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Abstract. Drug-induced cardiac arrhythmia, especially occurrence of torsade de pointes
(TdP), has been a leading cause of attrition and post-approval re-labeling and withdrawal of
many drugs. TdP is a multifactorial event, reflecting more than just drug-induced cardiac ion
channel inhibition and QT interval prolongation. This presents a translational gap in
extrapolating pre-clinical and clinical cardiac safety assessment to estimate TdP risk reliably,
especially when the drug of interest is used in combination with other QT-prolonging drugs
for treatment of diseases such as tuberculosis. A multi-scale mechanistic modeling framework
consisting of physiologically based pharmacokinetics (PBPK) simulations of clinically
relevant drug exposures combined with Quantitative Systems Toxicology (QST) models of
cardiac electro-physiology could bridge this gap. We illustrate this PBPK-QST approach in
cardiac risk assessment as exemplified by moxifloxacin, an anti-tuberculosis drug with
abundant clinical cardiac safety data. PBPK simulations of moxifloxacin concentrations
(systemic circulation and estimated in heart tissue) were linked with in vitro measurements of
cardiac ion channel inhibition to predict the magnitude of QT prolongation in healthy
individuals. Predictions closely reproduced the clinically observed QT interval prolongation,
but no arrhythmia was observed, even at ×10 exposure. However, the same exposure levels in
presence of physiological risk factors, e.g., hypokalemia and tachycardia, led to arrhythmic
event in simulations, consistent with reported moxifloxacin-related TdP events. Application
of a progressive PBPK-QST cardiac risk assessment paradigm starting in early development
could guide drug development decisions and later define a clinical Bsafe space^ for post-
approval risk management to identify high-risk clinical scenarios.

KEY WORDS: hERG; moxifloxacin; torsade de pointes; quantitative systems toxicology; QT
prolongation.

INTRODUCTION

Cardiac toxicity is one of the leading causes of high
attrition rate at various stages of drug development, with-
drawal of several marketed drugs, and re-labelling of many

drugs (1–4). Among various types of cardiotoxic effects,
arrhythmogenicity is the most common post-approval adverse
event (3). Of particular concern is torsade de pointes (TdP), a
life-threatening arrhythmia that can degenerate into ventric-
ular fibrillation.

Due to the potentially significant safety impact and
corresponding regulatory concern of drug-induced
cardiotoxicity, careful assessment of pro-arrhythmic potential
is an integral part of pre-clinical and clinical safety evaluation
of an investigational new drug (IND). There are several
methods available for cardiac risk assessment, including in
silico, in vitro, and ex vivo models as well as in vivo studies in
animals and humans. Selection of the appropriate model is
dependent upon the stage of development and the cardiac
safety questions relevant to each development program. The
most commonly utilized models during pre-clinical develop-
ment include in vitro ion current inhibition models, where the
human ion channels involved in cardiac electrophysiology are
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heterologously expressed in non-human or human cell lines
(5). These approaches continue to evolve, with newer
approaches such as the Comprehensive in vitro Pro-
arrhythmia Assay (CiPA) initiative, assessing the role of stem
cell-derived cardiomyocytes in cardiac safety assessment
(6–10).

Despite the availability of multiple models and the
continued advances in cardiac risk assessment, the number
of reports of TdP remains significant (over 100 cases of the
TdP reported to the FDA Adverse Event Reporting System
(FAERS) every year) and almost half of them are related to
non-cardiovascular drugs (4,11). This reflects a translational
gap in the quantitative clinical extrapolation from the typical
cardiac safety data collected, such as early non-clinical drug
screens for cardiac ion channel inhibition, particularly hERG
(human ether-a-go-go gene) inhibition, or the propensity for
QT interval prolongation as assessed in early phase and
thorough QT trials (TQT) clinical trials (12). Consequently,
to minimize risk under an optimized drug development
paradigm, early stage gates are often employed which only
progress compounds predicted or observed to have little to no
increase in QT interval, raising concerns that therapeutically
promising agents may be triaged inappropriately. These
concerns represent findings that the occurrence of TdP is
multifactorial, reflecting more than just a drug’s ability to
inhibit hERG or increase the QT interval. These additional
factors, such as gender, co-medications, comorbidities, and
genetic polymorphisms, make a drug relatively safe for most
people potentially cardiotoxic for a few individuals under
specific circumstances (13).

Translational tools with improved predictive perfor-
mance that account for the multifactorial determinants of
cardiotoxicity, particularly TdP, are needed to improve both
the cardiac risk assessment and attrition rates of compounds
in development. One such set of tools are physiologically
based, biophysically detailed models of cardiac physiology
that can characterize the contributions of multiple ion
channel inhibition on the electrophysiology of human
cardiomyocytes. These models can bridge the translational
gap in cardiac safety assessment during the early drug
development stage by faithfully reproducing the mechanistic
exposure–response relationships from the molecular level to
the full organism level. Specifically, simulations using this
framework can link predicted or observed drug pharmaco-
kinetics (PK) via physiologically based PK (PBPK) model-
ing with dynamic ion channel inhibition and subsequent
effects on electrocardiography (ECG) parameters in virtual
patients, which represent an array of physiologies. In
addition to ECG metrics of interest (i.e., change in QTc
interval) across a range of drug exposures, the derived ECG
outputs can be directly utilized in the cardiac risk algorithm
recently developed by Polak et al. (14). This algorithm,
which can operate without well-characterized human PK
and pharmacodynamics (PD) aspects, predicts the probabil-
ity of a compound causing TdP at early stage of develop-
ment when used as monotherapy in the context of the
physiology of a generally healthy average human and
improves upon earlier algorithms in that it considers
potential supra-therapeutic concentrations as well as the
impact of inhibition of multiple ion channels other than
hERG in risk stratification.

The current work exemplifies a model-based quantitative
systems toxicology (QST) strategy for progressive cardiac risk
assessment, where the risk assessment for a novel compound
is refined progressively as clinical knowledge is enriched
through predict-learn-confirm cycles. The individual model
components are iteratively verified/refined, to reduce uncer-
tainty and increase confidence, making them adaptable to
more adequately address questions around therapeutic per-
formance, as they arise during clinical development. The
Cardiac Risk Algorithm as proposed by Polak et al. is one
component model that can be particularly informative during
early phase development to estimate potential cardiac safety
risk even in the absence of detailed information about human
PK and PD, as sensitivity analyses may be performed to
simulate a range of possible clinical scenarios. As more PK
and PD information about the drug becomes available with
further drug development, these initial predictions can be
verified and refined, and ultimately may be superseded by a
more detailed PBPK-QST model platform. Once sufficiently
verified, the established and enriched model can be used to
simulate clinical scenarios to evaluate effects of intrinsic and
extrinsic factors (i.e., special populations, drug–drug interac-
tions, co-morbidities) to establish the clinical cardiac risk
scenarios (Fig. 1).

To illustrate this approach, a series of simulations were
performed to reflect virtual administration of the anti-
infective, moxifloxacin (MOXI). MOXI was chosen as an
exemplar compound as it is the most commonly used positive
control in TQT trials and thus has well-established human PK
and PK-ECG profiles. Furthermore, MOXI is active against
Mycobacterium tuberculosis (Mtb), the causative pathogen of
tuberculosis (TB), and thus is administered as a component of
anti-TB drug regimens. Cardiac risk assessment in TB is of
specific importance, as many existing and emerging anti-TB
agents have a known or suspected propensity for QT
prolongation. As the application of a model-based QST
strategy for progressive cardiac risk assessment could be
advantageous in the prioritization of compounds for inclusion
in anti-TB regimens, MOXI serves as an illustrative example
of how this approach could be applied during pre-clinical and
early clinical development. Here, we report a utilization of
the cardiac QST models implemented within Cardiac Safety
Simulator (CSS) platform (Certara, Sheffield, UK), previ-
ously known as Tox-Comp platform (15) for the quantitative
prediction of QT prolongation in humans at therapeutic dose
and the risk of causing TdP. We also assessed the impact of
potential supra-therapeutic concentration of MOXI in caus-
ing TdP in silico as well as existing conditions such as
hypokalemia which was not part of early-stage risk stratifica-
tion algorithm.

MATERIALS AND METHODS

Simcyp Simulator V16 (Certara, Sheffield, UK) was used
for PBPK simulations. The Advanced Dissolution, Absorp-
tion and Metabolism (ADAM) model was used to mechanis-
tically simulate the formulation effects on drug absorption,
and 14 organ full body perfusion limited PBPK distribution
model was used to model disposition after systemic absorp-
tion (16,17). The recently established PBPK model parame-
ters (Supplement 1) were used to simulate the
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pharmacokinetics of MOXI after oral administration and
estimate the population variability in the lung tissue disposi-
tion (18), resulting in a mechanistic PK-PD model for
translation of the in vitro cardiac safety assessment to clinical
level. Poulin and Theil method (19) with Berezhkovskiy
correction (20) was used to estimate the tissue:plasma
partitioning of MOXI. This method underpredicted the
volume of distribution in comparison to volume of distribu-
tion reported for MOXI after intravenous administration to
human volunteers; hence, the model was calibrated with BKp
scalar^ using Simcyp parameter estimation module. The
PBPK model was used to derive the concentration–time
profiles for various bio-phases used to drive the CSS module
(described below). The PBPK model was linked with the
mechanistic cardiac QST model for MOXI. As the purpose of
the study was to show application of the PBPK-QST framework
in early clinical development, a phase 1 healthy volunteer study
was simulated. A virtual population of 20 healthy Caucasian
individuals (50% female) aged 20–50 years old was used to
simulate single-dose fasted-state administration of a 400-mg
MOXI tablet formulation, similar in size to a positive control
arm in a typical TQT trial. The resulting plasma concentration–
time profiles were verified by comparison to the observed
clinical PK data reported by Stass et al. (21).

The CSS version 2.1 was used to perform all cardiac
electrophysiology simulations. The CSS platform combines
electro-physiologically based models of the human left ventricular
cardiomyocytes and a database of human physiological, genotypic,
and demographic data thus allowing generation of a virtual realistic
population variability in cardiac physiology during simulations
(13,22). Specifically, the CSS platform accounts for circadian
variability in heart rate as well as plasma electrolyte (Na+, K+ and
Ca2+) concentrations using covariate models derived from actual
clinical data (23). Epidemiological and covariate models which

take into account the effect of gender and age on ventricular heart
wall thickness, cardiomyocyte volume and capacitance, and
sarcoplasmic reticulum volume are also built into the CSS platform
for the north European Caucasian population with healthy heart
physiology (15). The output from the CSS is in the form of a
pseudo-electrocardiogram (i.e., a virtualECG), includingmeasures
of interest (e.g., QRS, QT). It is termed pseudoECG as it is based
only on a string of ventricular cells and hence is missing atrial
activity characterized by P wave on a clinical ECG signal.

For this study, the CSS implementation of the ten
Tusscher 2006 (TT2006) ventricular cardiomyocyte cell model
(24) was used primarily to form a one-dimensional cardio-
myocyte string mimicking the ventricular wall cross-section
(thickness). The use of another widely used cardiomyocyte
model, O’Hara and Rudy (ORd) model (25), was also
assessed on the predicted pseudoECG. The cells were paced
at the endocardial side and used a 50:30:20 distribution of
endocardium, midcardium, and epicardium cells with an
average diffusion coefficient of 0.0016 cm2/ms. The forward
Euler method was used to integrate the model equations with
a space step and a time step of 0.01 mm and 0.01 ms,
respectively, and a total simulation time of 10,000 ms.

For simulation of the effects of a compound on the
pseudoECG outputs, the required model inputs are the in vitro
measured IC50 values for relevant cardiac ion currents, operating
drug exposure concentrations, time of day (clock time for
circadian model), and age and gender of each simulated subject
which can be directly read into the CSS platform from the Simcyp
PBPK model output. MOXI’s cardiac effects are primarily linked
to rapid rectifier potassium current (IKr) inhibition (encoded by
hERG gene), as effects on other currents, namely the late calcium
(ICaL) and sodium currents (INa), show IC50 values many-fold
higher than the operating physiological tissue concentrations of
MOXI after 400mg single-dose administration andwere obtained

Fig. 1. Progressive cardiac risk assessment strategy in TdP risk assessment
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from non-human cell systems. Hence, we considered only the
inhibition of IKr by MOXI in our simulations, with corresponding
IC50 values obtained from the freely available tox-database.net
(Table I) (43). Consistent with other experiments in biological
systems, there is considerable inter-laboratory variability in
reported IC50 values for IKr inhibition by MOXI, which range
from 0.93 to 398 μMand are dependent upon in vitro cell line and
experimental conditions. Hence, the presumably Bmost bio-
relevant^ IC50 value of 29 μM for IKr inhibition by MOXI as per
Alexandrou et al. (26) was chosen an input to the model and a
corresponding sensitivity analysis conducted (see Discussion
section for further details).

Drug concentration-dependent inhibition of ion channel
activity was modeled by multiplying the specified ionic
current of interest by an inhibition factor as described in
Eq. 1:

Inhibition Factor ¼ 1
1þ IC50= D½ �ð Þn ð1Þ

where IC50 is the drug concentration responsible for the 50%
inhibition, n is the shape parameter (Hill coefficient), and [D]
indicates the drug concentration in micromolar. The inhibition
factor was calculated using MOXI concentrations simulated by
the PBPK model for the following bio-phases: (i) unbound

plasma concentration, (ii) total plasma concentration, (iii)
unbound heart tissue concentration, and (iv) total heart tissue
concentration. Each bio-phase concentration was sampled at 13
time points similar to those used in a typical phase 1 study (i.e., 0,
0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 12, 18, and 24 h post-dose) and used
as input to the CSS. The start of the treatment was assumed to
be 09:00 o’clock time on day 1 and continues till 09:00 on day 2
(24 h). The simulated QT interval was corrected for heart rate
effect by Fridericia formula (44) and by placebo (QT interval
simulated at same time of the day with zero drug concentration)
for each individual and each time point. Each of the result sets
(corresponding to the four bio-phase concentrations) was then
compared with clinically observed QT prolongation reported
after single-dose administration of 400 mg orally.

RESULTS

Performance Verification of PBPK Model

The simulated plasma concentration-time profile ob-
tained after 400 mg MOXI oral dose in fasted state overlaid
with clinically observed data is reported in Fig. 2a. The
comparative average unbound plasma, total plasma, unbound
heart tissue, and total heart tissue concentrations are shown
in Fig. 2b. The concentrations in heart tissue are almost
fourfold higher than the corresponding plasma

Table I. MOXI IC50 values for IKr current (marked raw indicates values used in simulations)

In vitro
cell
model

Temp
(°C)

K+

bath
(mM)

Holding
potential
(mV)

Depolarization
potential (mV)

Repolarization
potential (mV)

Measurement
potential
(mV)

Data
source

I C 5 0

(μM)
(n)

HEK 22 4 − 80 20 − 80 − 40 (26) 61 (0.96)
HEK 22 4 − 80 20 − 80 − 80 (26) 65 (0.97)
HEK 22 4 − 80 – – – (26) 114 (0.94)
HEK 35–37 4 − 80 20 − 80 − 80 (26) 29 (1.14)
AT-1 22–23 4 − 40 20 − 40 − 40 (27) 0.93
CHO 22–24 5.4 − 80 20 − 40 − 40 (28) 1 0 2 . 6 3

(1.1)
HEK 35–36 4 − 80 0 − 50 − 50 (29) > 100
HEK 34–36 4 − 80 20 − 80 − 80 (30) 35.7 (1)
HEK – – – – – – (31) 122
CHO Room 5 − 80 20 − 40 − 40 (32) 129
HEK Room 4 − 80 40 − 40 − 40 (33) 8 6 . 2

(0.94)
HEK 36–38 4 − 75 10 − 40 − 40 (34) 74.7
HEK Room 4 − 80 60 − 40 − 40 (35) 99
CHO 21 3.2? − 70 40 − 30 − 30 (36) 80.5
HEK 36.5–37 5 − 80 0 − 50 − 50 (37) 5 8 . 5

(0.92)
CHO – – − 70 40 − 30 − 30 (38) 398
CHO Room 4 − 80 20 − 50 − 50 (39) 1 3 5 . 8

(0.91)
CHO 35–37 4 − 80 20 − 40 − 40 (40) 34
HEK – – – – – – (41) 1 0 2

(0.66)
CHO 2 4 . 5 –

25.5
4 − 80 20 − 40 − 40 (42) 235

The IC50 value in bold font were considered most bio-relevant and used during QST simulations, see discussion section for further details
HEK human embryonic kidney cells, CHO Chinese hamster ovary cells, AT-1 atrial tumor myocytes derived from transgenic mice, IC50
concentration of drug required to inhibition 50% of ion channel current, n Hill coefficient
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concentrations, and there is a slight delay in achieving Tmax in
heart tissue (2.6 h) as compared to plasma (2.4 h) due to time
taken to perfuse and partition in the heart tissue from
systemic circulation.

Performance Verification of the Cardiac QST Model

Considerable variability in clinical studies measuring QT
prolongation is reported in literature mainly due to the
differences in study protocols, baseline and heart rate
correction approaches, demographic differences, and drug
formulations. For example, over encapsulation of MOXI (and
the investigational product) is sometimes used for blinding
purposes in TQT trials, which may contribute to inter-study
variability in MOXI pharmacokinetics, specifically mean
transit time and time of peak plasma MOXI concentration
as shown by Florian et al. (45). Due to this and other such
variations in clinical trial design, before embarking on QST
model verification, we summarized the reported QT prolon-
gation from clinical study reports where placebo, baseline and
heart rate-corrected QT prolongation, known as ΔΔQTc, was
reported. We identified six clinical study reports (46–51) that
provide the ΔΔQTc profiles post-MOXI 400-mg oral dose
where matching PK and ΔΔQTc—time profiles were re-
ported; these are depicted in Fig. 3 along with a pooled
average. The profiles were digitized from the graphs reported

in study reports using GetData Graph Digitizer software
version 2.26.

The simulated ΔΔQTcF prolongation derived using
simulated MOXI concentrations in the four bio-phases are
shown in Fig. 4 and are overlaid with the pooled average
ΔΔQTc as shown in Fig. 3. Figure 4a shows the results when
unbound plasma MOXI concentration was used as the
operating concentration to drive the cardiac QST model,
with Fig. 4b–d showing the equivalent for total plasma,
unbound heart tissue, and total heart tissue MOXI concen-
trations, respectively. Comparison of the simulated and
observed results clearly shows that the unbound heart tissue
concentrations (Fig. 4c) most closely predicted the clinically
observed ΔΔQTc values at all the time points.

TdP Risk Prediction at Supra-Therapeutic Exposure and with
Other Physiological Risk Factors

MOXI is considered a potentially torsadogenic drug (52)
which is attributed mainly due to its ability to inhibit the
hERG channel current. However, the actual reported cases of
TdP after MOXI treatment are very rare, which is consistent
with the lack of pro-arrhythmic pseudoECG waveforms in
any of the virtual patients simulated in Fig. 4 as well as the
mid-range probability (54%) of being TdP positive as
estimated by the Cardiac Risk Algorithm of Polak et al.
(14). Most of the reported TdP cases occurred when MOXI
was administered with other cardiotoxic medications potenti-
ating their TdP effect or physiological conditions and diseases
such as hypokalemia, tachycardia, renal failure (main route of
elimination for MOXI), or congenital long QT syndrome.
Thus, MOXI prolongs the QTc interval at therapeutic dose
levels but actual TdP events are contingent upon the presence
of other clinical risk factors that may not be present in the
healthy volunteer phase 1 trial setting as simulated.

Hence, to simulate a higher-risk clinical situation, the
following scenarios were compared with placebo administra-
tion in a virtual 20-year-old female subject:

& Scenario 1: MOXI concentrations equivalent to
the mean unbound heart tissue MOXI Cmax with 400-
mg single-dose administration in a healthy individual;

– Heart rate 60 beats per min and plasma potassium
concentration of 4.2 mM

& Scenario 2: Supra-therapeutic MOXI concentra-
tions 10-fold higher than the mean unbound heart
tissue MOXI Cmax with 400-mg single-dose adminis-
tration in a healthy individual;

& Scenario 3: Therapeutic dosing as in scenario 1,
but simulated in a virtual patient exhibiting pro-
arrhythmic physiological factors;

– Tachycardia (heart rate 120 beats per min) and
hypokalemia (plasma K+ concentration of 1.5 mM)

& Scenario 4: Supra-therapeutic dosing as in sce-
nario 2 in a virtual patient exhibiting the same pro-
arrhythmic physiological factors as in scenario 3.

The results of the simulated pseudoECG from the CSS
platform are shown in Fig. 5 for all scenarios.

Figure 5a shows that under normal physiological condi-
tions (i.e., scenarios 1 and 2), MOXI prolongs QTc interval
without causing any abnormal rhythms even at supra-

Fig. 2. a Simcyp simulated total plasma concentration time profile
(thick green line is arithmetic mean, dotted gray lines are 5th and
95th percentile) from 20 virtual subjects overlaid with mean profile
(filled blue circle markers) obtained from clinical study by Stass et al.
(21) after 400-mg oral dose of MOXI in fasted state; b Simulated
population mean of unbound plasma, total plasma, unbound heart
tissue, and total heart tissue concentrations of MOXI
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therapeutic MOXI concentrations. On the other hand, Fig. 5b
indicates that in the presence of relevant physiological
changes (i.e., hypokalemia and tachycardia), the same
supra-therapeutic exposure could cause polymorphic arrhyth-
mia. To put in clinical context, the supra-therapeutic MOXI
concentration of 120 μM used in scenarios 2 and 4 is 10-fold
higher than the mean unbound heart tissue MOXI Cmax after
400-mg single oral dose administration. These exposures
could be seen in a portion of the patient population under
various clinical scenarios, such as drug–drug interactions (viz.
inhibition of MOXI clearance), overdose or with intravenous
bolus administration of high dose of MOXI (> 800 mg).
Moreover, patients with renal impairment could show higher
exposure at therapeutic doses as MOXI is predominantly
cleared by renal filtration, which may underlie the reported
TdP cases of MOXI in renally impaired patients (53). The
results show that MOXI, an otherwise low TdP-risk drug at
therapeutic dose in a healthy subject with normal physiology,
could cause TdP when combined with elevated patient
physiological risk factors.

DISCUSSION

Predictive Performance of PBPK-QST Model at Therapeutic
and Supra-Therapeutic Exposure

PBPK modeling is widely utilized to estimate drug
concentrations in various bio-phases for linking with PD
models to establish exposure–effect relationships, without
the requirement for a direct measurement of drug
concentrations at site of action in clinic (54,55). These
models can be semi- or fully mechanistic and can include
multiple physiologically relevant pathways. For example,
the contributions of transporters in lung uptake of MOXI
are incorporated based on in vitro data, which is
important in reproducing the observed clinical lung

disposition in tuberculosis patients (18). In the cardiac
QST framework, heart tissue concentrations have been
established as the relevant bio-phase for governing the
QT effect rather than concentrations in plasma per in vivo
animal work by Minematsu et al. (56). However, given
that measurement of heart tissue drug concentrations is
not feasible in the clinic due to ethical and practical
considerations, suitable concentrations to estimate poten-
tial cardiac effects in patients are generally not well-
informed. However, a sufficiently detailed PBPK model
that exhibits good predictive performance can potentially
help bridge the gap to estimate the concentrations in
heart tissue. The robustness of this approach was not fully
assessed in the present work, as no clinical or animal data
on heart tissue MOXI concentrations was available to
verify the PBPK-predicted distribution (i.e., fourfold
higher exposure in heart as compared to plasma). Hence,
the model predicted heart tissue MOXI concentration and
unbound fraction were used Bas is^ without further
refinement as input to the CSS model and drove the
pseudoECG output. This approach demonstrated good
predictive performance as shown in Fig. 4, where predic-
tions based on the unbound heart tissue MOXI concen-
tration (the most theoretically relevant bio-phase) closely
matched the QTc prolongation profile observed in the
clinic. Moreover, the CSS model was also able to recover
the gender effect in QT prolongation effect, with pre-
dicted mean peak ΔΔQTc value ~ 4.5 ms higher in
females than in male subjects and similar to the ~ 4 ms
difference reported by Taubel et al. (50). The ability to
recapitulate this sex-related difference illustrates an ad-
vantage of the model-based QST framework for cardiac
risk assessment, as the potential effects of covariates (e.g.,
food effects, concomitant medications, comorbidities) that
affect drug PK and/or PD may be investigated beginning
at early development stages.
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While the above results indicate that the estimated
unbound heart tissue concentration predicted the QT
prolongation reasonably well, it is noted that the PBPK
model for MOXI is enriched based on non-clinical and
clinical PK data to account for discrepancies between
Bbottom-up^ mechanistic predictions of tissue uptake and
clinically observed volume of distribution (viz. application
of a Kp scalar). However, simulations such as those
presented herein are often conducted during early clinical
development, where data is generally more limited, and
thus, there is greater uncertainty in the degree of tissue
uptake. This uncertainty was reproduced herein as multi-
ple potentially relevant bio-phase concentrations were
considered to generate plausible CSS outputs reflecting
an approximately fivefold range of mean peak ΔΔQTc
values (i.e., ranging from approximately + 4 to + 20 ms for
unbound plasma and total heart MOXI concentrations,
respectively). Such an approach is useful in early devel-
opment, where a set of predictions reflecting a range of
potential clinical scenarios may be highly informative in
cardiac risk assessment, clinical trial design, and overall
clinical development strategy. Even though this work
attempted to develop the most mechanistically plausible
model based on currently available knowledge in the area,

it is worth noting certain uncertainties and assumptions
associated with the model and input data. For example,
the model did not explicitly account for formulation
effects such as over encapsulation, because such informa-
tion is rarely made publicly available and not well-defined
in the clinical studies used for model verification. Sec-
ondly, we did not have fully detailed heart tissue model to
mimic the exposure inside the cardiomyocyte cell, which
has been suggested to be more suitable of exposure for
some compounds (57–59). Such detailed heart tissue
models exist (60,61), but they could be even more
challenging to verify with limited measurements in heart
tissue or cardiomyocytes. Moreover, the in vitro IC50 data
also reflects the concentration in the media not inside the
cell; thus, combining such IC50 without suitable correction
with intra-cellular exposure model could produce mislead-
ing results. The translatability of in vitro experiments,
typically conducted in HEK cells with heterologously
expressed cardiac ion channels, to the in vivo situations
or actual cardiomyocytes in terms of physiological func-
tions is not fully established. Nonetheless, these are the
challenges facing the general cardiotoxicity assessment
area, rather than this work specifically, and more exper-
imental data is required to complement such modeling

Fig. 4. TT 2006 model simulated ΔΔQTc-time (post-dose) profile using (a) unbound plasma, (b) total plasma, (c) unbound heart tissue, and (d)
total heart tissue concentrations of MOXI as operational concentration to drive the QT response. The population variability of simulated 20
subjects (open circles), average of the population (thick gray line), average of 10 female population group (yellow line), and average of 10 male
population group (green line) are also shown for each of simulation set
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results to test or establish hypotheses and move the field
of cardiac risk assessment forward.

Although the estimated unbound heart tissue MOXI
concentrations resulted in the best match to the observed
clinical data when used as the input for the CSS model, it
is noted that PK-PD relationships for cardiac parameters
(e.g., QT prolongation) are predominantly reported as
correlations with plasma drug concentrations. This corre-
lation is shown in Fig. 6, which depicts the ΔΔQTc values
predicted from the CSS using unbound heart tissue MOXI
concentration as input versus concentrations at the corre-
sponding time points (unbound heart tissue and total
plasma MOXI concentrations in open and closed circles,
respectively).

Figure 6 shows robust correlations with the predicted
ΔΔQTcF, with slopes of 6.86 and 3.51 ms/μg ×mL−1 of MOXI
in total plasma and unbound heart tissue bio-phases,
respectively, with the steeper slope for the plasma
correlation reflecting the lower MOXI concentrations in the
total plasma vs. the unbound heart tissue bio-phases. Notably,
when compared with published slopes from clinical studies,
the Bbottom-up^ predicted slope of 6.86 ms/μg ×mL−1 for the
plasma correlation was similar to slightly higher in magnitude.
For example, the value reported by Panicker et al. (49) from a

bootstrapping analysis was 5.9 ms/μg ×mL−1, whereas an
earlier population PK-PD study by Florian et al. reported

Fig. 5. Simulated pseudoECG traces at therapeutic (red thick line), supra-therapeutic
(double green continuous line) exposure of MOXI and placebo (no drug) (dotted blue line)
under normal physiological conditions (a), and tachycardia with hypokalaemia (b)

Fig. 6. Relationship between simulated MOXI concentrations and
ΔΔQTcF (filled blue circles represent the total plasma concentration
vs. ΔΔQTcF obtained with unbound heart tissue concentration as
operating concentration and open blue circles represent the unbound
heart tissue concentration vs. ΔΔQTcF obtained with unbound heart
tissue concentration as operating concentration)
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slopes from individual studies ranging from 1.6 to 4.8 ms/μg ×
mL−1 and a mean estimate of 3.1 ms/μg ×mL−1 (45). In the
latter case, it is noted that this may be influenced by clinical
trial size, as clinical studies with larger populations are known
to have slopes higher than 3.1 ms/μg ×mL−1 (62). Regardless,
this suggests that the bottom-up approach outlined in the
present work provides reasonable, if possibly somewhat
conservative, predictions of QTc prolongation for MOXI.

Although the ΔΔQTcF is a useful comparator for
evaluating performance of the PBPK-based CSS simulations,
it is important to note that the reliance on QTc as a metric of
torsadogenic potential has significant drawbacks (13,63). This
is exemplified by MOXI, as reports by Abbasi et al. (64),
Okada et al. (39), and simulations done previously by our
group (14) have shown with single cell level as well as three-
dimensional heart wall simulations that MOXI does not cause
early after depolarization (EAD) or arrhythmia at up to 100-
fold supra-therapeutic concentration with healthy cardiac
electrophysiology. While this is in contradiction to the
reported TdP cases with MOXI in clinic at lower than 100-
fold exposure levels (65,66), these cases, as well as 274
records1 of MOXI-associated TdP (obtained by mining of the
US FAERS database using the OpenVigil 2.1 portal (67) for
TdP cases reported with MOXI) indicates that almost all
cases were multifactorial. Specifically, the MOXI-associated
cases involved other contributing factors, such as additional
QT prolonging co-medications, disease conditions such as
renal failure, or physiology modifications that could influence
cardiac electrophysiology such as electrolyte imbalance or
abnormal heart rate. It should be emphasized that these
findings are highly consistent with pseudoECG simulations
presented herein, which also show that MOXI itself is less
likely to cause TdP even at 10-fold higher than therapeutic
exposure in a healthy subject but could cause arrhythmia
when administered to patients with other physiological risk
factors or co-medications with torsadogenic potential (refer to
Fig. 5). Hence, this demonstrates that the application of the
cardiac QST modeling framework shown in this study could
potentially help bridge the translational gap by starting with
assumption-rich exploratory simulations in early clinical
development with iterative refinement through learn-
confirm-predict cycles through later stages of drug develop-
ment. Such an approach is envisioned to guide both
appropriate labeling and rational pharmacotherapy of new
drugs to avoid or reduce post-marketing TdP risk.

Differences in Reported IKr IC50 Values and Its Impact on
QST Model Prediction

Lab to lab variability in cell-based in vitro assays, such as
those used to provide input values for use in the present
analysis, is well-documented (43,68). This can be seen in the
reported IKr IC50 values of MOXI from different laboratories
and different experimental protocols provided in Table I as
well as in the results of an extensive literature search carried
out for IC50 values of many drugs and drug-like compounds
for various cardiac ion channels (available on tox-

database.net) (43). However, despite the known variability
in lab-based parameters which can potentially strongly
influence QST modeling outputs, the impact of this variability
is not commonly assessed and reported. To minimize the
effects of such variability within the current study, we applied
a step-wise strategy to identify the most physiologically
relevant experimental input value of IC50 for QST modeling.
Results were first triaged based on cell line, where HEK cells
were preferred over CHO cell or other non-human cell lines
due to their human origin. Of those based on HEK cells,
Alexandrou et al. (26) and Chen et al. (30) used the same
experimental protocols, mimicking human physiology with
minor difference in operating temperatures. While Lacroix
and colleagues (34) have also run their study in the
physiological temperature, there were other settings that
differed from human physiology (higher value of the holding
potential and short pulses) which resulted in their removal
from consideration.

Of the remaining two studies, as the experimental
conditions used by Alexandrou et al. (26) were the most
physiologically relevant, their reported IC50 value of 29 μM
was used for all the simulation results presented in this
publication. However, it is noted that the experimental
conditions were very similar differing only in experimental
temperature (35–37 vs. 34–36°C; Alexandrou et al. (26) and
Chen et al. (30), respectively). While these differences appear
minor, Table I shows that even small temperature changes
may have resulted in an approximately 20% difference in
IC50 values, albeit inter-lab, inter-operator, or even inter-run
variability may also contribute to the differences. These
sources of variability, which seem to be typical for the Patch
Clamp technique, may influence decisions taken on the
cardiac safety assessment (68). To evaluate the potential
impact of the input IC50 value on the model predictions, a
sensitivity analysis conducted to study the impact of varying
the IC50 from 1 to 300 μM on ΔΔQTcF was conducted
(Fig. 7).

An IC50 of around 30 μM, similar to the 29- and 35-μM
values fromAlexandrou et al. (26) and Chen et al. (30), gave the
predicted ΔΔQTcF closest to clinically observed. In contrast,
higher values as estimated under less physiologically-relevant
conditions would have underpredicted the magnitude of QTc

1 Many records are apparent duplicates attributed to
reporting by different organizations/individuals; refer to csv
file available as the Supplementary Material 2

Fig. 7. Sensitivity analysis of predicted ΔΔQTcF with respect to input
IKr IC50 value for MOXI
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prolongation. Thus, it is very important to supply the in vitro
input parameters obtained from the experiments conducted at
operating conditions mimicking in vivo situations as quality of
QST prediction depends heavily on the quality of input
information supplied to mechanistic model. It is noted that to
aid in translation of IC50 values obtained from different cell lines
and different temperatures, the CSS contains validated mathe-
matical inter-system scaling factors (ISSF) (69). However, these
factors are only intended to help correct values to better match
human physiology, and as such, the ISSF should be used
cautiously as they are not intended to replace physiologically
relevant in vitro experimentation.

Impact of QST Model Selection on the Results

The TT2006 model was primarily used to run the
pseudoECG simulations in the current work, given the
existence of numerous peer-reviewed publications demon-
strating their utility in adequately predicting the clinically
observed QT prolongation. This model is also relatively fast
to run, especially at the pseudoECG level. However, the ORd
model and its variants (70,71) have recently been proposed as
a method to run single cell simulations to propagate the
impact of in vitro IC50 value of ion current inhibition to action
potential duration (APD). Although the ORd model to run
the pseudoECG simulations offers some additional insights,
its overall impact to this work remains limited or negligible,
when compared to the use of the TT2006 model. Moreover,
the simulations with the ORd model take significantly longer
time and show some numerical instability at pseudoECG
level in some individuals, when running simulations of
unbound plasma and unbound heart tissue concentration
exposure. Thorough evaluations of available cardiomyocyte
models in terms of the numerical accuracy and their ability to
recover observed APD and/or ECG signals are needed to
establish the utility of the models to simulate clinical
endpoints and/or regulatory use such as CiPA initiative. The
impact of model selection on our results is shown in Fig. 8.

The ORd model resulted in larger QT prolongation
estimates as compared to the TT2006 model, at the same
exposure levels (Figs. 4 and 8). The ORd model showed over-
and under-estimation of clinically observed QT prolongation
profile of MOXI with unbound heart and unbound plasma
concentrations, respectively. As such, it is likely that the
observed QT prolongation profile is more adequately
matched to the total plasma exposure with the ORd model,
while the TT2006 model showed best predictions with
unbound heart tissue concentrations. As stated above, the
aim of the current study was to test physiologically plausible
scenarios; therefore, this work does not focus on total plasma
concentrations, which would deviate from the hypothesis that
only the free drug can be pharmacologically active. Further
experimental and in silico work is needed to determine and
establish the utility and/or accuracy of various QST models
and input data choices to continuously grow the current
knowledge base.

CONCLUSIONS

The assessment of pro-arrhythmic potential and risk of
TdP of novel molecules is often challenging given the
complex interplay of multiple factors involved requiring a
comprehensive understanding of not only the drug-dependent
parameters but also the systems characteristics such as human
anatomy, physiology, and pathophysiology, as well as external
factors, e.g., dosing scheme, concomitantly taken drugs, and
co-morbidities. While the method demonstrated herein ap-
pears to predict the cardiotoxicity for a well-characterized
drug such as MOXI reasonably well, it is envisioned that
PBPK-QST modeling be applied throughout development
where the component models are refined iteratively through
further study per the Blearn-confirm-predict-apply^ paradigm
with enrichment of clinical knowledge of the compound in
order to guide decision-making during drug development.
Application of a progressive PBPK-QST cardiac risk assess-
ment paradigm starting in early development could guide
drug development decisions and later define a clinical Bsafe

Fig. 8. ORd model simulated ΔΔQTc-time (post-dose) profile using (a) unbound plasma and (b) unbound heart tissue concentrations of
MOXI as operational concentration to drive the QT response. The population variability of simulated 20 subjects (open circles), average of the
population (thick gray line), average of 10 female population group (yellow line), and average of 10 male population group (green line) are also
shown for each of the simulation set
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space^ for post-approval risk management to identify high-
risk clinical scenarios. Additional collaborative initiatives are
needed to further understand the impact of input data sources
and model selections toward establishing good practices to
progress the field forward. Further work demonstrating the
performance of the QST framework for other drugs and
different formulations, routes of administration, co-medica-
tions, and diets as well as in the recapitulation of real TdP
cases would help to validate this approach and build
confidence in proposed progressive risk assessment strategy.
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