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Abstract
One of the species of mushrooms authorized for sale in some countries—Tricholoma equestre—can be harmful, and its 
excessive consumption can lead to serious health problems. Many authors have pointed to the relationship between the 
consumption of the T. equestre and the occurrence of rhabdomyolysis. The aim of this study was to analyze the composition 
of biologically active substances in the T. equestre fruiting bodies, and determine their biological activity. The main aim of 
the analyses performed in the present study was to determine whether the T. equestre is safe or dangerous for consumption 
by humans. The obtained results, in addition to the existing reports on poisoning caused by T. equestre consumption, are 
another reason to not take the risk of consuming the fruiting bodies of this species, as the natural environment is rich in other 
species of edible mushrooms that are not only tasty, but also exhibit healing properties.
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Introduction

Edible mushrooms have been valued for years because 
of their dietary qualities and healing properties. In recent 
years, the list of edible and medicinal mushrooms has been 
expanded [1]. In Poland, 44 species of edible and medicinal 
mushrooms were identified. They were included in the offi-
cial list of “fungi authorized for the market or production 
of mushroom products and foods containing mushrooms,” 
which is an annexure to the Ordinance of the Minister of 
Health of 17 May 2011. However, some scholars have 
reported that one of the widely admitted species on the 
list—Tricholoma equestre (also referred to as Tricholoma 

flavovirens)—can be harmful, and its excessive consumption 
can lead to health problems [1–7].

Many authors have pointed to the relationship between 
the consumption of the T. equestre fruiting bodies and the 
occurrence of rhabdomyolysis, i.e., rapid decomposition of 
transverse striated muscle tissue [1, 4–7]. Rhabdomyolysis 
is a clinical condition, whose very frequent consequence is 
death. The characteristic symptoms include general weak-
ness, muscle pain, sweating without symptoms of fever, 
and dark urine color [1, 4, 5]. No other possible causes of 
rhabdomyolysis (viral, parasitic, immunological diseases, 
previous injuries, or adverse drug reactions) were found 
in patients, whose cases were analyzed after they had con-
sumed large amounts of the T. equestre fruiting bodies [1, 
4–7].

In several European countries, e.g., in France or Germany, 
the T. equestre species is considered dangerous because of 
the fact that in the years 1992–2016, there were numerous 
cases of poisoning as a result of its consumption, including 
several deaths. Some cases of the above-mentioned fatal poi-
soning were also reported in Poland [1, 4, 5, 7]. Fatal cases 
were reported as a result of the repeated consumption of 
significant amounts of this species of fruiting bodies as part 
of several subsequent meals [4–6, 8]. Here, repeated con-
sumption is defined as a triple meal consisting of 100–400 g 
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of appropriately prepared fresh fruiting bodies [7, 8]. The 
first 12 cases of poisoning after the consumption of the T. 
equestre fruit bodies were found in France in 1992–2001 
[2, 4, 7–9].

After these events, experiments were carried out involv-
ing the administration of a T. equestre extract to laboratory 
animals (mice), which confirmed its toxic activity, manifest-
ing in the increase in the blood levels of the biochemical 
markers of toxicity: plasmatic creatine kinase (CK), bili-
rubin, alanine aminotransferase (ALAT), or aspartate ami-
notransferase (AST). In addition, the animals had diarrhea, 
showed reduced motor activity, and had disintegrated muscle 
fibers. Unfortunately, it was not possible to identify a spe-
cific myolytic toxin, which was responsible for rhabdomy-
olysis; this also made it impossible to investigate the mecha-
nism of this toxin action. It turned out that this species, in 
addition to its myolytic activity, exhibits a strong cardio- and 
hepatotoxic effect, which contributes to the impression of 
rhabdomyolysis [1, 4, 5, 7, 8]. Studies conducted on mice 
confirmed the toxicity, but they did not definitively confirm 
that the consumption of T. equestre was the cause of the fatal 
poisoning; nevertheless, the authors warned against collect-
ing, buying, and above all, repeatedly consuming the fruiting 
bodies of this species [5, 8].

On the basis of mycorrhiza, two varieties of fruiting 
bodies are distinguished within the T. equestre species: one 
showing symbiosis with Populus sp., and the other with 
Betula sp. This may be the reason for the differences in the 
content of biologically active substances. In Poland, this spe-
cies is considered edible, while in France, its distribution 
and consumption has been banned since 2005 [5]. Certainly, 
there have been many reports on the positive effects of the 
consumption of T. equestre on human health. The antican-
cer activity was demonstrated for flavomannin-6,6′-dimethyl 
ether isolated from the fruiting bodies of this species. It was 
demonstrated that even temperature-treated fungi are a good 
source of this compound and have a positive antiproliferative 
effect on the CaCo-2 colorectal cancer cells [10]. T. equestre 
is also a source of zinc—an element that is necessary for 
the appropriate functioning of the human body [11]. It is a 
species in which unsaturated fatty acids were determined. 
Therefore, the prevention of cardiovascular diseases (e.g., 
hypertension and atherosclerosis) is indirectly attributed 
to this species. Among the fatty acids, T. equestre contains 
oleic acid (a popular component of olive oil) in the larg-
est amounts, whose most important activity is to counteract 
hypercholesterolemia. Moreover, the presence of linoleic 
acid, which is biologically significant for the body, was 
determined in this species [12].

The aim of this study was to analyze the composition 
of biologically active substances in the T. equestre spe-
cies, including bioelements (in vitro conditions imitating 
natural digestive processes), profile fatty acids, identify the 

presence of sterols, and determine the antioxidant, antibac-
terial, antifungal, and anti-inflammatory activity. The main 
aim of the analyses performed in the present study was to 
determine whether the T. equestre fruiting bodies are safe 
or dangerous for consumption by humans.

Materials and methods

Mushroom materials

In the present work, the fruiting bodies of T. equestre (L.) 
P. Kumm. (Tricholomataceae) also known as T. flavovirens 
were used. These fruiting bodies were collected from the 
mixed forests of South Poland (in the vicinity of Kraków 
and Rzeszów) between 2014 and 2016. The taxonomic 
identification of the sporocarps was performed using the 
method proposed by Knudsen and Vesterholt and the key 
(http://www.mycok ey.com) developed by Muszyńska [13]. 
Representative voucher specimens number KB/Tr2016 
were deposited at the Jagiellonian University Collegium 
Medicum (Kraków, Poland) in the Department of Phar-
maceutical Botany. The mushroom materials were frozen 
and then lyophilized (Freezone 4.5. Labconco; − 40 °C) to 
obtain the mushroom samples for further analyses.

Reagents

Cyclohexane and dichloromethane were purchased from 
Thermo Fisher Scientific, Life Technologies (Waltham, 
MA, USA); methanol, 1,1-diphenyl-2-picrylhydrazyl, and 
FAME were obtained from Sigma (St. Louis, MO, USA). 
Ascorbic acid was purchased from Acros (Geel, Belgium); 
rutin from Fluka (Buchs, Switzerland); gallic acid from 
Roth (Karlsruhe, Germany); petrolether from Centrohem 
(Stara Pazova, Serbia); pepsin and bile salts from BTL 
(Łódź, Poland);  MgCl2 from Chempur (Kraków, Poland); 
 NaHCO3 from PPH Golpharm (Kraków, Poland); KOH 
and NaCl from Alfa Aesar® (Kandel, Germany);  CaCl2 
from Pharma Zentrale GmbH (Herdecke, Germany); HCl 
pancreatic extract,  HNO3 concentrated,  Suprapur®, and 
hydrogen peroxide 30% from Merck (Darmstad, Ger-
many);  KHCO3,  Na2HPO4,  C6H8O7, and  K2HPO4 from 
Polish Company of Chemistry (Gliwice, Poland); and zinc 
(II) ion content standards at a concentration of 1 g/L from 
Regional Office of Measures (Łódź, Poland). Quadruple-
distilled water with a conductivity of less than 1 µS/cm 
was obtained using an S2–97A2 distillation apparatus 
(Chemland, Stargard Szczeciński, Poland).

http://www.mycokey.com
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Digestion process

Artificial digestive juices were prepared according to the 
methodology previously presented by Kała et al. (2017). 
Artificial saliva (pH = 6.8.): 100 mL  KH2PO4 at a con-
centration of 25 mmol/L, 100 mL  Na2HPO4 at a concen-
tration of 24 mmol/L, 100 mL  KHCO3 at a concentra-
tion of 150 mmol/L, 100 mL  MgCl2 at a concentration 
of 1.5  mmol/L, 6  mL citric acid at a concentration of 
25  mmol/L, and 100  mL  CaCl2 at a concentration of 
15 mmol/L were added to the flask and the volume was 
made up to 1000 mL with four-time distilled water. Arti-
ficial stomach juice (pH = 2.0) was prepared: 2.0 g NaCl 
and 3.2 g pepsin were dissolved in four-time distilled water. 
Then, 80 mL HCl at a concentration of 1 mol/L was added, 
and the volume was made up to 1 L using four-time distilled 
water. Artificial intestinal juice (pH = 8.0). Briefly, 20 mg 
pancreatic extract, 120 mg bile salt, and 8.4 g  NaHCO3 were 
dissolved in four-time distilled water and the volume was 
made up to 1 L using four-time distilled water [3].

Lyophilized T. equestre fruiting bodies were homog-
enized in a mortar and weighed at 0.5 g. The weighed mate-
rial was placed in the flasks and wet with 2 mL of saliva 
solution. Next, 20 mL of artificial gastric juice was added 
to the flasks, and incubation was carried out in the Gas-
troel-2014 apparatus (an apparatus imitating natural diges-
tive processes, constructed for the needs of the experiment) 
for two different time periods (60 and 120 min). After the 
appropriate extraction time, the samples were decanted. 
Then, the extract was separated, and the partially digested 
material was treated with 20 mL of artificial intestinal 
juice. The incubation time in the artificial intestinal juice 
was 150 min for all the examined samples. Thereafter, the 
extracts were separated from the digested material and trans-
ferred to the previously prepared samples. All of the extracts 
were filtered using membrane filters (Millex, Millipore Cor-
poration, USA).

Determination of bioelements using F‑AAS method

To determine the concentration of metals (Ca, Cu, Fe, Mg, 
and Zn) in the collected T. equestre fruiting bodies, the sam-
ples were subjected to mineralization. For this purpose, 0.2 g 
of the homogenized material was weighed with an accuracy 
of 0.01 g. The prepared samples were transferred to Teflon 
vessels to which 2 mL of perhydrol and 4 mL of concen-
trated nitric (V) acid solution were added. The mineraliza-
tion process was carried out in a Magnum II microwave from 
ERTEC in three phases. The clear solutions obtained after 
mineralization were transferred to quartz evaporators and 
evaporated on a heating plate at 150 °C. The residue was 
quantitatively transferred using four-time distilled water into 
10-mL volumetric flasks. The concentrations of the analyzed 

metals in the mineralized samples and extracts obtained at 
the release test stage were determined using atomic absorp-
tion spectrometry (flame technique—F-AAS). The atomic 
absorption spectrometer from Thermo Scientific Model iCE 
3500 (UK) was used for all the measurements. Each sample 
was tested in three independent replicates, and the results 
were presented as mean values (Fig. 1a–c).

Sample preparation for DPPH assay, total phenolic 
content, fatty acids and sterols composition, 
and antimicrobial activity

For the preparation of cyclohexane, dichloromethane, 
methanol, and aqueous extracts, we used 41.6 g of pow-
dered mushroom. The aqueous extract was prepared with 
14 g of dried, powdered mushroom and 280 mL of distillated 
water. Extraction was carried out by shaking and heating 
the samples in a water bath for 30 min at 100 °C. After the 
extraction, the aqueous extract was filtrated, and the solvent 
was evaporated. Then, 280 mL of cyclohexane was added 
to 27.6 g of powdered mushroom, and extraction was car-
ried out by shaking the samples at room temperature. The 
procedure was repeated with dichloromethane and methanol. 
The solvents were evaporated under low pressure and stored 
at 4 °C.

DPPH assay

The ability of methanol and the aqueous extracts to scavenge 
free radicals was measured using the DPPH test. This ability 
is a measure of antioxidant activity. The absorbance of the 
solution was measured at 517 nm, and the percentage inhibi-
tion of the DPPH radicals was calculated. Each measurement 
was performed in triplicate. The results were expressed as 
a concentration of the test sample that reduced 50% of the 
DPPH radicals  (IC50 value). The DPPH reagent (1,1-diphe-
nyl-2-picrylhydrazyl) was made ex tempore in concentration 
of 0.5 mmol/L, by dissolving 9.86 mg of DPPH in 50 mL 
of methanol.

A 30-mg/mL stock solution of the methanol extract was 
prepared, and for the aqueous extract, the concentration 
was 40 mg/mL. Then, different volumes of these solutions 
(10–100 µL) were mixed with methanol to obtain a total vol-
ume of 2 mL, and 0.5 mL of DPPH reagent was then added. 
These solutions were shaken well and incubated in dark for 
30 min. Then, the absorbance was measured.

Total phenolic content

The total content of phenols in methanol and the aqueous 
extracts was determined spectrophotometrically. Absorbance 
was measured at 725 nm. A series of gallic acid dilutions 
(1–10 mg/mL) were made, the absorbance was measured, 
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and the calibration curve was drawn. The content of poly-
phenols was expressed as mass (µg) of the standard sub-
stance (gallic acid, GA) per unit mass (mg) of the extract.

Fatty acid composition

To study the chemical composition of the prepared extracts, 
the fatty acids and sterol compositions of the cyclohexane 
extract were measured using GC–MS. Saponification was 
achieved by adding 50% KOH at 90 °C for 60 min. The 
unsaponifiable fraction was separated using petrol ether and 
submitted to GC and GC–MS analyses. Fatty acids were 
esterified using 98%  H2SO4/MeOH anhydrous to obtain fatty 
acid methyl esters (FAMEs).

The GC and GC–MS analyses were performed on an 
Agilent 6890N Gas Chromatograph equipped with a split/
splitless injector (260 °C), an FID detector, and a capillary 
column (Agilent J&W HP-88, 100 m × 0.25 mm, 0.20-µm 
film thickness), and coupled with Agilent 5975C MS Detec-
tor operating in the EI mode at 70 eV. The carrier gas was 
He, and the flow was 1.2 mL/min. The oven temperature 
was initially maintained at 140 °C for 5 min, then increased 
linearly from 140 to 240 °C at 4°C/min, and finally held at 
240 °C for 10 min. The FID and MSD transfer line tempera-
tures were 260 and 250 °C, respectively. The split ratio was 
1:25, and the injected volume was 1 µL of a 1% solution 
of the FAME in dichloromethane (HPLC purity). All the 
experiments were performed in triplicate.

The identification of the FAMEs was based on the com-
parison of their retention times (Rt) and mass spectra to 
those of the representative standards ran under the same 
chromatographic conditions (SupelcoTM 37 Component 
FAME Mix) and to those from the NIST/NBS 05 and Wiley 
(8th edition) Libraries, and the literature. Relative percent-
ages of the compounds were calculated on the basis of the 
peak areas from the FID data.

Sterol composition

The GC analysis was performed on an Agilent 6890N GC 
system equipped with 5975 MSD and FID, using an HP-5 
MS column (30 m × 0.25 mm × 0.25 µm). The injection 
volume was 1 µL, and the injector temperature was 280 °C 
with a 10:1 split ratio. Helium was used as the carrier gas 
(1.0 mL/min; constant flow mode). The column temperature 
was linearly programmed in the range of 60 °C–280 °C at a 
rate of 3 °C/min and held at 280 °C for 20 min. The transfer 
line was heated at 250 °C. The FID detector temperature 
was 300 °C. EI mass spectra (70 eV) were acquired in the 
m/z range of 35–550. The identification of the compounds 
was based on the comparison of the mass spectra from the 
databases (NIST/NBS 05, Wiley Libraries, 8th edition).

Antimicrobial activity

The antimicrobial activity of aqueous, methanol, cyclohex-
ane, and dichloromethane extracts was determined using 

Fig. 1  a Total metal content 
(mg/100 g dry weight) in 
biomass. b Total metal content 
(mg/100 g dry weight) after 
extraction to stomach juice after 
60 and 120 min. c Total metal 
content (mg/100 g dry weight) 
after extraction to intestinal 
juice after incubation for 60 and 
120 min in stomach juice
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the broth microdilution method. All the four extracts were 
dissolved in DMSO to obtain concentrations of 500, 250, 
125, 62.5, and 31.25 µg/mL. For this test, seven types of 
bacteria and one species of yeast were used. All of the bac-
teria were prepared in the Miller Hinton liquid medium, and 
the yeast was prepared in the Saburo liquid medium, and 
right before the use, in both the liquid mediums, tetrazolium 
chloride (TTC) was added. Every hole in the microtiter plate 
contained 100 µL of the extract and 100 µL of the bacteria 
culture, except for the last two holes, which contained only 
200 µL of the bacteria culture as the negative control. All 
the plates were incubated for 2 days at 37 °C. After the incu-
bation, results were obtained visually as the MIC–minimal 
inhibitory concentration. The MICs of ampicillin and ami-
kacin were determined in parallel experiments as a positive 
control.

Anti‑inflammatory activity

Cell cultures

Human lung carcinoma epithelial A549 cells (American 
Type Culture Collection CCL-185) were cultured in an F 
12K medium with 10% FBS, penicillin (100 IU/mL), and 
streptomycin (100 mg/mL) (ATCC, Manassas, VA, USA). 
The cells were maintained at 37 °C in a humidified atmos-
phere that contained 5%  CO2 and were seeded into six-well 
plates (Sarstedt, Hannover, Germany), at a density of 5 × 105 
cells/well in 2 mL of the medium. The A549 cells (24 h 
after seeding) were activated with LPS and/or incubated 
with 20 µL of T. equestre extract (dissolved in ethanol) for 
24 h. The control cultures received the same concentration 
of ethanol (the final content did not exceed 0.01%, v/v) as 
the experimental cells did.

Western blot analysis

The cell lysate was prepared using the M-PER mammalian 
protein extraction reagent (Thermo Scientific, Waltham, 
MA, USA) with protease inhibitor cocktail set III (Calbi-
ochem, Merck, Darmstadt, Germany) as described below 
[14]. We used the following primary antibodies: COX-2, 
cPGES, Nrf2, and B-actin (GeneTex, Irvine, CA, USA) 
diluted to the ratio 1:1000. The secondary antibody was 
anti-rabbit IgG (HRP) diluted to 1:2000 (ThermoFisher Sci-
entific, Waltham, MA, USA). The proteins were detected 
using a Western blot detection kit called Clarity Western 
ECL Luminol Substrate (Bio-Rad, Hercules, CA, USA). The 
integrated optical density of the bands was quantified using 
Chemi Doc Camera with the Image Lab software (Bio-Rad, 
CA, USA).

Results and discussion

Bioelement analysis

To determine the actual amounts of metals available to the 
human body, the release of selected bioelements to artifi-
cial digestive juices was studied. Extraction was carried out 
in the Gastroel-2014 apparatus under conditions imitating 
those that prevail naturally in the human body (a suitable 
temperature of 37 °C and peristaltic movements) [3].

The concentrations of Ca, Cu, Fe, Mg, and Zn metals in 
the T. equestre fruiting bodies and in extracts obtained by 
digestion in artificial digestive juices were determined using 
the atomic absorption spectrometry (F-AAS) method, which 
because of the high accuracy, precision, and repeatability of 
the measurement is one of the most commonly used analyti-
cal methods. Optimized conditions of sample mineralization 
in combination with the F-AAS method enabled an effective 
analysis of elements in fruiting bodies and extracts obtained 
from artificial digestive juices.

The experiment revealed that the T. equestre fruiting bod-
ies contain macronutrients such as calcium (43 mg/100 g 
dry matter) and magnesium (28.6 mg/100 g dry matter), and 
microelements as copper (4.9 mg/100 g dry matter), iron 
(98 mg/100 g dry matter), and zinc (17 mg/100 g dry matter) 
(Fig. 1a). After the digestion of fruiting bodies in digestive 
juices, the quantities of bioelements determined were con-
siderably smaller than those in the original biomass.

According to these data, an intake of 100 g of lyophi-
lized biomass from T. equestre does not satisfy the daily 
requirement for calcium and magnesium for both women 
and men (according to RDA standards, Institute of Medicine, 
2001) (Fig. 1a). However, the present experiment revealed 
that the determined amounts of micronutrients—Cu, Fe, and 
Zn—after extraction to artificial digestive juices from the T. 
equestre fruiting bodies were sufficient to supplement the 
deficiency of these elements in the human body (Fig. 1a) 
[3]. Furthermore, the examined micronutrients were released 
more effectively to gastric juice than to intestinal juice. In 
addition, the amount of metals released to the artificial gas-
tric juice depended on the time of incubation and increased 
with its elongation. Thus, in the case of copper, 60 min 
after digestion in the artificial gastric juice, the content of 
this element was on average only 0.59 mg/100 g dry mat-
ter, and after the incubation time was extended to 120 min, 
it was already 1.29 mg/100 g dry matter. Note that the 
daily requirement for this element for men is 0.89 mg/24 h 
(Fig. 1b). For the other elements, a more effective release to 
gastric juice was also demonstrated along with the prolon-
gation of the incubation time, and the amounts determined 
were 63 mg/100 g dry matter for Fe and 2.67 mg/100 g dry 
matter for Zn (Fig. 1b, c).
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DPPH assay

The  IC50 value of the methanol extract  was 
1500.2 ± 62.73 µg/mL, and the  IC50 value of the aqueous 
extract was 1901.8 ± 144.25 µg/mL. In Table 1, the  IC50 
values of the tested extracts are present, as well as the  IC50 
value of a few standard substances. All the reference sub-
stances in Table 1 show a strong antioxidant potential; lower 
 IC50 values indicate better activity [15]. Among the exam-
ined compounds, gallic acid exhibited the best antioxidant 
activity (Table 1). The extracts obtained from the T. equestre 
species, in the form of both aqueous and methanol solutions, 
turned out to be considerably weak antioxidants. The metha-
nolic extract showed more than 400-fold lower antioxidant 
potential than the standard substances and their average  IC50 
values, while the aqueous solution was more than 500-fold 
weaker.

There are some reports on the antioxidant potential of 
T. equestre due to the presence of phenolic compounds or 
β-carotene. However, it turns out that this activity is rel-
atively low, which may indicate that the content of com-
pounds with antioxidant activity is not high or, in addition 
to substances with antioxidant activity, there are those that 
intensify the oxidation processes [16]. At the same time, 
the author describing this species indicated that T. equestre 
belongs to the group of non-edible fungi [16]. Compared 
with other species of edible fungi, e.g., Agaricus brasiliensis 
 (IC50 = 3000 µg/mL), or popular Asian species Hypsizigus 
marmoreus (ethanolic extract,  IC50 = 4190 µg/mL; hot water 
extract,  IC50 = 6480 µg/mL), the antioxidant activity of the 
examined extracts is relatively high for T. equestre [17, 18]. 
In turn, the  IC50 values for Leucopaxillus giganteus, Sarco-
don imbricatus, and Agaricus arvensis (methanol extracts) 
are 1440, 1670, and 3500 µg/mL, respectively; therefore, 
the results for the first two species are comparable to those 
for T. equestre [19]. For the popular wood decay fungi spe-
cies Fomitopsis pinicola and Laetiporus sulphureus, the  IC50 
values obtained in the DPPH test are 130 and 60 µg/mL 
of methanol extract, respectively, indicating a considerably 
stronger antioxidant potential than that of the edible species, 
including T. equestre [20].

Total phenolic content

The phenolic compounds are the important group of biological 
active compounds synthesized by mushrooms. Their biologi-
cal activity is related to antioxidant activity and thus ability 
to protect important cellular structures such as cellular mem-
branes, structural proteins, enzymes, and cell membrane lipids. 
The most common phenolic acids produced by mushrooms are 
gallic, ferulic, p-hydroxybenzoic, p-coumaric, caffeic, proto-
catechuic, syringic, and vanillic acids [21].

The total phenolic content in methanol and the aqueous 
extracts of T. equestre was calculated using the calibration 
curve of gallic acid (0.999). The total content of phenols in 
the methanol extract was 14.07 ± 0.38 µg GA/mg of extract, 
and the total content of phenols in the aqueous extract was 
12.07 ± 0.18 µg GA/mg of extract. Thus, we concluded that 
the methanol extracts of T. equestre were richer in phenols 
than the aqueous extracts. Note that phenolic compounds 
have redox properties; thus, they can play the role of anti-
oxidants. Therefore, the assessment of the total phenol 
concentration provides information about the antioxidant 
potential of specific raw materials [21]. For most fungal 
extracts, a clear quantitative relationship between the total 
phenol content and the demonstrated antioxidant potential 
is observed [22]. Compared with some species of fungi, T. 
equestre has a relatively total high phenol content. The total 
phenol content of 6.29, 3.76, 2.83, 10.65, and 4.27 µg GA/
mg was determined in the methanol extracts of L. giganteus, 
S. imbricatus, A. arvensis, Agaricus bisporus, and Pleurotus 
ostreatus, respectively [19, 20]. In contrast, for the H. mar-
moreus species, the total phenol content is 12.9 µg GA/mg 
of extract for ethanol extracts and 19.2 µg GA/mg of extract 
for hot aqueous extracts [17]. Data are also available for the 
total phenol content in the methanol extracts of wood decay 
fungi species—F. pinicola (387.70 µg GA/mg of extract) 
and Piptoporus betulinus (34.94 µg GA/mg of extract)—and 
in ethanol extracts—Phellinus gilvus (2.50 µg GA/mg of 
extract), Fomes fomentarius (47.29 µg GA/mg of extract), 
F. pinicola (29.27 µg GA/mg of extract), and L. sulphureus 
(9.78 µg GA/mg of extract) [20]. Thus, variability can be 
observed in terms of the total amount of phenols released to 
the aqueous and alcohol extracts (higher levels of phenolic 
compounds in one species were determined in the metha-
nol and ethanol extracts, and in the others, in the aqueous 
extracts). Species variability is also important, as inedible 
species (wood decay ones) usually are characterized by a 
higher content of phenolic compounds [17, 19, 20].

Fatty acid composition

Fatty acids contained in mushrooms are capable of support-
ing anti-inflammatory processes in the humans due to the 
large share of unsaturated fatty acids [12, 23].

Table 1  IC50 values of tested extracts and standard substances (DPPH 
assay)

Sample IC50 (µg/mL)

Methanol extract of T. equestre 1500.2
Aqueous extract of T. equestre 1901.8
Ascorbic acid 3.80
Rutin 5.57
Gallic acid 1.50
Quercetin 2.75
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An analysis of the content of the determined fatty acids 
revealed that this species has a favorable quantitative ratio 
of unsaturated-to-saturated fatty acids (59.41–40.59%). Pal-
mitic, oleic, and linoleic acids were determined in the high-
est amounts (28.84, 28.59, and 28.29% of the total content, 
respectively) (Table 2). Other analyses of fatty acids in the 
T. equestre species indicated that the ratio of unsaturated-
to-saturated fatty acids is as much as 97.24–2.76%, which 
further increases the value of this species [12]. To ensure 
the appropriate functioning of the human body, it is neces-
sary to have a balance between saturated and unsaturated 
fatty acids in one’s daily diet [12, 23]. On the basis of the 
obtained results, we concluded that the T. equestre species 
is a good natural source of unsaturated fatty acids and can be 
a valuable component of everyday diet. However, note that 
compared with the other edible species, such as Cantharellus 
cibarius, or Suillus luteus, the total amount of fatty acids in 
T. equestre is significantly low [12].

Sterol composition

Many studies have demonstrated that ergosterol and its per-
oxidation products may give potential health benefits and 
significant pharmacological activities, including reducing 
pain related to inflammation, reducing the incidence of car-
diovascular disease, and inhibiting cyclooxygenase enzyme 
(COX), antioxidant, antimicrobial, and antitumor activities 
[24, 25].

The experiment was performed in triplicate. In the 
cyclohexane extract of dried mushroom T. equestre, three 
sterols were identified using GC/MS: 5,6-dihydroergos-
terol, ergosta-4,6,8(14),22-tetraen-3-one, and γ-ergostenol 
(fungisterol) (58.92, 27.55, and 13.53%, respectively). 
The chromatograms were recorded for all of the examined 
compounds (Fig. 2). Among them, fungisterol is the sterol 
most commonly found in the fruiting bodies of the fungi. 
It was possible to determine its presence, e.g., in the fol-
lowing species: A. bisporus, Boletus edulis, Cantharellus 
tubaeformis, C. cibarius, Flammulina velutipes, Lentinula 
edodes, Grifola frondosa, and P. ostreatus [24, 25]. Ergosta-
4,6,8(14),22-tetraen-3-one, which is a compound demon-
strating anti-inflammatory activity (inhibiting cyclooxyge-
nase 1 and 2), is also important from the therapeutic point of 
view. This effect is confirmed by studies of this compound 
isolated from the G. frondosa species, which is also an edi-
ble species [26]. In the T. equestre species, this compound 
was determined in the smallest amount. In turn, 5,6-dihy-
droergosterol, which was determined in the largest amount 
in the examined species, exhibits weak antibacterial activity 
(this was confirmed on 5,6-dihydroergosterol isolated from 
the Ganoderma applanatum species) [26].

Antimicrobial activity

MIC is defined as the minimum concentration of a given 
substance that can inhibit the growth of a microorgan-
ism [27, 28]. All of the examined extracts were found to 

Table 2  Fatty acid composition in Tricholoma equestre species

Fatty acid Fatty acid % STD

C14:0 Myristic acid 0.31 0.05
C15:0 Pentadecanoic acid 2.11 0.18
C16:0 Palmitic acid 28.84 2.08
C17:0 Heptadecanoic acid 0.16 0.01
C18:0 Stearic acid 7.58 0.71
C18:1n9c Oleic acid 28.59 1.71
C 18:1n11c Vaccenic acid 2.53 0.65
C18:2n6c Linoleic acid 28.29 2.35
C20:0 Arachidonic acid 0.34 0.01
C22:0 Behenic acid 0.70 0.02
C24:0 Lignoceric acid 0.55 0.04
Saturated fatty acids (SFA) 40.59 3.10
Monounsaturated fatty acids (MUFA) 31.12 2.35
Polyunsaturated fatty acids 28.29 2.35

Fig. 2  GC/MS–FID chro-
matogram of Tricholoma 
equestre cyclohexane extract: 
1—5,6-dihydroergosterol; 
2—γ-ergostenol; 3—ergosta-
4,6,8(14),22-tetraen-3-one
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be weakly antibacterial and antifungal (Table  3). MIC 
values higher than 500 µg/mL indicate a slight activity of 
these extracts. Among the examined ones, the T. equestre 
cyclohexane extract turned out to be the most active, par-
ticularly with respect to the Staphylococcus aureus (ATCC 
25923) and Klebsiella pneumoniae (NCIMB 9111) strains. 
The MIC values were 250 µg/mL (Table 3). For the sake of 
comparison, MICs for popular antibiotics are usually from 
approximately 0.25 to 16 µg/mL [27]. Interestingly, the 
antimicrobial activity of the T. equestre cyclohexane extract 
and the T. equestre dichloromethane extract with respect to 
Staphylococcus aureus (ATCC 25923), Enterococcus faeca-
lis (29212), Escherichia coli (ATCC 10536), and Klebsiella 
pneumoniae (NCIMB 9111) is still stronger than that of 
most of the previously examined extracts [27, 28]. However, 
the toxicity of the solvents used with respect to the growth 
of the relevant pathogen strains should be considered, as the 
aqueous extracts proved to be inactive for all of the strains.

Anti‑inflammatory activity

Data are reported as means ± SD of at least three independ-
ent experiments. Comparisons between treatments were 
made by a one-way analysis of variance followed by Tukey’s 
post hoc test. Calculations were performed using the Sta-
tistica 13.1 (StatSoft Inc., Tulsa, OK, USA) software, and 
statistical significance was defined as p < 0.05.

A statistically significant increase in the COX-2 level 
was observed for cells supplemented with the T. equestre 
extracts (p = 0.000) and for LPS-activated A549 cells (three-
fold; p = 0.000) when compared to the control cells (Fig. 3).

For cPGES, statistically significant differences were 
noted after the T. equestre extract supplementation 
(p = 0.000) and after LPS activation (Fig. 3). The Nrf2 
level decreased statistically in cells after treatment with 
the T. equestre extract (p = 0.000) and increased after 

the LPS activation (p = 0.001) (Fig. 3). The co-treatment 
of the A549 cells with the T. equestre extract and LPS 
resulted in a slight increase in COX-2 and a slight decrease 
in the Nrf2 level (Fig. 3).

In the present study, differences were observed in the 
COX-2 and cPGES levels in the A549 cells, those acti-
vated by LPS, and those supplemented with the T. equestre 
extracts. This finding suggested the additive, pro-inflam-
matory role of the T. equestre extracts on the epithelial 
cells activated with LPS. Nieminen et al. (2008) reported 
in mice exposed to 12 g/kg/day of T. equestre freshly fro-
zen mushroom, higher plasma bilirubin content and higher 
creatine kinase activity than in the control mice. Moreover, 
the authors showed an increased incidence of pericardial 
inflammation in mice after the T. equestre diet [8]. Our 
study confirmed this observation. Many others species of 
edible mushrooms presented anti-inflammatory activity 
[29–31].

Table 3  Minimal inhibitory 
concentration (MIC)

TEA Tricholoma equestre aqueous extract, TEM Tricholoma equestre methanol extract, TEC Tricholoma 
equestre cyclohexane extract, TED Tricholoma equestre dichloromethane extract, – not tested

Bacterial strains MIC (µg/mL)

TEA TEM TEC TED Ampicillin Amikacin

Staphylococcus aureus (ATCC 25,923) > 500 > 500 250 500 0.5 –
Bacillus subtilis (ATCC 6633) > 500 > 500 > 500 > 500 1.8 –
Enterococcus faecalis (29,212) > 500 > 500 500 500 – –
Escherichia coli (ATCC 10,536) > 500 > 500 500 500 2.0 1.5
Klebsiella pneumoniae (NCIMB 9111) > 500 > 500 250 500 2.8 2.0
Salmonella abony (NCTC 6017) > 500 > 500 > 500 > 500 – –
Pseudomonas aeruginosa (ATCC 9027) > 500 > 500 > 500 > 500 – 2.5
Candida albicans (ATCC 10,231) > 500 > 500 > 500 > 500 – –

Fig. 3  Relative COX-2, cPGES, and Nrf2 levels in the A549 cells 
treated with 20-μL Tricholoma equestre extracts and/or LPS; a, b ¬ 
statistical significant differences, a vs. LPS, b vs. control, p < 0.05
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Conclusion

T. equestre is a species of mushroom that, when consumed 
in small quantities, is a source of essential nutrients, particu-
larly bioelements, fatty acids, and sterols. However, when 
consumed in large quantities, it causes poisoning due to 
rhabdomyolysis. The present study showed that despite the 
antioxidant activity comparable to that of the other edible 
species and the content of nutrients, the T. equestre extracts 
had a pro-inflammatory effect on the considered cell lines, 
confirming the danger associated with the consumption 
of this species. The toxic substance and the mechanism of 
poisoning remain unexplained; explaining these requires 
cooperation and further research on the dual nature of this 
species. Analyzing the content and pro-health potential of 
the T. equestre fruiting bodies and extracts prepared from 
them, we concluded that these fruiting bodies did not stand 
out from the edible species with particular pro-health activ-
ity. The antioxidant activity, total phenol content, con-
tent of elements, and antimicrobial activity remained at a 
similar or relatively low level as compared to those of the 
other edible species, whereas the pro-inflammatory activity 
clearly encouraged the limited consumption of this species. 
In conclusion, the presented results, in addition to the exist-
ing reports on poisoning caused by the consumption of T. 
equestre, are another reason to not take the risk of the con-
sumption of the fruiting bodies of this species, as the natural 
environment is rich in other species of edible mushrooms 
that are not only tasty but also have healing properties.
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