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Abstract
The study compares lyophilized broccoli sprouts and florets in terms of their chemical composition, cytotoxic and proapoptotic
potential against hepatocellular carcinoma HepG2, colorectal cancer SW480, and skin fibroblast BJ cells. Sinapic and
isochlorogenic acids were predominant phenolics in the sprouts and florets, respectively. The amount of sulforaphane in the
sprouts was significantly higher vs. florets. Oleic and linoleic acids dominated in the sprouts, while caproic, stearic and oleic acids
in the florets. Broccoli sprouts were selectively cytotoxic on HepG2 and SW480 cells, with proapoptotic effect for the latter,
while the florets were less selective, but more active, with profound proapoptotic effect for HepG2 cells (77.4%). Thus,
lyophilized broccoli sprouts may be effectively used in dietary chemoprevention.
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eficial effects [3]. Broccoli marketable sprouts, florets, flour,
fiber, flakes, powder, crisps, etc. are under vast interest now-
adays, due to their preventive role in non-communicable dis-
eases, like hypertension, atherosclerosis [2, 4] or cancer (lung,
breast, prostate and pancreatic) [1]. Consumption of Brassica
vegetables may decrease the risk of gastric cardia and esoph-
ageal adenocarcinomas [5], but also colon and colorectal can-
cers [6] in humans. The so far described phytochemical com-
position of broccoli concerns mostly fresh material, while
many studies discuss the influence of processing methods
(cutting, boiling, steaming, etc.) on the loss of active sub-
stances, especially SF [7, 8]. Moreover, fresh broccoli are
difficult to store for more than a few weeks and, except from
the storage in argon or helium atmospheres [9], the data on the
alternative methods of preservation is scarce. The studies on
the impact of storage conditions on phytochemical content of
fresh and lyophilized broccoli products are still limited.
Therefore, the aim of our study was qualitative and quantita-
tive analysis of lyophilized broccoli sprouts and florets, focus-
ing on polyphenols (flavonoids, phenolic acids), SF, and fatty
acids. Moreover, we also studied broccoli products’ effect on
the viability and apoptosis induction in human cancer and
normal cells, to determine not only the cytotoxic potential,
but also selectivity of the tested samples and the mechanism
of cell death.
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Introduction

Broccoli (Brassica oleracea L. var. italica, Brassicacae) are a
good source of isothiocyanates, with most important sulfo-
raphane (SF), known for its chemopreventive properties [1],
but are also rich in vitamins (C, K, β-carotene), dietary fibre,
polyphenols and fatty acids [2], with considerable health ben-
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Material and Method

Plant material and Freeze - Drying Method

Broccoli seeds (Brassica oleracea L. var. italica) were obtained
commercially [10], detailed information about the material
and freeze - drying method is described in supplementary
material.

Extracts Preparation

Extraction process was described in details in supplementary
material. SF and lipids were extracted according to [11, 12].

HPLC Determination of Flavonoids and Phenolic Acids

The analysis was performed according to [13] and is described
in supplementary material.

UPLC/MS Determination of Sulforaphane Content

The analysis was performed according to [14] and is described
in supplementary material.

GC Determination of Fatty Acids Profile

The analysis was performed according to [12] and is described
in supplementary material.

Cytotoxicity Assay, Apoptosis and Necrosis Analysis

The analysis was performed according to [15–17] and is de-
scribed in supplementary material.

Statistical Analysis

Statistical differences were determined using Student’s t-test.
P < 0.05 was considered to be statistically significant. The
hierarchical principal component analysis was used to reveal
the correlation structure between the investigated parameters
[14, 18] and is described in supplementary material.

Results and Discussion

Phenolic Acids and Flavonoids

Flavonoids and phenolic acids are phytochemicals widespread
in brassica vegetables [19]. Qualitative HPLC analysis of
broccoli sprouts revealed chlorogenic, p-coumaric, ferulic,
gentisic and sinapic acids, and also robinin, with traces of
myricetin, luteolin, quercetin and apigenin. In broccoli florets
only caffeic, isochlorogenic and sinapic acids and also traces

of myricetin were detected. Although some peaks on HPLC
chromatograms remained unidentified, we decided to deter-
mine and compare the content of the recognized polyphenols
in both extracts by means of quantitative HPLC analysis. The
results (Table 1) revealed vast differences in the amounts of
the phenolic acids of the tested broccoli sprouts and florets
extracts. Sinapic, gentisic, and ferulic acids predominated in
broccoli sprouts, with chlorogenic and p-coumaric acids in
smaller amounts. In contrast, isochlorogenic acid, not detected
in sprouts, was present in the highest amount in broccoli flo-
rets, accompanied with sinapic and caffeic acids. A range of
phenolic acids have been identified so far in broccoli sprouts
including chlorogenic, gallic, sinapic, ferulic, benzoic,
vanillic, protocatechuic or p-coumaric acid [20–23], while
neochlorogenic and chlorogenic acids, together with sinapic
and ferulic acids derivatives, were detected in the florets. The
results of Pająk et al. [20] indicated similar qualitative pheno-
lic acids profile, but with quantitative differences: ferulic
(7.66 mg/100 g dw), p-coumaric (2.04 mg/100 g dw) and
chlorogenic (11.49 mg/100 g dw) acids were in lower, while
sinapic acid (548 mg/100 g dw) was in higher amounts, in
comparison to our results. For broccoli florets, our results
are similar to those by Fernández-León et al. [21] for sinapic
acid in some Monaco cultivars. Our results indicated robinin,
a kaempferol glucoside, to be the only flavonoid identified in
broccoli sprouts. Similar results were reported by Pająk et al.
[20] and Gawlik-Dziki et al. [22], indicating kaempferol as the
major compound in broccoli sprouts after hydrolysis. Other
authors identified also luteolin, apigenin, quercetin, and
kaempferol, contributing altogether to 2.77–14.66 mg/100 g
dw [20, 21].

Sulforaphane Content

The content of SF is given in Table 1. Broccoli sprouts
were significantly richer in SF than the florets, and the
results are consistent with Nakagawa et al. [23], who indi-
cated 10 times higher amount of SF in the sprouts in com-
parison to mature plants. Our results are also similar to
López-Cervantes et al. [24], while the results of Moon
et al. [2] for 6 days sprouts (222.6 mg/kg fw) and
Nakagawa et al. [23] for sprouts from the market
(1153 mg/100 g dw) were higher than ours. Such differ-
ences may be due to the plant variety or growing and
sprouting condition. Our results for SF content in broccoli
florets comply with Nakagawa et al. [23] for broccoli from
Japan (69.1–171.3 mg/100 g dw) and Campas-Baypoli
et al. [25], for lyophilized florets from Mexico (31–
45.4 mg/100 g dw). Many studies, including our results,
proved that broccoli sprouts are better source of SF than
the florets [23, 24], which implies their use as dietary pre-
vention of different health problems.
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Fatty Acid Profile

Fatty acid analysis was performed by means of gas chroma-
tography. Preliminary qualitative GC analysis of broccoli
sprouts extracts indicated the presence of caproic, myristic,
palmitic, stearic, arachidic, lignoceric, palmitooleic, oleic,
linoleic, α-linolenic, eicosenoic, erucic and docosadienoic
acids, while in broccoli florets caproic, capric, palmitic,
stearic, lignoceric, oleic, linoleic, eicosenoic and erucic acids
were detected. For detailed comparison of the tested materials,
the percentage of saturated (SFAs) and unsaturated (UFAs)
fatty acids was further determined by GC. SFAs in broccoli
sprouts and florets consisted 10.5 and 77% of total pool of
fatty acids, respectively, with palmitic (5.7%) and stearic
(2.8%) acids dominating in sprouts, and caproic (34.9%),
stearic (15.9%) and palmitic (12%) acids in florets (Table 1).
Qualitative fatty acids profile in both evaluated materials was
similar to Ahmed et al. [26] for Brassica juncea and López-
Cervantes et al. [24] for broccoli sprouts. We found the rela-
tive content of UFAs in the analyzed broccoli sprouts to be
88%, with the predominant oleic acid (45.5%) but linoleic
(20.8%) and α-linolenic acids (17.0%) on similar level. In
broccoli florets oleic acid was also the main UFA (12.4%),
but in significantly lower amount in comparison to the
sprouts. The results of López-Cervantes et al. [24] indicated

linoleic (26.31–31.88%) and α-linolenic acids (21.34–
28.69%), with lower amount of oleic acid (5.17–11.70%) in
broccoli sprouts. What is particularly important, our results
revealed significantly higher total UFAs content in the sprouts
in comparison to the florets, with very low amounts of harmful
erucic [27] acid in sprouts (0.5%) and florets (2%), in com-
parison to the broccoli seeds (38% - data not shown). Another
study of three South Korea broccoli cultivars revealed much
lower content of total SFAs, and higher amount of UFAs, with
the predominance of palmitic and linolenic acids, in the flo-
rets, when compared to our results [28].

Cytotoxic Activity

Cytotoxic impact of the tested broccoli products was per-
formed by MTT assay against cancer HepG2 and SW480,
but also normal BJ cells, to determine the potential selectivity.
The tested samples varied in their influence on the examined
cell lines, in dose dependent manner. Both broccoli sprouts
and florets caused significant decrease in SW480 and HepG2
cancer cells viability (Fig. 1), with more profound effect for
the former and less susceptibility of the latter. The cytotoxic
effect of broccoli florets was stronger for both cancer cell lines
in comparison to the sprouts. It is worth to note that the latter
were also more selective against cancer cells, as opposed to

Table 1 Content of phenolic
acids, flavonoids, sulforaphane
and fatty acids profile of dry
broccoli sprouts and florets

Broccoli sprouts Broccoli florets

Phenolic acids
[mg/100 g dw] (n = 3)

Caffeic acid ND 1.55 ± 0.05
Chlorogenic acid 37.26 ± 0.60 ND
Iso-chlorogenic acid ND 59.85 ± 2.56
p-Coumaric acid 27.75 ± 0.70 ND
Ferulic acid 73.85 ± 4.50 ND
Gentisic acid 80.80 ± 4.79 ND
Sinapic acid 140.53 ± 3.17* 3.43 ± 0.15*

Flavonoids [mg/100 g dw] (n = 3)
Robinin 1.64 ± 0.10 ND

Sulforaphane [mg/100 g dw] (n = 3)
113.33 ± 12.58* 46.46 ± 7.50*

Fatty acids profile [%] (n = 3)
Saturated acids 10.5 77
C6:0 caproic acid 0.3 ± 0.1* 34.9 ± 2.9*
C10:0 capric acid ND 9.2 ± 0.5
C14:0 myristic acid 0.3 ± 0.1 ND
C16:0 palmitic acid 5.7 ± 0.1* 12.0 ± 1.0*
C18:0 stearic acid 2.8 ± 0.1* 15.9 ± 1.1*
C24:0 lignoceric acid 1.4 ± 0.0* 5.0 ± 0.3*
Unsaturated acids 88.6 23
C18:1 oleic acid (n-9) 45.5 ± 0.5* 12.4 ± 0.5*
C18:2 linoleic acid (n-6) 20.8 ± 0.4* 3.8 ± 0.6*
C18:3 alpha-linolenic acid(n-3) 17.0 ± 0.1 ND
C20:1 eicosenoic acid (n-9) 0.8 ± 0.0* 4.8 ± 0.3*
C22:1 erucic acid (n-9) 0.5 ± 0.0* 2.0 ± 0.1*
C22:2 docosadienoic acid (n-6) 4.0 ± 0.0 ND

ND – not detected
* p < 0.05
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the florets, affecting also normal fibroblasts. Such effects may
result from the differences in phytochemical content of both
products. Broccoli sprouts with the predominance of polyphe-
nolics and SF, known from their antioxidant and protective
effects [1, 3], actually did not affect normal fibroblasts, while
the opposite results were observed for the florets, with lower
content of the mentioned protective compounds. Stronger cy-
totoxic effect against cancer cells by broccoli florets, especial-
ly in higher concentration, may result from the presence of
SFAs, and the effect was also observed by Lima et al. [29].
Similar experiment on cytotoxic activity of broccolini
(Brassica oleracea Italica x Alboglabra), a hybrid between
broccoli and Gai Lan, on four human cancer cell lines
(SW480, HepG2, Hela, and A549) was performed by Wang
& Zhang [30] and the results showed a dose-dependent anti-
proliferative properties of broccolini leaves extract. Cytotoxic
activity of broccoli sprouts was previously studied on human
leukemic cell line (HL-60), with no significant effects on pro-
liferation or viability [31] and on two murine prostate cancer
cell lines, AT2 and Mat-Ly-Lu, with interesting effect, corre-
lated with antioxidant activity [22]. Broccoli florets extracts
were tested on human ovary (OVCAR-5), breast (MCF-7),
colon (Colo-205) and prostate (PC-3) cancer cells [23] and
significant effect on human lung cancer cells A-549 was also

described [32]. All the results indicate that broccoli sprouts
and florets may be considered as potent cancer chemopreven-
tive agents.

Apoptosis and Necrosis

To further investigate the impact of the tested broccoli sprouts
and florets on the cells, their proapoptotic potential was eval-
uated by means of flow cytometry (Fig. 1). Strong cytotoxic
effect of broccoli florets on SW480 cells, described above,
proved to be due to necrosis (46.6%) rather than apoptosis
(32.7%), while the opposite effect was observed for HepG2
(20.9 and 51.9%, respectively) and for normal fibroblasts (2.1
and 51.9%, respectively). On the contrary, the tested broccoli
sprouts, with minor cytotoxic effect, stimulated apoptosis in
SW480 (77.4%) and necrosis (50%) in HepG2 cancer cells,
and their slight impact on normal fibroblasts was due to
proapoptotic effect (20.9%). Our findings for broccoli sprouts
were also proved for SW480 cells byWang & Zhang [30] and
Hudson et al. [33], but also for human bladder carcinoma cells
[34]. Our study is probably the first to demonstrate significant
differences between mechanism of cell death between dry
broccoli sprouts and florets. Such strong effect of broccoli
sprouts on SW480 cells in comparison to florets may expand

Fig. 1 Cytotoxic activity of methanol broccoli sprouts (a) and florets (b)
extract on BJ, SW480, HepG2 cells (left two diagrams) and apoptosis/
necrosis induction of the 2.5 mg/mL extracts (right two diagrams). Cells
were cultured in the presence (0.25–2.5mg/mL) of dry broccoli extracts.

Cell viability was expressed as % of control (untreated) cells. Values
represents means ±SEM; each experiment was done in triplicate. Means
with the same symbols on each subdiagram differ significantly (p < 0.05)
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dietetic recommendation for chemoprevention of colorectal
cancer, though further in vitro and in vivo studies are needed.
The statistically significant HPCA model of two significant
components was derived. Table 1S shows the details of PCA
models for blocks X1 and X2 as well as for overall HPCA
model. Block X1 was described completely by only one prin-
cipal component which accounts for 99.2% of the variation in
this block. All variables in this block had similar absolute
values of their loadings (around 0.35), but for C16:0, C18:0,
C24:0, C20:1 and C22:1 with positive, while for C18:1 and
C18:2 with negative signs, which therefore indicates inverse
correlation between the last two and the rest of fatty acids as a
whole group. Figure 1S shows HPCA final plot for the first two
components. The first principal component in this model had
positive loadings for APOPT-SW480, SF, sinapic acid, and first
principal component from the block X2, which all were interre-
latedwith correlationweighs of ca. 0.13–0.14, and simultaneous-
ly correlated negatively with APOPT-BJ, APOPT-HEPG2 and
principal component from the block X1 (again with correlation
weighs with absolute values in the same range as above). Being
in one cluster of variables (APOPT-BJ, APOPT-HEPG2 and
principal component from the block X1) means also that
APOPT-BJ and APOPT-HEPG2 were positively interrelated
with fatty acids C16:0, C18:0, C24:0, C20:1 and C22:1, and
negativelywith C18:1 andC18:2. Such relationships suggest that
sinapic acid, SF and two fatty acids (C18:1 and C18:2) inhibit
apoptosis of BJ and HepG2, while other fatty acids promote it.
Second principal component in HPCA was solely loaded by
second principal component fromX2 block predominantly influ-
enced by NECRO-BJ and NECRO-HEPG2. The separation be-
tween BS and BF samples in HPCA model was evident in di-
rection determined only by the first principal component of
HPCA model. Considering this result, BS samples were charac-
terized by apparently higher values of sinapic acid, SF, C18:1,
C18:2, MTT-BJ-2.5, andMTT-HEPG2–2.5, and lower values of
APOPT-BJ, APOPT-HEPG2, C16:0, C18:0, C24:0, C20:1 and
C22:1 as compared with BF samples. This is consistent with
results delivered by t-test analysis.

Conclusions

The results of our study provide new andmore precise insights
into phytochemical content and potential health benefits of
broccoli sprouts and florets. Lyophilized sprouts and florets
do substantially differ in their polyphenolic, sulforaphane and
fatty acid profile and amounts. Moreover, the examined
sprouts exhibited significant, selective cytotoxic and
proapoptotic effect against colorectal cancer, without a toxic
impact on normal cells. Such properties may be a strong ar-
gument for recommending lyophilized sprouts as functional
broccoli product, with chemopreventive potential against
large intestine tumor.
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