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Background
Solid dosage forms are dominant on the pharmaceutical market. It is estimated that 
the tablets as the most common and popular oral dosage forms constitute more than 
two-thirds of the global market. They are prepared usually by compressing uniform vol-
umes of powder mixtures consisting of active pharmaceutical ingredient (API) with suit-
able excipients such as diluents, binders, disintegrating agents, glidants, lubricant, taste 
maskers, etc. Therefore, understanding the physiochemical properties of ingredients and 

Abstract 

Purpose: Pharmaceutical industry is tightly regulated owing to health concerns. Over 
the years, the use of computational intelligence (CI) tools has increased in pharmaceu-
tical research and development, manufacturing, and quality control. Quality char-
acteristics of tablets like tensile strength are important indicators of expected tablet 
performance. Predictive, yet transparent, CI models which can be analysed for insights 
into the formulation and development process.

Methods: This work uses data from a galenical tableting study and computational 
intelligence methods like decision trees, random forests, fuzzy systems, artificial neural 
networks, and symbolic regression to establish models for the outcome of tensile 
strength. Data was divided in training and test fold according to ten fold cross valida-
tion scheme and RMSE was used as an evaluation metric. Tree based ensembles and 
symbolic regression methods are presented as transparent models with extracted rules 
and mathematical formula, respectively, explaining the CI models in greater detail.

Results: CI models for tensile strength of tablets based on the formulation design and 
process parameters have been established. Best models exhibit normalized RMSE of 
7 %. Rules from fuzzy systems and random forests are shown to increase transparency 
of CI models. A mathematical formula generated by symbolic regression is presented 
as a transparent model.

Conclusions: CI models explain the variation of tensile strength according to formula-
tion and manufacturing process characteristics. CI models can be further analyzed to 
extract actionable knowledge making the artificial learning process more transparent 
and acceptable for use in pharmaceutical quality and safety domains.
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the mechanical behavior of powders during tableting process is very important for the 
quality of tablets with mechanical strength as one the profound parameters.

It has been observed that the upstream process of formulation design and manufac-
turing has an intrinsic effect on the physical and mechanical properties of the tablet: 
an important one being expressed as tensile strength. Tensile strength of tablets is an 
indicator of how strongly the ingredients are compacted and it gives an indirect measure 
of how the tablet will perform once consumed. Development of formulations and opti-
mization of tableting conditions are intrinsically complex in nature—leading to reliance 
on empirical methods in practice (Sun 2009). Variations while manufacturing the tablet 
could lead to an undesirably slow rate of disintegration if the tablet is too hard or fail-
ure during packaging and shipping if the tablet is weak. Disintegration and dissolution 
are equally important considerations within the scope of Quality by Design (QbD) (ICH 
2009).

It is imperative to have in-depth understanding of the process and its parameters and 
their response to different formulations and manufacturing conditions. Complexity of 
the problem requires the use of advances empirical approaches. The need for constant 
supervision of the process is imperative since the intermediate points at which varia-
tion might be introduced are numerous. For example, unwarranted changes in different 
moisture conditions (Gupta et al. 2005), particle sizes and pores (Nicklasson and Podc-
zeck 2007), crystalline forms of molecules (Maghsoodi 2012), effects of roller compac-
tion (Sun and Himmelspach 2006), and batch sizes, etc., can cause significant variation 
is the quality characteristics of the product. It is expensive and time-consuming to run 
experimental tests for all possible upstream process combinations in order to optimize 
the endpoint, rather it is much cheaper and faster to develop predictive models using 
computational intelligence (CI) which can be used as guidance tools in a competitive 
and rapidly changing environment.

The use of CI has been demonstrated in pharmaceutical manufacture before by previ-
ous works; all aiming towards increasing understanding of systems and using CI models 
as a stepping stone towards implementation of QbD approach (Ibrić et al. 2012). Neural 
networks, fuzzy systems, and other techniques have been used for various applications 
in pharmaceutical environments (Bourquin et  al. 1998; Shao et  al. 2007; Landin et  al. 
2012) including but not limited to assessment of tensile strength and dissolution profiles.

Changes in one component of the system has a profound effect which cannot be 
explained by the sum of all changes within the system components. Complex adap-
tive systems absorb the changes upstream of the process and evolve as they progress 
(Chaffee and McNeill 2007). In case of pharmaceutical tableting, complexities are abun-
dant. Powder physical and chemical properties, powder mixtures, response of powder 
mixtures to the pharmaceutical processes (mixing, roll compaction, milling, tableting, 
coating, etc.), and the processes themselves can add to the complexity within the whole 
system. The combined effect of variations added at different stages of the process are 
non-linear, sometimes unintentional, and adds to difficulties in prediction. Paley and Eva 
(2010) argue that the use of complex systems can capture the unintentional behaviors of 
entities, as has been observed in the case of powder segregation while in the feeder of 
the tableting machine (Ortiza et al. 2014).
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Although CI techniques have rapidly gained pace within the pharmaceutical technol-
ogy sphere, their black-box mode of work remains a reason for skepticism within reg-
ulatory authorities. Demand for CI models to be transparent is to ensure efficacy and 
safety of a drug by fulfilling modern requirements for ultimate control and understand-
ing of every element of the process including modeling procedures. This work makes an 
attempt to develop models for the quality characteristic of tensile strength using vari-
ous CI methods and to dissect the best tree based models to extract rules describing 
the model. Finally, we present symbolic regression, the output of which can be repre-
sented in the form of an equation clearly showing the relationship of input variables to 
the outcome.

This paper is an extended version of Khalid et al. (2015).

Data and methods
Data

Data was collected from a galenical study conducted on tableting using an undisclosed 
API in fixed quantity and four excipients (Silica Aerogel, MicroCrystalline Cellulose, 
Magnesium stearate, Sodium CarboxyMethyl Cellulose) in varying quantities. The study 
followed a vertex centroid experiment design generating 17 unique mixtures. For the 
17 mixtures, two die compaction machines with three compaction pressures and two 
compaction speeds were used. One additional mixture from the preliminary trials was 
added. Details of the excipients used and experimental conditions are explained in the 
source publication for data (Bourquin et al. 1998).

Data transformation and organization

The main data set was divided into ten training and test files following the tenfold 
cross-validation (10cv) procedure using the cv tools library from CRAN. According 
to 10cv procedure, the data set was divided into ten training and test folds of 90 and 
10 %, respectively. Models were created of nine folds and tested on the tenth over ten 
iterations.

Methods
Different methods were used to create a large number of models (~7000). The models 
were selected based on the RMSE values. The RMSE values were calculated using Eq. 1 
on the test folds of the data set.

where n is the number of records, and pred and obs are predicted and observed values, 
respectively.

All RMSE values were normalized using Eq. 2. Hence, they are represented in percent-
ages and are comparable over all different methods.

(1)RMSE =

√

(

1

n

∑

(pred− obs)2
)

(2)NRMSE =
RMSE

Xmax−Xmin
× 100
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where Xmax and Xmin are the maximum and minimum observed values of tensile strength 
in the original data set.

Tree based methods

The following tree based methods were used.

Cubist

Cubist is an implementation of tree based modeling approach in R where a resulting tree 
is a set of linear models at each node starting from the root to the last node. A tree is gen-
erated on the complete training data set and the best node of the tree is converted into a 
rule. Linear models are fit at the terminal node, results of which are smoothed with the 
predictions of linear models from earlier nodes within the tree. This process is continued 
in recursion until all the variables have been covered by a single or a set of rules. This 
is also known as the separate-and-conquer approach (Fürnkranz 1999). Furthermore, 
boosting-like mechanisms are applied where response adjustment is carried out for suc-
cessive models based on the predictions of the previous models (Quinlan 1992). Cubist 
exhibits speed and an impressive generalization ability with regression problems. Cubist 
algorithm has been used in pharmaceutical research for ADME/ADMETox prediction 
models (Gupta et al. 2010).

Random forest and interactive trees

Random forests is a tree based model where many tree predictors are stacked together 
to form one model. Each tree is created on an independent and random sample taken 
from the training data set. In one forest, the sample distribution is kept same for all the 
trees. The generalization error of a forest depends on the errors of individual trees and 
the correlation between the trees (Breiman 2001). Random forests are known to be good 
for classification problems but they have work well with regression and feature selection 
problems too. To extract rules from randomForest models, CRAN package inTrees was 
used. inTrees extracts, measures, prunes, and selects rules from tree based ensembles 
(Houtao 2014; Pacławski et al. 2015).

Artificial neural networks

MON-MLP are generalized feed forward multi layer perceptron neural networks which 
work in a monotone fashion using NLM as their training algorithm. They allow two 
hidden layers with a choice of two activation and transfer (tanh and linear) functions. 
MON-MLPs are known to be robust with regression problems (Cannon 2005).

Fuzzy systems

This is an evolutionary algorithm for fuzzy systems, a genetic algorithm is used to con-
struct a fuzzy system able to fit the given training data. This fuzzy system can then be 
used as a prediction model, composed of fuzzy logic rules that can be further analyzed 
to provide plausible linguistic representation. One of the implementation of genetic 
algorithm based fuzzy systems in R is FugeR (Bujard 2012).

In this experiment, a maximum generation of 500 and population of 1000 were 
allowed, respectively. Out of every generation, 20  % of the population was set to be 
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elitist. The rules generated from these experiments were set to sizes 10, 20, and 50 with 
1–10 maximum variables per rule allowed. Each input and output variable is assigned 
membership functions describing the range an input variable has. A collection of such 
rules guides the input variable values to the predicted output.

Evolutionary computation

This work makes use of fuzzy systems with co-evolution and symbolic regression meth-
ods in its course. The aim is to create models and use the models to extract rules and a 
mathematical formula in case of symbolic regression.

Symbolic regression by RGP

Genetic programming (GP) involves the automatic generation of computer programs to 
perform a user defined task. GP is bio inspired algorithm based on evolution principles 
to solve complex problems (Poli et al. 2008). Although RGP computations are expensive 
on time and computational power, their results are simple representations of the problem 
without being exposed to a priori information about the problem beforehand. RGP offers 
various options for initialization, variation, and selection procedures inherent in GP.

The population size was set to 1000 and the modeling process was set to 5 million evo-
lution steps divided into ten stages. After each stage, the models were tested according to 
the tenfold cross-validation method. RMSE of 0.12 was used as an additional algorithm 
stop condition based on the guidance of previous results generated by other tree based 
packages. The equations were created on the whole data set initially and then selected 
ones were optimized using SANN algorithm followed by the BFGS method (Nash and 
Varadhan 2011; Nash 2014).

Results and discussion
All CI methods generalize on the outcome of tensile strength (Table 1). ANNs and fuzzy 
systems learn models with low error. ANNs are generally known to be a very powerful 
tool to create predictive models. Apart from being robust and powerful, a great disad-
vantage of ANNs is that the exact calculations of how the resulting model was created 
cannot be supervised owing to its black box nature. While they can be explained fur-
ther by looking at the number of layers and neurons, transfer functions used, or the 
optimized weights, but the behavior of ANNs cannot be demystified with the certainty 
as one would have about a regular statistical methods. As explained in detail by Rod-
vold et al. (2001), weight adjustment is not exhaustive and the efficiency of the result-
ing neural network partially relies on the training algorithm adjusting randomly initiated 

Table 1 Normalized RMSE (%) and R2 for tensile strength

Package N-RMSE (%) R-sqd

Fuger 7.0 0.865

Monmlp 7.2 0.884

randomForest 7.6 0.865

Cubist 9.5 0.792

RGP 11.5 0.672
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weights. Such mode of work feeds into the intrinsic instability that ANNs come with. 
There exist method using which rigorous testing of ANNs can be carried out but most 
are inconclusive on the elusive nature of initialization and training of neural networks. 
Owing to concerns about safety of use and reliability, more rule and formula based 
methods are explored where model behavior can be explicated.

Results from fugeR package can be represented in the form of linguistic rules although 
there exists no automatic methods which can defuzzify the system to a human readable 
form. Manual efforts are needed to extract rules and membership functions from fugeR 
results and to map the membership functions back to the fuzzy rules. A set of rules (Addi-
tional file 1) is generated where each rule contains information about two input variables 
interacting with each other. The rules guides the input variable values to the predicted 
output. FugeR models, however accurate with predictions, generate rules that are some-
times redundant and contradictory to each other within the same model raising doubts 
about the validity and safety of use of the models in a pharmaceutical environment.

Random forests show comparable results to monmlp and fugeR. The advantage of 
using random forests is that they are rule based techniques and that the output can be 
generated in a linguistic manner for further analysis using the inTrees package. Such 
rules, once simplified, can be used as guidance towards understanding and informed 
manipulation of the system. However, there are a few impediments; the rules created are 
large in number that generalizing through them can be daunting, and they might repre-
sent the problem in a wide manner leading to variability in the results. Variability in how 
the system processes inputs to compute results is to be avoided owing to consistency 
and quality considerations within the pharmaceutical industry and with the regulatory 
authorities. With symbolic regression, such variability can be avoided as the solution can 
be represented in the form of an equation.

Additionally, for the purpose of transparency of process of CI models, randomFor-
est models were further analyzed to extract rules explaining the models. The rules lead 
to transparency in black-box modeling techniques. Table 2 shows rules generated from 
randomForest models by using the inTrees package. Table 3 shows the range output for 
predictions (pred) in Table 2.

The algorithm of inTrees discretizes all the input and output values in the data set 
before dividing them into three quantiles based on the outcome value (Table  3). The 
rules are then extracted and pruned to define the outcome as low, medium, and high 
which correspond to the initially defined three quantiles of the outcome values. In 
Table 2, the rules are presented as conditions in a simple linguistic manner which can be 
interpreted and used as guidance to create a product of tensile strength within a certain 
known range. ‘Freq’ and ‘err’ are the number of occurrences of that particular conditions 
and how many cases deviate from the condition in the data set, respectively.

The set of rules generated from random Forest models can be flexible and represent 
the model in a wide design space. However, the flexibility of rules may lead to falter-
ing accuracy of the models under various bordering scenarios. In certain cases where 
the data sets are not designed accurately, the randomForest rules may lead to conflicting 
outcomes. To tackle such drawbacks, symbolic regression can be used which represents 
the solution to a problem in the form of a mathematical formula (Eq. 3). Figure 1 shows 
the scatter plot for Eq. 3.
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RMSE: 0.22722; where C1: −1.523866; X3: amount of Magnesium Stearate; X5: Dwell 
time (speed of the die compactor).

Equation 3 is simple and represents the problem in a concrete manner. The original 
data set contains six input features while the equation represents the two most impor-
tant ones. This is an example of feature selection behaviour by rgp, which has been 
observed in other instances as well (Mendyk et al. 2015). Feature selection densifies the 
effect of crucial inputs in the system and discards the trivial ones in an attempt to cap-
ture more information in the model yet making it simpler. Out of all the inputs, Magne-
sium stearate and dwell time were selected as critical features. Although rgp prediction 
error for tensile strength was highest in the ranking (Table 1), it is the most transparent 
model of all methods tried. The choice of this equation was a tradeoff between simplicity 
and predictability performed due to the fact that complexity of rpg models found closer 
to the best generalization error was increased exponentially and the resulting models 
were over fitted.

(3)Tensile strength = ln

[

X
1/ 16
5

(

X5

X3
+

X3

X5
−C1

)1/ 4
]

Table 2 Rules generated from randomForest models using inTrees

Mg, MC, SA, NaCMC represent excipients and Dwell and Compr. represents process conditions. Len Length of rules, freq 
frequency of occurrence of the rule, err error indicating the occurrence of a different prediction, condition: the rule itself, 
pred prediction if the condition is true, impRRF importance of the rule according to randomForest

len freq err Condition pred impRRF

2 0.298 0.197 Mg > 0.35 and Dwell ≤ 47.94 Low 1

2 0.205 0.286 Mg ≤ 0.35 and Dwell > 47.94 High 0.44869

2 0.502 0.408 Dwell > 17.75 and Compr. ≤ 24 Medium 0.19967

2 0.059 0.083 SA ≤ 0.405 and MC ≤ 19.795 Low 0.18052

3 0.059 0 Mg ≤ 0.675 and NaCMC > 3.885 and Compr. ≤ 16 Medium 0.16519

4 0.078 0.062 Mg ≤ 0.675 and Dwell > 47.94 and Compr. > 16 and Compr. ≤ 24 High 0.11618

3 0.088 0.111 NaCMC ≤ 3.82 and Dwell ≤ 47.94 and Compr. > 24 Low 0.11316

3 0.059 0 NaCMC ≤ 2.635 and Dwell > 47.94 and Compr. > 24 Medium 0.09774

3 0.088 0 SA ≤ 0.405 and Mg > 0.675 and Dwell ≤ 47.94 Low 0.09270

3 0.059 0 NaCMC ≤ 2.57 and Dwell ≤ 47.94 and Compr. > 24 Low 0.08299

3 0.117 0.167 SA ≤ 1.595 and Mg ≤ 0.35 and Dwell > 47.94 High 0.06932

4 0.088 0.056 SA > 0.575 and Mg > 1.285 and Dwell > 24.52 and Compr. ≤ 24 Medium 0.04240

2 0.307 0.429 SA > 1.595 and Dwell ≤ 72.5 Medium 0.03004

4 0.029 0.167 MC > 25.095 and Mg ≤ 0.35 and Dwell > 24.52 and Dwell ≤ 47.94 Medium 0.02033

1 0.59 0.545 SA ≤ 1.595 Medium 0.01247

3 0.117 0.042 SA ≤ 0.405 and Mg > 0.35 and Dwell ≤ 47.94 Low 0.01165

Table 3 Prediction range values for low, medium, and high in Table 2

Tensile strength (N/mm2)

Low (0.408, 1.05)

Medium (1.05, 1.68)

High (1.68, 2.32)
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Magnesium stearate is an excipient exhibiting a profound effect on the tensile strength 
of the tablets within these experimental conditions—supported by previous experi-
mental studies (Hentzschel et al. 2012). As can be seen in Fig. 2 increasing Magnesium 
stearate concentration decreases tensile strength of the tablets, as previous research has 
shown (Fukui et al. 2001). This tensile strength decrement can be explained by reduction 
of inter-particulate bonding caused by formation of lubricant around carrier particles. 
Therefore, presence of lubricant around carrier particle causes weaker bond between 
them and consequently lower tensile strength (Bolhuis et al. 1975; Duberg and Nyström 
1982; Vromans and Lerk 1988). Tensile strength is also dependent on the Dwell time 
which represents the interval during which maximum compaction pressure (defined 
as >90 % of peak pressure) is maintained by the punches during the compaction cycle 
(Vezin et al. 2008). The longer Dwell time leads to a longer inter particular bond forma-
tion under compaction resulting in stronger tablets (Xu et al. 2015).

A complex systems perspective

Prediction of tensile strength benefits the drug discovery and production chain by pre-
venting failures beforehand, which can be extended designing a strategy that takes into 
account the design problems and their solutions at an early stage in the drug discov-
ery and manufacture life cycle (Thomke and Fujimoto 2000), also conforming with QbD 
principles by FDA (ICH 2009). Developed CI models allow testing several approaches 
within the boundaries without the necessity of performing an assay/conducting experi-
ments in laboratory. Increased understanding of the components of the system and how 
they interact lead to higher success rates of delivering the drug to market in less time and 
cost. Variables critical for (data-driven) predictive ability are discussed here, as opposed 
to variables already known to be typical for product quality. Our results focus on high-
lighting variables which are important in increasing predictive ability of the system for 

Fig. 1 Shows the predicted vs observed graph for all the modeling methods
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tensile strength. In this case, the amount of Magnesium stearate and the speed of tab-
leting machine (dwell time) were found out to be the most important variables to pre-
dict tensile strength. Lesko et  al. (2000) argues that the need for predictability in the 
pharmaceutical drug manufacture is of utmost importance as it can only be achieved 
by truly understanding the drug, underlying interactions, and the prevailing conditions 
knowledge of which will directly influence the design of production process (Van Dyck 
and Peter 2006).

Conclusions
CI models represent the problem of tensile strength satisfactorily. Furthermore, models 
have been further analyzed in an attempt to make them more transparent. Rules were 
extracted from randomForest models and represented in a simple and understandable 
manner which can be used by the pharmaceutical industry for research and regula-
tory purposes. A mathematical formula was created using symbolic regression which 
defines the problem of tensile strength for the particular data set used. Symbolic regres-
sion results exhibit feature selection behavior taking into account only the input vari-
ables which are contributing mostly towards the output. The latter is a starting point to 
further considerations about possible mechanisms governing analyzed problem. Tensile 
strength is a factor describing mechanical strength of a tablet. As addition of magnesium 
stearate was found to be responsible for tablets being less durable, it might be hypothe-
sized that hydrophobic character of this excipient disrupts some hydrophilic interactions 
between particles in the tablet mass (Hersen-Delesalle et al. 2007). It conforms very well 
with one of the theories of tablets formation, where residual and/or crystalline water 
present in the bulk material of tablet mass during compression is relocated and causes 

Fig. 2 Effect of Dwell time and Mg on tensile strength of tablets
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re-crystallization of the material in-between particles thus creating inter-particles bonds 
contributing to the strength of the resulting tablets (Crouter and Briens 2014).
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