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Purpose: Significant progress has been made in the technological and physical aspects of dose delivery
and distribution in proton therapy. However, mode of cell killing induced by protons is less understood
in comparison with X-rays. The purpose of this study is to see if there is any difference in the mode of
cell-killing, induced by protons and X-rays in an ex vivo human peripheral blood lymphocyte (HPBL)
model.
Materials and methods: HPBL were irradiated with 60 MeV proton beam or 250-kVp X-rays in the dose
range of 0.3-4.0 Gy. Frequency of apoptotic and necrotic cells was determined by the Fluorescein
(FITC)-Annexin V labelling procedure, 1 and 4 h after irradiation. Chip-based DNA Ladder Assay was used
to confirm radiation-induced apoptosis and necrosis. Chip-based DNA Ladder Assay was used to confirm
radiation-induced apoptosis.
Results: Ex vivo irradiation of HPBL with proton beams of 60 MeV or 250 kVp X-rays resulted in apoptotic
as well as necrotic modes of cell-killing, which were evident at both 1 and 4 h after irradiation in the
whole dose and time range. Generally, our results indicated that protons cause relatively higher yields
of cell death that appears to be necrosis compared to X-rays. The analysis also demonstrates that radia-
tion type and dose play a critical role in mode of cell-killing.
Conclusion: Obtained results suggest that X-rays and protons induce cell-killing by different modes. Such
differences in cell-killing modes may have implications on the potential of a given therapeutic modality
to cause immune modulation via programmed cell death (X-rays) or necrotic cell death (proton therapy).
These studies point towards exploring for gene expression biomarkers related necrosis or apoptosis to
predict immune response after proton therapy.
© 2018 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Introduction

properties of proton beams used in therapy have been widely char-
acterized [3]. Despite of the well understood physical aspects of

Protons with energies from 60 to 250 MeV are being used in the
treatment of certain types of cancer (e.g., paediatric, head and neck,
brain, gastrointestinal, lung, genitourinary, eye tumours) [1]. Com-
pared to conventional radiotherapy, they offer better dose delivery
and distribution, and thus lower probability of collateral normal
tissue damage and lower risk of post-treatment complications
[1,2]. Several phase I and II clinical trials are ongoing to explore
the advantages of proton therapy over X-rays [2]. The physical
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proton therapy, proton biology and its clinical relevance are still
less understood [4]. The results of ongoing studies suggest that
the biological response following proton irradiation is modulated
differently than after X-ray exposure [5]. A deeper understanding
of dissimilarity in cell killing induced by proton beams in compar-
ison to photons is necessary. Previously, we characterized the
response of Human Peripheral Blood Lymphocytes (HPBL) to
therapeutic proton radiation of 60 MeV, by studying the nuclear
division index and DNA damage and compared the results with
X-rays [6]. A spatial difference in the energy deposition with
proton irradiation in comparison to X-rays resulted in a localized
manifestation of cytogenetic damage at cellular level [6]. These
studies led us to believe that there might be differences in
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cell-killing modes between protons and photons, due to a differ-
ence in the spatial distribution of energy, which might be clinically
relevant in evoking or suppressing immune response.

Radiation induces cell-killing through different modes: apopto-
sis, necrosis, necroptosis, autophagy, senescence, and mitotic
catastrophe [7]. Apoptosis and necrosis are two major cell death
modes, controlled by different physiological processes and molec-
ular pathways [8]. Generally, irradiation induces apoptosis in most
normal cells, but it also occurs in some tumour types [9], and peaks
at 3-5 h after irradiation depending on cell type and radiaton dose.
Susceptibility to apoptosis is a major determininant of radiosensi-
tivity for most cells [9,10]; higher radiosensitivity of lymphocytes
is due to their propensity to apoptosis [11].HPBL are predomi-
nantly in a resting phase (GO) of the cell cycle, they are a syn-
chronous and homogeneous cell population, which is in
continuous trafficking throughout the body and represent normal
tissue. Lymphocytes are involved in many key mechanistic roles
following exposure to radiation therapy of tumours, which include,
systemic responses at distant sites, enhancement of anti-tumour
innate and adaptive immune response, enhanced tumour recogni-
tion and killing via up-regulation of antigen presenting machinery
and induction of positive immunomodulatory pathways due to
trafficking of lymphocytes into the tumour microenvironment
[12]. It has recently become apparent that particle therapy may
distinctly affect cell death pathways, leading to an increased
immunogencity [13]. Since proton treatment will minimize expo-
sure of normal tissue [ 1], thereby exposure of normal lymphocytes
in relation to photon irradiation, immunogenecity is likely to be
less compared to photons in circulating lymphocytes [13]. Among
patients treated with C-ions for esophageal, uterine and cervical
cancers in peripheral blood lymphocytes level of cytogenetic dam-
age was lower compared to X-rays [14].

Since HPBL traffic throughout the body, which include irradia-
tion field, could potentially be used to interrogate radiation injury
to normal tissue during irradiation of tumours. There is a need to
understand the differences in cell-killing mechanisms induced by
currently used radiation therapies; not only cell-killing in the
tumour tissue but also in normal tissue, since total sparing of nor-
mal tissue within the treatment volume is not feasible. In this arti-
cle, we present the results of our studies that looked at the
differences in modes of cell-killing in an HPBL model, which repre-
sents the normal tissue, after ex vivo irradiation with photons and
protons. Also, we discuss the possible mechanistic reasons for these
differences, limitations, and potential implications for radiation
therapy in light of emerging literature in this rapidly evolving field.

Materials and methods
Blood collection

Whole peripheral blood was collected after obtaining informed
consent from healthy, non-smoking donors (3 male and 2 female),
aged between 36 and 56 years, in the same conditions as described
earlier [6]. Lymphocytes were isolated by density gradient separa-
tion using Histopaque®-1077 (Sigma-Aldrich, St. Louis, United
States). Cell viability was tested by the trypan blue exclusion test.
The number of dye-excluding cells was 100% for all donors. The
human bioethical committee of the Regional Medical Board in Kra-
kow approved the informed consent form used in this study (No.
124/KBL/OIL/2013).

Proton and X-ray irradiations and dosimetry

Proton and X-ray irradiation procedures have been previously
described in detail [6]. Briefly, HPBL irradiations with X-rays and

protons were performed at the Institute of Nuclear Physics, Polish
Academy of Sciences (IFJ PAN), Krakow, Poland. After acceleration,
proton beam was delivered to the treatment room by a small field
horizontal beam line. The parameters of a fully modulated proton
beam with Spread Out Bragg Peak (SOBP) were as follows: 30-
mm range, 30-mm modulation (measured in water phantom)
and field diameter was collimated to the 40-mm lateral diameter.
Parameters of the radiation field ensured homogenous distribution
of the dose throughout the irradiated samples placed in eppendorf
vials in a cell container. At the center of the cell container position,
i.e. at the depths 15-mm of the SOBP, the dose-averaged Linear
Energy Transfer (LET) was 2.9 keV/um. Within the sample position
in the SOBP the dose-averaged LET ranged from 2.5 keV/pm to 3.8
keV/um [15]. The proton beam dosimetry was done as described
previously [6], according to the TRS-398 protocol recommended
by International Atomic Energy Agency [TRS-398] using a reference
dosimeter consisting of a PTW TM31010 semiflex ionization cham-
ber and a PTW UNIDOS Webline Electrometer (PTW, Freiburg, Ger-
many). The dosimeter set was calibrated at the IFJ PAN at
Theratron 780 Co-60 treatment unit. Lymphocytes were irradiated
in 2 ml eppendorf vials (Eppendorf, Hamburg, Germany) with
doses: 0.3, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0 Gy for protons
and X-rays. The cell number was scored in a Biirker chamber and
then resuspended in 1.5 ml RPMI 1640 culture medium (PAA Lab-
oratories GmbH, Pasching, Austria). The final concentration of cell
suspension was 5 x 10% cells/ml. A specially designed PMMA-Poly
(methyl methacrylate) phantom was placed at the irradiation
setup isocentre (in the middle of SOBP) and in the centre of the flat
beam. The average dose rate was 0.075 Gy/s. For X-ray irradiation,
samples from the same donors were irradiated with the same
doses as used for proton irradiation with a dose rate of 0.15 Gy/s
by a Philips X-ray machine at the same conditions as described
previously [6].

Both proton and X-ray irradiations were carried out at room
temperature. Post-irradiation incubation of lymphocytes was done
at 37 °C in RPMI 1640 culture medium supplemented with 10%
heat-inactivated foetal bovine serum (Gibco, Carlsbad, United
States). A non-irradiated part of the sample served as control
(0.0 Gy).

Apoptosis and necrosis quantification

To quantify apoptosis and necrosis in our ex vivo HPBL model;
Apoptotic, Necrotic and Healthy Cells Quantification Kit (Biotium,
Inc., Hayward, USA) was used. The kit allows simultaneous quan-
tification of apoptotic, necrotic and healthy cells. Identification
and discrimination of apoptotic and necrotic cells in vitro can be
challenging, especially late stage apoptosis from necrosis [16]. Bio-
tium kit cannot distinguish late apoptosis from necrosis. We pre-
ferred to use fluorescence microscopy with the Biotium kit over
flow cytometry for quantitative measurements of apoptosis and
necrosis and then used apoptotic ladder kit for confirmation of
apoptosis (see descriptions below). In this test, HPBL were washed
in PBS and resuspended in 1X binding buffer, then 5 ul of FITC-
annexin V, ethidium homodimer Il and Hoechst 33,342 solution
was added to each tube and incubated for 15 min at 21 °C in dark.
HPBL were then washed 2 times with 1X binding buffer, fixed with
2% formamide, placed on a glass slide and covered with a glass
coverslip.

Generally, 4-6 representative fields of at least 100 cells per
dose, per time point were analyzed separately from 3 independent
triplicates (slides), by two independent scorers using fluorescent
microscopy coupled to an image analysis system (MetaSystems™,
Altlussheim, Germany), according to the criteria described by
Zhang et al. [17]. Experiments and irradiations were repeated twice
each. All slides were coded, blinded to scorers. Sample decoding
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was done after completing the microscopic evaluation of all slides
used for the study to maintain scientific rigor and quality. The
results were not statistically different between the slides, repeti-
tions nor scorers; therefore, results are presented as mean values.

Confirmation of apoptosis and necrosis

DNA extraction: The DNA from the HPBL was isolated with a
commercial DNA isolation kit as a part of Apoptotic DNA Ladder
Kit (Roche, Germany) according to the manufacturer’s protocol.
Lyophilized apoptotic U937 cells included in the Apoptotic DNA
Ladder Kit were used as a positive control.

Separation, sizing and quantification of the dsDNA fragments: The
Agilent 2100 Bioanalyzer with Agilent DNA 1000 Kit was used to
confirm apoptosis of lymphocytes following irradiation using the
extracted DNA as above.

DNA chip preparation: Dilution for the chip run was performed
using RNase-Free Water (Invitrogen, LifeTech, Carlsbad, USA). The
mean concentration of the DNA was 5.75 pl/ml per sample. The
concentration was derived by absorbance measurement performed
in the wavelength range of 200-1000 nm by TECAN16 Flat Black
instrument with NanoQuant Plates (TECAN Group Ltd., Mannedorf,
Switzerland). For each sample, irradiated or otherwise, absorbance
was measured at: 230, 260, 280 and 310-nm wavelenght. Precisely
1-ul of each eluted sample was loaded directly into the DNA chip
and run according to the guidelines provided by the TECAN Group
Ltd. The test also included a positive control provided by Apoptotic
DNA Ladder and Agilent DNA 1000 Ladder Kits. The results were
analyzed by the dedicated software in Agilent 2100 Bioanalyzer.

Statistical analysis

Microsoft Office Excel 2013 was used to analyze all data. Origi-
nPro 2017 (OriginLab Co., Northampton, MA, USA) was used for the
graphic representation and statistical analysis of the results. The
error bars derived for all data points of apoptotic and necrotic cells
represent a mean standard error of five donors. To investigate if the
results derived by repetitions, slides, and scorers were comparable,
Pearson’s correlation coefficient was used. To evaluate the statisti-
cal significance of compared results three-sigma limit test was
used (p < 0.05). The ratios of the percentage of apoptotic vs. necro-
tic cells were normalized and presented as a box chart.

Results and discussion
Apoptosis and necrosis visualisation

Ex vivo irradiation of HPBL with proton beams of 60 MeV or X-
rays results in apoptotic as well as necrotic modes of cell-killing.
Fig. 1 shows representative images of lymphocytes after ex vivo
irradiation with 3.0 Gy protons, in both time points: after 1 h or
4 h following staining with Apoptotic, Necrotic and Healthy Cells
Quantification Kit (a), compared with representative photos used
for HPBL control quantification (0 Gy, (b)), and HPBL after ex vivo
irradiation with 4.0 Gy X-rays (c), and 4.0 Gy protons (d). Apoptotic
cells appear as green, necrotic cells as red and viable cells as blue

The Biotium assay is based on the principle that during apopto-
sis, phosphatidylserine (PS) is translocated from the inner surface
of the cell membrane to the outer surface for phagocytic cell recog-
nition for organized removal of the cellular debri [18]. FITC-
labelled Annexin is an Annexin V recombinant conjugated to the
fluorescin. FITC-annexin V has a high affinity with PS, thus it binds
specifically to the cells with the PS localized on their outer surface
membrane. After staining, apoptotic cell population shows green
fluorescence. In contrastto apoptosis, loss of plasma-membrane

integrity characterises necrosis [8]. Necrotic cells are specifically
stained with ethidium homodimer III (red fluorescence), which is
a highly positively charged nucleic acid probe and is impermeant
to live or apoptotic cells. For visualizing the entire cell population
membrane-permeant blue fluorescent DNA dye Hoechst 33,342 is
used.

Confirmation of microscopic observation of cell death in HPBL by the
DNA fragmentation assay (Agilent DNA 1000 kit)

There is a strong relationship between radiation-induced DNA
fragmentation and apoptosis in HPBL. While radiation induces a
spectrum of qualitatively different types of DNA lesions (including
sizes of 180-200 bp or size multiples of 180-200 bp reflecting
apoptosis), apoptotic DNA fragmentation increases in a dose
dependent manner [19]. In our studies DNA fragmentation assay
was performed to find out whether or not radiation-induced frag-
mented genomic DNA reflects apoptosis. DNA fragmentation is
typically analysed by agarose gel electrophoresis. Agilent DNA
1000 kit is superior to conventional agarose gel electrophoresis
as it is more sensitive, has a relatively lower threshold level of
detection and allows analysis of sizes of DNA fragments and quan-
tifiable [20,21]. During apoptosis, the activation of specific
calcium-dependent endonucleases results in DNA fragmentation
of 180-200 bp and with distinct bands of various sizes of multiples
of 180-200bp [22,23]. Representative samples irradiated with
protons at doses of: 0.3; 0.5; 1.0; 2.0; 3.0 and 4.0 Gy showing var-
ious degrees of DNA fragmentation, are shown in Fig. 2.

Unirradiated sample (D-0) displayed an overall smaller DNA
signal and showed no indication of laddering of 180-200 bp or size
multiples of apoptotic DNA. Lanes D-0.5 - D-4.0 shows DNA lad-
dering indicative of apoptosis, as well as some smearing indicative
of necrosis after different doses of proton irradiation; thus, we
speculate the possibility of necrosis by proton irradiation. As
known, apoptosis is characterized by a series of dramatic cellular
perturbations that not only contribute to cell death but also pre-
pares organized removal of cellular debris by phagocytosis, pre-
venting unwanted immune responses [12]. In contrast, necrosis
is characterized by the loss of cell membrane integrity and uncon-
trolled release of products of cell death into the extracellular space
[24].

Quantification studies of apoptosis and necrosis

Percentage of apoptotic and necrotic cells were quantified using
the Apoptotic, Necrotic and Healthy Cells Quantification Kit, as
described in the Materials and Methods section, and the data are
presented in Figs. 3 and 4.

Our results demonstrate that protons are more efficient in cell-
killing, which is most likely due to the production of more irrepara-
ble lesions compared to X-rays, which agrees with our previous
observations [6]. Generally, ex vivo exposure to protons in the
dose-range 0.3-4.0 Gy resulted in a significantly higher number
of necrotic cells compared to X-rays after 1 and 4 h of irradiation
(p<0.001; Figs. 3 and 4). However, at lower proton doses of 0.5
and 0.75 Gy, 1 h after irradiation, and at 0.3 Gy after 4 h of irradia-
tion, the observed increases were not significantly higher com-
pared to X-rays. In addition, observed differences in necrotic cells
between two radiation types were mostly seen at higher doses
(1.5 Gy and above). Necrosis in unirradiated cells was 7.1 + 1.2%.
After 1h post-irradiation, at a dose of 4.0 Gy, the frequency of
necrotic cells increased to 15.2 + 3.5% with X-rays, and 52.6 + 12.
9% with protons, an approximate 3-fold increase compared to X-
rays. After 4 h of irradiation, the highest number of necrotic cells
was observed at doses of 2.5 Gy with protons (48.6 + 10.4) and at
2.0 Gy for X-rays (21.9 * 6.4). Above these doses, decline in the fre-
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viable
cell

necrotic
cell

Fig. 1. Representative photomicrographs of HPBL after ex vivo irradiation with 3.0 Gy protons following staining with Apoptotic, Necrotic and Healthy Cells Quantification Kit
(a, photo: 100x magnification, insert: 250x magnification) compared with representative photos (20x magnification, insert: 60x magnification) used for quantification of
control HPBL (0 Gy, b) and HPBL after ex vivo irradiation with 4.0 Gy X-rays (c) and 4.0 Gy protons (d). Presented photos were obtained 1 h post irradiation for donor No. 5.
Viable (blue, marked by blue arrows), necrotic (red, marked by red arrows) and apoptotic (green, marked by blue arrows) cells were observed under a fluorescent microscope.
(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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Fig. 2. Confirmation of the microscopic observation of apoptosis by the DNA fragmentation assay. Gel-like image showing positive controls. Ladder, Agilent DNA 1000 Kit;
Positive Control, Positive control (U937 cells, Apoptotic DNA Ladder Kit); D-0, control for non-irradiated HPBL; D-0.5 through D-4.0, a display of human DNA from 5 donors
irradiated with different doses: 0.5, 1.0, 2.0, 3.0 and 4.0-Gy of protons, respectively (Bioanalyzer 2100 Agilent, USA). With increasing doses of radiation there was a qualitative
increase in DNA fragmentation, indicative apoptosis as well necrosis, confirming fluorescence microscopy.

quency of necrotic cells was evident both with protons (30.1 £ 4.1)
and X-rays (12.5+1.6), which might be due to dead cells
degradation.

Extending these results, we calculated the ratios of apoptotic to
necrotic cells after protons and X-ray irradiation at 1 and 4 h post-
irradiation timepoints in the studied dose range (Fig. 5).

Median ratios of 14.71 for protons and 24.30 for X-rays were
observed for the apoptosis/necrosis ratio after 1h post-
irradiation. Although the difference in the apoptosis/necrosis ratios
was relatively small at lower doses of radiation, it was significant
at the 4.0 Gy dose (p < 0.05). Observed apparent increase in necro-
tic cells might be due to late occrung apoptosis or more likely
necroptosis, since recent studies have shown a co-regulatory inter-
play between apoptosis and necroptosis [25,26]. The results,
although are preliminary, overall confirm the observations that

protons induce relatively higher number of necrotic cells compared
to apoptosis, especially at higher doses.

These studies on understanding the differences in cell killing
mechanisms induced by photons and protons are important
because of its potential implications on the possible differences
between radiation types to suppress or evoke immune response.
Usually tumours that are radiosensitive undergo cell death via
apoptosis and inactivation of apoptotic machinery is central to
the development of cancer [9]. However, induction of mitotic death
and cell-killing via apoptosis in tumours alone are insufficient to
fully explain the therapeutic benefit of radiotherapy [7]. Many
other cell types such as cultured fibroblasts (V79, L-929), Chinese
hamster ovary (CHO) cells, as well as many human tumour cell
lines, do not undergo apoptosis in vitro and they generally die via
necrosis [27]. Immunogenic cell death (ICD) among cancer cells
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Apoptotic, Necrotic and Healthy Cells Quantification Kit. Error bars represent a standard error of the mean.

constitutes a prominent pathway for the activation of immune sys-
tem, which involves changes in the composition of cell surface as
well as release of soluble mediators, occurring in defined temporal
sequence [28]. Inflammatory signalling can occur is via necrosis
[25] or also via secondary necrosis, which occurs when apoptotic
cells are not swiftly engulfed by macrophages [29]. The decision
between cell survival and death following DNA damage relies on
many factors that are involved in DNA damage recognition, DNA
repair mechanisms and damage tolerance, as well as on factors
involved in the activation of apoptosis, necrosis, necroptosis,
autophagy and senescence [30]. At higher doses of therapeutic irra-
diation, necrosis is also evident [24]. Necrosis of tumor cells will
have important bearing in the induction of inflammatory response
and potentially local immune activation by spillage of cellular
lysate into the circulation [31].

During therapy, protons deposit energy far more selectively to
the tumour compared to photons, which is attributed to a higher
local tumor control, lower probability of damage of healthy tissue,
low risk of complications and the chance for a rapid recovery after
therapy [1]. Recent evidences suggest that charged particles may
be more immunogenic compared to photons [32]. Recently, it is
postulated that charged particles may distinctly affect cell death
pathways, leading to increased immunogenicity, and in patients
their integral dose likely spare more naive T-cells and memory T-
cells, which is essential to direct and sustain a tumor specific
immune response [13]. Hence, protons may be more effective in
cell-killing due to their potential to cause necrosis in addition to
apoptosis. Further, the dose of irradiation also plays a role in mod-
ulation of cell death pathways. However, at this time, the pub-
lished data are fragmentary to conclude whether or not there is a
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pivotal dose for determining a specific mode of cell death vs the
other [10]. Probably in case of the proton beam dose dense energy
deposition results in an increase in “locally multiply damaged sites”
or “clustered DNA damage” and consequently, regulated process of
apoptosis is inactivated, therefore, cells die mostly by necrosis.
This is related to the increased LET with a localized energy deposi-
tion resulting in the induction of enhanced, unrepairable biological
damage [5].

While our studies on cell killing mode may have important
bearing on immune response and possibly treatment [33,34], it is
also important to note that our studies are done under ex vivo irra-
diation conditions, where we demonstrate, protons cause rela-
tively more necrosis, which is immunogenic. Further, Apoptotic,
Necrotic and Healthy Cells Quantification Kit has its own limita-
tions. Studies have shown that in late apoptotic and necrotic cells,
the integrity of the plasma and nuclear membranes decreases,
allowing PI to pass through the membranes, intercalate into
nucleic acids, leading to problems in distinguishing between these
two stages [35,36].

In summary, our studies demonstrate the difference in cell-
killing modes induced by X-rays and protons, which may have
implications on the potential of a given therapeutic modality to
cause robust immune modulation via programmed cell death (X-
rays) or inflammation (proton therapy). Although our results are
preliminary, data from the present studies can guide as a valuable
tool in developing appropriate response models to proton therapy.
Additionally, HPBL model can serve as a surrogate of normal tissue
response to treatment and may allow optimization of treatment
planning at an individual patient level. Our studies also point
towards exploring gene expression markers related necrosis or
apoptosis, which might allow development of biomarkers of
immune activation and help improve proton therapy.
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