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Abstract

Human milk contains essential micronutrients for growth and development during early life.

Environmental pollutants, such as potentially toxic metals, can also be transferred to the

infant through human milk. These elements have been well-studied, but changing diets and

environments and advances in laboratory technology require re-examining these elements

in a variety of settings. The aim of this study was to characterize the concentrations of

essential and toxic metals in human milk from four diverse populations. Human milk sam-

ples (n = 70) were collected in Argentina (n = 21), Namibia (n = 6), Poland (n = 23), and the

United States (n = 20) using a standardized mid-feed collection procedure. Milk concentra-

tions of calcium, zinc, iron, copper, manganese, lead, arsenic, and cadmium were deter-

mined using inductively coupled plasma mass spectrometry (ICP-MS). We used standard

multiple linear regression models to evaluate differences among populations, while including

infant age, infant sex, and maternal parity status (multiparous or primiparous) as covariates.

Concentrations of all elements, except zinc, varied across populations after controlling for

infant age, infant sex, and maternal parity. Calcium and magnesium showed more differ-

ences across populations than iron or copper. There were no significant differences among

population in zinc concentrations. Mean concentrations of lead, but not arsenic, were low

compared to recently published values from other populations. The concentrations of trace

elements in human milk are variable among populations. Limitations due to small sample

sizes and environmental contamination of some samples prevent us from drawing robust

conclusions about the causes of these differences.
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Introduction

Human milk is considered the ideal food for infant nutrition. In addition to macronutrients,

human milk also contains micronutrients, including trace minerals. Many of these elements

are essential for growth and development during early life as micronutrient deficiencies during

early life adversely affect individual and community health [1]. Micronutrient deficiencies are

associated with more frequent infections in the short-term and increased rates of chronic dis-

eases and reduced work productivity in the long-term [2]. However, excessive amounts of

these elements can also be detrimental. High levels of iron in formula may increase an infant’s

risk of infection by increasing nutrient bioavailability to pathogenic bacteria [3], and high

manganese exposure in children has been associated with impaired cognitive development

and motor coordination [4]. Determining appropriate intake levels of micronutrients during

early life is of substantial importance for public health recommendations and clinical interven-

tions. Thus, exploring the variation of milk bioactives in human milk within and across popu-

lations is particularly necessary [5].

In addition to essential elements, milk can also transfer potentially toxic metals, such as

lead, arsenic, and cadmium. These metals have been detected in milk around the world,

though concentrations can vary widely depending on environmental exposures like diet, the

use of leaded gasoline, or smoking [6]. Toxic metals do not generally accumulate in human

milk even when present in maternal circulation and postnatal exposure via milk ingestion is

likely lower than fetal exposure [7,8]. Early-life exposures, however, can contribute to long-

lasting adverse health outcomes, such as neurodevelopmental disorders [8] and impaired

immune and respiratory function [9]. Moreover, environmental exposures to toxic metals

often disproportionately affect marginalized groups [10, 11]. Concerns about pollutants in

human milk can also affect infant feeding decisions [10].

Although decades of research effort has been allocated to human milk concentrations of

micronutrients and toxic metals, dietary shifts, environmental changes, and more sensitive

analytical technologies motivate sustained investigation [12]. For example, human milk lead

levels in Sweden decreased significantly from 1989 to 2009, likely as a result of the ban on

leaded gasoline use [12]. However, levels of toxic elements in human milk remain high in

many areas around the world [13, 14]. Cinar and colleagues [13] reported that some of the

highest levels of toxic metals in human milk in Turkey were found in rural, not urban or

industrial areas. In the US and Canada, tribal lands are protected by fewer environmental reg-

ulations than non-tribal lands, and experience greater environmental degradation and pollu-

tion [10]. Many traditional populations are experiencing varying degrees of market integration

or urbanization, which can be associated with changes in diet and/or environmental exposures

[15–18].

Due to the importance of adequate micronutrient intake in early life for individual and

community health, and changing diets and environments worldwide, the study of human milk

trace elements remains relevant to research in human lactation and public health. Here we

characterize the concentrations of five essential and three toxic elements in human milk as it is

typically consumed across diverse populations from Argentina, Poland, the US, and Namibia.

Samples from Argentina and Namibia were collected in indigenous populations. Previous

studies have understandably focused on populations that are severely malnourished, at high

risk for toxic metal exposure, or are in urban areas of wealthy nations. By contrast, the range of

geography and lifestyle represented by the populations in this study attempts to reflect the

breadth of modern human environments, including populations that are not well-represented

in the current literature.
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Methods

Samples for this project were collected as part of a larger investigation of the composition of

human milk across diverse populations. A standardized collection procedure was used to facil-

itate comparison across populations. Participants for whom at least 2 ml of milk sample

remained after other planned analyses were included in present report. Milk samples were

divided into aliquots shortly after collection, thus, the composition of the subsample analyzed

here is expected to be an unbiased representation of the full sample from each individual.

Study procedures were approved by the Harvard Committee on the Use of Human Subjects

(#23868, #21979, #13–0900), the University of Pennsylvania Institutional Review Board

(#811200), and the University of California Los Angeles Institutional Review Board (#13–

000881). No formal ethical approval was required at the local level in Argentina or Poland,

though permission to conduct research was obtained from the village priest in Poland.

Research in Namibia was conducted under research visa (#W830312013) and local approval

was also granted by the Chief of the area. Written informed consent was obtained from all

participants except those in Namibia, where informed oral consent was obtained from each

participant and the participant’s head of household because the population is illiterate. Docu-

mentation of oral consent was not required, as it was implicit that the start of the oral interview

meant that oral consent had been given.

Participants

Milk samples were provided by lactating mothers (N = 70) (Table 1). Inclusion criteria were

mothers nursing biological offspring produced from a singleton pregnancy and no indication

of mastitis at the time of milk collection. Mothers of infants under two weeks of age or over

two years of age were excluded from the study. No participants were current smokers.

Settings

Samples were collected in a variety of contexts. Women living in the Boston area provided

human milk samples from June to August 2013 and represent an urban W.E.I.R.D. (Western-

ized, educated, industrial, rich, democratic) population [19]. Polish samples were collected at

the Mogielica Human Ecology Study Site, a group of rural villages in southern Poland [20],

during July and August 2012. This region has historically engaged in small-scale agriculture,

but is increasingly transitioning to participation in wage labor. Most people live in modern

houses and all have access to professional health care [21, 22]. Argentinean samples were col-

lected from indigenous Qom (formerly Toba) women in northeastern Argentina from Sep-

tember 2012 to March 2013. Traditionally, the Qom people were hunter-gathers, but today

Table 1. Demographic characteristics of sample.

United States Namibia Poland Argentina Total

(n = 20) (n = 6) (n = 23) (n = 21) (N = 70)

Infant Sex

Male 7 2 12 9 30

Female 13 4 11 12 40

Infant Age, days M(SD) 200 (101) 239 (194) 195 (100) 241 (107) 214 (112)

Maternal Parity Status

Primiparous 10 0 11 3 24

Multiparous 10 6 12 18 46

Parity M(SD) 1.7 (0.9) 5 (3.1) 2.1 (1.2) 3.9 (2.6) 2.8 (2.1)

https://doi.org/10.1371/journal.pone.0183367.t001
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many have migrated to poor peri-urban barrios where they have access to free governmental

healthcare, but often share outdoor water taps and lack indoor toilets [23, 24]. Namibian sam-

ples were collected from indigenous Himba women living in northern Namibia during Sep-

tember 2013. The Himba people are semi-nomadic agro-pastoralists. There is one small

medical clinic a day’s walk from the study area and a communal water tap, but the community

lacks plumbing and electricity [25, 26].

Data collection

Demographic information. Maternal parity, infant age, and infant sex were self-reported

by the mother during guided oral interviews in the participant’s native language.

Milk collection. A single, mid-feed milk sample was provided by each mother [27]. Sam-

ples were collected between 8AM and 11:30AM. Participants were asked not to feed the infant

from the sample breast for approximately 2 hours before collection. Participants self-expressed

by hand a milk sample up to 10 ml into polypropylene BD Falcon tubes (#352070). Samples

were then gently mixed by hand and aliquoted into Axygen cryovials (#22–269). Samples were

frozen at -20˚C (in Argentina and Namibia) or -80˚C (in Poland and the US) shortly after col-

lection. Samples from outside the US were shipped to Harvard University on dry ice and fro-

zen at -80˚C until analysis. Mineral and metal content is stable through freeze/thaw cycles

[28].

Data analysis

Milk trace metal analysis. Milk calcium (Ca), zinc (Zn), iron (Fe), copper (Cu), manga-

nese (Mn), arsenic (As), lead (Pb), and cadmium (Cd) in milk were analyzed at The Trace Met-

als Lab at the Harvard School of Public Health. Briefly, 1 to 2 ml of sample was measured on

an analytical balance and 1 mL of ultrapure nitric acid (BDH Aristar Ultra) was added to each

sample. Samples were then digested with a Milestone Ultrawave microwave digestion system,

diluted with deionized water to a final volume of 10 ml, and analyzed with a Perkin Elmer

ELAN DRC II ICP Mass Spectrometer. Cadmium levels were below the level of detection for

all samples and therefore excluded from analysis.

Statistical analysis. Population differences in metal levels were evaluated by standard

multiple linear regression models. All analyses were conducted in R version 3.3.0. Pearson cor-

relation coefficients and p-values were determined using the “Hmisc” package. Data were

graphically inspected for normality. To normalize data distributions, Fe, Pb, and As concentra-

tions were Box-Cox transformed and Zn, Cu, and Mn concentrations were natural log trans-

formed before analysis. Calcium concentrations were approximately normally distributed and

thus not transformed. Infant age (in days), infant sex, and maternal parity (coded as multipa-

rous or primiparous) were included as covariates in all models. Post-hoc pairwise comparisons

were conducted with the “lsmeans” package and adjusted for multiple comparisons using the

Holm method. Alpha was set at 0.05 and all p-values presented are two-tailed.

Results

Correlations among trace elements

To determine whether differences in milk micronutrient levels between populations might be

due to a dilution effect, correlations among the trace elements were calculated. Correlations

between trace element concentrations across all 70 samples ranged from weakly negative to

moderately positive. Calcium was positively correlated to iron (r = 0.41, p<0.001) and copper

(r = 0.42, p<0.001) but negatively correlated with lead (r = -0.36, p<0.001) and arsenic (r =

Trace elements in human milk

PLOS ONE | https://doi.org/10.1371/journal.pone.0183367 August 17, 2017 4 / 16

https://doi.org/10.1371/journal.pone.0183367


-0.3, p = 0.01). Zinc was positively correlated to copper (r = 0.39, p = 0.001). Lead was posi-

tively correlated with iron (r = 0.29, p = 0.016), manganese (r = 0.26, p = 0.03), and arsenic

(r = 0.29, p = 0.01). Arsenic was also positively correlated to manganese (r = 0.4, p<0.001).

Infant and maternal characteristics

Calcium, iron, zinc, and copper concentrations in milk decreased with infant age (Ca: β =

-0.46, t = -5.39, p<0.0001; Fe: β = -0.50, t = -5.36, p<0.0001; Zn: β = -0.57, t = -5.63, p<0.0001;

Cu: β = -0.58, t = -6.20, p<0.0001). Infant age was not significantly associated with manganese,

lead, or arsenic concentrations. Infant sex did not significantly predict mineral concentrations

in any model (p�0.10 for all). Similarly maternal primiparity was not associated with trace

mineral concentration in milk, although primiparous mothers tended to produce milk with

higher levels of iron than did multiparous mothers (M ± SD: 1.17 ± 0.28 mg/L vs 1.10 ± 0.38

mg/L, respectively, t(60) = 1.89, p = 0.06).

Differences among populations

The concentrations of elements in human milk were variable, both within and among popula-

tions (Table 2). All comparisons are controlled for infant age, sex, and maternal parity status

(primiparous or multiparous). The trace mineral profile of human milk samples often differed

among populations, but not always in the same directions (Table 3).

Of the essential trace elements, calcium and manganese differed most among populations.

Calcium concentrations were significantly lower in the Namibian population than all others

(US: p<0.0001; Poland: p = 0.003; Argentina: p = 0.001) (Fig 1). US milk samples had higher

calcium levels than did samples from Poland (p = 0.003), but not Argentina. Mean manganese

concentrations were 3 to 4 times higher in the Namibian and Argentinian samples compared

to the US (US-Namibia: p = < .0001; US-Argentina: p = 0.0008) or Polish (Poland-Namibia:

p = <0.0001; Poland-Argentina: p =<0.0001) samples. There was no significant difference in

manganese concentrations between the Namibian and Argentinian samples, but the US had

higher levels than the Polish (p = 0.0008) samples.

Iron, zinc, and copper showed fewer differences among populations. Iron levels in the US

and Namibian samples were higher than those from Poland (US-Poland: p = 0.001; Namibia-

Poland: p = 0.003) and Argentina (US-Argentina: p = 0.019; Namibia-Argentina: p = 0.01) (Fig

1). However, iron levels were not significantly different between US and Namibian samples or

Polish and Argentinian samples. There were no significant differences in zinc concentration

among populations, though concentrations in the Argentinian samples tended to be higher

than in the US samples (p = 0.07). Copper concentrations were highest in the Argentinian

samples, and were significantly higher than in the US (p = 0.03) and Namibian (p = 0.018), but

not Polish (p = 0.19) samples. There were no significant differences in copper concentrations

among the US, Polish, and Namibian samples (all p�0.19).

Arsenic and lead were present in samples from all populations. Namibia had significantly

higher arsenic concentrations than Argentina (p = 0.0191), Poland (p =<0.001) and the US

(p =<0.0001). US arsenic concentrations were significantly lower than Argentinian (p = 0.001)

samples, but were not significantly different from the Polish (p = 0.07). There was also no signifi-

cant difference between the Polish and Argentinian (p = 0.06) samples. Lead levels were signifi-

cantly lower in the Argentinian samples compared to all other populations (US: p = 0.01; Poland:

p<0.0001; Namibia: p<0.0001) (Fig 1). The US had lower lead levels than Namibia (p = 0.01),

but there was no significant difference between lead concentrations in Poland and the US

(p = 0.06) or Namibia (p = 0.11).
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Table 2. Summary of trace element concentrations.

United States Namibia Poland Argentina Total

Trace Element (n = 20) (n = 6) (n = 23) (n = 21) (N = 70)

Calcium (mg/L)

M 268.72 143.83 227.06 231.79 233.25

SD 59.34 64.67 36.72 37.62 56.45

Min 138.02 36.69 152.94 177.47 36.69

Max 374.95 205.21 293.71 304.47 374.95

Iron (mg/L)

M 1.27 1.53 1 0.99 1.12

SD 0.26 0.86 0.15 0.21 0.35

Min 0.84 0.74 0.8 0.71 0.71

Max 1.85 2.97 1.38 1.51 1.38

Zinc (mg/L)

M 0.67 1.34 0.75 0.93 0.83

SD 0.43 1.29 0.46 0.5 0.59

Min 0.15 0.03 0.2 0.25 0.03

Max 1.61 3.75 2.02 2.01 3.75

Copper (μg/L)

M 169.52 130.94 186.87 211.04 184.4

SD 63.06 63.49 48.1 99.5 74.33

Min 71.48 55.6 82.95 89.52 55.6

Max 317.09 208.83 252.42 419.09 419.09

Manganese (μg/L)

M 2.71 11.6 1.61 7.62 4.58

SD 1.12 9.78 0.89 3.76 4.76

Min 1.46 2.79 0.22 3.29 0.22

Max 5.86 30.27 4.32 20.24 30.27

Arsenic (μg/L)

M 3.47 6.68 3.86 4.51 4.18

SD 0.84 2.46 1 1.34 1.5

Min 2.4 4.08 3.03 2.54 2.4

Max 6.02 11.2 7.9 9.08 11.2

Lead (μg/L)

M 0.77 2.15 1.02 0.59 0.91

SD 0.45 0.24 0.26 0.4 0.55

Min 0.41 1.92 0.52 0.21 0.21

Max 2.1 2.48 1.44 1.69 2.48

https://doi.org/10.1371/journal.pone.0183367.t002

Table 3. Pairwise comparisons of trace element concentrations between populations.

Calcium Zinc Iron Manganese Copper Arsenic Lead

Contrast t (63) p t (63) p t (63) p t (63) p t (63) p t (63) p t (63) p

US—Namibia 5.62 < .001 -1.43 0.634 -0.99 0.653 -5.27 < .001 1.02 0.627 -5.28 < .001 -3.01 0.013

US—Poland 3.53 0.003 -0.51 1.000 4.01 0.001 3.74 < .001 -0.96 0.627 -1.83 0.072 -2.20 0.062

US—Argentina 1.70 0.187 -2.60 0.070 2.81 0.020 -6.16 < .001 -2.83 0.032 -3.81 0.001 3.06 0.013

Namibia—Poland -3.43 0.003 1.12 0.803 3.57 0.003 7.75 < .001 -1.65 0.314 4.19 < .001 1.64 0.107

Namibia—Argentina -4.68 < .001 -0.36 1.000 3.05 0.014 1.13 0.261 -3.09 0.018 2.82 0.019 5.34 < .001

Poland—Argentina -1.63 0.187 -2.20 0.156 -0.95 0.653 -9.98 < .001 -2.00 0.198 -2.19 0.065 5.29 < .001

https://doi.org/10.1371/journal.pone.0183367.t003
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Discussion

In this study we characterized the concentrations of five trace elements (Ca, Zn, Fe, Cu, Mn)

and two toxic elements (As, Pb) across diverse populations in the United States, Argentina,

Poland, and Namibia. Calcium, iron, zinc, and copper concentrations decreased across lacta-

tion, but there was no relationship between infant age and manganese, lead, or arsenic. Neither

infant sex nor maternal parity status was significantly associated with any trace mineral con-

centration. The concentrations of elements in human milk were variable both within and

among populations, and no population had consistently higher or lower levels of the essential

or toxic elements. Calcium and manganese differed more among populations while zinc, iron,

and copper showed no or fewer differences among populations, perhaps reflecting common

physiological mechanisms to avoid severe deficits of these essential micronutrients. Arsenic

and lead were present in samples from all populations.

Calcium and manganese concentrations differed more among populations compared to

other essential trace elements in the present study. This is consistent with previous reports that

have found high variation in the reported values of both elements (Table 4). Previously

reported mean calcium concentrations have ranged from 84 to 462 mg/L, with a median of

252 mg/L [29]. Population-level mean calcium concentrations (Table 2) in this study fell

within this range and were similar to unsupplemented Gambian mothers [30] and slightly less

than recently reported values from Swedish mothers [12]. Lower values observed here could

be explained in part by the older ages of infant included in the present study, as calcium con-

centrations in milk progressively decrease after 12 weeks post-partum [31]. Samples in this

study were collected between 2 weeks and 17 months postpartum, while the Swedish and

Gambian samples were collected at 2–3 and 13 weeks postpartum, respectively. In contrast to

calcium, manganese concentrations in milk are very low (4–8 μg/L) [32]. Ranges in manganese

concentrations in this study showed 3 to 4 fold differences among populations, which is con-

sistent with previous studies [33]. Notably, manganese was the only essential trace element in

our study that was not significantly related to infant age. Casey and colleagues [34] reported

that manganese concentrations became irregular during gradual weaning. Since the average

age of all infants in our study is approximately 7 months (M ± SD: 214 ± 111 days), most are

expected to be receiving complementary foods and are likely to be at various stages of the

weaning process.

Iron, zinc, and copper tended to be more consistent among populations. Unlike calcium,

which is largely associated with citrate or casein in human milk [30], these metals tend to be

Fig 1. Calcium, iron, and lead in breast milk from four populations. This figure illustrates the concentrations

of (A) calcium, (B) iron, and (C) lead measured in breast milk in samples from the US, Namibia, Poland, and

Argentina. Each point illustrates an individual sample value, and the bold horizontal line in each box plot depicts

the median for each population. Letters indicate statistically significant differences among population means

(p< 0.05).

https://doi.org/10.1371/journal.pone.0183367.g001
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Table 4. Trace element concentrations reported in mature human milk.

Trace Element Country Analysis Methoda n Median M b SD Unit Reference

Calcium

Brazil ICP-AES 31 250 31 mg/L [35]

Gambia Methyl thymol blue 120 208.93c 24 mg/L [29]

Japan ICP-AES 1170 250 71 mg/L [36]

Nigeria Thermo Labsystems Arsenazo III Kit 105 186 41 mg/L [37]

Sweden ICP-MS 60 305 45 mg/L [12]

US AAS 20 279.2 127.90 mg/L [38]

Copper

Brazil AAS 116 0.3 0.1 mg/L [39]

Honduras AAS 105 0.16 0.21 mg/L [40]

Japan ICP-AES 1169 0.35 0.21 mg/L [36]

Kuwait AAS 17 0.608c 0.027 mg/L [41]

Poland GF AAS 320 0.137 0.092 mg/L [42]

Sweden AAS 86 0.12 0.22 mg/L [40]

Sweden ICP-MS 60 0.471 0.075 mg/L [12]

Turkey ICP-OES 75 0.446c 0.197 mg/L [13]

US AAS 30 0.27 0.11 mg/L [38]

Vietnam ICP-AES 59 0.19 0.05 mg/L [43]

Iron

India AAS 16 0.168c 0.406 mg/L [44]

Brazil ICP-AES 31 0.9 0.5 mg/L [35]

Brazil AAS 116 0.3 0.2 mg/L [39]

Honduras AAS 105 0.21 0.25 mg/L [40]

Japan ICP-AES 1155 1.19 2.51 mg/L [36]

Japan AAS 24 0.32 0.16 mg/L [45]

Kuwait AAS 17 0.4c 0.040 mg/L [41]

Sweden AAS 86 0.29 0.21 mg/L [40]

Sweden ICP-MS 60 0.339 0.134 mg/L [12]

Turkey ICP-OES 75 1.072c 0.841 mg/L [13]

US AAS 41 0.36 0.19 mg/L [38]

Vietnam ICP-AES 59 0.43 0.15 mg/L [43]

Manganese

Brazil ICP-MS 58 0.33 ug/L [46]

Japan ICP-AES 1167 11 23 ug/L [36]

Japan AAS 24 9.5 6.3 ug/L [45]

Kuwait AAS 17 4.71c 0.16 ug/L [41]

Sweden ICP-MS 60 3 11.4 ug/L [12]

Turkey ICP-OES 74 124c 156 ug/L [13]

US AAS 116 4.9 3.9 ug/L [33]

Zinc

Brazil ICP-AES 31 1.5 0.6 mg/L [35]

Brazil AAS 116 2.7 1.3 mg/L [39]

Brazil ICP-MS 58 0.0462 mg/L [46]

Honduras AAS 105 0.7 0.18 mg/L [40]

India AAS 50 2.5 mg/L [47]

India AAS 47 1.37 mg/L [47]

India AAS 50 1.17 mg/L [47]

(Continued )
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bound to milk proteins. Iron is largely bound to fat-globule associated proteins or lactoferrin

[37, 52], while zinc and copper tend to be bound to whey proteins, including serum albumin

[37]. Human milk is typically low in iron, with a mean around 0.6 mg/L in early lactation that

steadily decreases to a mean between 0.2–0.3 mg/L after 5–6 months [53]. In the present study,

however, mean population concentrations were 1.5 to 4 fold higher. Values in our study are

higher than most previously reported values, but are similar to values from Turkey [13] but are

still 1.5 to 7 fold lower than typical infant formula levels in Europe or the US [53]. We found

that primiparous mothers produced slightly higher concentrations of milk iron than did mul-

tiparous mothers. This is consistent with previous studies report no relationship between par-

ity and iron concentrations in mature milk [54, 55]. Our results are generally consistent with

studies that reported no differences based on location, race, or population or attributable to

differences in milk volume ([40, 56] but see [57, 58]). Milk copper levels in this study fell

within the range of previously reported concentrations from Sweden [40], Honduras [40], the

Table 4. (Continued)

Trace Element Country Analysis Methoda n Median M b SD Unit Reference

Japan ICP-AES 1165 1.45 1.35 mg/L [36]

Kuwait AAS 17 2.56c 0.136 mg/L [41]

Poland GF AAS 320 1.62 1.76 mg/L [42]

Sweden AAS 86 0.46 0.26 mg/L [40]

Sweden ICP-MS 60 3.471 0.979 mg/L [12]

Turkey ICP-OES 75 3.454 1.970 mg/L [13]

US AAS 30 1.45 1.37 mg/L [38]

Vietnam ICP-AES 59 0.56 mg/L [43]

Arsenic

Croatia ICP-MS 123 0.2 ug/L [48]

Greece ICP-MS 39 0.8 ug/L [48]

Italy ICP-MS 602 0.3 ug/L [48]

Japan ICP-MS 9 1.4 ug/L [49]

Slovenia ICP-MS 287 0.4 ug/L [48]

Sweden ICP-MS 60 0.33 0.041 ug/L [12]

Taiwan AAS 90 0.215c 0.81 ug/L [50]

Lead

Brazil ICP-MS 58 0.26 ug/L [45]

Iran AAS 37 7.11 3.96 ug/L [51]

Iraq AAS 32 31.65 22.19 ug/L [14]

Iraq AAS 36 19.59 13.66 ug/L [14]

Japan ICP-MS 9 0.29 ug/L [49]

Palestine GF AAS 89 4 ug/L [11]

Poland GF AAS 320 6.33 4.61 ug/L [42]

Sweden ICP-MS 60 1.5 0.9 ug/L [12]

Taiwan AAS 90 17.17c 2.18 ug/L [50]

Turkey ICP-OES 56 261c 171 ug/L [13]

a Abbreviations: AAS = Atomic Absorption Spectroscopy, GF AAS = Graphite Furnace Atomic Absorption Spectroscopy, ICP-AES = Inductively Coupled

Plasma Atomic Emission Spectroscopy, ICP-MS = Inductively Coupled Plasma Mass Spectrometry, ICP-OES = Inductively Coupled Plasma Optical

Emission Spectrometry
b Means have been standardized to a common unit for each element.
c Weighted population mean calculated with data reported for sub-groups.

https://doi.org/10.1371/journal.pone.0183367.t004
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US [38], and Brazil [39]. The consistency of concentrations across populations despite the

range of geography and lifestyle likely reflects the importance of these trace elements for

proper development and function, and common physiological mechanisms to maintain ade-

quate levels for the infant.

Mean population levels of toxic metals were low across all populations in this study. The

World Health Organization set a safety limit of human milk lead concentration between 2 and

5 μg/L [59]. In this study, only Namibia had a mean lead concentration greater than 2 μg/L.

Lead concentrations are comparable to mean levels found in mature milk in Sweden [12] and

industrial areas in Taiwan [50]. Lead concentrations in this study are also lower than recently

reported values from urban and rural areas in Iraq [14] and Turkey [13]. Mean arsenic con-

centrations were all below the EPA and WHO recommended limit of 0.01 mg/L in drinking

water [60]. However, the values we observed are 2 to 5 fold higher than recently published val-

ues from Taiwan and Sweden, which both found milk arsenic concentrations <1 μg/L [50, 12].

Population differences in the concentrations of these trace elements, particularly the toxic

metals, may be due to differences in environmental exposures. Arsenic exposure primarily

occurs through drinking water or food, and naturally high groundwater levels of arsenic occur

in several countries, including Argentina and the US [61]. Higher levels of lead in human milk

have been reported in women that live closer to industrial [51, 50] or urban areas [62], or use

cosmetics containing lead [11]. However, risk factors for toxic metal exposure were not

directly assessed in this study. Dietary differences among populations are unlikely to explain

much of the variation observed in this study. Milk manganese concentrations covaried with

maternal dietary intake in one study [63] but iron, zinc, and copper have not been found to

relate to maternal dietary intake [1, 32]. Similarly, most studies have not found an effect of die-

tary intake on milk calcium levels [32].

Population differences in essential milk element concentrations may represent local adapta-

tions to their immediate environments [64]. Understanding local adaptations has direct impli-

cations for the clinical management of public health interventions. More than 2 billion people

worldwide are estimated to have micronutrient deficiencies [65], and supplementation efforts

to improve health outcomes, particularly around pregnancy and lactation, are a major focus of

public health research [65–67]. However, appropriate levels of supplementation may not be

uniform across populations and supplementation interventions have had unintended adverse

consequences. For example, Gambian women had lower bone density during and for years

after lactation after receiving calcium supplementation during pregnancy [30]. Moreover,

there were no discernable benefits for infant health [30]. In another study, Kenyan infants who

received iron-fortified porridge experienced higher levels of intestinal pathogens and inflam-

mation [68]. Public health interventions are motivated by the best intentions to improve the

current health of individuals and communities, but must consider local adaptations and inter-

generational effects to be successful in the long-term.

This report represents several limitations of scope. As part of a larger research effort mea-

suring multiple milk bioactives, only a subset of participants provided sufficient volume for all

planned analyses, biasing inclusion toward participants producing the highest milk volume at

the time of sample collection. This assessment of volume, however, remains relative and not

absolute, as challenging research settings complicate reliable, standardized measurement of

milk volume. Mid-feed milk samples, rather than full mammary evacuations, were used to

minimize the nutritional impact to the infant in potentially nutritionally-stressed populations

in our study [27]. Reliable volume measures would better enable us to speak to total potential

transfer to the infant, which may be a more biologically meaningful measure, as milk volume

may be more sensitive to changes in maternal condition than milk composition [69, 70]. How-

ever, if population differences in trace metal concentrations reflected a dilution effect, we
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would expect concentrations of all elements to be positively correlated. Correlation coeffi-

cients of mineral concentrations in our study, however, ranged from negative to positive.

This suggests our results are unlikely to be explained as simply a dilution effect, though

more systematic analysis using a marker protein concentration would be required to defini-

tively eliminate this possibility. These correlations are also unlikely to be a byproduct of dif-

ferences in casein content. Casein micelles in milk contain the majority of milk’s calcium

content, but less than 15% of the other essential minerals [1]. Moreover, comparisons of

mineral concentrations across populations did not reveal consistent patterns of higher or

lower concentrations, which suggests that these differences are not due to different mean

volumes across populations.

The Namibian samples included in this study require special considerations. Concentra-

tions of most elements measured in this study, with the exceptions of calcium and copper,

were highest in the Namibian samples. The sample size for this population, however, was

small (n = 6) and some Namibian milk samples were visibly “contaminated” with otjize. A

traditional cosmetic paste made of clarified butter (or when that is unavailable, petroleum

jelly) and red ochre, otjize is applied daily to the hair and skin, including the breasts [71].

Red ochre gets its coloration from iron oxides, though the composition of ochres differs

depending on its geographic origin [72]. Ochre used by the Himba is mainly composed of

iron-ore, with trace amounts of other elements, including calcium, manganese, and copper

[73, 74]. Ochres have been utilized extensively across cultures and throughout human his-

tory for both symbolic and practical uses, including by the Himba for tanning hides, as sun

protection and as an insect repellant [73, 75]. While “contamination” of the human milk

samples with otjize limits our ability to assess the maternal transfer of elements, our results

reflect that Namibian infants are likely ingesting micronutrients through milk and suckling

contact and very likely represent what these infants are typically consuming. Thus, we have

chosen to not exclude the “contaminated” Namibian samples from analysis as, for this pop-

ulation, this composition is likely to be most relevant for considering infant outcomes. We

do not yet understand if or how trace metals from otjize may be used by the infant or com-

mensal microbes, but these results highlight the importance of evaluating mother’s milk

within the context of cultural ecology.

Understanding the range of variation of essential metals in human milk will help to deter-

mine the most physiologically relevant concentrations to inform guidelines for supplementa-

tion and the production of infant formula. Levels of minerals in infant formula are often

higher than in human milk because formula production must also consider differences in bio-

availability and loss during production and storage [76]. However, the levels of minerals in for-

mula can be much as ten times higher than in human milk [77]. Today, a variety of analytical

techniques, such as ICP-MS, allow for sensitive, reliable, and cost-effective determination of

multiple micronutrients from a small-volume sample [78]. There is now a growing body of lit-

erature to address the need to determine current concentrations of trace essential and toxic

elements in populations around the world (e.g. [11, 12, 36, 48]). Further studies will be needed

to add robust datasets from diverse populations to these new values.

Conclusions

The concentrations of essential and potentially toxic elements in human milk are variable

among populations. Due to small sample sizes, our study is limited in its ability to make defini-

tive conclusions about the causes of these differences. However, our study is able to add infor-

mation about the range of trace metal concentrations in diverse contemporary populations

using modern, sensitive laboratory methods.
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40. Domellöf M, Lönnerdal B, Dewey K, Cohen R, Hernell O. Iron, zinc, and copper concentrations in breast

milk are independent of maternal mineral status. Am J Clin Nutr. 2004; 79(1):111–115. PMID:

14684406

41. Al-Awadi FM, Srikumar TS. (2000). Trace-element status in milk and plasma of Kuwaiti and non-Kuwaiti

lactating mothers. Nutrition. 2016; 16:1069–1073. PMID: 11118827

42. Winiarska-Mieczan A. Cadmium, Lead, Copper and Zinc in Breast Milk in Poland. Biol Trace Elem Res.

2014; 157(1):36–44. https://doi.org/10.1007/s12011-013-9870-x PMID: 24338444

43. Nakamori M, Ninh NX, Isomura H, Yoshiike N, Hien VT, Nhug BT, et al. Nutritional status of lactating

mothers and their breast milk concentration of iron, zinc and copper in rural Vietnam. J Nutr Sci Vitami-

nol. 2009; 55(4):338–345. PMID: 19763035

44. Roy S, Basu A, Dhar P, Ghosh M. Calcium, iron and essential fatty acid composition of Bengali mother’s

milk: a population based cross-sectional study. Indian J Community Health. 2014; 26(6):310–317.

45. Gunshin H, Yoshikawa M, Doudou T, Kato N. Trace elements in human milk, cow’s milk, and infant for-

mula. Agric Biol Chem. 1985; 49(1):21–26.

46. Cardoso OO, Juliao FC, Alves RIS, Baena AR, Diez IG, Suzuki MN, et al. Concentration profiles of met-

als in breast milk, drinking water, and soil: relationship between matrices. Biol Trace Elem Res. 2014;

160:116–122. https://doi.org/10.1007/s12011-014-0030-8 PMID: 24881955

47. Samuel TM, Thomas T, Thankachan P, Bhat S, Virtanen SM, Kurpad AV. Breast milk zinc transfer and

early post-natal growth among urban South Indian term infants using measures of breast milk volume

and breast milk zinc concentrations. Matern Child Nutr. 2014; 10(3):398–409. https://doi.org/10.1111/j.

1740-8709.2012.00421.x PMID: 22734965

48. Miklavčič A, Casetta A, Tratnik J, Mazej D, Krsnik M, Mariuz M, et al. Mercury, arsenic and selenium

exposure levels in relation to fish consumption in the Mediterranean area. Environ Res. 2013; 120:7–

17. https://doi.org/10.1016/j.envres.2012.08.010 PMID: 22999706

49. Sakamoto M, Chan H, Domingo J, Kubota M, Murata K. Changes in body burden of mercury, lead, arse-

nic, cadmium and selenium in infants during early lactation in comparison with placental transfer. Eco-

toxicol Environ Saf. 2012; 84, 179–184. https://doi.org/10.1016/j.ecoenv.2012.07.014 PMID:

22854743

50. Chao HH, Guo CH, Huang CB, Chen PC, Li HC, Hsiung DY, et al. (2013). Arsenic, cadmium, lead, and

aluminum concentrations in human milk at early stages of lactation. Pediatr Neonatol. 2013; 55

(2):127–134. https://doi.org/10.1016/j.pedneo.2013.08.005 PMID: 24231114

51. Goudarzi M, Parsaei P, Nayebpour F, Rahimi E. Determination of mercury, cadmium and lead in

human milk in Iran. Toxicol Ind Health. 2012; 29(9):820–823. https://doi.org/10.1177/

0748233712445047 PMID: 22534496

52. Dorea J. Iron and copper in human milk. Nutrition. 2000; 16:209–220. PMID: 10705077

53. Quinn EA. No evidence for sex biases in milk macronutrients, energy, or breastfeeding frequency in a

sample of Filipino mothers. Am J Phys Anthropol. 2013; 152(2):209–16. https://doi.org/10.1002/ajpa.

22346 PMID: 23996600

54. Feeley RM, Eitenmiller RR, Jones JB, Barnhart H. Copper, iron, and zinc contents of human milk at

early stages of lactation. Am J Clin Nutr. 1983; 37(3):443–448. PMID: 6681932

55. Shashiraj, Faridi MMA, Singh O, Rusia U. Mother’s iron status, breastmilk iron and lactoferrin-are they

related? Eur J Clin Nutr. 2006; 60(7):903–8. https://doi.org/10.1038/sj.ejcn.1602398 PMID: 16514410

56. Dorea J. Zinc in human milk. Nutr Res. 2000; 20(11):1645–1687. https://doi.org/10.1016/S0271-5317

(00)00243-8

Trace elements in human milk

PLOS ONE | https://doi.org/10.1371/journal.pone.0183367 August 17, 2017 14 / 16

https://doi.org/10.1093/tropej/fmk004
https://doi.org/10.1093/tropej/fmk004
http://www.ncbi.nlm.nih.gov/pubmed/16547068
https://doi.org/10.1016/j.jtemb.2005.05.001
http://www.ncbi.nlm.nih.gov/pubmed/16325533
https://doi.org/10.1080/08035250500452613
https://doi.org/10.1080/08035250500452613
http://www.ncbi.nlm.nih.gov/pubmed/16801179
https://doi.org/10.1203/00006450-198311000-00015
http://www.ncbi.nlm.nih.gov/pubmed/6646903
https://doi.org/10.1093/tropej/fms055
http://www.ncbi.nlm.nih.gov/pubmed/23070740
http://www.ncbi.nlm.nih.gov/pubmed/14684406
http://www.ncbi.nlm.nih.gov/pubmed/11118827
https://doi.org/10.1007/s12011-013-9870-x
http://www.ncbi.nlm.nih.gov/pubmed/24338444
http://www.ncbi.nlm.nih.gov/pubmed/19763035
https://doi.org/10.1007/s12011-014-0030-8
http://www.ncbi.nlm.nih.gov/pubmed/24881955
https://doi.org/10.1111/j.1740-8709.2012.00421.x
https://doi.org/10.1111/j.1740-8709.2012.00421.x
http://www.ncbi.nlm.nih.gov/pubmed/22734965
https://doi.org/10.1016/j.envres.2012.08.010
http://www.ncbi.nlm.nih.gov/pubmed/22999706
https://doi.org/10.1016/j.ecoenv.2012.07.014
http://www.ncbi.nlm.nih.gov/pubmed/22854743
https://doi.org/10.1016/j.pedneo.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/24231114
https://doi.org/10.1177/0748233712445047
https://doi.org/10.1177/0748233712445047
http://www.ncbi.nlm.nih.gov/pubmed/22534496
http://www.ncbi.nlm.nih.gov/pubmed/10705077
https://doi.org/10.1002/ajpa.22346
https://doi.org/10.1002/ajpa.22346
http://www.ncbi.nlm.nih.gov/pubmed/23996600
http://www.ncbi.nlm.nih.gov/pubmed/6681932
https://doi.org/10.1038/sj.ejcn.1602398
http://www.ncbi.nlm.nih.gov/pubmed/16514410
https://doi.org/10.1016/S0271-5317(00)00243-8
https://doi.org/10.1016/S0271-5317(00)00243-8
https://doi.org/10.1371/journal.pone.0183367


57. Bates CJ, Tsuchiya H. Zinc in breast milk during prolonged lactation: comparison between the UK and

the Gambia. Eur J Clin Nutr. 1990; 44(1):61–69. PMID: 2354693

58. Parr RM, DeMaeyer EM, Iyengar VG, Byrne AR, Krikbright GF, Shoch G, et al. Minor and trace ele-

ments in human milk from Gautemala, Hungary, Nigeria, Philippines, Sweden, and Zaire. Biol Trace

Elem Res. 1991; 29:51–75. PMID: 1711362

59. World Health Organization. Minor and Trace Elements in Breast Milk: Report of a Joint WHO/IAEA Col-

laborative Study. Geneva: World Health Organization. 1989.

60. Jackson B, Taylor V, Punshon T, Cottingham K. Arsenic concentration and speciation in infant formulas

and first foods. Pure and Applied Chemistry. 2012; 84(2):215–223. https://doi.org/10.1351/PAC-CON-

11-09-17 PMID: 22701232

61. World Health Organization. Exposure to arsenic: a major public health concern. 2010. Available from:

http://www.who.int/ipcs/features/arsenic.pdf

62. Leotsinidis M, Alexopoulos A, Kostopoulou-Farri E. Toxic and essential trace elements in human milk

from Greek lactation women: association with dietary habits and other factors. Chemosphere. 2005; 61

(2):238–247. https://doi.org/10.1016/j.chemosphere.2005.01.084 PMID: 16168747
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