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Abstract: During the progression of epithelial cancer, the cells may lose epithelial markers and gain
mesenchymal phenotype via Epithelial-Mesenchymal Transition (EMT). Such transformation of
epithelial cancer cells to mesenchymal-like characteristic benefits plasticity and supports their ability
to migrate. The aim of this study was to evaluate the influence of natural compound Caffeic Acid
(CA) alone and in combination with antidiabetic drug Metformin (Met) on metastatic progression
of two human cervical squamous cell cancer lines, C-4I and HTB-35/SiHa cells. EMT program was
triggered by exposition of both epithelial cell lines to TGF-β1. Gene expression patterns related
to epithelial/mesenchymal phenotype were evaluated by Real-Time PCR analysis and the protein
amount was detected by western blot. The treatment of human squamous cancer cells with CA
and with Met, suppressed the motility of cells and the effect depended on a particular cell line.
Both compounds regulated the EMT process in C4-I and HTB-35 cells by interfering with different
molecular targets. In TGF-β1-stimulated C4-I cells, CA suppressed the expression of mesenchymal
transcription factor SNAI1 which resulted in enhanced expression of epithelial markers E-cadherin,
Occludin and Claudin. Additionally, CA blocked MMP-9 and upregulated TIMP-1 expression,
a specific inhibitor of MMP-9. In HTB-35 cells stimulated with TGF-β1, Met decreased the expression
of Vimentin. By suppressing hypoxia master regulator HIF-1α, Met caused downregulation of CAIX,
an enzyme involved in metastasis of aggressive malignant cells. In this study we showed that CA
and Met inhibited EMT process in cancer cells via different mechanisms. However, when applied
together, compounds exerted the greater effect on EMT than each compound alone. This is the first
report revealing that CA alone and co-treated with Met may reverse mesenchymal phenotype of
TGF-β1-treated cervical tumor cells and we believe that the use of the two small molecules may be
considered as a potential therapeutic approach for metastatic cervical cancer.
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1. Introduction

Squamous cell carcinoma is the most common cervical cancer in women and accounts for almost
80% of cervical carcinomas in this population [1]. Along with the advent of human papilloma virus
(HPV) vaccines, the primary prevention of cervical malignancy has become more successful; however,
survival and prognosis are poor, particularly due to cancer metastasis [2]. Considering the short
survival period in patients with recurrent or metastatic cancer, there is an urgent need for improvement
of existing therapies for cervical malignancy [3].

Malignant cell transformation consists of a series of processes resulting in the ability of cells to
migrate and invade other tissues. When polarized epithelial cells gain invasive characteristic, they lose
epithelial markers, especially cell-cell adhesion molecules, such as E-cadherin, Occludin, Claudin and
β-catenin, and acquire expression of mesenchymal markers, such as Vimentin, which finally results
in the activation of Epithelial-Mesenchymal Transition (EMT) program [4]. The conversion of cancer
cells function and morphology to mesenchymal-like phenotype benefits the plasticity and facilitates
leaving of the primary site and disseminating to the secondary sites through blood or lymph vessels.

Emerging data suggest that targeting EMT with small molecules derived from plants, such as Caffeic
Acid (3,4-dihydroxycinnamic acid, CA), may be an effective chemopreventive approach in various cancers.
CA is one of the major hydroxycinnamic acids in the human diet. It occurs in various foods, including
herbs and beverages such as coffee and red wine. In the human body, CA may be produced by the
hydrolyzation of chlorogenic acid, a phenolic acid abundant in plants. The anticancer activity of CA and
its derivatives was demonstrated in vivo [5] as well in vitro [6,7], also against gynecological carcinomas [8].
CA and its derivatives may inhibit the migratory capacity of cancer cells via several mechanisms, including
inhibition/activation of transcription factors such as nuclear factor κ-light-chain-enhancer of activated B
cells (NFκB) and regulation of Akt/mTOR signaling pathway [9,10]. It was reported that CA reversed
TGF-β1- induced EMT in human tumor cell lines [11] and alleviated prostate malignant cells aggressiveness
via non-canonical Wnt signaling [5]. CA and its derivatives suppressed EMT process via inhibition of
Vimentin and upregulation of E-cadherin, as has been shown in pancreatic [3] and malignant keratinocyte
cells [7]. However, the effect of this natural compound on the migratory capacity of neoplastic cervical
cancer cells is still unknown. Metformin (dimethylbiguanide, Met) used in humans for the treatment of type
2 diabetes, was shown to restrain EMT in highly metastatic cervical HTB-35/SiHa cells [3] Met, similarly
to CA, may prevent TGF-β1- induced EMT and cell invasion by controlling of mesenchymal/epithelial
markers expression and by regulation of intracellular signaling pathways triggering cell death [12,13].
The experimental approach used in this study is based on the hypothesis that transforming growth
factor β1 (TGF-β1) causes a phenotypical transformation of epithelial cervical cancer cells into
mesenchymal-like cells, with subsequent increase in motility of the cells. The two human cervical
squamous cell cancer lines, C-4I and HTB-35/SiHa, were selected to investigate the in vitro effects
of CA and Met. Both cell lines expressed epithelial characteristic, but expression of E-cadherin and
Vimentin differed depending on a particular cell line. In this study we aimed to find out, if exposition
of cancer cells to CA and Met may suppress TGF-β1-induced EMT phenotype of cancer cells. We tried
to evaluate whether both compounds act on EMT process in C-4I and HTB-35 cells via the same or
different regulatory proteins and, based on these findings, assess if simultaneous treatment of cells
with CA and Met may exert stronger effect than a single drug. A wound healing assay was also
conducted to analyze the influence of CA and Met on motility of the cells. In hypoxic conditions, we
tested whether drugs may suppress HIF-1α and regulate HIF-1α downstream protein CAIX.

2. Results

2.1. Transforming Growth Factor Beta 1 (TGF-β1) Induces Epithelial-to-Mesenchymal Transition (EMT) in
C4-I and HTB-35 Cells

EMT is characterized by a drop in the expression of proteins involved in junctional complexes
related to polarized epithelial phenotype, such as E-cadherin, with concomitant upregulation of
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mesenchymal proteins, especially reorganizing cytoskeleton, such as Vimentin. We exposed cervical
cancer squamous cell lines C4-I and HTB-35 to 10 ng/mL of TGF-β1 for 48 h. Unstimulated cells
cultured in the same conditions were appropriate controls. Western blot and qPCR analyses were
performed to determine the expression of EMT-specific proteins in C4-I and HTB-35 cells (Figure 1A,B).
In unstimulated C4-I cells, strong E-cadherin (CDH1) expression was detected, whereas Vimentin (VIM)
was barely expressed. The incubation of C4-I cells with TGF-β1 caused downregulation of E-cadherin
(p < 0.1 vs. untreated cells) and enhanced expression of Vimentin (p < 0.1 vs. untreated cells). As shown
in Figure 1C, C4-I cells displayed an epithelial appearance [14]. Following exposure to TGF-β1 for 48 h,
the cells started to dissociate from monolayer. The unstimulated HTB-35 cells expressed Vimentin
(Figure 1A,B), while in TGF-β1-stimulated HTB-35 cells the expression of Vimentin was further
enforced (p < 0.1 vs. untreated cells). At the same time, the enhanced scattering in TGF-β1-stimulated
HTB-35 cells was observed (Figure 1C). E-cadherin was weakly expressed in HTB-35 cells and the
treatment with TGF-β1 caused no distinct alteration of the expression of the protein (Figure 1A,B).
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Figure 1. TGF-β1 induces Epithelial-to-Mesenchymal Transition (EMT) in C4-I and HTB-35 cells (A–C). 
The human cervical squamous cell cancer lines, C-4I and HTB-35 cells were incubated for 48 h with 
the addition of 10 ng/mL of TGF-β1. The untreated cells were grown in the same conditions and used 
as controls. Real-time PCR analysis revealed significant decrease in E-cadherin transcript level 
relative to untreated control at p < 0.01 in TGF-β1-stimulated C-4I cells, while in HTB-35 the drop in 
mRNA level for E-cadherin was not statistically significant at p < 0.05. Note that TGF-β1 caused 
significant increase in the expression of Vimentin in both cancer cell lines, as measured using qPCR 
((A), p < 0.01 vs. untreated control for C-4I cells and p < 0.01 vs. untreated control for HTB-35 cells) 
and demonstrated with Western blot analysis ((B), 20 μg of total cell lysates were subjected to SDS-
PAGE followed by immunoblotting and chemiluminescent detection; β-actin was used as loading 
control). The experiments were repeated three times with similar results; the Real-Time PCR data 
were presented as mean values ± SD (A), a representative immunoblots were shown (B). The 
incubation of the cells with TGF-β1 for 48 h caused morphological changes in both cell lines, as shown 
in phase contrast microphotographs (C). The enhanced scattering of C-4I and HTB-35 cells was 
observed following TGF-β1 treatment. 

Figure 1. TGF-β1 induces Epithelial-to-Mesenchymal Transition (EMT) in C4-I and HTB-35 cells (A–C).
The human cervical squamous cell cancer lines, C-4I and HTB-35 cells were incubated for 48 h with
the addition of 10 ng/mL of TGF-β1. The untreated cells were grown in the same conditions and
used as controls. Real-time PCR analysis revealed significant decrease in E-cadherin transcript level
relative to untreated control at p < 0.01 in TGF-β1-stimulated C-4I cells, while in HTB-35 the drop
in mRNA level for E-cadherin was not statistically significant at p < 0.05. Note that TGF-β1 caused
significant increase in the expression of Vimentin in both cancer cell lines, as measured using qPCR
((A), p < 0.01 vs. untreated control for C-4I cells and p < 0.01 vs. untreated control for HTB-35 cells) and
demonstrated with Western blot analysis ((B), 20 µg of total cell lysates were subjected to SDS-PAGE
followed by immunoblotting and chemiluminescent detection; β-actin was used as loading control).
The experiments were repeated three times with similar results; the Real-Time PCR data were presented
as mean values ± SD (A), a representative immunoblots were shown (B). The incubation of the cells
with TGF-β1 for 48 h caused morphological changes in both cell lines, as shown in phase contrast
microphotographs (C). The enhanced scattering of C-4I and HTB-35 cells was observed following
TGF-β1 treatment.
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2.2. CA Attenuates the Migratory Capacity of C4-I and Met Inhibits Motility of HTB-35 Cells

Scratch assays were performed to determine the possible influence of CA and Met on the
functional effects of EMT in C4-I and HTB-35 human squamous cell cancer lines. The sub-confluent
cell cultures were incubated with CA and/or Met for 24 h. In parallel, cultures treated with tested
compounds ware exposed to 10 ng/mL of TGF-β1. As shown in Figures 2A and 3A, TGF-β1 augmented
migration of both cell lines when compared to unstimulated controls. The 100 µM CA treatment
reduced the invasion potential of C4-I cells (Figure 2B, p < 0.05 vs. untreated cells) and HTB-35 cells
(Figure 3B, p < 0.05 vs. untreated cells). The exposition of cells to 10 mM Met also significantly
facilitated the closure of the denuded area in C4-I cell line (Figure 2B, p < 0.05 vs. untreated cells) and
in HTB-35 cell line (Figure 3B, p < 0.05 vs. untreated cells). Comparing the effect of tested compounds
on scratch reduction in the two cell lines, CA inhibited the healing process in C4-I cells more effectively
than Met (Figure 2B, p < 0.05 for CA vs. Met) while Met exerted effect greater than CA in HTB-35 cell
line (Figure 3B, p < 0.05 for CA vs. Met). In C4-I cells treated with TGF-β1 CA/Met caused the greatest
scratch reduction (up to 50%). What is more, co-treatment had greater impact on motility of the cells
than each compound alone (Figure 2B, p < 0.05 for CA/Met vs. CA, p < 0.05 for CA/Met vs. Met).
In HTB-35 cells Met caused a 40% reduction of cell scratch and the most effective attenuation of cell
movement (Figure 3B, p < 0.05 for Met vs. CA, p < 0.05 for Met vs. CA/Met).

We examined the influence of CA and Met with and without addition of 10 ng/mL of TGF-β1 on
the proliferation of C4-I and HTB-35 cells. The confluent cell cultures were exposed to compounds
for 24, 48 and 72 h. The assessment of cell number revealed that CA and Met slightly reduced the
growth of C4-I and HTB-35 cells after 24 and 48 h of exposure (Figure S1A). Since CA at 100 µM and
Met at 10 mM significantly decreased the migratory capability of both cell lines cells, with only minor
inhibition of growth (Figure S1), we subjected these concentrations to further investigation.
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Figure 2. The effect of Caffeic Acid (CA) and Metformin (Met) on migration of C4-I cells in vitro (A,B).
C4-I cells were cultured to sub-confluency and then a scratch was made on the monolayer of cells.
Then the cells were incubated with addition of tested compounds (CA at 100 µM and/or Met at 10 mM)
and with/without 10 ng/mL TGF-β1 for 24 h. For each scratch the images were obtained by an inverted
light microscope (Olympus IX-70, Hamburg, Germany) at 0 h and 24 h. The changes of area of each
wound was measured using Image J (v1.44; National Institutes of Health, Bethesda, MD, USA) and
the migration rate was quantified as a change of the scratch reduction. Note that CA/Met caused the
greatest scratch reduction in TGF-β1-treated cells ((B), p < 0.01 for CA/Met vs. control, p < 0.05 for
CA/Met vs. Met, p < 0.05 for CA/Met vs. CA) as well as in TGF-β1-untreated cells ((B), p < 0.05 for
CA/Met vs. control, p < 0.05 for CA/Met vs. Met, p < 0.05 for CA/Met vs. CA). All bars show the
mean value of three experiments and error bars represent standard error of the mean (B).



Int. J. Mol. Sci. 2018, 19, 266 6 of 19
Int. J. Mol. Sci. 2018, 19, 266 6 of 19 

 

 

 

Figure 3. The effect of Caffeic Acid (CA) and Metformin (Met) on HTB-35 cells migration in vitro 
(A,B). HTB-35 cells were cultured to sub-confluency and then an injury line was made on the 
monolayer of cells. Then the cells were incubated with addition of tested compounds (CA at 100 μM 
and/or Met at 10 mM) and with/without 10 ng/mL TGF-β1 for 24 h. Representative images of the 
scratch assay conducted on the HTB-35 cell line following treatment of cells with CA at concentration 
of 100 μM, Met at 10 mM or both compounds were presented. The images were captured at 0 and 24 
h after scratching (A). The effect of CA and/or Met on cell motility was determined by wound healing 
assay and presented as reduction of each scratch after 24 h of incubation ((A), the Image J program 
was used to analyze the changes in each wound area; Image J v1.44; National Institutes of Health, 
Bethesda, MD, USA). Note that Met exerted greater effect than CA ((B), p < 0.05 for CA vs. Met) and 
CA/Met in HTB-35 cell line ((B), p < 0.05 for Met vs. Met/CA). Data shown here were from a 
representative experiment repeated three times with similar results (A,B). Quantification of the 
scratch assay experiments are presented as mean values ± SD (B). 

Figure 3. The effect of Caffeic Acid (CA) and Metformin (Met) on HTB-35 cells migration in vitro (A,B).
HTB-35 cells were cultured to sub-confluency and then an injury line was made on the monolayer
of cells. Then the cells were incubated with addition of tested compounds (CA at 100 µM and/or
Met at 10 mM) and with/without 10 ng/mL TGF-β1 for 24 h. Representative images of the scratch
assay conducted on the HTB-35 cell line following treatment of cells with CA at concentration of
100 µM, Met at 10 mM or both compounds were presented. The images were captured at 0 and 24 h
after scratching (A). The effect of CA and/or Met on cell motility was determined by wound healing
assay and presented as reduction of each scratch after 24 h of incubation ((A), the Image J program
was used to analyze the changes in each wound area; Image J v1.44; National Institutes of Health,
Bethesda, MD, USA). Note that Met exerted greater effect than CA ((B), p < 0.05 for CA vs. Met)
and CA/Met in HTB-35 cell line ((B), p < 0.05 for Met vs. Met/CA). Data shown here were from a
representative experiment repeated three times with similar results (A,B). Quantification of the scratch
assay experiments are presented as mean values ± SD (B).
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2.3. CA and Met Treatment of C4-I Cells Increases Epithelial Adhesive Markers and Decreases Mesenchymal
Transcription Factors Regulating EMT

As the co-treatment with CA and Met the most effectively delayed the motility of C4-I cells, we
evaluated whether the compounds may exert changes in expression of adhesion molecules representing
an epithelial phenotype, such as E-cadherin, β-catenin, Occludin and Claudin. The effect of CA and
Met on changes in mRNA level for the epithelial markers was measured in cultures of C4-I cells
incubated for 48 h with the compounds and with addition of 10 ng/mL of TGF-β1. In parallel, for
comparative reasons each culture was grown without addition of TGF-β1. CA upregulated E-cadherin,
Occludin and Claudin (p < 0.05 vs. control) in TGF-β1-stimulated/unstimulated cells. However, as
shown in Figure 4, CA/Met treatment caused the greatest increase in the expression of mRNA for
CDH1 (p < 0.05 vs. control), OCLN (p < 0.05 vs. control) and CLDN1 (p < 0.05 vs. control) genes.
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Figure 4. The effect of Caffeic Acid (CA) and Metformin (Met) on expression of epithelial markers
in C4-I cells. The cells were treated for 48 h with TGF-β1 (10 ng/mL) plus CA (100 µM) and/or Met
(10 mM). In parallel, cultures treated with tested compounds, but without TGF-β1 were prepared.
Analysis of mRNA level for E-cadherin (CDH1), β-catenin (CTNNB1), Occludin (OCLN) and Claudin
(CLDN1) was performed with Real-time PCR ((A) left panel, (B–D), respectively). Protein levels of
E-cadherin were analyzed by western blot and shown in the right panel of Figure 4A (20 µg of total cell
lysates were subjected to SDS-PAGE followed by immunoblotting and chemiluminescent detection,
and β-actin was used as the protein loading control, the details described in Material and Methods).
Note that the greatest upregulation for E-cadherin transcript was detected when CA was applied with
Met ((A), left panel); the same effect was found for Occludin (C) and Claudin (D) (* p < 0.05 vs. control
for E-cadherin, * p < 0.05 vs. control for Occludin, * p < 0.01 vs. control for Claudin). For qPCR the
data were normalized against GAPDH transcript as a reference gene and levels of RNA expression
were determined with the 2−∆∆Ct method (* p < 0.05 and ** p < 0.01 vs. control, # p < 0.05 vs control
with TGF-β1). Experiments were repeated three times with similar results and presented as mean
values ± SD.
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To further elucidate the mechanism of action of compounds, we examined the effect of CA and
Met on the expression of mesenchymal transcriptional factors. We found that in TGF-β1-stimulated
cells expression of SNAI1, a strong repressor of E-cadherin expression, was downregulated by CA
(p < 0.05 vs. control) and CA/Met treatment (p < 0.01 vs. control). CA/Met inhibited SNAI1 and
upregulated CDH1 expression after 24 of incubation of C4-I cells in TGF-β1-stimulated/unstimulated
cells (Figure S2). As demonstrated in Figure 5, the concomitant action of CA and Met had also the
greater impact on SNAI1 expression following 48 h of exposition of cells to drugs. The expression of
ZEB1 was significantly downregulated by CA (p < 0.05 vs. control), Met (p < 0.05 vs. control) and
CA/Met (p < 0.05 vs. control). Met downregulated TWIST1 expression (p < 0.05 vs. control) while CA
decreased mRNA for TWIST2 (p < 0.05 vs. control).
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Figure 5. The effect of Caffeic Acid (CA) and Metformin (Met) on expression of transcription factors
regulating EMT in C4-I cells. The cells were treated for 48 h with TGF-β1 (10 ng/mL) plus CA (100 µM)
and/or Met (10 mM). In parallel, cultures of both cell lines were incubated with tested compounds, but
without addition of TGF-β1. Expression of critical EMT promoters SNAI (A), ZEB1 (B); TWIST1 (C) and
TWIST2 (D) was evaluated at mRNA level by qPCR. For Snail1 protein levels were detected by western
blot ((A), right panel). Immunoblots were prepared following SDS-PAGE separation of cell lysates as
described in Materials and Methods (20 µg of total cell lysates were subjected to SDS-PAGE followed by
immunoblotting and chemiluminescent detection, and β-actin was used as the protein loading control).
In TGF-β1-stimulated cells the expression ((A), left panel) and protein amount ((A), right panel) of
SNAI was significantly downregulated by CA and CA/Met). Met downregulated TWIST-1 expression
and CA decreased mRNA for TWIST2. The data were normalized against GAPDH transcript as a
reference gene and levels of RNA expression were determined with the 2−∆∆Ct method (* p < 0.05 and
** p < 0.01 vs. control, # p < 0.05 and ## p < 0.01 vs. control with TGF-β1). Bar graph is representative of
the relative mean transcript abundance ± SD for three experiments. Results were presented from three
independent experiments.
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2.4. CA Downregulate the Expression of MMP-9 and Specific Tissue Inhibitor of Matrix Metalloproteinases
TIMP-1 in C4-I Cells

Given that MMP-9 and MMP-2 are critical to cell invasion, we examined the expression of
gelatinases at the mRNA level using real-time RT–PCR. C4-I cells were treated with CA and/or Met in
the presence of 10 ng/mL of TGF-β1 in medium for 48 h. At the same time, other C4-I cell cultures
were exposed only to CA and/or Met, without addition of TGF-β1. The results showed that CA
reduced the expression of MMP-9 (p < 0.05 vs. control) in TGF-β1-stimulated cells (Figure 6). As the
activity of MMP-9 is regulated by the specific endogenous inhibitor TIMP-1, we determined the effect
of tested compounds on mRNA level encoding TIMP-1. In fact, the mRNA level for TIMP-1 was
significantly increased in CA treated cells compared to control (p < 0.05 vs. control). What is more,
CA/Met treatment had greatest inhibitory effect on MMP-9 expression (p < 0.01 vs. control), which
was in compliance with the greatest upregulation of TIMP-1 in cells exposed to both compounds.
The qPCR analysis showed that CA suppressed MMP-2 expression (p < 0.05 vs. control) along with
upregulation of TIMP-2 (p < 0.05 vs. control).

We also determined the effect of CA and Met on the mRNA level for VEGFA in TGF-β1-stimulated
C4-I cells, since VEGFA is a potent factor facilitating tumor-induced angiogenesis. The mRNA for
VEGFA was significantly decreased under exposition of cells to CA (p < 0.05 vs. control). Here,
CA/Met had the greatest inhibitory impact on VEGFA gene expression (Figure 6, p < 0.01 for CA/Met
vs. control, p < 0.05 for CA/Met vs. CA, p < 0.05 for CA/Met vs. Met).

2.5. Met Attenuates Mesenchymal Marker of Malignant HTB-35 Cells

EMT induction in tumors is associated with increased expression of molecular marker Vimentin.
To evaluate the effect of CA and Met on the mRNA level for VIM1, HTB-35 cells were exposed
to TGF-β1 and tested compounds for 48 h. The appropriate controls with addition of CA and/or
Met but without TGF-β1 were made. Following incubation, qPCR and western blot analyses was
performed. As presented in 2.1, unstimulated HTB-35 cells exhibited strong expression of Vimentin,
while E-cadherin was weakly expressed. Treatment of cells with 10 mM metformin downregulated
Vimentin at p < 0.01 vs. control in TGF-β1-stimulated cells, as shown in Figure 7. CA caused no distinct
alteration of the expression of the mRNA level for VIM1 (p < 0.05 vs. control).
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Figure 6. The effect of Caffeic Acid (CA) and Metformin (Met) on the expression of gelatinases
MMP-9 (A) and MMP-2 (C) and tissue inhibitors TIMP-1 (B) and TIMP-2 (D) in C4-I cells. The cells
were incubated with addition of tested compounds (CA at 100 µM and/or Met at 10 mM) and
with/without 10 ng/mL TGF-β1 for 48 h. Then mRNA was isolated and purified for Real-time
PCR examination. In TGF-β1-stimulated cells, CA and CA/Met caused decrease in mRNA level for
MMP-9 (p < 0.01 vs. control) with concomitant increase of mRNA for its specific tissue inhibitor TIMP-1
(p < 0.01 vs. control). The incubation of TGF-β1-treated cells with CA/Met attenuated the expression
of angiogenic molecule VEGFA (E). Data shown here were repeated three times with similar results
and presented as mean values ± SD (B).
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Figure 7. Met suppress the expression of mesenchymal marker Vimentin in HTB-35 cells. The cells
were treated with TGF-β1 (10 ng/mL) plus CA (100 µM) and/or Met (10 mM) for 48 h. In parallel, cell
cultures were treated with tested compounds but were grown without addition of TGF-β1. The RNA
expression was determined with qPCR analysis using the 2−∆∆Ct method (GAPDH was a reference
gene). The protein levels of Vimentin were detected by western blot (right panel). Immunoblots were
prepared following SDS-PAGE separation of cell lysates as described in Materials and Methods (20 µg
of total cell lysates were subjected to electrophoresis, β-actin was used as the protein loading control).
In TGF-β1-stimulated cells, Met alone and applied with CA significantly decreased the transcript level
for Vimentin (VIM1). Error bars represent the SD of the mean from triplicate results (qPCR analysis,
* p < 0.05 and ** p < 0.01 vs. control, # p < 0.05 and ## p < 0.01 vs. control with TGF-β1).

2.6. Met Inhibits the Expression of CAIX in HTB-35 Cells under Hypoxic Conditions

Considering that transcription factor HIF-1α plays a primary role in mediating EMT program
induced by hypoxia, we hypothesized that Met might influence the expression of HIF-1α protein.
The qPCR analysis revealed that after 24 h of incubation of HTB-35 cells at 5% of O2 level, the expression
of HIF1A significantly increased, when compared to cells kept under normoxic conditions (21% O2

of level), as presented in Figure 8A. Following exposition of cells to Met, the mRNA for HIF1A
was significantly decreased (Figure 8B, p < 0.01 vs. control). What is more, as HIF-1α controls the
expression of CAIX, in response to limited oxygen supply HIF-1α may cause the transcriptional
activation of CAIX [15]. In conditions of chronic hypoxia, which develops in growing tumors, CAIX
contribute to extracellular acidosis, which further promotes pro-metastatic cascade inducing cancer
cell migration [16]. The results showed that following exposition of HTB-35 cells to Met in hypoxic
conditions, mRNA for CAIX was downregulated, as measured by RT-PCR (Figure 8C).
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abundantly expressed E-cadherin and weakly Vimentin, were similar to normal cervical epithelium 
[18]. The exposition of cells to TGF-β1 caused upregulation of Vimentin and loss of E-cadherin. HTB-
35 cells had high expression of vimentin and the stimulation of cells with TGF-β1 caused greater 
upregulation of Vimentin. At the same time, the amount of E-cadherin was minor in TGF-β1-treated 
and untreated HTB-35 cells. Vessey et al. reported HTB-35 cells to be E-cadherin negative [2] and Lee 
et al. suggested that some cervical carcinoma cells may concomitantly express both epithelial and 
mesenchymal markers [1,19]. Cheng et al. have shown that unstimulated HTB-35 cells may express 
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Figure 8. Met inhibits the expression of CAIX in HTB-35 cells under hypoxic conditions. The cells
were incubated either in normoxia (21% O2 level) or in hypoxia (5% O2 level) with CA, Met or both
compounds for 24 h. qPCR analysis was performed to assess the expression of HIF-1α under normoxic
and hypoxic conditions (A). The RNA expression of HIF1A was determined with the 2−∆∆Ct method.
The mRNA level of HIF1A was significantly increased following hypoxia ((A), p < 0.01 vs. control).
On the contrary, Met alone and together with CA downregulated HIF1A ((B), p < 0.01 vs. control for
Met, p < 0.01 vs. control for CA/Met). RT-PCR analysis revealed that in hypoxia the expression of
CAIX significantly decreased in cells exposed to Met and CA/Met ((C), HPRT1 was a reference gene).
Data shown here are representative of three experiments performed with similar results (C).

3. Discussion

EMT has recently been regarded to play a crucial role in the mechanism underlying tumor spread.
Therefore, EMT regulatory pathways represent potential new targets for inhibition of progression and
metastasis of malignant cells [17]. Several studies have suggested that CA and its derivatives may
restrain the spread of carcinoma cells via EMT inhibition [6,7]. Met has been previously demonstrated
to be beneficial in gynecologic oncology [12,13] and to inhibit EMT in human cervical cancer cell
lines [3]. Therefore, these compounds were used for current studies to investigate whether they may
inhibit metastatic phenotype induced by TGF-β1 in C-4I and HTB-35 cervical cancer cells. Both cell
lines expressed the epithelial characteristic, but the expression of epithelial and mesenchymal markers
differed depending on a particular cell line. C-4I cells, which abundantly expressed E-cadherin and
weakly Vimentin, were similar to normal cervical epithelium [18]. The exposition of cells to TGF-β1
caused upregulation of Vimentin and loss of E-cadherin. HTB-35 cells had high expression of vimentin
and the stimulation of cells with TGF-β1 caused greater upregulation of Vimentin. At the same time, the
amount of E-cadherin was minor in TGF-β1-treated and untreated HTB-35 cells. Vessey et al. reported
HTB-35 cells to be E-cadherin negative [2] and Lee et al. suggested that some cervical carcinoma
cells may concomitantly express both epithelial and mesenchymal markers [1,19]. Cheng et al. have
shown that unstimulated HTB-35 cells may express E-cadherin [3]. The immunofluorescence analysis
of E-cadherin level and its subcellular localization in HTB-35 cell, that we had previously performed,
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suggested that in wild-type HTB-35 cells E-cadherin might be weakly expressed, but the protein was
withdrawn from intercellular junctions [20]. Our results showed that both compounds, CA and Met,
had the potential to inhibit mesenchymal phenotype induced with TGF-β1 in cervical cancer cells, but
each drug acted via various proteins in the particular cell line.

The signals from primary tumor associated stroma such as TGF-β1 may trigger changes in
cytoskeleton reorganization and lead to the activation of nuclear transcription factors, ZEB1, TWIST1
and TWIST2, which, once activated, implement EMT program and promote invasiveness [21].
Many cell culture experiments and in vivo studies have demonstrated that inhibition of E-cadherin
expression by its transcriptional suppressor SNAI1 is a key process driving EMT [22], also in cervical
cancers [1]. It has been also reported that the inhibition of E-cadherin expression is positively correlated
with the tumor stage and grade in cervical cancers in humans [23]. In the current study, the exposition
of C-4I cells to CA at 100 µM caused downregulation of transcript and protein for SNAI1. We may
speculate that this led to the increase in the expression of E-cadherin (Figure 9). The restoration of
E-cadherin expression in cervical malignant cells results in decreased motility and invasiveness [24].
The functional test showed that CA treatment alleviated movement of C-4I cells and delayed wound
healing. The transcription of tight junction molecules occludins and claudins may also be suppressed
by SNAI1 [25]. Besides E-cadherin, these epithelial membrane proteins have been recognized to play
essential role in cytokine-induced regulation of the tight junction and loss of their expression have
been correlated with increased cancer cell movement and metastasis [26]. The results demonstrated the
increased expression of Occludin and Claudin following CA treatment, which suggest that SNAI1 was
no longer able to repress theses downstream proteins. In the current study the effect of CA on Snail
expression was detected at the level of mRNA as well as the protein, thus we may speculate that CA
can act directly on the transcription factor expression. However, we expect that the exact mechanism
and possible upstream proteins involved in the process will be recognized in the following study.

The results demonstrated that CA downregulated the expression of transcription factor ZEB1,
another repressor of E-cadherin. ZEB1 induces the promotion of EMT and in combination with
other factors triggers metastasis [25] and is highly expressed in aggressive cancer cell lines [1]
and the overexpression of the protein may be an indicator of poor prognosis in breast, pancreatic,
and lung cancer [21]. What is more, a mutual regulation between SNAI1 and ZEB1 has been
recently identified [25]; SNAI1, acting as a primary EMT regulator, may enhance expression of other
transcription factors, including ZEB1 and TWIST [27]. In metastatic cell nucleus, ZEB1 and TWIST1
proteins prevent E-cadherin gene transcription [1]. Interestingly, the action of CA on E-cadherin
expression in C-4I cells was greater when co-treated with Met. At the same time, TWIST1 was the
molecular target regulated by Met in C-4I cells. Therefore, we may speculate that inhibition of these
transcription factors under combined treatment may be a possible explanation for the enhanced
transcription of junctional proteins. In line with these intracellular changes leading to lower expression
of mesenchymal markers and higher expression of epithelial proteins, the incubation of C-4I cells with
CA/Met inhibited TGF-β1-induced migration of the cells and caused the most visible scratch reduction.

Additionally, SNAI1 is a positive regulator of Matrix metalloproteinases (MMPs), which belong to a
family of zinc-dependent extracellular matrix (ECM)–degrading proteases. Matrix metalloproteinase-2
(MMP-2) and metalloproteinase-9 (MMP-9) degrade structural proteins of invaded tissues and play
a crucial role in metastasis of tumor cells and angiogenesis [28]. Although the expression pattern of
MMPs varies depending upon the tumor origin, type and stage, numerous studies have shown that
the suppression of MMPs synthesis results in the reduction in metastatic potential of cancer cells [29].
It was reported that overexpression of MMP-9 is associated with increased invasiveness of ovarian
and breast tumors, which may lead to decreased survival in patients [30]. On the other hand, it was
demonstrated that CA derivatives exert strong inhibitory effect on MMP-9 activity [31]. In the present
study, CA suppressed MMP-9 in C-4I cells in two independent ways. Firstly, the suppression of SNAI1
by the action of CA might result in reduced expression of MMP-9. Secondly, CA treatment of C-4I
cells caused upregulation of a specific tissue inhibitor TIMP-1 controlling the degradative activity of
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MMP-9 [30]. It has been reported before that the increased synthesis of MMPs in tumor cells may
be associated with enhanced angiogenic ability caused by overexpression of Vascular Endothelial
Growth Factor A (VEGFA), which promotes metastatic potential of cancer cells [32]. In breast cancer
cells, VEGF-A increases mRNA and protein level for SNAI1, resulting in repression of E-cadherin
transcription [33]. Our findings suggest that CA, by suppressing VEGFA, may possibly contribute to
the reduction of SNAI1 transcription in cervical cancer cells, but further mechanistic study is needed.

While in C-4I line CA exerted the greatest effect in inhibiting the TGF-β1-induced metastatic
phenotype; Met appeared to be an effective suppressor of EMT process in HTB-35 cells. We found that
in HTB-35 cells Met at the concentration of 10 mM decreased the expression of mesenchymal marker
Vimentin. As discussed above, Vimentin mRNA transcript and protein was higher in more aggressive
HTB-35 cells than in C-4I cell line. This finding may explain in part the divergent effect exerted by
compounds in the two cervical cancer cell lines. Moreover, Met exerted the greatest effect on motility
of HTB-35 cells, as measured with functional scratch test.

In cervical cancers, motility of cells may be induced by hypoxia and enhanced acidosis of
surroundings tissues [15,34]. The insufficiently oxygenated environment within solid tumors may
induce Hypoxia-inducible factor 1 α (HIF-1α). The activation of HIF 1α results in upregulation of
several proteins involved in migration and invasion that drives EMT program and helps neoplastic
cells adapt to environmental stress [16]. In order to further elucidate the molecular action of Met in
HTB-35 cells, we tested the effect of the compound in the hypoxic conditions that caused increased
expression of transcription factor HIF-1α. The intracellular changes following activation of HIF 1α
involve the induction its downstream protein Carbonic anhydrase IX (CAIX). CAIX can act as a survival
factor that protects tumor cells against enhanced acidification of tissue microenvironment and through
the ability to regulate pH of cancer milieu, it facilitates the migration of malignant cells. [35]. Due to
its relevant role in metastasis, CAIX was also proposed as a potential therapeutic target in cervical
cancers [15,36]. In our study, Met downregulated HIF-1α, which resulted in decreased transcription of
CAIX (Figure 9). We may speculate that the inhibition of CAIX in HTB-35 cells exposed to Met can
impair the invasive properties of cervical malignant cells.
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Among a wide range of pharmacological and biochemical effects, CA [5–11] and Met [12,13] were
shown to inhibit EMT in various cancers. Given that the net balance between EMT activators and
suppressors determine further progress or EMT inhibition, we can speculate that downregulation of
mesenchymal transcription factors and activation of epithelial molecules by the action of drugs may
reverse mesenchymal phenotype of cervical carcinoma cells and impair their motility. Emerging data
suggests that such a combinatory approach targeting different molecular mechanisms may be more
effective in the cancer invasiveness reduction than standard one-drug therapy [37,38]. We have recently
reported that CA may expand the anti-tumor effect of Met in human epithelial cervical carcinoma cells
by regulation of metabolic reprogramming [39,40].

4. Materials and Methods

4.1. Cell Culture and Treatment

The human cervical cancer cell lines C-4I (ATCC designation CRL-1594) and HTB-35
(ATCC designation HTB-35, SiHa) were purchased from the American Type Cell Culture collection
(LGC Standards-ATCC, Teddington, UK). C-4I cells were kept in Waymouth’s MB 752⁄1 medium
(Life Technologies, Grand Island, NY, USA) and HTB-35 cells were grown in Dulbecco’s modified
Eagle’s medium Lonza, Walkersville, MD, USA). Media were supplemented with 10% fetal bovine
serum (BSA), (Eurex Sp z o.o., Gdansk, Poland) and 50 µg/mL of gentamicin (Sigma-Aldrich, Seelze,
Germany). Cultures were grown at 37 ◦C in a humidified atmosphere of 5% CO2. For experiments, C-4I
cells at a density of 2.5 × 105 cells/mL and HTB-35 cells at a density of 1 × 105 cells/mL were placed
in cell culture plates (Sarstedt, Numbrecht, Germany) and incubated to reach adequate confluency.
Following washing with PBS solution (Lonza), the medium in each well was replaced with a fresh
medium with adequate volumes of stock solution of CA (100 µM, Sigma-Aldrich), Met (10 mM,
Sigma-Aldrich) or both chemicals for 48 h. Each culture was prepared with or without addition of
10 ng/mL TGF-β1 (PeproTech, Rocky Hill, NJ, USA). For cell counting, the cells were cultured to full
confluency and then exposed to compounds with or without TGF-β1 for 24, 48 and 72 h. Control cells
were grown in medium with addition of solvents (untreated cells), or solvents and 10 ng/mL TGF-β1
(TGF-β1-treated cells). Each experiment was conducted in triplicate. The number of cells was assessed
by automatic cell counter Countess (Gibco Laboratories, Grand Island, NY, USA).

4.2. Immunoblotting

After 24 h of incubation with compounds, the cells were harvested and extracts formed by the
addition of ice-cold M-PER buffer (Thermo Fisher Scientific Inc., Waltham, MA, USA) with a protease
inhibitor cocktail (Merck, Darmstadt, Germany). Total protein was measured by the Bradford method.
20 µg of protein was separated on 10% SDS-polyacrylamide gel and transferred to PVDF membrane
for Western blotting. The membranes were blocked with buffer contained 1% BSA in TBST (20 mM/L
of Tris-hydrochloride, pH 7.5, 150 mM/L NaCl, 0.05% Tween 20; BioRad, Laboratories, Hercules,
CA, USA) as reported previously [39]. Then the membranes were incubated overnight with primary
antibody in Tris-buffered saline (TBS) containing 0.1% Tween 20% and 1% BSA, followed by extensive
rinses and a 1h incubation with HRP-linked secondary antibody (1:4000). The following primary
antibodies were used for experiments: anti-E-cadherin (Cell Signaling, Danvers, MA, USA, dilution
1: 1000), anti-Vimentin (Cell Signaling, dilution 1: 1000), anti-SNAI1 Santa Cruz Biotech (Santa Cruz,
CA, USA, dilution 1: 500. β-actin (1:1000, Cell Signaling) was the loading control. The secondary
HRP-conjugated antibodies were purchased in Santa Cruz Biotch. The specific immunoreactivity of
each protein was measured by enhanced chemiluminescence and developed using the Super Signal
West Pico Chemiluminescent Substrate Kit, Pierce Chemical, Rockford, IL, USA) using Gel Logic
Imaging System 1500 (Kodak; Molecular imaging System Corestea Health Inc., Rochester, NY, USA).
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4.3. Quantitative Polymerase Chain Reaction (qPCR)

The total RNA was extracted using Universal RNA purification Kit (EURx, Poland), according
to vendor’s protocol. The reverse polymerase transcription of mRNA was performed using MMLV
reverse transcriptase (Promega, Madison, WI, USA) according to the manufacturer’s protocol using
ProFlex PCR System (Applied Biosystems, Foster City, CA, USA).

The real-time qPCR was performed in the QuantStudio 7 Flex (Applied Biosystems,
Foster City, CA, USA) using Blank qPCR Master Mix (EURx) and the following Taq-Man
human probes (Applied Biosystems): CDH1 (Hs01023894_m1), VIM (Hs00185584_m1), CTNNB1
(Hs0017025_m1), OCLN (Hs00170162_m1), CLDN1 (Hs00221623_m1), SNAI1 (Hs00195591_m1),
ZEB1 (Hs00232783_m1), TWIST1 (Hs00361186_m1), TWIST2 (Hs02379973_s1), DES (Hs00157258_m1),
MMP-2 (Hs00234422_m1), MMP-9 (Hs00234579_m1), TIMP-1 (Hs00171558_m1), TIMP-2
(Hs00234278_m1), VEGF (Hs00173626_m1), HIF1A (Hs00153153_m1) GAPDH (Hs99999905_m1).
The data were normalized against GAPDH transcript as a reference gene and levels of RNA expression
were determined with the 2−∆∆Ct method.

4.4. Wound Healing Migration

Alteration of cell migration induced by CA, Met and CA/Met in cultures of C-4I and HTB-35
cells was estimated by means of wound healing migration (alteration of two-dimensional cellular
movement). The cells were cultured to sub-confluency in 12-well culture dishes and then a scratch
was made on the monolayer of cells with a sterile 10 µL plastic pipette. After washing of floating cells
with PBS, the medium in each well was replaced with a new one containing addition of adequate
amounts of tested compounds with/without addition of TGF-β1. Cell movement into the wound
area was photographed at the initiation of the experiment (0 h) and after 24 h under an inverted light
microscope (Olympus IX-70 microscope with fluorescence, Olympus, Hamburg, Germany) from the
exact same location as the first picture. The area of the scratch wound was measured using Image J
(v1.44; National Institutes of Health, Bethesda, MD, USA) and the migration rate was quantified as a
rate of the scratch reduction (scratch area at 0 h–scratch area at 24 h) and the data was calculated as the
average of 3 fields as described therein [41].

4.5. Hypoxia Conditions

HTB-35 cells were seeded into 6-well plates (Sarstedt) at a density of 1 × 105 cells/mL. After 24 h
fresh medium with addition of CA, Met or both compounds were used and cells were incubated either
in normoxia (21% O2 level) or hypoxia (5% O2 level) for 24 h. Afterwards, the cells were harvested for
RNA isolation.

4.6. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated from cells using the RNeasy Mini kit (Qiagen, Hilden, Germany)
and the quantity of total RNA was measured using a NanoDrop ND-1000 Spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). cDNA synthesis was performed using oligo (dT)
15 primer and GoScript Transcriptase according to manufacturer’s instructions (Promega GmbH,
Mannheim, Germany). The PCR mixture contained: 1.5 uL of cDNA, 1× PCR buffer (Sigma Aldrich)
2.5 mM Magnesium Chloride (Sigma Aldrich), 0.2 mM dNTPs (Sigma Aldrich), 0.2 uM of
each primer (Sigma Aldrich), and 1.25 U JumpStart™ Taq DNA Polymerase (Sigma Aldrich).
The cDNA was amplified by PCR using the MJ Research PTC-200 Thermal Cycler with the following
primers: CAIX (Carbonic Anhydrase 9) forward (5′-TACAGCTGAACTTCCGAGCG-3′), CAIX reverse
(5′-CTAGGCTCCAGTCTCGGCTA-3′), HPRT1 (Hypoxanthine-Guanine Phosphoribosyltransferase)
forward (5′-TGGCGTCGTGATTAGTGATG-3′), HPRT1 reverse (5′-TATCCAACACTTCGTGGGGT-3′).
The PCR conditions for all analyzed genes were as following: denaturing at 95 ◦C for 5 min, followed
by 30 cycles of 30 s at 95 ◦C, 30 s at 58 ◦C and 30 s at 72 ◦C. The reaction was completed for 10 min
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at 72 ◦C. The PCR reaction was evaluated by checking the PCR products on 1.5% w/v agarose gels.
Bands were normalized by use of HPRT1 to correct for differences in loading of the cDNAs.

4.7. Statistical Analysis

The experimental data were shown as mean ±SD. Analysis was performed using one-way
ANOVA followed by Duncan post-hoc test. p values < 0.05 and p < 0.01 were considered statistically
significant. Calculations were carried out using the commercially available packages Statistica PL v.10
(StatSoft, Tulsa, OK, USA).

5. Conclusions

In conclusion, treatment of human squamous cancer cells with CA and with Met suppressed the
motility of cells and the effect depended on a particular cell line. Both compounds regulated EMT
process in C4-I and HTB-35 cells by interfering with different molecular targets. In TGF-β1-stimulated
C4-I cells, CA suppressed the expression of mesenchymal transcription factor SNAI1 which resulted
in enhanced expression of epithelial markers E-cadherin, Occludin and Claudin. Additionally,
CA blocked MMP-9 and upregulated TIMP-1, a specific inhibitor of MMP-9. In HTB-35 cells
stimulated with TGF-β1, Met decreased the expression of Vimentin. By suppressing hypoxia master
regulator HIF-1α, Met caused downregulation of CAIX, an enzyme involved in metastasis of aggressive
malignant cells. In this study we showed that CA and Met inhibited EMT process in cancer cells via
different mechanisms. However, when applied together, compounds exerted a greater effect on EMT
than each compound alone.

This is the first report revealing that CA alone and CA co-treated with Met may reverse the
mesenchymal phenotype of TGF-β1-treated cervical tumor cells and we believe that the use of the two
small molecules may be considered a potential therapeutic approach for metastatic cervical cancer.
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