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ABSTRACT

The aim of this study was to evaluate if low-frequency, low-magnitude vibrations
(LFLM) could enhance chondrogenic differentiation potential of human adipose
derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their
adipogenic properties for biomedical purposes. We developed a prototype device that
induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies:
25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem
cell (hASCS), to investigate their cellular response to the mechanical signals. We have
also evaluated hASCs morphological and proliferative activity changes in response to
each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz
signal leads to most effective and stable cartilaginous tissue formation through highest
secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low
concentration of Collagen type I. These results correlated well with appropriate gene
expression level. Simultaneously, we observed significant up-regulation of 3, a4, 1
and B3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well
as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly
inhibited adipogenesis of hASCs. The obtained results suggest that application of
LFLM vibrations together with stem cell therapy might be a promising tool in cartilage
regeneration.
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INTRODUCTION

Articular cartilage injuries are a growing problem in both human and veterinary medicine.
Injury to cartilage manifests through the typical signs of inflammation, and can be caused
by either trauma or diseases such as osteonecrosis, cartilage necrosis, or arthritis. Because
cartilage is an avascular tissue with chondrocytes that are characterized by a low mitotic
potential, the regenerative potential cartilage is substantially limited (Chung ¢ Burdick,
2008). As such, the spontaneous regeneration of injured cartilage is extremely difficult.
Until recently, the vast majority of the available treatment methods have focused on
eliminating symptoms and improving patient quality-of-life through the use steroidal or
non-steroidal anti-inflammatory drug treatment (NSAIDs) (Lin et al., 2004). However,
when used long-term, these medications may lead to chondronecrosis (Brandt, 1987).

A potential solution to this problem emerges in the form of cell based therapies.
Adult mesenchymal stem cells (MSCs) may be a possible source of cells for this type
of therapy due to their immunomodulatory action, ability to self-renew, and ability
to differentiate into several cell lineages, i.e., chondrocytes, osteoblasts or adipocytes
(Iyer & Rojas, 2008; Zuk et al., 2001). Currently, bone marrow (BMMSCs) and adipose
derived mesenchymal stem cells (ASCs) are the cells most frequently applied in cell-based
therapies at the preclinical stage. Of the two cell types mentioned above, ASCs seem a
better alternative to BMMSCs, due to their easy accessibility, and thus lower donor-related
risks (Baer ¢ Geiger, 2012). Moreover, activated ASCs secrete from their surface small,
spherical membrane fragments called microvesicles (MVs) (Margiziak et al., 2015). These
MVs contain important regenerative molecules, that improve the function of damaged
tissues—eg., growth factors, bioactive lipids, proteins. Microvesicles secreted by MSCs,
stimulated to differentiate into osteocytes, release into the culture medium compounds
rich in Collagen type I and II or Bone Morphogenetic Protein 2 (Collino et al., 2010; Tetta
et al., 2012). Several studies have confirmed the beneficial clinical effect of ASCs in the
treatment of musculoskeletal disorders, particularly in the field of veterinary orthopedics
(Marycz et al., 20125 Marycz et al., 2012; Brittberg et al., 1994). In our previous study, we
demonstrated the positive effects of ASCs application in equine and canine osteoarthritis
treatment (Nicpori et al., 2014).

However, one major limitation to the clinical application of ASCs is the age-related
decrease in the proliferative and chondrogenic differentiation potential of ASCs obtained
from older populations (Choudhery et al., 2014). As degenerative joint diseases increase
in prevalence with age, it is important to develop methods to overcome this limitation.
In order to improve both the proliferative and the differentiation potential of ASCs,
various physical stimuli such as static magnetic field (Margdziak et al., 2014), electric
signals (Hammerick et al., 2009) and cyclic strain (Simmons et al., 2003) have been applied.
However, this field still remains relatively unexplored in terms of the biological effects of
low-magnitude low-frequency vibration (LMLF)—a non-invasive biophysical intervention
that leads to cyclic loading of the targeted tissue. LMLF vibrations include values of
magnitude under 1.0 g, where g =9,81 m/ s2,and a frequency between 20—100 Hz (Lau et
al., 2010). Several studies have investigated the role of various magnitudes and frequencies
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of vibrations, such as high-magnitude low-frequency (HMLF) vibrations (Nikander et al.,
2009), high-magnitude high frequency vibrations (HMHEF) (Tirkkonen et al., 2011) and
low-magnitude high-frequency (LMHF) vibrations (Luu ef al., 2009), in the context of
their influence on cellular response (Edwards ¢ Reilly, 2015; Uzer et al., 2015; Sen et al.,
20115 Preé et al., 2013; Uzer et al., 2013). Moreover, it has been reported that LMHF enhance
the osteogenic differentiation potential of MSCs (Tirkkonen et al., 2011). Enhancement of
osteogenic and/or chondrogenic differentiation potential of MSCs may strongly depend on
up-regulation of particular integrins, that are activated by various biomechanical signals
(Popov et al., 2015). Integrins are heterodimeric glycoproteins that are composed of an «-
and a B-subunit, each of which has an extracellular and a cytoplasmic domain (Goessler
et al., 2009). Several studies have provided evidence that chondrocytes express integrins
(Hering, 1999; Hynes, 1992; Giancotti & Ruoslahti, 1999; Albelda ¢ Buck, 1990; Salter et al.,
1992; Lee, Qi & Scully, 2002). In particular, the «181 and 581 integrins have been shown
to be the most prominent in adult chondrocytes isolated from normal articular cartilage.
However, the other integrins are still poorly investigated, especially in the context of their
expression in differentiated precursor cells additionally stimulated by various types of
external mechanical or others signals.

In an animal model, LMHF signals had a positive influence on both bone formation and
density, enhancing bone strength and recovery after bone fracture (Xie, Rubin & Judex,
2008; Wehrle et al., 2015; Rubin, Judex ¢» Qin, 2006). Moreover, preliminary studies in
children with disabling conditions and post-menopausal women indicate that such signals
can be efficacious in reversing and/or preventing bone loss (Rubin, Judex & Qin, 2006).
However, to the best knowledge of the authors, the current literature lacks data concerning
the effects of LMLF vibrations on the chondrogenic differentiation potential of human
ASCs.

The aim of this study was to investigate how harmonic vibration, sinusoidal with
constant low-magnitude (0.3 g, where ¢ =9,81 m/s?) and low-frequency (25, 35, 45 Hz)
mechanical signals, generated by an actuating device, effects ASC morphology, growth,
and adipogenic and chondrogenic differentiation potential.

MATERIALS AND METHODS

Description of the cell vibration generator prototype

The process of inducing vibrations was applied using custom-made vibration platforms,
specially constructed device that allowed to induce mechanical motion of a 24-well culture
plate. Movement of the plate was characterized by the harmonic sine of a given amplitude
and frequency. The direction of plate translations was perpendicular to the main surface
on which the cells were cultured.

A scheme of the stand is shown in Fig. 1C and photographs in Figs. 1A and 1B. The
vibration generator, an electromagnetic actuator, is positioned on a stationary base. The
principle of its operation is based on coil movement, which is generated by an alternating
current flow. The design of the actuator is similar to that of a typical loudspeaker, with the
main difference being that the moving parts are not a flexible membrane but a stiff plate.
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Figure 1 Vibration generation prototype. Actuator with cell culture plate connected with PC software,
put inside a CO, incubator (A). Cell culture plate attatched to the spacer under electro-magnetic actuator
(B). Connection diagram and flow of signals during vibration stimulation. The electromagnetic actuator
was supplied directly by the amplifier. The displacement signal waveform was generated in the computer
software and sent through a digital-to-analog converter to the amplifier. 1, incubator; 2, 24-well culture
plate; 3, spacer; 4, stiff movable plate; 5, electro-magnetic actuator (EM-ACTUATOR) with coil inside; 6,
signal amplifier; 7, measuring card with A/C and C/A converters; 8, PC and software; 9, laser displacement
sensor head; 10, laser beam. x shows the movement direction of the culture plate (C).

The stiff plate of the actuator moves in a linear manner in relation to the stationary
part. Fig. 1C depicts the displacement value as ‘x’. Between the actuator and the culture
plate, a spacer has been mounted. The spacer is a rigid element made of polyethylene,
placed to create distance from the cell culture actuator. This was done to eliminate the
possible influence of the alternating magnetic field generated by the EM-actuator on the
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cell culture. The height of the spacer was about 10 cm. The strength of the magnetic field
at this distance does not differ from the background.

The culture plate was attached to the top surface of the spacer in such a way to allow
quick mounting. Such a method was dictated by the fact that the vibration stimulation
was scheduled only for short periods of time each day. Movement of the culture plate was
defined as a course of the sine function with a given value of frequency and amplitude of
acceleration. A laser displacement sensor (KEYENCE LK-G157) was used to measure the
translation of the culture plate. The acceleration signal was calculated according to the

following formula:
x = Asin(wt) — ¥ = —Aw’sin(wt)

where x—displacement, ¥—acceleration, A—amplitude of displacement, w—frequency
of vibrations (w = 27 f), f—frequency, t—time, Aw*—amplitude of acceleration.

Vibration loading protocol of hASCs culture

The hASCs were seeded at a concentration of 3 x 10* on 24-well plates and 5 x 10* to a
15 ml tube. Tubes with 3D model were vibrated on tube rack. For each vibration model
(25, 35 and 45 Hz) separate dishes were used. Plates/racks were placed securely onto the
vibration device and oscillated vertically at 25, 35 and 45 Hz. The stimulus was sinusoidal
and delivered with a peak acceleration of 0,3 g for 15 min once a day, for 14 consecutive
days. Cells in the non-vibration group were placed on the same but stationary plate. After
15 min of vibration, the hASCs (both vibrated and non-vibrated groups) received fresh

culture medium.

Isolation of human adipose derived mesenchymal stem cells (hASCs)
This study was approved by the local bioethics committee of Wroclaw Medical University,
Poland (number KB-177/2014). Written informed consent was obtained from each patient
prior to tissue collection during total hip arthroplasty. This study adhered to the Helsinki
Declaration (1964) and its later amendments.

Subcutaneous adipose tissue was collected from 4 patients. From each patient we
obtained 4 donor samples, representing of a total n = 16. The average age of the patients
was 69 =+ 1 years. Briefly, after collection, the tissue samples were placed in sterile
Hank’s Balanced Salt Solution (HBSS). The isolation procedure of adipose-derived
mesenchymal stem cells was conducted under aseptic conditions and in accordance
with previously described protocol (Grzesiak et al., 2011; Marycz et al., 2013). Samples
were washed with HBSS supplemented with a 1% antibiotic-antimicotic solution
(penicillin/streptomycin/amphotericin b at a concentration of 0.017 mol/l, 0.01 mol/l
and 0.0002 mol/l respectively; Sigma Aldrich, cat no A5955) and then cut into small pieces
using surgical scissors. Next, the samples were placed in a sterile centrifuge tube and
digested with type I collagenase (1 mg/ml, Sigma Aldrich, cat no C5894). After 30 min
incubation at 37 °C, the tissue homogenate was centrifuged at 1,200 g for 10 min. The
supernatant was removed and the cell pellet was resuspended in growth media. The cell
suspension was then transferred to the cell culture flask.
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Immunophenotyping, Fluorescence-activated cell sorting (FACs)
analysis, and multipotency test

Cells were plated on 24-well culture plates suspended in 500 pl of standard medium

at a concentration of 8 x 10° cells per well. The presence of specific antigens for ASCs,
i.e., integrin beta-1 (CD29), HCAM (CD44), 5’ -nucleotidase (CD73) and endoglin (CD105)
and leukocyte common antigen (CD45) was examined after one week of culture by means
of primary antibodies (all from Sigma Aldrich). Negative staining of CD45 was used to
exclude hematopoietic origin. After fixation, cells were permeabilized with 0.2% Tween 20
for 15 min and washed three times with HBSS. The solution of primary antibody and 4%
FBS in PBS was applied to every well and incubated overnight at 4 °C. Next, the cells were
washed three times and secondary goat anti-rabbit conjugated with Atto 488 antibody was
added to appropriate wells at concentration 1:150. After incubation at room temperature
for 1.5 h, the cells were washed again and photographed under a fluorescence microscope.

For the multipotency test, cells were cultured on chondrogenic and adipogenic media
(STEMPRO® Chondrogenesis/Osteogenesis Differentiation Kit and STEMPRO® Adipo-
genesis Differentiation Kit, Life Technologies) for 14 days. The culture media was changed
every second day.

After 3 passages, the ASCs were examined for surface protein molecule expression by
flow cytometry. Cells were trypinized using a Trypsin-EDTA solution (TrypLE™, Life
Technologies), centrifuged at 400 xg for 3 min, and then washed with PBS containing
2% FBS (fetal bovine serum) (Sigma Aldrich). A total of 5 x 10 cells were labeled for
20 min (on ice and dark) with antibodies pre-conjugated with allophycocyanin (APC),
peridinin chlorphyllprotein (PerCP), fluorescein isothiocyanate (FITC) or phycoerythrin
(PE). The following CD surface markers were tested: CD34, CD45, CD105, CD90, CD73,
CD44, CD29 and IgG1 as an isotype control antibody (BD Pharmingen). The samples were
analyzed by a Becton Dickinson FACSCalibur flow cytometer. At least ten thousand events
were acquired for each CD surface marker. The data was then analyzed using FlowJo X
software (Treestar).

Cell culture
Throughout the experiment, hASCs were cultured in aseptic and constant conditions in
an incubator at 37 °C, 5% CO, and 95% humidity. The cell population was plated in
T-75 culture flasks for primary culture and was maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) with nutrient F-12 Ham (Sigma Aldrich) supplemented with 10% FBS
and 1% of antibiotic/antimicotic solution at a concentration of 0,017 mol/l, 0,01 mol/l and
0,0002 mol/l respectively (Sigma Aldrich, cat no A5955). The culture medium was changed
every second day. Human ASCs were passaged using Trypsin-EDTA solution (TrypLE™,
Life Technologies) in accordance with manufacturer’s instruction after reaching about
80-90% confluence. Cells were passaged three times before use in experiments.

Isolated adipose-derived mesenchymal stem cells were divided into 2 groups.
The first one was stimulated with chondrogenic medium and the second one with
adipogenic medium. The differentiation processes of hASCs were performed using
the STEMPRO® Chondrogenesis Differentiation Kit and STEMPRO® Adipogenesis
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Differentiation Kit (Life Technologies), respectively. Cells were seeded at 3 x 10* on
24-well plates and 5 x 10* to a 15 ml tube. The stimulation of cells was performed in
accordance with the manufacturers’ instruction.

The chondrogenic culture was maintained in two systems: 2D in 24-well plates for
fluorescent, histochemical stainnings, rtPCR analysis and SEM, and 3D for ELISA tests and
Focused Ion Beam Scanning Electron Microscope (FIB-SEM, Auriga Compact Crossbeam,
Zeiss, Germany). For the 3D system, 2.5 x 10° hASCs were seeded into 15 ml polypropylene
tubes and pelleted. The hASCs were cultured for 14 days as 3D pellets in induction medium
STEMPRO® Chondrogenesis Differentiation Kit (Life Technologies). The experiment was
repeated three times. Both 2D and 3D cultures were incubated two days before starting
vibration stimulation.

Cell proliferation assay
The cell proliferation factor (PF) was evaluated using the Alamar Blue test (TOX-8, Sigma
Aldrich) according to the manufacturer’s instructions. The culture media was replaced with
a medium containing 10% of resazurin-based dye and incubated for two hours. Afterwards,
the supernatants were collected and subjected to absorbance measurement by means of
spectrophotometer (SPECTRO StarNano, BMG Labtech) at 600 nm of wavelength, with
a distraction of 690 nm of background absorbance. The procedure was performed during
the differentiation period at days 2, 5, 10, and 14.

A standard curve obtained during the experiment, allowed to estimate the amount
of cells. The population doubling time (PDT) was assessed using an online calculator
(http://www.doubling-time.com/compute.php).

Examination of hASCs morphology

Cell morphology, cellular composition, and culture growth pattern were analyzed using
an inverted, fluorescence microscope (AxioObserverAl, Zeiss) and a scanning electron
microscope (SEM; EVO LS15, Zeiss).

In order to begin observations, after the culture period, cells were fixed with 4%
paraformaldehyde. After 15-min permeabilization with 0.2% Tween, cells were stained
using atto-565-labeled phalloidin for 40 min to visualize actin filaments. After triple
washing, diamidino-2-phenylindole (DAPI) staining was applied for 5 min to analyze the
distribution of cell nuclei. All fluorescence staining was performed at room temperature in
the dark. Additionally, Oil Red O staining for adipogenic cultures and Safranin-O staining
for chondrogenic cultures were performed to observe fat droplets and chondrocytes,
respectively. After fixation, adipogenic samples were treated with 0.1% Oil Red O solution
for 5 min, Plates were rinsed 3 xwith water and images of cells on plate were taken. For
quantification the percentage of Oil Red O absorption, the dye was extracted by isopropanol
and absorbance was determined at 490 nm. Chondrogenic samples were treated with 1%
acetic acid for 10 min and stained with Safranin-O for 5 min. Images were acquired using
a Cannon PowerShot digital camera. In order to evaluate the chondrogenic differentiation
efficiency, the concentration of proteoglycans was determined, basing on the binding
Safranin O to glycosaminoglycans and spectrophotometric measurements at a 470 nm
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wavelength and assessment percentage of Safranin O absorption. As 100% control, we
adopted reagent not added to culture. To analyze detailed morphological features of the
cells, especially fat droplets, and chondrogenic nodules, SEM was performed. After fixation,
the cells were washed in distilled water and dehydrated in ethanol (concentrations from
50 to 100%, every 5 min). Thoroughly dried cells were coated with gold (ScanCoat 6,
Oxford), placed in a microscope chamber, and observed using the SE1 detector, at 10 kV of
filament’s tension. To observe morphological features and measure diameters of nodules
(n=16) Ion Beam Scanning Electron Microscope (FIB-SEM, Auriga Compact Crossbeam,
Zeiss, Germany) obsrvations were performed. Analysis was performed using a focus ion
beam detector at magnification of 200X. Diameter of adipocytes (n = 6) was measured
using Scanning Electron Microscope (SEM; EVO LS15, Zeiss).

Enzyme-linked immunosorbent assays

In order to evaluate the chondrogenic differentiation efficiency on the protein level, the
concentration of chondrogenesis-specific markers was investigated. The total concentration
of proteins from pellet cultures was determined with enzyme-linked immunosorbent assay
(ELISA). For the analysis, cells homogenate were collected on the last day of the experiment.
Chondrogenic media was subjected to a BMP-2 ELISA assay (Bone Morphogenic Protein
2 Quantikine ELISA Kit, R & D Systems), and a Col-1 and a Col-2 ELISA assay (Human
Collagen alpha-1(I) and (II) chain ELISA Kit, EIAab). All steps of each ELISA tests were
performed in accordance with the manufacturer’s protocol. Each sample was prepared
in duplicate. Spectrofotometric determination was performed using a microplate reader
(Spectrostar Nano, BMG Labtech) at a wavelength equal to 450 nm and with the correction
wavelength of 540 nm. The concentration of proteins was presented as a ratio of protein

weight and supernatant volume (w/v).

Quantitative real-time reverse transcription polymerase chain
reaction (qRT-PCR)

In order to analyze gene expression, cells after stimulation were rinsed with HBSS and
were homogenized with 0.5 ml of TRI Reagent (Sigma Aldrich) directly in the culture well.
The total RNA was isolated using a phenol-chloroform method as previously described
(Chomczynski ¢ Sacchi, 1987). After isolation, total RNA was diluted in DEPC-treated
water. The concentration and purity of RNA preparations was determined by absorbance
measured at 260 nm with a nanospectrophotometer (VPA biowave II). Preparation

of DNA-free RNA was performed using DNase I RNase-free kit (Thermo Scientific).
For each reaction, 100 ng of total RNA was used. Transcription of gDNA-free total
RNA to a complementary DNA (cDNA) was reverse transcribed using Moloney Murine
Leukemia Virus Reverse Transcriptase (M-MLV RT) and oligo(dT)15 primers (Novazym).
RNA purification and cDNA transcription was performed according to manufacturers’
instructions. Quantitative Real-Time polymerase chain reaction (qQRT-PCR) was performed
using 5 pl of cDNA in total volume of 20 ul by means of SensiFast SYBR & Fluorescein
Kit (Bioline). The reaction was performed at a 500 nM final concentration of primers. The
primer sequences used are presented in Table 1. QRT-PCR was performed as described
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Table 1 Sequences of QPCR primers. Sequences of qPCR primers used for the amplification of human mRNA to chondrogenic genes.

Gene name Primer sequentions Ann.T, °C Accession number
Forward 5'-GTCAGTGGTGGACCTGACCT-3'
GAPDH 60 NM_002046
Reverse 5'-CACCACCCTGTTGCTGTAGC-3’
Forward 5'-GTGATGCTGGTCCTGTTGGT-3’
Collagen type I (COL1A1) 60 NM_000088.3
Reverse 5'-CACCATCGTGAGCCTTCTCT-3’
F d 5-GACAATCTGGCTCCCAAC-3’
Collagen type II (COL2A1) orwar 60 NM_001844.4
Reverse 5'-ACAGTCTTGCCCCACTTAC-3’
F d 5'-GCCTACGAAGCAGGCTATGA-3'
Aggrecan (ACAN) orwar 60 NM_13227.3
Reverse 5-GCACGCCATAGGTCCTGA -3
Forward 5'-AGCGAACGCACATCAAGAC-3’
SOX-9 65 NM_000346
Reverse 5'-GCTGTAGTGTGGGAGGTTGAA-3
Forward 5-GTGATAAATTCAGAAGGGAGG-3’
RUNX-2 65 NM_001024630
Reverse 5'-CTTTTGCTAATGCTTCGTGT-3’
F d 5'-CAGTCATGCCTGAGGGTTTT-3'
Collagen type X (Col-X) orwar 65 NM_000493
Reverse 5'-GGGTCATAATGCTGTTGCCT-3’
F d 5'-AGGGTGAGAAAGGAGATCC-3
Adiponectin (ADIQ) orwar 60 XM_011513324.1
Reverse 5'-GGCATGTTGGGGATAGTAA-3'
. Forward 5'-ATGACACCAAAACCCTCATCAA-3’
Leptin (LEP) 60 XM_005250340.3
Reverse 5'-GAAGTCCAAACCGGTGACTTT-3
Forward 5'-ATGACACCAAAACCCTCATCAA-3’
PPAR-gamma 60 AB565476.1
Reverse 5'-GAGCGGGTGAAGACTCATGTCTGTC-3'
. Forward 5'-ATCTTGAGAGCCACAGTCA-3’
Integrin o3 52 (NM_002204)
Reverse 5'-cTGGGTCCTTCTTTCTAGTTC-3'
. Forward 5'-AATGGATGAGACTTCAGCACT-3’
Integrin o4 58 (NM_000885)
Reverse 5-CTCTTCTGTTTTCTTCTTGTAGG-3'
. Forward 5'-ACTAGGAAATCCATTCACAGTTC-3’
Integrin o5 52 (NM_002205)
Reverse 5'-GCATAGTTAGTGTTCTTTGTTGG-3’
. Forward 5'-GGAGCACATTTAGTTGAGGTAT-3’
Integrin av 56 (NM_002210)
Reverse 5'-ACTGTTGCTAGGTGGTAAAACT-3’
. Forward 5'-CTGCTGTAGACATTTGCTATGA-3’
Integrin 83 52 (NM_000212)
Reverse 5'-GCCAAGAGGTAGAAGGTAAATA-3'
. Forward 5-CTGTGGACTGATGTTTCCTT-3
Integrin 85 54 (NM_002213)
Reverse 5-GTATGCTGGTTTTACAGACTCC-3’
. Forward 5'-GAAGGGTTGCCCTCCAGA-3’
Integrin 85 60 NM_002211.3

Reverse 5'-GCTTGAGCTTCTCTGCTGTT-3’

previously (Kim ¢ Im, 2010). Expression levels of all analyzed genes were normalized for the
expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a housekeeping
gene.

Statistical analysis

All experiments were performed with at least 3 (n = 3) independent experiments (biological

replicates, n > 4) measured as quadriplicate or more (technical replicates, n > 4).
Statistical analysis was performed using GraphPad Prism 5 software. The statistical

significance of results was calculated using the one-way analysis of variance (ANOVA) with
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Figure 2 Phenotyping and multipotency test. The expression of specific cell markers CD29, CD44, CD73 and CD105 and the lack of hematopo-
etic cell marker CD45 (A). Characterization of hASCs FACS analysis. FACS histograms of passage 3 ASC simultaneously stained for CD45, CD34,
CD105, CD90, CD73, CD44, CD29, and IgG1 as negative control. Histograms are representative of 3 independent flow cytometry analyses. Red his-
tograms: IgG1 negative control; blue histograms: antibody specific staining (B). Multipotency assay- standard culture and differentiated cultures af-
ter Alizarin Red staining for osteogenic stimulation (mag. 50, scale bar = 200 pum) and Oil Red O staining for adipogenic stimulation (mag. 100,
scale bar = 400 wm) (C).

post-hoc Dunnett’s test by means. A P-value of less than 0.05 was considered statistically
significant.

RESULTS

hASCs—FACs analysis, immunophenotyping and multipotency test
Flow cytometry analysis revealed that hASCs showed positive labeling for CD29, CD44,
CD73, CD105, and CD90 (Fig. 2B). The investigated cells were negatively labeled for two
hematopoietic markers: CD34 and CD45 (Fig. 2B). Additionally, immunohistochemical
staining confirmed the presence of mesenchymal markers (CD29, CD44, CD73, CD105)
and excluded hematopoietic origin (CD45) (Fig. 2A).

Moreover, the multipotent character of hASC’s was confirmed by abundant osteogenic
and adipogenic differentiation. In contrast to cells cultured under control conditions, the
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Figure 3 Chondrogenesis proliferation factor and population doubling time. Proliferation factor (A)
and population doubling time (PDT) (B) of hASCs treated with 0, 25, 35 and 45 Hz vibration frequencies
during chondrogenic stimulation. *p-value < 0.05.

presence of osteo nodules, was observed in hASCs cultivated under osteogenic conditions
(Fig. 2C). Moreover, mineral calcium deposits visualized by Alizarin Red staining were
clearly detected after 3 weeks of osteogenic differentiation. After 2 weeks of culture with
an adipogenic inducing media, hASCs developed Oil Red O positive lipid droplets (Fig.
2C), whereas control cultures grown in standard media failed to produce similar results
(Fig. 2C).

Proliferation rate (PF) and population doubling time (PDT) of 3D
chondroblasts originated from chondro induced hASCs

The proliferative activity, as well as the PDT, was analyzed during the 14 days of hASCs
culturing in chondrogenic induction medium exposed to vibration frequencies of 25, 35
and 45 Hz and in non-vibration control conditions. The obtained data showed that all
investigated vibration frequencies influenced the proliferative potential, as well as the PDT,
of chondroblasts originated from hASCs (Figs. 3A and 3B). The percentage of Alamar Blue
reduction decreased proportionally with cell count and activity.

Cells cultured under 25 Hz frequency reached the highest PF after 2 days of incubation
and then declined, but on the 10th day of culture reached higher PF and declined again
till the 14th day. Moreover, we noticed the longest PDT (277 % 25 h) when cells were
stimulated with a 25 Hz frequency. The cells exposed to 35 Hz vibrations had a higher
PF than control cultures at all investigated time points (Fig. 3A). During the analysis,
hASCs after chondrogenic differentiation using 25 Hz vibrations resulted in the lowest
proliferation potential, as well as longest PDT, when compared to the other investigated
groups.

The morphology of chondroblasts originated from hASCs

After 14 days, formation of chondroblast-specific nodules could be clearly observed (Figs.
4G—-4V and 5A-5G) and showed a strong orange signal after Safranin O staining (Figs. 40—
4R). Characteristic chondrocyte-like cells were observed in all of the investigated cultures,
however, the cells cultured under the influence of 35 Hz vibrations more efficiently
induced chondrodifferentiation (Fig. 4T). In these samples, nodules had the largest
size (Fig. 6A) as well as exhibited the highest absorption of Safranin O (Fig. 6B). Cells
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Figure 4 qPCR and morphology chondroblasts. (A) RT-qPCR for chondrogenesis genes: SOX9, COL-X, COL-2, RUNX2, COL-1 and ACAN
from hASCs that underwent chondrogenic induction on culture plates with treatment with 0, 25, 35, 45 Hz vibrations. *p-value < 0.05 (B) Cell mor-
phology of chondroblasts originated from hASCs cultured on plates visualized by fluorescence stainings (DAPI A-D and Phalloidin E-H), Safranin
staining (I-L). Scale bars A-H 100 pum and I-L 200 pum and scanning electron microscope photographs (Mag. 2000 ).

cultured under 25 Hz vibrations absorbed less Safranin O dye and formed nodules with a
significantly smaller diameter than samples cultured with 35 Hz vibrations (Figs. 6A and
6B). Chondroinduction of cells treated with 45 Hz were comparable to the control group.
Although chondro-nodules had similar diameters, the absorption of Safranin O by cells
cultured with 45 Hz frequencies was significantly higher (Figs. 6A and 6B).

Quantitative Collagen 1 and 2 (Col-1, Col-2) and Bone Morphogenetic

Protein 2 (BMP-2) assay and chondrogenic gene expression analysis

(SOX-9, Col-X, Col-Il, Runx, Col-I, ACAN)

The performed analysis showed an increase in collagen type 2 concentration in comparison
to the amount of collagen type I in all groups where vibrations were applied (Figs. 5A and
5B). These results were additionally confirmed by positive chondrogenic differentiation of
hASCs.

The highest difference on mRNA level between collagen type IT and type I was observed in
the cultures stimulated with 25 and 35 Hz vibrations, and in the control culture. The lowest
concentration of collagen type II with respect to collagen type I was observed when 45 Hz
frequency vibrations were applied (Figs. 5A and 5B). Cells treated with 35 Hz frequency
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Figure 5 ELISA and chondro nodules. (A) Comparison of Col-1, Col-2 and BMP-2 levels by ELISA
hASCs pellets after 14 days of chondro-induction. (B) Morphological characterization and comparison of
chondro-nodules from cells cultured at pellet.
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Figure 6 Safranin absorbtion and diametres of chondronodules. Percentage of Safranin staining ab-

sorption (A) and the average diameter of chondrogenic nodules (B) from chondroblasts that originated
from hASCs. *p-value < 0.05.

vibrations tended to secrete significantly higher amounts of BMP-2 in comparison to the
other groups (Fig. 5C). Exposure to the 25 Hz stimulation model resulted in secretion of
lower a concentration of BMP-2 in comparison to the 35 Hz, however significantly higher
when compared to the 45 Hz frequencies, as well as to the control culture.
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The quantitative evaluation of the concentration of collagen type I and type II was
additionally confirmed by gene expression analysis (Figs. 4C and 4E). The highest activity
of collagen type II and its predominance over expression of collagen type I was observed
in cells treated with 35 Hz vibrations. Similarly to the quantitative evaluation, exposure to
25 Hz vibrations resulted in lower expression of Collagen type II when compared to the
35 Hz vibrations model. The gene expression of SOX-9 and Col-X, the master transcription
factors of chondrogenesis, gradually increased in 35 Hz treated cells compared to control
group (Figs. 4A and 4B). Aggrecan (ACAN) and RUNX2, another chondrogenic markers,
significantly increased after 25 Hz treatment (Figs. 4D and 4F).

Analysis of integrin expression in response to vibration stimulation
In order to sense and translate the applied external mechanical signals, cells express
mechanoreceptors on their surface, such as integrins. In our study, we analyzed the
expression changes of four alpha (a3, @4, a5 and «V) and three beta (81, 83 and B5)
integrin subunits (Fig. 7). qPCR analysis demonstrated a slight increase of integrin 3, o4,
B1 and B3 subunit expression after 25 Hz stimulation in comparison to control (0 Hz).
We also found that when cells were stimulated with 35 Hz vibrations, hASCs significantly
upregulated integrin a3, a4, B1 and 83 subunit. Interestingly, after 35 Hz stimulation, the
highest increase in expression of the B3 intergrin was observed. With respect to integrin
subunits 5, @V, and B5, expression levels were similar between to stimulated groups,
however down-regulated as compared to control.

Proliferation factor and population doubling time of human adipocytes
originated from adipo induced hASCs

The proliferation factor and PDT were determined in the various groups after 14 days

of adipogenic induction. The stimulated cultures were characterized by an irregular
proliferation rate (Fig. 8A). Stimulation with a 25 Hz frequency resulted in an increase of
PF when compared with the other groups. The highest PF was on day 5, and from that
point on a decreasing trend was observed (Fig. 8A). The 25 Hz frequency group also has
the shortest PDT in comparison to other experimental groups (Fig. 8B).

In the 35 Hz and 45 Hz treatment groups, proliferation remained decreased at days 2, 5
and 10 of culture in comparison to the control and 25 Hz group, although this difference
was not as pronounced as that on day 14. These results were also reflected in the PDT
calculations—the 35 Hz and 45 Hz cultures had longer time to achieving PDT (Fig. 8B).

Morphology of ASCs after adipogenic differentiation

Microscopic analysis of adipocytes that originated from hASCs revealed that the 25 Hz
vibrations mostly enhanced the adipogenic differentiation in comparison to the other
groups (Fig. 9L). The findings from gene expression analysis showed noticeable increase
of PPAR-y and adiponectin (ADIQ) (Figs. 9A and 9B) in 25 and 35 Hz stimulated groups
compared to control. However, qRT-PCR findings also showed similar gene expression of
leptin (LEP) (Fig. 9C). The adipocytes derived from 25 Hz stimulated group were highly
abundant with large lipid vacuoles, positively stained by Oil Red O staining, and absorbed
the highest percentage of dye (Fig. 10A). The smallest adipocyte diameter was observed

Marycz et al. (2016), PeerJ, DOI 10.7717/peerj.1637 14/25


https://peerj.com
http://dx.doi.org/10.7717/peerj.1637

Peer

INTEGRIN a3 , INTEGRIN o4 INTEGRIN o5 INTEGRIN oV
—_— P

— — *;1 — —_— -
T T T I
o o o a
a a 1 o 1 o
< < < <
o ¢ g ¢
i 3 9 3
= 0 = 0. = 0. =
c € c c
a (<] a C
0.0 0. 0.0
& 3 2 g
OO P
E F G
INTEGRIN 1 INTEGRIN 5
1!
_—
oy T
g 10 g
< <
0 0
: o
S os: So
= £
(<] c
00 o
< R ¥ 0
P $ ® °

Figure 7 Integrin expression (QPCR). Integrin expression changes after mechanical stimulation of ASCs.
Quantitative PCR analysis for integrin alpha 3, 4, 5, V and beta 1, 3, 5 subunits. *p < 0.05.
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Figure 8 Adipogenesis proliferation factor and population doubling time. Proliferation factor (A) and
population doubling time (PDT) (B) of hASCs treated with 0, 25, 35 and 45 Hz vibration frequencies dur-
ing adipogenic stimulation. *p-value < 0.05.

in the control group (ranges between 60 and 92 um), while adipocytes treated with 35 Hz
were characterized by the highest average size (ranges between 90 and 119 um) (Fig. 10B).

DISCUSSION

Cartilage defects, especially in cases of osteoarthritis, have a serious impact on the patient’s
quality-of-life and functionality. The increasing prevalence of degenerative joint diseases
is explained by the increasing life expectancy of the general population (Raeissadat et
al., 2013). Tissue-engineering approaches including the application of externally applied

Marycz et al. (2016), PeerJ, DOI 10.7717/peerj.1637 15/25


https://peerj.com
http://dx.doi.org/10.7717/peerj.1637

Peer

A B ADIQ C
PPAR-~y LEP

0.8

e
]
)

1.5

e
]
a

0.7

1.0

e
N
o

0.6

e
-3
o
o
@«

0.5

mRNA relative expression

DAPI

PHALLOIDIN

OILREDO *

SEM &

Figure 9 qPCR and morphology of adipocytes. (A) RT-qPCR for adipogenesis genes: PPAR-gamma,
ADIQ, LEP from hASCs that underwent adipogenic induction on with treatment with 0, 25, 35, 45 Hz vi-
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signals such as stimulation with electric currents (Ciombor & Aaron, 2005; Foley et al.,
2008), laser (Miloro, Miller ¢~ Stoner, 2007), or ultrasound vibration (El-Mowafi ¢» Mohsen,
2005; Taylor et al., 2007), are promising tools for overcoming this problem. However,
these methods also have several shortcomings, such as emission of high temperature or
generation of rarefactional pressure, which may lead to mild heating, coagulative necrosis,
tissue vaporization or inducing pulsation of pre-existing gas bodies (Miller et al., 2012).

Even more promising is the combination of MSCs therapy with innovative devices
that are able to induce particular external signals, which enhance the regeneration of
injured tissues. Since stem cells viability, proliferation status, and differentiation potential
are widely connected with their regenerative potential (Krampera et al., 20065 Mishra et
al., 2009), searching for external stimulating factors that may enhance the mentioned
MSCs features, before clinical application seems to be a crucial factor, when MSCs for
cartilage regeneration purposes are considered. Furthermore, effective external stimulation
may help overcome the age-related decrease in chondrogenic differentiation potential of
hASCs that currently poses a limitation to their clinical application in cell-based therapies
(Choudhery et al., 2014). Therefore, in the current study, we hypothesized that LMLF may
enhance the chondrogenic differentiation potential of hASCs and simultaneously alter the
differentiation toward fat tissue.

We found that when the PF of hASCs cultured in chondrogenic conditioned medium is
considered, both the 25 Hz and the 35 Hz vibration frequencies reduce the PF of hASCs.
Additionally, the PDT reached the highest level in cells treated with 25 Hz, which strongly
correlates with the obtained PF factor. As recently reported, the PDT of MSCs directly
correlates with their replicative senescence, which is linked to the decrease in the size of
cell aggregation (Yoon et al., 2011). In each experimental group, the PDT was higher in
comparison with other studies (Hass et al., 2011). This may be due to the fact that cells were
rapidly differentiated into osteoblasts or adipocytes, and that their proliferation activity
was significantly reduced. Sepiilveda et al. (2014) reported that cell senescence abrogates
the therapeutic potential of human mesenchymal stem cells in a lethal endotoxemia model.
Therefore, searching for methods that might improve the PDT level seems to be crucial
in the context of clinical application of MSCs. Interestingly, although hASCs treated
with 35 Hz had low PF and long PDT, they also developed the largest chondro nodules.
Furthermore, the highest concentration of absorbed Safranin O staining was observed in
nodules originating from cells treated with 35 Hz vibration. This likely demonstrates that
35 Hz vibrations induce the highest synthesis of glycosaminoglycans (GAG), and thus
indicates that the chondrogenic process is highly efficient.

The GAGs have an unquestionable influence on biomechanical properties of cartilage.
They serve as an important component of extracellular matrix (ECM), which directly affects
the integrity of cartilage. Our data demonstrates that the 35 Hz vibration model could be
applied to stimulate chondrocytes, which originated from hASCs to produce ECM of high
biomechanical properties manifested by rich in collagen type II and proteoglycans. The
most extensive morphometrical properties, i.e., length and height of single nodules, were
observed in 2D culture cells that were treated with the 35 Hz vibrations protocol. Slightly
weaker chondro nodule development, as well as cytoskeleton formation, was observed in
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the 2D culture treated with 25 Hz vibrations in comparison to the others, as well as to the
control group (Figs. 4G-4V).

In order to determine which of the investigated frequencies has a more significant impact
on the process of chondrogenesis, we applied quantitative ELISA and qPCR in order to
evaluate the concentration of BMP-2 and the relationship between collagen type I and Il in
the culture medium. We found in 3D culture treated with 35 Hz the highest concentrations
of BMP-2 (Fig. 5), and at the same time -collagen type II, in the 2D culture treated with
35 Hz (Fig. 4C). However, 25 Hz vibrations caused an increase in synthesis, albeit slightly
smaller amounts of investigated proteins. Our obtained results stand in good agreement
with the findings of Cashion et al. (2014), who reported that low frequency vibrations can
induce secretion of BMP-2 in human umbilical cord derived MSCs. It is worth noting that
both the 25 Hz and 35 Hz vibration stimulated chondrocytes originating from hASCs had
elevated synthesis of type II rather than type I collagen. It is well known that elasticity of
articular cartilage is dependent on the proper relationship between synthesis and secretion
of collagen types I and II. Simultaneously, we observed, that 35 Hz vibration stimuli in 2D
culture caused up-regulation of sex-determining region Y protein (SRY)-box 9 (SOX9) that
is the primary regulator of chondrogenic differentiation on an in vitro as well as an in vivo
level. The observed up-regulation of Sox-9, strongly corresponded with elevated expression
of collagen type II, which is to be expected as Sox-9 directly regulates expression of collagen
gene (COLL II) in chondrogenic progenitor cells, as well as chondrocytes (Akiyama, 2008;
Bell et al., 1997). Moreover, SOX9 determines functions of RUNX2 and exerts a dominant
function over RUNX2 in mesenchymal precursors (Zhou et al., 2006). In this study, we
confirmed this effect; gene expression of SOX9 and RUNX2 are overlapped and enhanced
in cells treated with vibrations.

The positive effect of LFLM on the functional chondrogenic differentiation process
might be explained by up-regulation of the integrin family. Here, we found that both
frequencies i.e., 25 and 35 Hz, affect up-regulation of integrin o3, @4, 1 and 83 subunits
on the mRNA level, although statistical significance was observed only in 35 Hz stimulated
cells. Furthermore, §1 integrin has been shown to play a crucial role in attachment and
survival of MSCs during the chondrogenesis process. Furthermore, we observed that
LFLM, in general, significantly down regulates integrin 585 expression. Moreover, we
observed down-regulation of «5 integrins of MSCs stimulated with all tested frequencies.
Thus our results stand in good agreement with Martino and colleagues (2009), that showed
involvement of &5 integrins more in osteogenic rather than chondrogenic differentiation
process (Martino et al., 2009).

Finally, the effect of vibration loading with particular frequencies on the adipogenic
differentiation potential of hASCs was investigated. We found that among all tested
frequencies, 35 Hz significantly inhibited adipogenesis in hASCs. The obtained results
stand in good agreement with the findings by Oh et al. (2011) who reported that 20 and
30 Hz subsonic vibrations inhibited the proliferation of 3T3-L1 preadipocytes. Additionally,
we observed the smallest absorption of Oil red O staining when cells were treated with 35 Hz
vibration. However we observed increased numbers of lipid droplets in the 25 Hz vibration
group, but the observed changes were only on a morphological level. In adipogenic gene
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expression level, we did not observe significant changes between 25 Hz and that of other
investigated groups.

CONCLUSIONS

In conclusion, the vibration-loading device designed for the purpose of this study
successfully generated controlled vibrational forces to hASCs cultured on 24-well, as well
as the 3D pelleted cell model. Our results indicate that LFLM vibrations act differently on
both chondrogenic, as well as adipogenic potential of hASCs. The most important finding
of this study suggests that 35 Hz frequency vibrations enhance chondrogenic potential of
hASCs with simultaneous inhibition of hASCs differentiation toward adipocytes. Finally,
we conclude that mechanical signals, especially 35 Hz frequency vibrations might be
potentially used in construction of therapeutic devices which may prove useful in the field
of articular degenerative diseases treatment.
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