinical and
clinical studies show that antidepressant treatment affects
ARs and modify behavioral responses. For example, TCAs
are capable of attaching to ARs causing a reduction of extra-
cellular adenosine level in the CNS synapses (Barcellos et al.
1998). All tested antidepressant agents modulate monoamin-
ergic transmission: imipramine non-selectively inhibits neuro-
nal NA and 5-HT reuptake (Sulser et al. 1962), escitalopram is
the selective 5-HT reuptake inhibitor (Bræstrup and Sanchez
2004), while reboxetine selectively blocks neuronal reuptake
of NA in the CNS (Hajós et al. 2004). The above effects may
explain synergy observed between DPCPX and imipramine,
escitalopram, and reboxetine in the present study.

5-HT receptor antagonists and intrinsic effects
of DPCPX

The serotonin 5-HT1A receptor is an autoreceptor bestead on
serotonergic neurons in the raphe nuclei (Sprouse and
Aghajanian 1988) and is also found as a postsynaptic receptor
localized in the hippocampus and amygdala (Chalmers and
Watson 1991). In turn, the 5-HT2 receptor is located mainly
on the postsynaptic serotonergic neurons in forebrain (López-
Giménez et al. 1997). A1Rs are found in close proximity of 5-
HT1 and 5-HT2A receptors. A high level of A1R expression
was found in the cerebral cortex, hippocampus, cerebellum,
striatum, and in the thalamic nuclei (Hoyer et al. 2002;
Hannon and Hoyer 2008). This arrangement of receptors
may indicate their mutual interaction. Due to the high proba-
bility that DPCPX affects serotonergic transmission based on
common localization of receptors, an attempt was made to
elucidate the involvement of serotonin 5-HT1A and 5-
HT2A/2C receptor in its action. In our study, we determined

whether pharmacological antagonism of 5-HT1A or 5-HT2
receptors (WAY 100635 and ritanserin, respectively) would
modulate DPCPX activity in the FST and TST. Results show
that WAY 100635 (0.1 mg/kg) and ritanserin (4 mg/kg)
completely antagonized the effect of DPCPX (2 mg/kg) in
both tests. Antidepressant-like activity of DPCPX in the FST
and TST appears to be dependent, at least in part, on
the serotonergic transmission via 5-HT1A and 5-HT2A/C.
Supporting our proposal, results obtained by Detke et al.
(1995), Redrobe et al. (1996), Redrobe and Bourin (1997),
and Abert and Lemonde (2004) which demonstrated that 5-
HT1A and 5-HT2A/C receptors participate in SSRIs
antidepressant-like effect in rodent screening tests.

Spontaneous locomotor activity

Since it is widely known that the antidepressant-like effect in
the FST and TST may be evoked by the substances which
induce hyperactivity, the influence of DPCPX and its combi-
nation with antidepressants on the spontaneous locomotor ac-
tivity was evaluated. Shortening of the duration of immobility
observed in presented studies was not associated with the
increase of spontaneous locomotor activity. This is consistent
with the results in Suzuki et al., which demonstrated that A1-
selective antagonists did not increase spontaneous locomotion
(Suzuki et al. 1993). Only ritanserin combined with DPCPX
inhibited spontaneous locomotor activity. In other studies,
similar effects on locomotor activity were observed after ad-
ministration of ritanserin and compounds with potential
antidepressant-like activity (Szewczyk et al. 2009; Poleszak
et al. 2016).

Pharmacokinetic studies

Pharmacokinetic investigation in the present study allowed us
to assess concentrations of imipramine, escitalopram, and
reboxetine in mice blood and brain after their combined

Table 3 Effect of DPCPX on the
concentration of antidepressants
in mouse serum and brain

Treatment (mg/kg) Antidepressants concentration in
serum (ng/ml)

Antidepressants concentration in
brain (ng/g)

(A) Imipramine 15 + saline 328.7 ± 80.42 5522 ± 943.7

(Metabolite — desipramine) (48.69 ± 7.070) (170.0 ± 50.94)

Imipramine 15 + DPCPX 1 225.1 ± 36.19 p = 0.2556 5735 ± 894.2 p = 0.8717

(Metabolite — desipramine) (36.29 ± 3.307) p = 0.1444 (212.0 ± 22.35) p = 0.7695

(B) Escitalopram 2 + saline 57.51 ± 7.092 595.1 ± 65.31

Escitalopram 2 +DPCPX 1 66.27 ± 6.603 p = 0.3783 816.4 ± 38.35** p = 0.0091

(C) Reboxetine 2.5 + saline 99.60 ± 11.67 208.5 ± 28.37

Reboxetine 2.5 + DPCPX 1 110.0 ± 15.33 p = 0.5975 193.4 ± 18.91 p = 0.6642

Antidepressants were administered ip 60min, whereas DPCPX ip 30min prior to decapitation. Each experimental
group consisted of ten animals. Results are presented as mean values ± SEM. **p < 0.01 vs respective control
group (Student’s t test)
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administration with DPCPX and was aimed at determining
drug-drug interactions involving changes in drug disposition.
The present work is the first study in which such an attempt
was made. There is no information about DPCPX pharmaco-
kinetics in rodents or humans. Because DPCPX is a xanthine
derivative (Müller and Jacobson 2011), it is likely that its
metabolism is similar to that of other xanthines, e.g., caffeine
and theophylline. The role of cytochromes P450 (CYPs) in the
oxidative biotransformation of most drugs is well documented
(Caccia 1998; Nelson et al. 2004; Guengerich 2008; Zanger et
al. 2008). CYP1A2, the main isoenzyme responsible for the
metabolism of xanthines, including caffeine, is also involved
in metabolism of commonly used antidepressant drugs
(Caccia 1998). Based on HPLC analysis of murine blood
and brain tissue, we found that DPCPX does not statistically
significantly affect the concentrations of imipramine, its active
metabolite desipramine, and reboxetine. In the case of
DPCPX and escitalopram, a significant increase in levels of
antidepressant drug in the brain but no changes in the serum
were noted. These outcomes suggest that DPCPX-impramine
and DPCPX-reboxetine interaction are probably due to chang-
es at the cellular level, so are pharmacodynamic in nature.
Augmentation of escitalopram levels in the brain may be
due to the facilitated transport of this drug through the
blood-brain barrier (Pardridge 2005, 2007) after concomitant
injection with DPCPX. The increase in antidepressant-like
activity of escitalopram observed in the behavioral tests may
be partly the result of pharmacokinetic interaction between
DPCPX and escitalopram.

Conclusions

In summary, we demonstrated that DPCPX produced an
antidepressant-like effect. Furthermore, DPCPX significantly
augmented the antidepressant-like potential of a TCA, SSRI,
and SNRI without affecting spontaneous locomotor activity.
The simultaneous blockage of A1Rs and increase of mono-
amine transduction in the CNS may offer an alternative target
in the development of new options for the pharmacological
treatment in patients with depression. In the near future, we
are planning to perform studies using chronic concomitant
administration of A1Rs antagonists and commonly used
antidepressants.
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